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ABSTRACT

Deep neural networks are known to be vulnerable to adversarially perturbed in-
puts. A commonly used defense is adversarial training, whose performance is
influenced by model capacity. While previous works have studied the impact of
varying model width and depth on robustness, the impact of increasing capacity
by using learnable parametric activation functions (PAFs) has not been studied.
We study how using learnable PAFs can improve robustness in conjunction with
adversarial training. We first ask the question: how should we incorporate param-
eters into activation functions to improve robustness? To address this, we analyze
trends between activation shape and robustness of standard trained models. We
find that behavior on negative inputs and curvature are correlated with robustness
against a weak adversary. We then introduce a new PAF, which we call Parametric
Shifted Sigmoidal Linear Unit (PSSiLU), whose parameters control these proper-
ties.We combine learnable PAFs (including PReLU, PSoftplus and PSSiLU) with
adversarial training and analyze robust performance. We find that PAFs optimize
towards trends observed on standard trained models, suggesting that behavior on
negative inputs and curvature are important for allowing the model to better fit
the training data. Additionally, we find that while introducing only 1-2 learnable
parameters into the network, smooth PAFs can significantly increase robustness
over ReLU. For instance, when trained on CIFAR-10 with additional synthetic
data, PSSiLU improves robust accuracy by 4.54% over ReLU on ResNet-18 and
2.69% over ReLU on WRN-28-10 in the `∞ threat model while adding only 2
additional parameters into the network architecture. The PSSiLU WRN-28-10
model achieves 61.96% AutoAttack accuracy, improving over the state-of-the-art
robust accuracy on RobustBench (Croce et al., 2020). Overall, our work puts into
context the importance of activation functions in adversarially trained models.

1 INTRODUCTION

Deep Neural Networks (DNNs) can be fooled by perceptually insignificant perturbations known as
adversarial examples (Szegedy et al., 2014). A commonly used approach to defend against adversar-
ial examples is adversarial training (Madry et al., 2018; Zhang et al., 2019) which involves training
models using adversarial images. Previous studies have shown that the performance of adversarial
training depends on model capacity (Madry et al., 2018); larger models are able to fit the training
set better leading to higher robust accuracy. These findings raise the question, if adversarial training
requires high capacity models, where in the model architecture should we introduce additional pa-
rameters? Many studies have observed the impact of factors such as model width and depth (Gowal
et al., 2020; Wu et al., 2020a; Xie & Yuille, 2019), but to the best of our knowledge, the potential of
increasing capacity through learnable parametric activation functions (PAFs) has not been studied.
We first ask the question

How should we parameterize activation functions to improve robustness?

To find the right way to parameterize activation functions for robustness, we first need to identify
which aspects of activation function shape impact robustness. We use a set of parametric activa-
tion functions (PAFs) with a parameter controlling aspects of shape such as behavior on negative
inputs, behavior on positive inputs, and behavior near zero. We vary the PAF parameter and evalu-
ate the robustness of standard trained models to identify properties of activation function shape that
are correlated with robustness. Using standard trained models allows us to decouple the impact of
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activation functions from the impact of adversarial training. Surprisingly, we observe a clear trend
between activation function shape and robustness against a weak adversary of standard trained mod-
els. We find that we can increase robustness by adjusting ReLU to output positive values on negative
inputs and to have high finite curvature, the maximum value of the second derivative. We combine
these properties into a new PAF which we call Parametric Shifted Sigmoidal Linear Unit (PSSiLU)
shown in Figure 1. PSSiLU uses two parameters α and β; β controls the behavior on negative inputs
and α controls curvature. We then ask the question:

How do parametric activation functions perform when combined with adversarial
training?

We train models using PAFs (including PReLU, PSoftplus, and PSSiLU) with learnable parameter
with adversarial training and observe the resulting AutoAttack robust accuracy (Croce & Hein, 2020)
and learned shape of the activation function. We find that while introducing only 1-2 parameters
into the network, certain PAFs can significantly improve robustness over ReLU (Table 1). For in-
stance, when trained on CIFAR-10 with an additional 6M synthetic images from a generative model
(DDPM-6M), PSSiLU improves robust accuracy by 2.69% over ReLU on WideResNet(WRN)-28-
10 (and 4.54% over ReLU on ResNet-18) in the `∞ threat model while adding only 2 additional
parameters into the network architecture. The WRN-28-10 model achieves 61.96% robust accu-
racy, making it the top performing model in its category on RobustBench (Croce & Hein, 2020). We
find that PAFs can increase robustness in two ways: 1) through increasing expressivity, allowing the
model to better fit the training data, and 2) through optimization, allowing the model to reach a more
optimal minimum. Additionally, we find that activation functions optimize towards the properties
observed to increase robustness on standard trained models, suggesting that these properties also
allow the model to better fit the data.
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Figure 1: Shape of PSSiLU at various values of α and β. Left:
β is fixed to 0.3 while α is varied. Right: α is fixed to 1 while
β is varied. ReLU is given by the dotted black line. We can
see that α controls the curvature of the function near 0 while β
controls the behavior on negative inputs.

Activation AA

N
on

Softplus 49.14
SiLU 55.10
ReLU 59.27

PA
F PSoftplus 60.94

PSiLU 60.37
PSSiLU 61.96

Table 1: AutoAttack robust ac-
curacy of WRN-28-10 models
trained using PGD adversarial
training on CIFAR-10+DDPM-
6M. Nonparametric activation
functions are labeled by “Non”.
Parametric activation functions are
labeled by “PAF”.

In summary, our contributions are as follows

1. We find that in the absence of adversarial training, certain properties of activation function
shape (namely positive outputs on negative inputs and high finite curvature) are correlated
with robustness of standard trained models against a weak adversary. Using these observa-
tions, we introduce a new PAF which we call PSSiLU with two parameters which control
these properties (Figure 1).

2. While prior works only explore the use of activation functions with fixed parameter with
adversarial training, we explore the use of PAFs with learnable parameter and observe
their impact on robustness with adversarial training. We find that PAFs optimize towards
the same properties which improve robustness in the standard training setting, suggesting
that these properties also allow the model to better fit the training data.

3. We unlock the full potential of using learnable PAFs with adversarial training by training
with additional synthetic data, increasing robust accuracy over nonparametric activation
functions (Table 1). The PAFs tested only add 1-2 parameters into the entire network (all
parameters of PAFs are shared across all activations), but we find that smooth PAFs are
able to improve robust accuracy over ReLU and other nonparametric activation functions.
This emphasizes the importance of considering activation functions in adversarial training.
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4. We find that when trained on CIFAR-10 with additional synthetic data, PSSiLU improves
by 2.69% over ReLU on WRN-28-10 (and 4.54% over ReLU on ResNet-18) in the `∞
threat model, making it the top performing model in its category on RobustBench (Croce
et al., 2020). Additionally, we find that the family of activation functions captured by
PSSiLU consistently achieves high robust accuracy, outperforming RELU across multiple
datasets, architectures, perturbation types, and sources of additional data.

