NEUFORM:
Adaptive Overfitting for Neural Shape Editing

Connor Z. Lin Niloy J. Mitra Gordon Wetzstein
Stanford University Adobe / UCL Stanford University
Leonidas Guibas Paul Guerrero
Stanford University Adobe

Abstract

Neural representations are popular for representing shapes, as they can be learned
form sensor data and used for data cleanup, model completion, shape editing,
and shape synthesis. Current neural representations can be categorized as either
overfitting to a single object instance, or representing a collection of objects.
However, neither allows accurate editing of neural scene representations: on the
one hand, methods that overfit objects achieve highly accurate reconstructions, but
do not generalize to unseen object configurations and thus cannot support editing;
on the other hand, methods that represent a family of objects with variations do
generalize but produce only approximate reconstructions. We propose NEUFORM
to combine the advantages of both overfitted and generalizable representations by
adaptively using the one most appropriate for each shape region: the overfitted
representation where reliable data is available, and the generalizable representation
everywhere else. We achieve this with a carefully designed architecture and an
approach that blends the network weights of the two representations, avoiding
seams and other artifacts. We demonstrate edits that successfully reconfigure parts
of human-designed shapes, such as chairs, tables, and lamps, while preserving
semantic integrity and the accuracy of an overfitted shape representation. We
compare with two state-of-the-art competitors and demonstrate clear improvements
in terms of plausibility and fidelity of the resultant edits.

1 Introduction

Neural formulations have emerged as an efficient and scalable representation of complex spatial
signals, such as radiance fields, 3D occupancy fields, or signed distance functions. These repre-
sentations are popular as they allow a uniform formulation that can support a range of applications
including denoising, data completion, and editing. In the context of shapes, two main types of neural
representations have emerged. Starting from an input description (e.g., point clouds, meshes, or
distance/occupancy fields), current representations either overfit to a single shape or learn a model
that generalizes over a collection of varying shapes. However, neither of the representations alone
allows effective shape editing.

Overfitted models [9, 35, 32, 22, 26, 20, 26] reproduce a single shape with high fidelity. While this
allows for operations like efficient rendering, surface-based optimization, and data compression, such
a representation does not support shape editing or synthesis, since it does not generalize to novel
shape configurations.

In contrast, generalizable representations [28, 15, 21, 6] are trained on a large collection of shapes
and learn shape priors allowing the representation to adapt to previously unseen shape configurations.
Thus, they can be used for shape editing and novel shape synthesis [16, 15, 34, 24, 19, 23]. Howeyver,
this comes at the cost of a lower-fidelity representation, as the network needs to represent a full dataset
and its variations, instead of a single shape. Specifically, these models typically require ‘projecting’ a

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

shape into the learned latent space before editing it, where the idiosyncrasies of the starting model, in
the form of local geometric details, are often lost (see Figure 1).

[original We propose a novel blended architecture, called
Bedic NEUFORM, to combine the advantages of the
two representations described above. Specifi-

cally, we retain distinctive properties of the in-

l‘/ put shape by relying on an overfitted model and

orie ¥ cencralizzbl fi ‘ . switch to the generalizable model to complete
ginal generalizable overfitted NEUFormM NEUFOrRM | 3 . oo,
————PartEditng——————— PartMixing parts where information is missing (e.g., near
new joint locations or regions with holes). The
Figure 1: Adaptive overfitting. NEUFORM en- main challenge is to train an adaptive mixing
ables detail preserving shape edits that generalize network that blends the information between the
to new part configurations by combining advan- overfitted and generalizable models, without in-
tages of a generalizable representation (e.g., gen- troducing artifacts such as undesirable seams or
eration of plausible joint geometry) and an over- gaps. The NEUFORM architecture allows this
fitted representation (e.g., detail preservation on seamless sharing of information between the in-
the backrest), and also allows mixing parts from dividual networks. Our main technical insights
different shapes. are that (i) it is possible to smoothly interpolate
between two neural shape representations by blending between the weights of two networks sharing
an architecture and a training history, and (ii) it is possible to do this blending between a generalizable
network that works on a global view of the shape and an overfitted network that only has access to
part of the shape by carefully pruning the information flow during overfitting.

