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ABSTRACT

Vision-and-Language Navigation (VLN) requires an embodied agent to navigate
through unseen environments, guided by natural language instructions and a con-
tinuous video stream. Recent advances in VLN have been driven by the powerful
semantic understanding of Multimodal Large Language Models (MLLMs). How-
ever, these methods typically rely on explicit semantic memory, such as building
textual cognitive maps or storing historical visual frames. This type of method suf-
fers from spatial information loss, computational redundancy, and memory bloat,
which impede efficient navigation. Inspired by the implicit scene representation
in human navigation, analogous to the left brain’s semantic understanding and
the right brain’s spatial cognition, we propose JanusVLN, a novel VLN frame-
work featuring a dual implicit neural memory that models spatial-geometric and
visual-semantic memory as separate, compact, and fixed-size neural representa-
tions. This framework first extends the MLLM to incorporate 3D prior knowledge
from the spatial-geometric encoder, thereby enhancing the spatial reasoning capa-
bilities of models based solely on RGB input. Then, the historical key-value (KV)
caches from the spatial-geometric and visual-semantic encoders are constructed
into a dual implicit memory. By retaining only the KVs of tokens in the initial and
sliding window, redundant computation is avoided, enabling efficient incremen-
tal updates. Extensive experiments demonstrate that JanusVLN outperforms over
20 recent methods to achieve SOTA performance. For example, the success rate
improves by 10.5-35.5 compared to methods using multiple data types as input
and by 3.6-10.8 compared to methods using more RGB training data. This indi-
cates that the proposed dual implicit neural memory, as a novel paradigm, explores
promising new directions for future VLN research.

1 INTRODUCTION

Vision-and-Language Navigation (VLN) is a foundational task in embodied Al, requiring an agent
to navigate through unseen environments guided by visual inputs and natural language instructions.
Recently, capitalizing on the advanced visual perception and semantic understanding capabilities of
Multimodal Large Language Models (MLLMs), a new line of research (Zhang et al., |2025a; |Cheng
et al.| 2025) has emerged. These approaches leverage vast-scale training data to adapt MLLMs into
VLN models, thereby reshaping the future landscape of VLN research.

To support navigation models in conducting prolonged and effective exploration, these approaches
typically only construct an explicit semantic memory. One class of methods (Zhang et al [2025b;
Zeng et al.| [2024) builds a semantic cognitive map using textual descriptions for object nodes and
relational edges. However, purely textual descriptions struggle to precisely convey the spatial rela-
tionships and orientation of objects, leading to the loss of crucial visual, spatial-geometric, and con-
textual information. Moreover, repetitive descriptions introduce substantial redundancy and noise.
Another class of methods (Zhang et al., 2025a; Cheng et al., 2025) stores historical observation
frames, which necessitates reprocessing the entire history of observations along with the current
frame at each action prediction step, resulting in significant redundant computation. Finally, in both
types of approaches, the explicit semantic memory grows exponentially as navigation time increases.
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Figure 1: JanusVLN, using RGB-only video, decouples visual semantics and spatial geometry to
construct novel, fixed-size dual implicit memory. This memory is incrementally updated during
navigation, and its spatial geometry component can be further visualized as depth and point cloud.

This makes it exceedingly difficult for the model to extract critical information from a vast, cluttered,
and fragmented memory, thereby leading to severe inefficiency.

More importantly, these methods collectively face a fundamental contradiction. Navigation is an
inherently 3D physical interaction, yet the visual encoders of existing VLA models almost exclu-
sively inherit the CLIP paradigm pre-trained on 2D image-text pairs. This approach enables these
encoders to excel at capturing high-level semantics while leaving them deficient in understanding
3D geometric structures and spatial information. However, a frequently overlooked yet critical in-
sight is that 2D images are not merely isolated planes of pixels but are projections of the 3D physical
world, inherently containing a wealth of 3D spatial cues such as perspective, occlusion, and geomet-
ric structures. Whereas human observers can effortlessly perceive depth and comprehend spatial
layouts from a single static image, existing models neglect this readily available implicit 3D infor-
mation in their inputs. This oversight fundamentally constrains their spatial reasoning capabilities
in complex navigation tasks.

Inspired by the human brain’s hemispheric specialization for navigation, where the left hemisphere
handles semantic understanding and the right manages 3D spatial cognition to form implicit repre-
sentations [1967), we propose a fundamental shift from a single, explicit memory to a
dual, implicit neural memory. To this end, we introduce JanusVLN, a dual implicit memory frame-
work for VLN that features both spatial-geometric and visual-semantic memory in Figure I} We
model these two types of memory respectively as fixed-size, compact neural memory, whose size
does not grow with the trajectory length. This design is analogous to the human brain’s ability to
perform efficient memorization within a finite capacity.