2 RELATED WORKS

Adversarial Attacks and Adversarial Training. Previous studies have shown that modern NNs
can be fooled by perturbations known as adversarial attacks, which are imperceptible to humans,
but cause NNs to predict incorrectly with high confidence (Szegedy et al., 2014). These attacks can
be generated in a white box (Goodfellow et al., 2015; Madry et al., 2018; Carlini & Wagner, 2017;
Croce & Hein, 2020) or black-box (Brendel et al., 2018; Andriushchenko et al., 2020; Papernot
et al., 2016) manner.

Adversarial training is a defense in which adversarial images are used to train the model. The
first variant of adversarial training is PGD adversarial training (Madry et al., 2018). Since then
other variants of adversarial training have been introduced to improve robust performance (Wang
et al., 2019; Zhang et al., 2020b) and reduce tradeoff between natural and robust accuracy(Zhang
et al., 2019; 2020a; Wu et al., 2020b). Recent works have also explored how to improve robustness
when combined with adversarial training (Gowal et al., 2020; Pang et al., 2020). These include
techniques such as using additional data (Carmon et al., 2019; Sehwag et al., 2021; Rebuffi et al.,
2021), and early stopping (Rice et al., 2020). Croce et al. (2020) provide a leaderboard for ranking
defenses against adversarial attacks, and currently the top defenses on this leaderboard are all based
on adversarial training.

Importance of Model Capacity in Adversarial Training. Prior works have indicated that the per-
formance of adversarial training depends on model capacity. Madry et al. (2018) demonstrated that
large model capacity is necessary for adversarial training to successfully fit the training data. Re-
cently, Bubeck & Sellke (2021) proved that nd parameters are necessary for a model to robustly fit
n d-dimensional data points. These findings raise the question, if adversarial training requires high
capacity models, where in the model architecture should we introduce additional parameters? In
line with this question, multiple works have studied the impact of changing the capacity of DNNs
by modifying width and depth on robustness (Wu et al., 2020a; Xie & Yuille, 2019; Gowal et al.,
2020). However, the question of how introducing parameters into activation functions impacts ro-
bustness has been unexplored. We address this question by observing the performance of parametric
activation functions in conjunction with adversarial training.

Activation Functions and Robustness. While most works on activation functions focus on improv-
ing natural accuracy (Clevert et al., 2016; Glorot et al., 2011; Ramachandran et al., 2018; He et al.,
2015), there have been a few works which explore activation functions in the adversarial setting.
One line of works evaluates the impact of properties such as boundedness (Zantedeschi et al., 2017),
symmetry (Zhao & Griffin, 2016), data dependency (Wang et al., 2018), learnable shape (Tavakoli
et al., 2020), and quantization (Rakin et al., 2018) on robustness without using adversarial training.
A more closely related line of works evaluates the performance of models using various nonpara-
metric activation functions in conjunction with adversarial training (Xie et al., 2020; Gowal et al.,
2020; Singla et al., 2021).

In contrast to prior works, we experiment with parametric activation functions (PAFs), allowing
us to explore a wider range of activation function shapes and understand the impact of increasing
model capacity through activation functions. We will first identify qualities of activation functions
which have a direct impact on robustness by observing standard trained models in order to design a
PAF to use with adversarial training (Section 3). We then combine PAFs with learnable parameter
with adversarial training and analyze their potential in improving robust accuracy obtained through
adversarial training (Section 4).

3 SEARCHING FOR A GOOD PARAMETERIZATION

Existing PAFs are designed for improving natural accuracy through standard training without con-
sidering robustness, leading to the question: how should we design a PAF for improving robustness?
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Figure 2: Visualization of parametric activation functions at various values of parameter α.

One challenge in designing PAFs for robustness is that there are many shapes that an activation
function can take, leading to a large design space. Since ReLU is commonly used in DNNs and has
good performance, we choose a set of 6 different PAFs which can take on the shape of ReLU while
allowing us to vary behavior from ReLU, which we discuss in Section 3.1. By controlling the shape
of these PAFs, we identify qualities of activation functions that are correlated with robustness.

This raises another question: How should we measure what parameterizations are considered good?
We can divide the impact of activation functions on robustness into the direct impact of activation
function shape (restriction bias) and the impact of activation functions in conjunction with optimiza-
tion through adversarial training (preference bias). In this section, we focus on the restriction bias
by measuring the robustness of standard trained models against a weak adversary in Section 3.2. We
use a weak adversary since standard trained models are not robust against strong attacks. By observ-
ing standard trained models, we identify properties in activation function shape that are correlated
with robustness. We then combine the observed properties into a novel PAF in Section 3.3 for use
with adversarial training (Section 4).

3.1 ACTIVATION FUNCTION SEARCH SPACE

Since ReLU is commonly used in DNN architectures, we first consider a set of PAFs with a single
parameter α that are able to model the shape of ReLU, while also allowing for variation in behavior
at different regimes in the input. We divide our initial set of PAFs into 3 groups: those which capture
variation on negative inputs, those which capture variation for inputs of small magnitude, and those
which capture variation for large positive inputs. The shapes at varied values of parameter α of all
activation functions that will be introduced are shown in Figure 2.

To capture variation on negative inputs, we consider parametric ReLU (PReLU) (He et al., 2015)
and parametric ELU (PELU) (Clevert et al., 2016) defined as follows:

PReLUα(x) =
{
αx x ≤ 0

x x > 0
PELUα(x) =

{
α(ex − 1) x ≤ 0

x x > 0
(1)

To capture variation for inputs near zero, we consider two continuous parametric activation functions
parametric SiLU (PSiLU) (Ramachandran et al., 2018) and parametric Softplus (PSoftplus) (Dugas
et al., 2001). These activation functions are defined as follows:

PSiLUα(x) = xσ(αx) PSoftplusα =
1

α
log(1 + eαx) (2)

where σ(x) = 1
1+e−x is the sigmoid function.
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Figure 3: Square robust accuracy and average minimum PGD radius for ResNet-18 models trained
on CIFAR-10 with various parameter α. Results are computed over 3 trials. Red points indicate the
measured PGD radius while blue points indicate the Square robust accuracy across models.