We evaluate NEUFORM on multiple applications: (i) reconstruction (i.e., projecting a given input to an
adaptive overfitted latent space); (ii) part based shape editing; and (iii) shape mixing (i.e., converting
an arrangement of parts taken from different models into a coherent shape model). We compare
with two state-of-the-art approaches [16, 39] and demonstrate advantages, both quantitatively and
qualitatively. Figure 1 shows an example of a shape edit where we can see a clear advantage for
NEUFORM over both purely generalizable and purely overfitted representations.

2 Related Work

Single-Scene Neural Shape Representations Overfitting networks represent one specific shape
via a single network by optimizing network weights. Such overfitted networks are useful for several
applications including compression [9, 35], adaptive network parameter allocation [20], multiview
reconstruction [32, 22], shape optimization [27], or multi-resolution shape representation [26, 38, 35].
While such networks, by construction, accurately capture the original shapes, faithfully encoding their
finer details, they can neither be used for editing shapes nor for creating new shapes by combining
parts from multiple (source) shapes.

Multi-Scene Neural Shape Representations Neural networks have been used to approximate
implicit models, as an example of complex spatial functions, to represent shapes as volumetric signed
distance fields [28, 6] or occupancy values [21]. Such network learning has been further regularized
by geometric constraints like the Eikonal equation [13, 3, 2] or using an intermediate meta-network
for faster convergence [18]. Other approaches model shapes using their 2D parameterizations [14,
]. Improved versions of such methods optimize for low-distortion atlases [4], learn task-specific
geometry of 2D domain [10, 31], or force the surface to agree with an implicit function [29]. Most
of these methods encode shape collections in a lower-dimensional latent space, as a proxy for the
underlying shape space, and support shape editing and generative modeling. For example, sampling
from and optimizing in the (restricted) latent spaces can produce voxel grids [19, 12, 5, 8], point
clouds [1, 33], meshes [7], or collections of deformable primitives [11]. Others [15, 24, 34] use a
two level representations with a primitive-based coarse structure capturing the part arrangement, and
a detailing network that adds high-resolution part level geometric details. While these methods do
generalize across shapes, and can be used for editing [15, 34, 16, 39], the source models often lose
their finer details during the projection to the underlying latent space and subsequent editing process.
In Section 4, we compare against two of the most relevant methods: COALESCE [39], which focuses
on part-based modeling and synthesizing part connections (i.e., joints), and SPAGHETTI [16], which
focuses on inter-part relations towards shape editing and mixing. Our method, NEUFORM, generates
higher quality joints than the former while preserving more (original) surface detail than the latter.

3 Method

Given a manifold and watertight 3D shape
S with known part annotations, our goal is
to edit the parts of S without introducing
objectionable artifacts or losing geometric
detail. The shape can be given as a mesh,
signed distance function, or occupancy func-
tion, and the part annotations are specified
as a set of oriented cuboid bounding boxes
{C1,...,Cy,}, where n is the number of
parts of S. During editing, parts may be re-
arranged via scaling and translation, and/or Pn
mixed across multiple shapes. To avoid ar-
tifacts in the edited shape, some regions of
the shape geometry, such as the joints be-
tween individual shape parts, need to be ad-
justed to adapt to the new part configuration.
To enable part-based editing without losing
geometric detail, we construct two neural

representations O.f shape .S: a generalizable Figure 2: Architecture overview. NEUFORM blends
shape representation and an overfitted shape peryeen a generalizable neural shape representation
representation. (green) and an overfitted neural shape representation
The generalizable shape representation is (red) by interpolating their network weights and some
a part-aware neural shape representation feature layers. This combines the benefits of detail
trained to represent a large shape space. This ~ preservation from the overfitted representation and ed-
parameterization can generalize to previ- itability from the generalizable representation.

ously unseen part configurations, including

the edited configuration of shape S, but can only provide a low-fidelity reconstruction of S.

T
._)

generalizable rep.

NEUForRM

T
C=o@
‘BN... I I

overfitted rep.

The overfitted shape representation is a neural shape representation overfitted to a single shape
S. It represents the input shape geometry in great detail, but does not generalize to unseen part
configurations, such as edited configurations of S.

We combine these representations by blending between them, as explained in Section 3. In regions
where reliable data is available for overfitting, such as regions unaffected by edits, we use the
overfitted shape representation. In regions where geometry should be adjusted, e.g. joint regions
between parts, we leverage the generalizable representation. Both representations share the same
architecture and we blend between them by directly interpolating their network parameters, which
requires careful design of both the architecture and overfitting setup. We call this approach adaptive
overfitting.