To construct this dual implicit memory, we extend the MLLM into a novel VLN model by incorpo-
rating a feed-forward 3D visual geometry foundation model, which provides 3D spatial geometric
structural information solely from RGB video input, obviating the need for any explicit 3D data. Un-
like the visual encoders of general MLLMs, which are predominantly trained on 2D image-text data,
this spatial geometry model is typically trained on pixel-3D point cloud pairs, thereby embedding
strong 3D perception priors. We establish implicit spatial-geometric and visual-semantic memory
by caching historical key-value (KV) from a 3D spatial geometry encoder and MLLM’s semantic vi-
sual encoder, respectively. These dual implicit memory are dynamically and incrementally updated
through the initial and sliding window, enabling the progressive integration of historical informa-
tion for each new frame without recomputing past frames. Extensive experiments demonstrate that
JanusVLN significantly enhances spatial comprehension while lowering inference overhead, achiev-
ing SOTA performance on VLN-CE benchmarks. It establishes a new paradigm for VLN research,
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propelling a shift from being 2D semantics-dominated to 3D spatial-semantic synergy. This marks
a pivotal direction toward building the next generation of spatially-aware embodied agents.

In summary, our contributions are as follows:

* We introduce a novel dual implicit memory paradigm for VLN. Inspired by human cogni-
tive science, this framework simultaneously captures visual semantics and spatial geometry
to overcome the inherent limitations of existing navigation LLM.

* We unlock the potential of spatial geometric foundation models in streaming VLN. By im-
plementing dual-window and attention fusion mechanisms in VGGT, we efficiently update
and integrate historical information incrementally.

e Comprehensive experiments on the VLN-CE benchmark demonstrate that JanusVLN
achieves SOTA results without requiring auxiliary 3D data. This validates the efficacy
of JanusVLN and establishes a new memory paradigm for the field of VLN.

2 RELATED WORK

2.1 VISION-LANGUAGE NAVIGATION WITH MULTIPLE VISUAL INPUTS

Vision-Language Navigation (Krantz et al., 2020; Krantz & Lee} [2022)), the task of guiding an em-
bodied agent to a target location in unseen environments by following instructions, has recently gar-
nered significant attention. Early research (Anderson et al.|[2018; |[Ku et al., 2020) predominantly fo-
cused on discrete environments, where an agent navigates by teleporting between predefined nodes.
However, these approaches (Hong et al.l [2022) often exhibit poor performance when deployed on
real-world robots operating in continuous 3D spaces. In contrast, more recent studies (Krantz et al.|
2020;|Wang et al.,|2024) have concentrated on continuous environments, enabling agents to navigate
freely to any collision-free location within simulators. To foster a better spatial understanding and
enhance navigational capabilities, some recent works (Wang & Lee} [2025; Xuan Yao & Xu, [2025)
have also begun to investigate monocular RGB-D vision. However, the reliance on additional, ex-
pensive hardware for this approach, which is often unavailable in many practical settings, restricts
its real-world applicability. In this paper, we propose JanusVLN, a method that enhances spatial
understanding using only RGB visual input, eliminating the need for any supplementary 3D data.

2.2 MULTI-MODAL LARGE LANGUAGE MODELS FOR RGB ONLY NAVIGATION

The recent, rapid advancement of Multi-modal Large Language Models (Bai et al.| [2025; [Zhang
et al.l |2024b) has injected new momentum the field of Visual Language Navigation. Some ap-
proaches (Zhang et al.l 2024a; |Cheng et al., |2025) have begun to leverage RGB-only video models
to build monocular VLN systems, aiming for enhanced generalization and practical value. However,
the agents in these studies (Zhang et al., 2025a} Xie et al., [2025) typically construct only explicit
semantic memory and rely solely on a single, front RGB camera, which poses significant challenges
to spatial understanding and often requires extensive auxiliary data to improve performance. In this
paper, we introduce JanusVLN, a VLN framework featuring a dual implicit memory system that
encompasses both spatial-geometric memory and visual-semantic memory.

2.3 SPATIAL REASONING VIA VISION-LANGUAGE MODELS

Increasing research (Chen et al., 2024a; [Zeng et al.,[2025) efforts have recently aimed to advance the
spatial reasoning abilities of Vision-Language Models (VLMs). Previous studies (Chen et al.|[2024b;
Liu et al) 2025) have predominantly centered on incorporating 3D data (e.g., point clouds, depth
maps) into VLMs to infuse them with explicit spatial information. However, such methods often
rely on expensive auxiliary hardware, limiting their viability in practical applications. While some
recent approaches (Wu et al., 2025} [Zheng et al., 2025)) leverage spatial encoders to derive spatial
information directly from videos, they require the entire sequence to be re-processed upon the arrival
of each new frame, leading to significant computational redundancy. JanusVLN extracts spatial-
geometric features directly from video in an online, streaming fashion. This eliminates repetitive
calculations and markedly lowers the inference cost.
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3 METHOD

3.1 PRELIMINARY

Navigation task definition. The task of Vision-and-Language Navigation (VLN) in continuous
environments is defined as follows. At the timestep ¢, an embodied agent is provided with a natural
language instruction Z of | words and an ego-centric RGB video O = {xy, ..., 2}, where each
frame x; € R3*H*W The agent’s goal is to predict a low-level action a; 1 € A for the subsequent
step. The action space is defined as A = {Move_Forward, Turn_Left, Turn_Right, Stop}.
Each low-level action corresponds to a fine-grained physical change: a small rotation (30°), a for-
ward step (25 cm) or stop, which allows for flexible maneuverability in continuous spaces. Upon
executing the action a4 1, the agent receives a new observation x4 ;. This process iterates until the
agent executes the St op action at the target location as specified by the instruction.