To capture variation on positive inputs, we introduce two activation functions: one which we call
Positive PReLU (PReLU+) and the other which we call Rectified BLU (ReBLU). PReLU+ has a
parameter controlling the slope of the linear portion of ReLU. ReBLU allows for nonlinear behavior
on positive inputs and is based off Bendable Linear Unit (BLU) defined as BLUα = α(

√
x2 + 1 −

1) + x (Godfrey, 2019). To allow BLU to take the shape of ReLU for comparison, we modify BLU
so that it is piecewise and outputs 0 for all negative inputs. We define PReLU+ and ReBLU as
follows:

PReLU+
α (x) =

{
0 x ≤ 0

αx x > 0
ReBLUα(x) =

{
0 x ≤ 0

BLUα(x) x > 0
(3)

3.2 IDENTIFYING PARAMETERS CONDUCIVE TO ROBUSTNESS ON STANDARD TRAINED
MODELS

Using our set of 6 PAFs, we vary the shapes of activation functions and measure the change in
robustness in order to design a new PAF which models more robust activation function shapes. To
disentangle the impact of activation function shape from the impact of training, we analyze the
robustness of standard trained models. We use a weak adversary in this analysis because standard
trained models are not robust; using a strong adversary would make it difficult to see the impact
of activation function shape. Note that we do not expect the standard trained model to achieve any
robustness against strong attacks even with PAFs. However, in Section 4, we will experiment with
adversarially trained models against a strong adversary.

For our weak adversary, we use both white box and black box attacks. For white box attack, we
search for the smallest perturbation radius that leads to misclassification on 4-step PGD perturbed
inputs. For black box attacks, we use a query-restricted black-box adversary (Square with 1000
queries (Andriushchenko et al., 2020; Croce & Hein, 2020)) and measure the robust accuracy of the
models on adversarial examples. Additional details on experimental setup are located in Appendix
A.1. We present the measured Square robust accuracy and PGD radius for ResNet-18 models trained
on CIFAR-10 at various parameter α in Figure 3.

From Figure 3, we observe clear trends across PReLU, PELU, PSiLU, and PSoftplus and find that
Square robust accuracy and PGD radius are highly correlated, suggesting that these trends are not
the result of obfuscated gradients (Athalye et al., 2018). Additionally, we found that these trends
generalize to other model architectures and datasets. We provide results for ResNet-18 models on
CIFAR-100 and ImageNette datasets and results for WRN-28-10 and VGG-16 models trained on
CIFAR-10 in Appendix C.2. We did not observe clear, consistent trends for PReLU+ and ReBLU,
suggesting that the behavior of activation functions on positive inputs is less important to robustness,
but provide the results for these activation functions in Appendix C.3.

Robustness to weak adversary increases when activation functions output positive values on
negative inputs. From Figure 3, we observe similar trends across both PReLU and PELU. For these
activation functions, α controls the behavior on negative inputs. We observe a significant increase in
robustness for models at α < 0 compared to α > 0, although there a decrease in robustness when |α|
becomes large. For both PReLU and PELU, α = 0 corresponds to ReLU, α > 0 outputs negative
values for negative inputs, and α < 0 outputs positive values on negative inputs (See Figure 2).
This trend suggests that designing a PAF with a parameter that controls the shape of the activation
function on negative inputs may be conducive for robustness. Specifically, we will add a parameter
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which allows for the PAF to vary the magnitude of positive outputs on negative inputs in a way that
is similar to PReLU or PELU (Section 3.3).

Robustness to weak adversary increases when activation functions have high finite curvature.
From Figure 3, we observe similar trends between PSiLU and PSoftplus. For these activation func-
tions α controls the curvature, the maximum value of the second derivative. As α increases, the
curvature also increases. First, we note that the models with highest robustness have α > 1, where
α = 1 models their nonparametric variants commonly used in training neural networks. At higher
values of α, the shapes of these activation functions grow close to the shape of ReLU which has
curvature of infinity. We find that for both PSiLU and PSoftplus, robustness initially increases as α
increases and then decreases after a certain point, with this trend being highly significant for PSiLU.
This suggests that designing a PAF with a parameter that controls the curvature of the activation
function similar to PSiLU and PSoftplus may also benefit robustness.

3.3 PUTTING IT TOGETHER: PSSILU
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Figure 4: Square robust accuracy and average
minimum PGD radius for SSiLU at varied β for
ResNet-18 models trained on CIFAR-10. Results
are computed over 3 trials.

We now combine the properties observed to en-
hance robustness into an activation function.
One PAF exhibiting both properties is PSoft-
plus; however the trend in robustness was not as
significant for PSoftplus as for PSiLU, PReLU,
or PELU. Since we observed a more signifi-
cant trend in robustness over parameter α for
PSiLU, we introduce a new activation function
that is based off of PSiLU. We call this new
activation function Parametric Shifted SiLU
(PSSiLU) defined as:

PSSiLUα,β(x) = x(σ(αx)− β)/(1− β) (4)

where α, β > 0, β < 1, and σ(x) = 1
1+e−x is the sigmoid function. At β = 0, PSSiLU’s behavior

matches that of PSiLU. Recall that the shape of PSSiLU at various values of α and β were shown in
Figure 1. α controls curvature around 0 while β controls behavior on negative inputs. Increasing β
allows PSSiLU’s output on input x < 0 to grow with the magnitude of x similar to PReLU.

We perform a similar evaluation of robustness across the β parameter of PSSiLU with α = 1 in
Figure 4. We find that as β increases, there is an increase in robustness, which plateaus at around
β = 0.3. Since higher values of β correspond to giving positive output on negative inputs, this trend
matches that of PReLU and PELU. In Appendix C.5, we demonstrate that this trend is consistent
across architectures (WRN-28-10 and VGG-16) and datasets (CIFAR-100).

4 INVESTIGATING THE PERFORMANCE OF ADVERSARIALLY TRAINED
MODELS USING PARAMETRIC ACTIVATION FUNCTIONS

We now combine PAFs with adversarial training to investigate the impact of incorporating param-
eters into activation functions on adversarial training. We experiment with the activation functions
from Section 3.1 with learnable parameters. Specifically, we add α (and β for PSSiLU) to the pa-
rameter set θ that we optimize during adversarial training. We share PAF parameters across all layers
in the network, so that PSSiLU only introduces two additional parameters into the model while all
other PAFs introduce one new parameter. We also train models using the commonly used nonpara-
metric activation functions: ReLU, ELU, SiLU, Softplus. ELU, SiLU, and Softplus correspond to
α = 1 for PELU, PSiLU, and PSoftplus respectively.