Generalizable Shape Representation

Shape parameters. In the generalizable representation, a shape S is represented as a set of part
parameters P := { P, ..., P, }. The parameters of a part P, := (C}, g;) consist of a cuboid bounding
box C; := (v;, €;,0;), where v;, e;, 0; are the centroid position, size, and orientation of the cuboid,
respectively, and a latent vector g; defining the part’s geometry in the local coordinate frame of the

cuboid. We obtain g; from S by encoding m surface and volume points ri,...,rt, sampled from
part P; with a PointNet [30] encoder as g; := hy (1}, ..., 7%,), although other options to obtain g;

such as an auto-decoder setup with inference time optimization are also possible.

Generalizable occupancy function. Given the part parameters P, a neural network fy models the
occupancy field og of shape S at any query location x as,

os(z) = op(z) = fo(z|P). (1)

The architecture of f is illustrated in Figure 2. This is similar to the formulation proposed in
SPAGHETTI [16], but with changes that are necessary for adaptive overfitting. The network is
composed of three parts: A part mixing network fg" to exchange information between per-part latent

vectors; a part query network f7 to query each part at the query point z; and a global occupancy
network fg aggregating the results of the per-part queries and output the occupancy at x.

(i) Part mixing network. The mixing network f™ first converts parameters P; into per-part latent
vectors, and then exchanges information between parts using a self-attention layer:

pl = f (P|P). 2)

(ii) Part query network. The part query network f* queries each part p! at the local query point
locations using cross-attention from each local query point to all per-part latent vectors p! :

()ffg(()|p1 +b0,...,p?erl,...,piero), (3)

where T ! denotes the transformation to the local coordinate frame of C;. Like f™, f* is run once

per part. For a given part i, we augment the input latent vectors p? by adding a learned indicator
feature that equals b; for the current part ¢ and b, for all other parts, giving the network knowledge
of which parts it is currently processing. The resulting latent vector ¢ encodes the local geometry
region of part ¢ that is relevant to the query point x.

(iii) Global occupancy network. Finally, we aggregate the per-part latent vectors ¢/ into a global
latent vector using a weighted sum and the global occupancy network f° computes the occupancy at

the query location x:
z) = f§,(D_wl (@) of (2)), @)

where the weights w!” = x(max(0,d;(x,C;))) are based on the signed distance di from query
point to cuboid C;. We choose the triweight kernel for as it combines a finite support with a smooth
falloff: r(a;) = (1 — (%)?)®, where p is the radius of the kernel and a; = min(max(d}, 0), p) is the
bounded distance to cuboid C;. Essentially, p defines the extent of joint regions and x provides a
smooth fall-off to 0 as a; approaches p. We set p = 0.35 in all our experiments.

Training setup. We jointly train the part encoder hy, and the occupancy network fg on a large
dataset of shapes S using a binary cross-entropy loss between the predicted occupancy op(z) and
the ground truth occupancy og(x). More details are given in the supplementary material.

Shape editing. Due to training on a large dataset, the generalizable shape representation captures a
large space of part configurations. Shape edits can be performed by modifying the parameters of one
or multiple cuboids, such as the position v; or scale e;, to obtain the modified part set Pg and infer a
modified occupancy as op,, () := fo(z|Pg).

Overfitted Shape Representation

Overfitted occupancy function. The goal of the overfitted representation is to accurately capture
the geometric detail of individual parts of a single shape. We use an overfitted occupancy function f
with the same architecture as in the generalizable representation to facilitate blending between the
two, as described in the next section. Naively overfitting this occupancy function to a shape .S would
result in artifacts when reconstructing an edited shape Sg, since the overfitted occupancy function
does not generalize to unseen part configurations. Instead, we carefully sever the information flow
between parts during overfitting such that querying the overfitted occupancy function does not use
information about the full edited part configuration. We employ a two-part strategy: (i) We freeze the
part latent vectors p! before overfitting and only update the query network f* and the occupancy
network f°:

579(55):{)?975(33“3 f@ Z APP (2)), 4)

with Q;PP():fgm(TC_‘ll(‘T) ‘ﬁl +b0a"'777i +b15"'aﬁﬁ+b0)7

where ¢ is the occupancy predicted by the overfitted network, 0o, HAL are the overfitted parameters of
the query and occupancy networks, and 7 denotes part latent vectors that were frozen to the part

set P. (ii) We change the weights @] to only select the single part latent vector ¢” that is closest
to the query point z: W! (x) = 1y;; (arg min, d5(x, C;)), where 1 is the indicator function. These
two changes effectively make the occupancy 6p () at each query point dependent on only the single
closest part, preventing the overfitted occupancy function from being exposed to an unseen part
configuration.

Training setup. We start with a trained generalizable network fj and a part set P we would like
to overfit to. We freeze the part latent vectors ﬁ? = fo. (P;|P) to the values computed by the
generalizable network, and then proceed to overfit both f7' and fg to the partset P, giving us the
overfitted network féﬁ. During overfitting, we gradually blend between the original weights w; at
the first epoch to the updated weights w; at the last epoch.

Shape editing. Similar to the generalizable representation, edits of the overfitted representation
can be performed by modifying cuboid parameters to obtain a modified part set P, and a modified
occupancy 6p, () = fop (z|PEg). As aresult of our strategy to decouple parts from each other,
a transformation 7} of a cuboid Cj is directly applied to the occupancy of the corresponding part:
6py(2) = &p(T; ! (x)) for all - that are closer to cuboid i than to any other cuboid. This accurately
preserves geometric detail after an edit, but results in discontinuities at the boundaries between edited
parts, as shown in Figure 1.

Adaptive Overfitting Our goal is to use the overfitted representation in areas where the overfitted
occupancy is reliable, and the generalizable representation everywhere else. For shape edits that
transform cuboid parameters, the overfitted occupancy in any local region undergoes the same
transformation as the nearest cuboid. For human-made shapes such as chairs and tables, this
behaviour is desirable in regions that are either close to only one cuboid, or close to only unedited
cuboids. In other regions (near joints between two or more cuboids, or where at least one cuboid has
been edited), the occupancy may need to undergo more complex transformations to reflect the new
part configuration.

Given a set of parts Pp and an edited version of the parts Pg, we formalize the intuition described
above as a scalar blending field A(z) defining a blending factor in [0, 1] between the generalizable
and the overfitted representation at each query point x:
Az) = n(min df(x,C’))7 (6)
C € (CPo uCPE/CIP)

where CEO and C7E)E are the subsets of cuboids in the original and edited shape, respectively, that

have been changed in Pg. CT” is the cuboid in Pg closest to x. The kernel & is the same triweight

kernel defined in Section 3 for part aggregation in the global occupancy network.

Given a blending factor A(z), we finally fuse the two representations by blending between the
parameters, weights, and features of the networks:

x) = f7 Zw)3 (@), (7)

with 6?7 () fg(()lp +b077ﬁ@7 +b1aap~;’j7$+b0)7

where ,, ., W (x), and 77 are linearly interpolated between the overfitted and generalizable

representation using the blendlng factor A\(x):
= (1= A@)) 0. + A(z) 0., (8
zp() (1= Ax)) @f (z) + M) wf (), 9
77 = (1= @) BY + A@) pf (). (10)

When editing a shape, we typically overfit to the original conﬁguration of the parts, in that case, we
set P = Pp and P = Pg.

4 Results

We evaluate NEUFORM on three tasks: shape reconstruction, shape editing, and shape part mixing.

ground truth COALESCE SPAGHETTI NEuForM NEeuForM NEUFORM
generalizable overfitted

DN A A My
QO@ e

0 5 s

Figure 3: Shape reconstruction. Comparing reconstructions of PartNet [25] chairs. We show
reconstructions of four shapes. COALESCE and the overfitted representation preserve geometric
detail, but have more artifacts near joints. SPAGHETTI and the generalizable representation perform
better near joints but lose geometric detail. NEUFORM combines the best of both worlds.

Dataset. We use the PartNet [25] dataset for our experiments. PartNet is a dataset of human-made
shapes in 24 common categories, including furniture and typical household items. Each shape is
annotated with hierarchical part segmentation. We experiment on the chair, lamp, and table
categories and select hierarchy levels that result in an average of roughly 8, 4, and 8 parts for
chairs, lamps, and tables, respectively. Cuboids are computed as oriented bounding boxes of
the segmented parts using Trimesh [36]. We train the generalizable model on each shape category
separately and choose a training/test split of 6000/1800, 2100/400, and 3500/500 for chairs,
lamps, and tables, respectively. All shapes are centered and the largest bounding box side is scaled
to 2.