We perform experiments on WRN-28-10, ResNet-18, VGG-16 architectures and on CIFAR-10,
CIFAR-100, and Imagenette datasets. For CIFAR-10, we also experiment with using additional
data during training. For additional CIFAR-10 data, we use DDPM-6M (Nakkiran et al., 2020), a
set of 6M CIFAR-10 images generated by DDPM, a generative model (Ho et al., 2020). We note
that DDPM-6M does not require any additional real data since DDPM is trained directly on CIFAR-
10. DDPM generated samples have been shown to improve the robustness of adversarially trained
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models (Sehwag et al., 2021; Rebuffi et al., 2021). For the bulk of our experiments, we use 10-
step PGD adversarial training (Madry et al., 2018) and focus on `∞ attacks, but we include results
with TRADES adversarial training (Zhang et al., 2019) and `2 attacks in the Appendix. We include
additional details about experimental setup in Appendix A.2.

4.1 THE IMPORTANCE OF ADDITIONAL DATA

We present results for `∞ attacks on ResNet-18 in Table 2a and `∞ attacks on WRN-28-10 in Table
2b. We also report results for VGG-16, ResNet-18 models trained with TRADES (Zhang et al.,
2019), and ResNet-18 models under an `2 adversary in Appendix D.

We find that when trained on CIFAR-10 without extra data, most PAFs are unable to outperform
their nonparametric variant. For example, on ResNet-18 (Table 2a), PELU has 3.20% lower robust
accuracy than ELU when trained on CIFAR-10. Similarily, PSiLU obtains 1.9% lower robust ac-
curacy compared to SiLU on CIFAR-10. This trend can also be seen for WRN-28-10 (Table 2b).
Since parametric activation functions are able to take the shape of their nonparametric variants, this
suggests that PAFs may need additional regularization to allow the model to converge to a better
minimum.

We find that additional data, which can be synthetic as in the case of DDPM-6M, helps regularize
PAFs during training, allowing PAFs to outperform their nonparametric variants. For instance, we
find that when trained with additional DDPM-6M data, PELU outperforms ELU by 1.70% and
PSiLU outperforms SiLU by 1.13% on ResNet-18. A similar trend also holds for WRN-28-10,
where PELU outperforms ELU by 8.11% and PSiLU outperforms SiLU by 5.27%.

CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 82.29 44.58 82.83 53.67
PReLU 80.16 43.53 83.27 53.66

ELU 81.85 46.76 82.47 51.59
PELU 80.37 43.56 83.07 53.29

Softplus 80.46 44.64 79.44 49.41
PSoftplus 80.40 44.48 84.56 56.78
PReLU+ 79.77 42.34 83.63 54.21
ReBLU 81.19 44.91 83.64 53.74
SiLU 82.53 46.78 83.53 54.07

PSiLU 80.54 45.45 84.73 55.20
PSSiLU 81.85 44.70 84.79 58.21

(a) ResNet-18

CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 83.39 45.98 85.92 59.27
PReLU 82.75 43.62 86.04 58.74

ELU 79.66 45.85 81.09 50.79
PELU 83.32 43.85 85.83 58.90

Softplus 79.99 44.41 78.86 49.14
PSoftplus 82.94 46.68 86.60 60.94
PReLU+ 81.71 45.05 86.05 59.13
ReBLU 83.16 46.93 86.39 59.62
SiLU 84.17 47.51 84.90 55.10

PSiLU 82.41 47.03 86.47 60.37
PSSiLU 86.02 48.26 87.02 61.96

(b) WRN-28-10

Table 2: Natural and robust accuracy of PGD adversarially trained models of various activation
functions with respect to `∞ attacks with radius 0.031. The AA column gives the robust accuracy
of attacks generated through AutoAttack on the test set. We highlight robust accuracies larger than
ReLU in purple.

To further investigate the impact of additional data on PAFs, we measure the highest train and test
robust accuracy using PGD-10 achieved during training. We plot these values in Figure 5 for CIFAR-
10 and CIFAR-10+DDPM-6M. PAFs can achieve higher train accuracy compared to nonparametric
activation functions, showing that PAFs improve on the expressivity of the model and allow the
model to fit to the training set better during adversarial training. However, we also observe that
without the additional DDPM-6M data, PAFs are unable to generalize well to the test set, suggesting
that the potential of PAFs is locked behind the use of additional training data.

4.2 IMPROVING ROBUST PERFORMANCE THROUGH REGULARIZING PSSILU

The ability of PAFs to quickly overfit to the data suggests that regularization may improve the per-
formance of PAFs. Unlike the other PAFs, PSSiLU introduces 2 additional parameters into training,
which allows it to more easily overfit to the training data compared to other activation functions.
Thus, we regularize the value of β in PSSiLU by adding λ|β| to the loss. We choose λ = 10 as
the default value and show the effect of varying lambda in Appendix D.6. Results for regularized
PSSiLU are displayed in all tables as the PSSiLU entry.
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Figure 5: Highest PGD train and test accuracy for ResNet-18 models. Train accuracy is measured
only on CIFAR-10.

Achieving state of the art robust accuracy with PSSiLU and DDPM-6M. We observe that for
ResNet-18 and WRN-28-10, PSSiLU achieves both high clean and high robust accuracy. Compared
to ReLU, we observe that PSSiLU improves robust performance by a total of 4.54% while only
adding 2 parameters into the network architecture. This accuracy is only 1.06% lower than the
result for WRN-28-10 model with ReLU activations in Table 2b, but WRN-28-10 has 25.3M more
parameters than ResNet-18. In other words, we bridged a 5.60% performance gap produced by
25.3M additional parameters by 4.54% by adding only 2 parameters into the architecture. Moreover,
with the additional DDPM-6M data on ResNet-18, PSSiLU improves over the robust performance
of SiLU by 4.14% and PSiLU by 3.01%, both of which can be modeled by PSSiLU.

On WRN-28-10, PSSiLU achieves 87.02% clean accuracy and 61.96% robust accuracy, improv-
ing on clean accuracy by 1.10% and robust accuracy by 2.69% over ReLU, making our WRN-28-10
model the best performing in its category on RobustBench (Croce & Hein, 2020). This improvement
in robust accuracy is significant; prior works have shown that it takes millions of additional parame-
ters through varying width and depth of CNNs in order to achieve a 1-2% increase in robustness on
WRN on CIFAR-10 (Gowal et al., 2020).