Training details. We train the generalizable model for 1000 epochs using the Adam [17] optimizer
with a learning rate of le — 4 and an exponential learning rate decay of 0.994 per epoch. In each
epoch, we train on 4096 query points per shape with a batchsize of 1 shape. We sample 12.5% of
the points uniformly in the [—1, 1] cube and 87.5% of the points around the surface with a Guassian
offset (AM(0,0.05)). The overfitted model is trained for 100 epochs on a single shape using the same
training setup. Training the generalizable model takes roughly 33 hours on a TitanXp GPU and
training the overfitted model takes roughly 25 minutes on a single V100 GPU.

Baselines and ablations. We compare our results to SPAGHETTI [16] as the state-of-the-art gen-
eralizable representation sharing a similar architecture to our generalizable representation, and
COALESCE [39], a state-of-the-art method generating the joint geometry between parts given (poten-
tially re-arranged) part meshes. Additionally, we compare with two ablations of our method: using
only the generalizable representation and using only the overfitted representation.

Metrics. As quantitative metrics, we follow prior work in using the Chamfer Distance (CD) and
Earth Mover’s Distance (EMD) between points sampled on generated shape surface and points
sampled on ground truth shape surfaces. For CD, we sample 30k and 10k points uniformly on the
shape surfaces away from and near joint regions, respectively. We sample 1024 points away from and
near joint regions for EMD. As a volumetric measure, we evaluate the signed distance field (SDF)
at 25k points away from joint regions and 5k points near joint regions per shape, with the same
distribution as the query points, and report the absolute difference between the values of the generated

| J 4 {

% 1
[original cuboids
[edited cuboids

ground truth

NEeuForM
generalizable

Dy da
w@bog\o

@
Q\%O %@ © ’QU

Figure 4: Shape editing. Comparing edits on PartNet chairs when using only the generalizable or
only the overfitted representations. We show edits on shapes with different coarse structure and fine
scale details. The generalizable representation has plausible joint areas, but lacks geometric detail;
the overfitted representation preserves detail, but has artifacts near joints (see zoom-ins). NEUFORM
combines the two representations to both preserve geometric detail and generate plausible joints.

NEUForM
overfitted

NEUFORM

and ground truth shapes. Since our tasks focus on the joints between shape parts, we separately report
these metrics on joint regions (A(z) < 0.5; see Eq. 6), non-joint regions, and an unweighted average
of the two.

(i) Shape Reconstruction. While our main application is shape editing, we cannot perform a
quantitative evaluation on the shape editing task directly, since we have no ground truth for edited
joints. Instead, we use a reconstruction experiment as a pseudo-editing task. We evaluate the
reconstruction performance of NEUFORM compared to baselines and ablations on input that reflects
the information available during shape editing, where we have some knowledge of non-joint regions,
but no knowledge of joint regions. In this experiment, we demonstrate that the generalizable model is
necessary to accurately reconstruct/generate joint regions, and the overfitted model is necessary to
accurately reconstruct detail in non-joint regions, therefore the comparison includes both overfitted
and generalizing models. Our overfitted model is trained without ground truth for any of the joint

Table 1: Comparing shape reconstruction performance. We compare our results to all baselines
and ablations. The Chamfer Distance is multiplied by 102. SPAGHETTI and our generalizable
representation perform well in joint regions, while COALESCE and the overfitted representation
perform better in non-joint regions. The adaptive overfitting performed by NEUFORM achieves good
performance in both regions, resulting overall in a significant improvement over both SPAGHETTI
and COALESCE. As one would expect, the overfitted representation performs perticularly well on the
reconstruction task, but its performance on joint regions drops significantly in shape editing tasks, as
we demonstrate qualitatively in the following sections.