Consistency of the PSSiLU family. The function class of PSSiLU captures that of PSiLU and
SiLU. PSiLU can be thought of as PSSiLU with β = 0, which can be achieved by placing a large
regularization term on |β|. Similarily, SiLU is PSSiLU with α = 1 and β = 0, and can be achieved
by PSSiLU with a large regularization term on |α − 1| and |β|. Across datasets and architectures
tested, we find that a member of the PSSiLU family is able to consistently obtain high robust ac-
curacy. We also find that this also generalizes to TRADES adversarial training, `2 attacks, and
other sources of additional data (Appendix D). This suggests that the function class of captured by
PSSiLU works well in conjunction with adversarial training in improving robustness.

Consistency of smooth PAFs. We find that smooth PAFs (PSoftplus, PSiLU, and PSSiLU) often
improve robust accuracy over ReLU even when additional data is not present. In Appendix D, we
find that this pattern holds across datasets and architectures and generalizes to TRADES adversarial
training and `2 attacks.

4.3 VISUALIZING LEARNED SHAPES OF PARAMETRIC ACTIVATION FUNCTIONS

Previously, in Section 3, we searched for a parameterization of activation function shape that con-
trols factors which are correlated with robustness independently of adversarial training. This begs
the question, how are the properties observed (positive outputs on negative inputs, high curvature)
related to shapes learned through adversarial training? In this section, we visualize the shapes of
PAFs learned through the adversarial training objective.

We present the learned shapes of PReLU, PELU, PSiLU and PSoftplus in Figure 6. Additionally,
we present the learned shape of PSSiLU in Figure 7.

Relation to Trends from Section 3. We observe that across architectures and datasets, PAFs opti-
mize towards the same qualities that were found to improve robustness for standard trained models:
positive behavior on negative inputs and high curvature. In Figure 6, we can see that for all models,
PReLU and PELU optimize to give positive output on negative inputs while PSiLU and PSoftplus
both optimize towards the shape of ReLU. This suggests that these patterns in shape observed can
also help the model better fit the training data.
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Figure 6: Learned shapes of PAFs across 11 models of various architectures (WRN-28-10, ResNet-
18, VGG) trained using PGD adversarial training on various datasets (CIFAR-10, CIFAR-100, Ima-
geNette). Each grey line represents the shape learned by a single model. The red line represents the
average of the learned αs across all models. The dotted black line represents ReLU.

Optimization itself improves robust performance. In Figure 7, we visualize the shapes learned
by PSSiLU with regularized β. Surprisingly, we find that the β parameters optimize to be 0, which
reduces PSSiLU to PSiLU. However, compared to PSiLU, we observed from Table 2 that with addi-
tional DDPM data, regularized PSSiLU significantly improves robustness over PSiLU. Specifically,
PSSiLU improves performance over PSiLU by 3.01% on ResNet-18 and by 1.59% on WRN-28-10.
These results suggest that in addition to increasing the size of the function class, adding parameters
can also help with optimization, allowing adversarial training to converge to a better minimum.
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Figure 7: Learned shapes of activation
functions across 11 models of various
architectures (WRN-28-10, ResNet-18,
VGG) trained using PGD adversarial
training on various datasets (CIFAR-10,
CIFAR-100, ImageNette). Each grey
line represents the shape learned by a
single model. The red line represents
the average of the learned αs and βs
across all models. The dotted black line
represents ReLU.

5 LIMITATIONS AND FUTURE DIRECTIONS

In our work, we showed that by parameterizing activation
functions in DNNs, we can improve robust accuracy ob-
tained through adversarial training. However, we found
that PAFs can overfit, motivating the need for regulariza-
tion.

Sources of additional data. We find that using additional
data boosts the performance of adversarial training with
PAFs. Previous works have indicate that current genera-
tive models are unable to provide high quality samples for
adversarial training on large-scale datasets such as Ima-
geNet (Sehwag et al., 2021). Additional progress on gen-
erative models would also improve the performance of
adversarial training with PAFs.

Regularizing Parameters. When additional data is not
available, regularization may help prevent overfitting. In
this work, we use L1 regularization on the β parameter
of PSSiLU. A future direction of this work is to explore
other forms of regularization such as curvature regular-
ization or Lipschitz constant regularization which are related to robustness (Singla et al., 2021;
Moosavi-Dezfooli et al., 2019; Qin et al., 2019; Pauli et al., 2021).

Combining PSSiLU with other training pipelines. Our training pipeline is based off of Sehwag
et al. (2021)’s pipeline for PGD training with additional synthetic data. Another future direction of
this work is combining PSSiLU with other training pipelines which achieve higher robust perfor-
mance on RobustBench (Croce et al., 2020) to see if we can further improve robust performance.

6 CONCLUSION

In this work, we studied the impact of parameterizing activation functions on robustness through ad-
versarial training. We combine learnable PAFs with adversarial training and find that by introducing
as many as 1-2 additional parameters into the network architecture, PAFs can significantly improve
robustness over ReLU. Overall, this work demonstrates the potential of using learnable PAFs for
enhancing robustness of machine learning against adversarial examples.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have provided details on experimental setup in Appendix A. Addition-
ally, we have provided our code in the supplementary.
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A EXPERIMENTAL SETUP DETAILS

A.1 STANDARD TRAINING EXPERIMENTAL SETUP ADDITIONAL DETAILS

Models. We train ResNet-18 (He et al., 2016), WideResNet-28-10 (Zagoruyko & Komodakis,
2016), and VGG-16 (Simonyan & Zisserman, 2015) models. For each model, we replace ReLU
activations with activation functions described in Section 3.1. For each activation function, we train
multiple models, setting the value of the parameter to those shown in Figure 2.

Datasets. We train ResNet-18, WRN-28-10, and VGG-16 models on CIFAR-10 (Krizhevsky
et al., 2009). For ResNet-18 models, we also perform experiments on ImageNette (a 10 class sub-
set of ImageNet) (Howard) and CIFAR-100 (Krizhevsky et al., 2009). For ImageNette, we resize
images to 224x224 before passing the images into ResNet-18.

Training Setup We train models using SGD with initial learning rate of 0.1 and use cosine an-
nealing learning rate scheduling (Loshchilov & Hutter, 2017). We train all models for 100 epochs
and perform evaluation on the model saved at the epoch which has the highest accuracy on the test
set. For ResNet-18 models on CIFAR-10, we run 3 trials. For each trial, all models are seeded to
the same seed. For all other models we run a single trial.

Evaluation Setup. For measuring adversarial sensitivity, we consider the adversary constrained to
an L-infinity budget. To estimate the smallest perturbation radius for misclassification, we perform
a binary search on radius size for 4-step PGD (Madry et al., 2018) with step size of 0.0078. We use
4-step PGD to increase the efficiency of the binary search algorithm. For query-restricted black-box
adversary, we use Square attack (Andriushchenko et al., 2020; Croce & Hein, 2020) with budget
ε = 0.031 and compute the robust accuracy on adversarial examples found within 1000 queries. We
measure square attack robust accuracy and PGD radius over images in the test set that are initially
classified correctly by the model.

A.2 ADVERSARIAL TRAINING EXPERIMENTAL SETUP

Models. We train ResNet-18 (He et al., 2016), WRN-28-10 (Zagoruyko & Komodakis, 2016), and
VGG-16 (Simonyan & Zisserman, 2015) models. For each activation function tested, we replace all
ReLU within both models with that activation function. We test parametric activations described
in Section 3.1 and allow the parameter α (and β for PSSiLU) to be optimized through training.
Additionally, we test nonparametric variants of these activation functions: ReLU, ELU, SiLU, and
Softplus. We initialize all parametric activation functions to the shapes of their nonparametric vari-
ants (ReLU for PReLU and PBLU, ELU for PELU, SiLU for PSiLU and PSSiLU, and Softplus
for PSoftplus). For all parametric activation functions, we share the parameter across activations
within the network, so PSSiLU adds 2 parameters to the network overall while all other parametric
activation functions add 1 parameter.
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Datasets. Overall, we experiment with 3 datasets: CIFAR-10 (Krizhevsky et al., 2009), Ima-
geNette (Howard), and CIFAR-100 (Krizhevsky et al., 2009). Additionally, for CIFAR-10 exper-
iments, we consider the setting of training with and without additional data. We consider 2 sources
of additional data for CIFAR-10 models: DDPM-6M (Sehwag et al., 2021) and TI-500K (Carmon
et al., 2019). DDPM-6M is a synthetic dataset of 6 million images generated by DDPM, a generative
model Ho et al. (2020). Previous works have shown that using samples from DDPM can improve
robustness through adversarial training (Sehwag et al., 2021; Rebuffi et al., 2021). TI-500K is a sub-
set of TinyImages which matches the distribution of CIFAR-10 and has also been shown to improve
robustness when used in adversarial training (Carmon et al., 2019). We train ResNet-18 models
on CIFAR-10, ImageNette, and CIFAR-10+DDPM. For ImageNette, we resize images to 224x224
before passing the images into ResNet-18. We train WRN-28-10 and VGG models on CIFAR-10,
CIFAR-10+DDPM, and CIFAR-10+TI-500k. We also train WRN-28-10 models on CIFAR-100.

Training Details. For the bulk of experiments, we use PGD adversarial training (Madry et al.,
2018) and train models for 200 epochs. We also train a set of ResNet-18 models on CIFAR-10 and
L-infinity adversary with TRADES adversarial training Zhang et al. (2019) with β = 0.6 (Appendix
D.3. For all architectures, we train with 10 step PGD with L-infinity budget of 0.031 and step
size of 0.0078. For WRN-28-10 models on CIFAR-10, we also train with 10-step PGD with L-2
budget of 0.5 and step size of 0.075. We train models with SGD with learning rate 0.1 and cosine
annealing learning rate scheduling. We seed all models to 12345 to control for differences caused
by randomness in initialization. For PSSiLU models, we apply regularization on the magnitude
of parameter β to restrict the slope on negative inputs so that it remains small. Specifically, for
PSSiLU models, we add a λ|β| term to the loss function where λ = 10. Additionally, since a small
fluctuation of β leads to a large change in activation function shape, we clip the gradients of the β
parameter to have norm 0.01.

Evaluation Details. We evaluate models saved at the epoch which had the highest PGD adversarial
accuracy on the test set. We perform our final evaluation of robustness using AutoAttack (Croce &
Hein, 2020). During evaluation, we use the same adversarial budget that was used to train the model.

B COMPARISON TO RELATED WORK

Comparison to Gowal et al. (2020) and Xie et al. (2020) Similar to our work, Gowal et al. (2020)
and Xie et al. (2020) investigated the impact of varying activation function on the performance
of adversarial trained models. Xie et al. (2020) found that smooth activation functions generally
outperform nonsmooth activation functions on ImageNet. Meanwhile Gowal et al. (2020) found
that SiLU activations perform well and were unable to observe the same trend between activation
function smoothness and adversarial robustness. We differ in these works by using learnable PAFs
and find that smooth PAFs can consistently outperform ReLU, while their nonparametric variants
may not be able to due to low training accuracy.

Comparison to Singla et al. (2021) Singla et al. (2021) explore the impact of curvature on ro-
bust generalization. They find that activation functions with lower curvature experience less robust
overfitting. In contrast, our work focuses on the impact of activation functions on robustness. We
find that activation functions tend towards shapes with higher curvature during adversarial training
suggesting that higher curvature allows for better fitting of the training set, which allows for higher
robustness on the test set. However, we also observe more overfitting, which agrees with Singla
et al. (2021)’s findings, motivating the use of additional data to regularize PAF parameters.

Comparison to Tavakoli et al. (2020) Tavakoli et al. (2020) introduce PAF called SPLASH which
can model symmetric piecewise linear activations. They find that the symmetric nature of SPLASH
allows standard trained models using SPLASH to be more robust. Unlike Tavakoli et al. (2020),
we choose a variety of PAFs with nonlinear components such as PELU, PSiLU, and PSoftplus and
combine PAFs with adversarial training. Additionally, we explore the case in which our PAFs min-
imally add to the set of learnable parameters; while SPLASH introduces as many as 12 parameters
at each layer of the network, we introduce 1-2 parameters into the network overall and find that this
small increase in parameter number can increase robustness.
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Figure 8: Square robust accuracy and average minimum PGD radius for WRN-28-10 models trained
on CIFAR-10 with various parameter α.

C ADDITIONAL RESULTS FOR STANDARD TRAINED MODELS

C.1 CLEAN ACCURACIES OF STANDARD TRAINED MODELS

We report the minimum and maximum classification accuracies for each model and dataset combi-
nation across all activations and parameter values in Table 3

Model Dataset Min Acc Max Acc
ResNet-18 CIFAR-10 89.1 95.3

WRN-28-10 CIFAR-10 89.2 96.0
VGG-16 CIFAR-10 76.4 94.1

ResNet-18 Imagenette 79.4 92.7
ResNet-18 CIFAR-100 70.2 77.8

Table 3: Minimum and maximum values for clean accuracy of standard trained models across all
activations and parameter values tested.