Joint regions Non-joint regions All regions

CD| EMD| SDF|

CD| EMD| SDF|

CD| EMD| SDF|

SPAGHETTI [16] 0.337 65.54 1.343 1.381 176.27 3.758 0.859 120.96 2.570
COALESCE [39] 0.738 97.51 2.440 0.154 130.20 2.918 0.446 113.86 2.679
NEUFORM generalizable 0.390 84.27 2.109 0.523 117.81 5.208 0.457 101.04 3.659
NEUFORM overfitted 0.318 78.54 2.198 0.157 80.45 2.644 0.238 79.50 2.471
NEUFORM 0.253 78.05 1.814 0.334 88.53 2.538 0.293 83.29 2.176

= ¢ y —5:
E ‘ S ; g
= p k=l
& &
[original cuboids B
[edited cuboids
8 k { \ . P
3 ' 2
| o A §
A
|
= : g 14 s
A {1 { of g
=] 7 =)
% r - | iy f y :2}
I 1y

Figure 5: Comparing edits on PartNet chairs to COALESCE [39] and SPAGHETTI [16]. We show
two different sets of edits because COALESCE does not support edits of more fine-grained parts like
bars, while SPAGHETTI does not currently support part scaling in their released code. COALESCE
struggles with more extended joint areas and SPAGHETTI’s result is significantly noisier after an
edit. Here we show screenshots from SPAGHETTI’s editing UI (hence the different color). Blending
between the generalizable and overfitted representations using NEUFORM gives us more plausible
edit results, with cleaner joints and detailed part geometry.

areas and we perform the comparison on 64 shapes selected randomly from the test set. COALESCE
does not support fine-grained parts, thus, for a fair comparison, we restrict our joint areas to those
defined by COALESCE in this experiment.

Table 1 shows quantitative results of this comparison and Figure 3 shows qualitative examples for
all methods. SPAGHETTI performs well in joint regions, but since it is a generalizable model, it
lags behind the overfitted model and COALESCE in non-joint regions, giving a lower performance
overall. COALESCE has the lowest performance in joint regions, as it struggles with larger or more
extended joint areas, and has reasonable performance in non-joint areas. While COALESCE uses
the ground truth geometry in non-joint areas, some of the joint geometry tends to incorrectly extend
into the non-joint areas, lowering the performance. As expected, our generalizable representation
performs well in joint regions, and misses detail in non-joint regions. In this reconstruction task,
the overfitted representation performs significantly better in joint regions than in the edit tasks we
describe in the next sections, since the part configuration of the reconstructed shape is the same
as the part configuration it was overfitted to. In the reconstructions, errors at the joints are due to
the missing ground truth in joint regions. NEUFORM combines the advantages of the overfitted-
and the generalizable representations. It uses the lower-detail, but plausible geometry from the
generalizable model in the joint regions, and naturally transitions to the detailed geometry of the

original part donor SPAGHETTI NEUForM original part donor SPAGHETTI NEUForM
mixed mixed mixed mixed
1

\

| &

B

Figure 6: Shape mixing. Mixing parts of different PartNet chairs. We replace the highlighted
part in the original shape with the highlighted part in the donor shape, and compare our results to
SPAGHETTI on re-mixed shapes. Similar to the editing setting, SPAGHETTI’s quality deteriorates on
shapes with mixed parts. NEUFORM combines the foreign part more seamlessly into the shape.

ground truth
i
L
-

[original cuboids
[edited cuboids

40800 %
108 g 2o %

Figure 7: Different object categories. Shape edits on PartNet tables and lamps. Similar to
chairs, the generalizable model lacks detail and the overfitted model contains artifacts in joint
regions, whereas NEUFORM combines the advantages of both.

NEUuForRM
generalizable

NEUForM
overfitted

NEUForM

overfitted representation in non-joint regions. Note that the exact extent of the joint regions is defined
by the blending field A\ defined in Eq. 6.

(ii) Shape Editing. We experiment with shape edits by modifying the parameters of one or multiple
cuboids of our shape representation. Editing results of NEUFORM compared to the generalizable and
overfitted representations are shown in Figure 4. Edits on the generalizable representation confirm
the trend we saw in the reconstruction task: joints are plausible after edits, but geometric detail is
not preserved. When editing the overfitted representation, we observe significant artifacts near the
joints, due to the previously unseen part configuration. Our adaptive overfitting strategy preserves the
plausible joints of the generalizable representation as well as the geometric detail of the overfitted
representation.