C.2 GENERALIZATION OF OBSERVED TRENDS

To test whether the trends seen in Section 3 generalize to other model architectures, we repeat
experiments on WRN-28-10 (Figure 8) and VGG-16 (Figure 9). We find that across architectures,
the trends for PReLU, PELU, PSiLU, and PSoftplus are consistent.

To test whether these patterns also generalize across dataset, we repeat experiments on CIFAR-100
(Figure 10) and ImageNette (Figure 11). We find that these trends are clear for CIFAR-100 but are
not clear in ImageNette. For ImageNette, we find that there is little variation across PGD radius
and Square robust accuracy is not always correlated with the measured radius as is observed for
CIFAR-10 and CIFAR-100.
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Figure 9: Square robust accuracy and average minimum PGD radius for VGG-16 models trained on
CIFAR-10 with various parameter α.
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Figure 10: Square robust accuracy and average minimum PGD radius for ResNet-18 models trained
on CIFAR-100 with various parameter α.
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Figure 11: Square robust accuracy and average minimum PGD radius for ResNet-18 models trained
on ImageNette with various parameter α.
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Figure 12: Square robust accuracy and average minimum PGD radius for ResNet-18 models trained
on CIFAR-10 with various parameter α for PReLU+ and PBLU activations. Errors bars are com-
puted over 3 trials.

C.3 BEHAVIOR FOR ACTIVATION FUNCTIONS VARYING IN THE POSITIVE REGIONS

In addition to testing activations with varied behavior on negative inputs and around 0, we also
measure the square robust accuracy and average minimum PGD radius for PReLU+ and PBLU.
For these activation functions, we were unable to observe any clear trends for the impact of positive
behavior. We provide the plot for ResNet-18 models trained on CIFAR-10 in Figure 12. We find that
PPReLU exhibits high variance in behavior making trends unclear. Figure 12 suggests that α < 0
may lead to higher perturbation stability, we find that this is inconsistent across architectures. For
instance, we observe the opposite trend in Figure 9 which shows the behavior of PPReLU and PBLU
for VGG-16 models trained on CIFAR-10. There are no consistent trends across these activation
functions, which suggests that positive behavior is less important for robustness. Thus, we do not
introduce a parameter to control positive behavior on PSSiLU.
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Figure 13: Square robust accuracy and average minimum PGD radius for VGG-16 models trained
CIFAR-10 with various parameter α for PReLU+ and PBLU activations.
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Figure 14: Empirical Lipschitz constant of PReLU and PELU ResNet-18 models trained on CIFAR-
10 at varied value of parameter α. Lower empirical Lipschitz constant suggests that the model
outputs are more stable in the presence of perturbations. The trend in Empirical Lipschitz constant
matches the trends observed in PGD radius and Square robust accuracy.

C.4 EMPIRICAL LIPSCHITZ CONSTANT OF PRELU AND PELU MODELS

For PReLU and PELU, we observe that for α < 0 when the magnitude of α becomes large, the
adversarial difficulty decreases. We hypothesize that this trend is due to neural network Lipschitz
constant. When |α| grows, the Lipschitz constant for PReLU and PELU also increases. The Lip-
schitz constant of neural network controls the amount of change that can occur in the output when
an input is perturbed, so restricting the magnitude of the Lipschitz constant can improve adversarial
robustness (Qin et al., 2019; Jordan & Dimakis, 2020; Pauli et al., 2021). Neural network Lipschitz
constant depends on the Lipschitz constant of activation functions and weight matrices within the
network. We hypothesize that as |α| becomes large, the Lipschitz constant of the neural network
increases due to the increase in Lipschitz constant of the activation function. To test this, we mea-
sure the empirical Lipschitz constant of PReLU and PELU models, where the empirical Lipschitz
constant of a model is defined as (Yang et al., 2020)

L̂ =
1

n

n∑
i=1

max
x̂i∈B(ε,xi)

||f(xi)− f(x̂i)||1
||xi − x̂i||∞

(5)

where f is the model, {xi}ni=1 represent the data inputs and B(ε, xi) represents a ball of radius ε
around xi. x̂i can be generated by an adversarial attack. We compute this quantity using PGD-10
with radius 0.031 and step size 0.0078 to generate x̂i. The trends for the empirical Lipschitz constant
of PReLU and PELU ResNet-18 models is shown in Figure 14. We find that the trends for empirical
Lipschitz constant are also consistent with the trends for Square robust accuracy and PGD radius.
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C.5 GENERALIZATION OF TRENDS FOR PSSILU

To show that the patterns observed on PSSiLU at varied parameter β are consistent across architec-
ture and dataset, we report results for Square robust accuracy and PGD radius on WRN-28-10 and
VGG-16 architectures in Figure 15. Additionally, we report results on CIFAR-100 in Figure 16. We
find that as β increases the model robustness also increases. This is consistent with our findings on
ResNet-18 models trained on CIFAR-10.
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Figure 15: Square robust accuracy and average minimum PGD radius for PSSiLU across parameter
β for standard trained WRN-28-10 and VGG-16 architectures.
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Figure 16: Square robust accuracy and average minimum PGD radius for PSSiLU across parameter
β for standard trained ResNet-18 models on CIFAR-100.

D ADDITIONAL RESULTS FOR ADVERSARIALLY TRAINED MODELS

D.1 RESULTS ON VGG-16

We report additional results for VGG-16 models trained on CIFAR-10 in Table 4. We find that
trends in VGG-16 are generally consistent with those for ResNet-18 and WRN-28-10: the best
performing models are within the PSSiLU family and parametric activation functions outperform
nonparametric activation functions when there is additional data in training. Additionally, we find
that smooth PAFs (PSoftplus, PSiLU, PSSiLU) improve robust accuracy over ReLU, even without
extra data from DDPM-6M.

D.2 RESULTS FOR L2 ADVERSARY

We report results for ResNet-18 models on CIFAR-10 with an L2 adversary in Table 5. We find
that the PSiLU achieves the highest robust accuracy both with and without extra data, and PSSiLU
has performance comparable to that of PSiLU in both instances. Additionally, we observe that
smooth PAFs (PSoftplus, PSiLU, and PSSiLU) all improve robust accuracy over ReLU even without
additional data.
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CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 76.3 41.5 82.0 51.3
PReLU 78.8 40.3 82.2 51.3

ELU 77.6 40.5 79.9 48.2
PELU 77.4 41.1 81.6 51.2

Softplus 71.9 40.2 75.5 43.8
PSoftplus 81.0 41.9 82.7 53.0
PPRELU 78.5 41.6 82.1 51.6
ReBLU 77.9 41.7 82.3 52.4
SiLU 80.5 43.1 82.3 51.0

PSiLU 77.7 42.5 83.0 53.2
PSSiLU 77.7 41.9 82.8 52.9

Table 4: Natural and robust accuracy of adversarially trained VGG-16 models of various activation
functions with respect to `∞ attacks with radius 0.031 generated through AutoAttack. We highlight
robust accuracies higher than ReLU in purple.

CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 89.6 65.1 89.4 74.4
PReLU 84.6 57.5 88.7 71.7

ELU 88.6 65.6 88.0 71.2
PELU 88.7 63.8 89.1 73.9

Softplus 87.3 64.2 86.5 67.7
PSoftplus 89.8 67.1 89.7 75.3
PPRELU 88.5 63.4 88.7 73.9
ReBLU 88.3 65.9 89.2 73.2
SiLU 87.6 64.6 89.4 73.4

PSiLU 89.3 67.7 89.6 75.8
PSSiLU 89.6 67.3 89.9 75.6

Table 5: Natural and robust accuracy of adversarially trained WRN-28-10 models on CIFAR-10 with
respect to `2 attacks with radius 0.5 generated through AutoAttack. We highlight robust accuracies
higher than ReLU in purple.

D.3 RESULTS ON TRADES TRAINED MODELS

We report results for ResNet-18 models trained with TRADES adversarial training in Table 6. We
find that PSSiLU is able to obtain the highest accuracy on CIFAR-10 without additional data, outper-
forming ReLU by 0.9%. With additional data, PSiLU obtains the highest robust accuracy (PSSiLU
obtains comparable robustness), outperforming ReLU by 1.9%. This is consistent with our observa-
tion that the PSSiLU family is able to achieve high robustness. Additionally, we find that PSoftplus,
PSiLU, and PSSiLU all improve over ReLU even without additional data during training. This is
consistent with our observation that smooth PAFs often outperform ReLU.

D.4 RESULTS ON ADDITIONAL DATASETS

In Table 7, we present the results for ResNet-18 models trained on ImageNette and WRN-28-10
models trained on CIFAR-100. We find that on ImageNette, SiLU achieves the highest robust
perfomrance, which is consistent with our finding that members of the PSSiLU family are able
to achieve high robust accuracy. We find that PSoftplus achieves the highest robust accuracy on
CIFAR-100, but both PSiLU and PSSiLU are able to achieve comparable robust accuracy. Addi-
tionally, we find that across both datasets, PSoftplus, PSiLU, and PSSiLU are able to outperform
ReLU, further emphasizing our finding that smooth PAFs generally improve over ReLU even with-
out extra data.

We note that we do not use additional data when training for ImageNette and CIFAR-100. The pe-
formance of PAFs may further improve if additional data for ImageNette and CIFAR-100 is present.
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CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 83.1 48.5 82.2 56.2
PReLU 79.6 45.4 82.8 56.1

ELU 77.5 44.5 77.8 50.8
PELU 82.6 47.0 82.4 55.8

Softplus 73.9 41.4 76.7 47.5
PSoftplus 81.6 49.1 82.6 57.2
PPRELU 83.5 47.7 82.3 55.8
ReBLU 82.0 46.7 81.7 54.9
SiLU 81.1 49.0 79.5 53.7

PSiLU 81.7 49.3 82.8 58.1
PSSiLU 81.2 49.4 82.7 57.9

Table 6: Natural and robust accuracy of TRADES adversarially trained ResNet-18 models of various
activation functions with respect to `∞ attacks with radius 0.031 generated through AutoAttack. We
highlight robust accuracies higher than ReLU in purple.

ImageNette CIFAR-100
Activation Natural AA Natural AA

ReLU 88.6 60.5 59.6 23.5
PReLU 69.7 59.5 57.5 21.6

ELU 87.5 61.2 58.1 24.1
PELU 87.2 57.7 58.6 21.9

Softplus 81.5 54.8 57.1 23.1
PSoftplus 88.9 62.8 60.5 24.8
PReLU+ 87.4 59.6 58.6 22.7
ReBLU 87.5 58.3 59.5 24.3
SiLU 88.8 64.1 54.3 22.9

PSiLU 88.7 62.4 59.3 24.2
PSSiLU 87.5 61.2 59.7 24.2

Table 7: Natural and robust accuracy of adversarially trained models of various activation functions
with respect to `∞ attacks with radius 0.031 generated through AutoAttack on ImageNette and
CIFAR-100. We highlight robust accuracies higher than ReLU in purple.

D.5 FIXING β ON PSSILU

Unlike other parametric activation functions tested, PSSiLU has 2 learnable parameters. We experi-
ment with fixing the value of β on PSSiLU so that α is the only learnable parameter. Figure 4 shows
the trend for adversarial difficulty over β when α is fixed to 1. We find after about β = 0.3, we do
not see much improvement from increasing the value of β. We set β to 0.3 and trained another set
of ResNet-18 models using PSSiLU. The results are shown in Table 8.

CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 82.3 44.6 82.8 53.7
PSSiLU 79.2 42.7 84.5 56.8

Table 8: Natural and robust accuracy of PSSiLU model with β fixed at 0.3 with respect to L-infinity
attacks with radius 0.031 generated by AutoAttack.

We find that even with fixed β, we are able to achieve high robust accuracy on CIFAR-10 when
combined with DDPM-6M; however, it is not as high as with β as a learnable parameter.

D.6 IMPACT OF REGULARIZATION ON PSSILU PERFORMANCE

We vary the strength of regularization (λ) on β. We observe that there is a significant jump in robust
performance from no regularization λ = 0 to λ = 0.1 suggesting that PSSiLU needs regularization
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to perform well. This makes sense because in our formulation for PSSiLU, we have the constraint
that β < 1 which allows PSSiLU to maintain a ReLU-like shape. We find that the best performing
model is produced when λ = 10.
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Figure 17: Impact of regularization strength λ on β parameter on AutoAttack robust accuracy of
PGD adversarially trained ResNet-18 model.

D.7 LEARNED SHAPES FOR PRELU+ AND REBLU

We present the learned shapes of PReLU+ and ReBLU in Figure 18. We find that these activation
functions generally optimize so that the slope in the positive region is positive. However, we find
that this trend is not consistent across dataset and architecture. For instance in Figure 18, we can see
several models which optimize towards negative values of α, leading to negative slope on positive
inputs on PReLU+ and a downward curve on ReBLU.
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Figure 18: Learned shapes of PReLU+ and ReBLU activation functions across all 11 models trained
using PGD adversarial training. Each gray line represents the shape learned by a single model. The
red line represents the average of the learned αs across all models.
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