In Figure 5, we compare shape editing to COALESCE and SPAGHETTI. Since COALESCE does not
supports fine-grained edits, and SPAGHETTI does not support scaling, we compare to each on a
separate set of edits. As we saw in the reconstruction, COALESCE struggles with extended joints,
while SPAGHETTI’s geometry deteriorates significantly after an edit.

(iii) Shape Mixing. We demonstrate our model’s ability to assemble new shapes from the parts
of pre-existing ones in Figure 6. We mix and match cuboids and their associated part features from
different chairs, and then blend the parts together. For a given query point and its closest part P, we
use the overfitted representation associated with the shape that P was originally part of. Our method
synthesizes much smoother joint connections between parts while preserving their surface details.

Additional shape categories. Figure 7 shows edit results on tables and lamps, compared to the
generalizable and overfitted representations. Similar to chairs, the generalizable representation is
missing shape detail, resulting, for example, in artifacts on thin parts, while the overfitted representa-
tion struggles with joint areas. In the right-most table, we can clearly see that these artifacts occur
both in regions that are joints after the edit, as well as regions that used to be joints in the original
shape. Adaptive overfitting avoids these artifacts.

Overfitting times. We evaluate the time required for training the overfitted model by measuring
reconstruction quality when overfitting for different amounts of time. Times were measured on a
single V100 GPU. Results are shown in Figure 8. We can see that most regions are sufficiently
converged after 8 minutes, showing that the 25 minutes used for the main experiments is chosen very
conservatively and may be reduced without losing significant quality.

overfitting time vs. CD

overfitting time vs. EMD

overfitting time vs. SDF

————— joint regions
,,,,, non-joint regions
,,,,, all regions

120

----- joint regions
--- non-joint regions
----. all regions

----- joint regions
--- non-joint regions
----. all regions

Chamfer Distance (x10%)
Earth Mover’s Distance

Signed Distance Field Error

8 16 8 16 8 16
overfitting time (minutes) overfitting time (minutes) overfitting time (minutes)

Figure 8: Overfitting time vs. reconstruction quality. We show the reconstruction quality at
different overfitting times, where we measure reconstruction quality in terms of CD, EMD, and SDF
error. Note how quality typically converges around 8 minutes.

5 Conclusions

We have introduced the NEUFORM architecture to enable adaptive mixing of information between
a generalizable neural neural network, trained on a collection of shapes, and an overfitted model,
trained on a single shape to capture its idiosyncrasies. We achieved this by designing a network
architecture that allows adaptive mixing of networks by carefully blending respective network weights
and training history.

Our work is just the first step in the direction of merging overfitted and generalizable models.
For example, currently the two models do not have explicit knowledge of each other, adding this
knowledge could be interesting future work. For shape editing, this could allow the generalizable
network to focus more on joint geometry. Another limitation is the currently non-data-driven blending
field. Learning a context-based blending factor is a promising next step for facilitating easier and
higher quality editing. Shape compression may be a possible future application, where a generalizable
prior could efficiently represent the coarse geometry of a shape, and an overfitted model could be
trained to represent details on top of the generalizable prior.

Acknowledgments and Disclosure of Funding

This work was supported by a David Cheriton Stanford Graduate Fellowship, ARL grant W911NF-
21-2-0104, a Vannevar Bush Faculty Fellowship, a PECASE by the ARO, Stanford HAI, and gifts
from the Adobe and Snap Corporations.

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J Guibas. Learning representations
and generative models for 3d point clouds. /ICML, 2018.

[2] Matan Atzmon and Yaron Lipman. SAL: Sign agnostic learning of shapes from raw data. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2565-2574, 2020.

[3] Matan Atzmon and Yaron Lipman. SAL++: Sign agnostic learning with derivatives. arXiv preprint
arXiv:2006.05400, 2020.

[4] Jan Bednarik, Shaifali Parashar, Erhan Gundogdu, Mathieu Salzmann, and Pascal Fua. Shape reconstruction
by learning differentiable surface representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 47164725, 2020.

[5] André Brock, Theodore Lim, James M. Ritchie, and Nick Weston. Generative and discriminative voxel
modeling with convolutional neural networks. CoRR, 2016.

[6] Zhigin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In IEEE Computer
Vision and Pattern Recognition (CVPR), 2019.

[7] Angela Dai and Matthias NieBner. Scan2mesh: From unstructured range scans to 3d meshes. In Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE, 2019.

[8] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nie3ner. Shape completion using 3d-encoder-predictor
cnns and shape synthesis. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

10

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(171
(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. Overfit neural networks as a compact shape
representation, 2020.

Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry.
Learning elementary structures for 3d shape generation and matching. arXiv preprint arXiv:1908.04725,
2019.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions. In /CCV, 2019.

Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and
generative vector representation for objects. CoRR, abs/1603.08637, 2016.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regularization
for learning shapes. arXiv preprint arXiv:2002.10099, 2020.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-maché
approach to learning 3d surface generation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 216-224, 2018.

Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. Dualsdf: Semantic shape manipula-
tion using a two-level representation, 2020.

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. Spaghetti: Editing
implicit shapes through part aware generation. arXiv preprint arXiv:2201.13168, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015.

Gidi Littwin and Lior Wolf. Deep meta functionals for shape representation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1824—1833, 2019.

Jerry Liu, Fisher Yu, and Thomas Funkhouser. Interactive 3d modeling with a generative adversarial
network. International Conference on 3D Vision (3DV), 2017.

Julien NP Martel, David B Lindell, Connor Z Lin, Eric R Chan, Marco Monteiro, and Gordon Wetzstein.
Acorn: Adaptive coordinate networks for neural scene representation. arXiv preprint arXiv:2105.02788,
2021.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In European Conference on
Computer Vision, pages 405-421. Springer, 2020.

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas Guibas. Structedit:
Learning structural shape variations. arXiv preprint arXiv:1908.00575, 2019.

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas Guibas. Structurenet:
Hierarchical graph networks for 3d shape generation. ACM TOG, 2019.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su.
PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Luca Morreale, Noam Aigerman, Paul Guerrero, Vladimir G Kim, and Niloy J Mitra. Neural convolutional
surfaces. In Proc. CVPR, 2022.

Luca Morreale, Noam Aigerman, Vladimir G Kim, and Niloy J Mitra. Neural surface maps. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4639-4648, 2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 165-174, 2019.

Omid Poursaeed, Matthew Fisher, Noam Aigerman, and Vladimir G. Kim. Coupling explicit and implicit
surface representations for generative 3d modeling. ECCV, 2020.

11

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation, 2016.

Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d shape surfaces using geometry images. In
ECCV,2016.

Vincent Sitzmann, Julien NP Martel, Alexander W Bergman, David B Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. arXiv preprint arXiv:2006.09661, 2020.

Hao Su, Haoqgiang Fan, and Leonidas Guibas. A point set generation network for 3d object reconstruction
from a single image. CVPR, 2017.

Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J. Mitra, and Leonidas J. Guibas. Deformsyncnet:
Deformation transfer via synchronized shape deformation spaces, 2020.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec
Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of detail: Real-time rendering with
implicit 3d shapes. In Proc. CVPR, pages 11358-11367, 2021.

trimesh. Trimesh [https://trimsh.org/], 2022.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. FoldingNet: Point cloud auto-encoder via deep grid
deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
206-215, 2018.

Wang Yifan, Lukas Rahmann, and Olga Sorkine-Hornung. Geometry-consistent neural shape representation
with implicit displacement fields, 2021.

Kangxue Yin, Zhiqin Chen, Siddhartha Chaudhuri, Matthew Fisher, Vladimir G Kim, and Hao Zhang.
Coalesce: Component assembly by learning to synthesize connections. In 2020 International Conference
on 3D Vision (3DV), pages 61-70. IEEE, 2020.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [N/A| We do
not forsee any potential negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] Only empirical
results.
(b) Did you include complete proofs of all theoretical results? [N/A] Only empirical
results.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? The data is a
publicly accessible, well-known dataset. If accepted, we plan to release code, including
instruction how to reproduce the results, one or two months after the notification.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

12

(a) If your work uses existing assets, did you cite the creators? [Yes] Dataset was cited.

(b) Did you mention the license of the assets? The dataset is publicly avilable and the
license can easily be found.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
No new assets are presented.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] The dataset is publicly available under the MIT license.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [IN/A| The dataset is synthetic.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No human subjects were used as not part of the research.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No human subjects were used as not part
of the research.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]| No human subjects were used as not part of
the research.

13

	Introduction
	Related Work
	Method
	Results
	Conclusions