Visual geometry grounded transformer (VGGT). Building upon traditional 3D reconstruction,
recent learning-based end-to-end methods (Wang et al., [2025; [Yang et al.| [2025) employ neu-
ral networks to encode scene priors, directly predicting 3D structures from multi-view images.
VGGT (Wang et al.|, [2025)), which is based on a transformer feed-forward architecture, comprises
three key components: an encoder for extracting single-image feature, a fusion decoder for cross-
frame interaction to generate geometric tokens G; € RUFIxL5) *C where p is the patch size, and a
task-specific prediction head for 3D attributes. The reconstruction pipeline can be formulated as:

{Gt}z;l = Decoder(Encoder({wt}?:1))7 (P, Cy) = Head(Gy), (1)

where a Multi-Layer Perceptron (MLP) head predicts a point map P; € R3*#>W and a per-pixel
confidence map C; € R”*W from these geometric tokens. As our focus is on feature extraction,
which embeds 3D geometry prior information, rather than directly outputting 3D attributes, we
leverage the encoder and the fusion decoder as our 3D visual geometry encoder.

3.2 DUAL IMPLICIT MEMORY

The limitations of traditional explicit semantic memory, including memory inflation, computational
redundancy, and the loss of spatial information, coupled with the original VGGT’s requirement to
reprocess the entire sequence for each new frame, impede the real-time performance and effective-
ness of streaming navigation. To address these challenges, we introduce the VGGT as a spatial
geometry encoder and propose a novel dual implicit memory paradigm for VLN research in Fig-
ure [2| This paradigm models spatial geometry and visual semantics as fixed-size, compact neural
representations by respectively leveraging the history initial and sliding window KV cache of the
dual encoders. The spatial memory within the spatial geometry encoder is modeled as follows:

Implicit neural representation. In contrast to previous methods that store high-dimensional, un-
processed, and explicit historical frames, we innovatively caches historical KV M that have been
deeply processed by neural networks. These KV, derived from the output of attention modules such
as transformers, constitute high-level semantic abstractions and structured representations of the
past environment. This implicit memory is not merely a compact, efficient storage entity, but a con-
densed knowledge representation refined by the neural networks. It enables the agent to retrieve and
reason over information with minimal computational cost.

Hybrid incremental update. For the implicit neural representation, we employ a hybrid cache
update strategy instead of caching all historical KV. This approach mitigates the significant memory
overhead and performance degradation that arise from extended navigation sequences. The strategy
partitions the memory into two components. The first is a sliding window queue Mg;;4:ng With a
capacity of n, which stores the KV caches of the most recent n frames in a First-In, First-Out (FIFO)
manner. This mechanism ensures the model focuses on the most immediate and relevant contextual
information, which is critical for real-time decision-making. When this queue reaches its capacity,
the oldest frame’s cache is evicted to accommodate the current frame, enabling dynamic incremental
updates. The second component permanently retains the KV cache Mj,,;4;4; from the initial few
frames. The model exhibits sustained high attention weights towards these initial frames, which
function as ”Attention Sinks” (Xiao et al., 2024). These sinks provide critical global anchors for the
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Figure 2: The framework of JanusVLN. Given an RGB-only video stream and navigation instruc-
tions, JanusVLN utilizes a dual-encoder to separately extract visual-semantic and spatial-geometric
features. It concurrently caches historical key-values from initial and recent sliding window into a
dual implicit memory to facilitate feature reuse and prevent redundant computation. Finally, these
two complementary features are fused and fed into LLM to predict the next action.

entire navigation task and effectively restore performance. By integrating these two mechanisms,
we construct a dynamically updated, fixed-size implicit memory that preserves an acute perception
of the recent environment while maintaining a long-term memory of global task information.

For each incoming new frame, we compute cross-attention between its image tokens and the implicit
memory to directly retrieve historical information, thereby obviating the need for redundant feature
extraction from past frames.

G = Decoder(CrossAttn(Encoder(x:), { Minitiat, Msiiding}))- 2)

As shown in Figure[3] VGGT’s inference time grows exponentially with each new frame due to its
need to reprocess the entire sequence, resulting in an out-of-memory error on 48G GPU with only
48 frames. In contrast, our approach avoids reprocessing historical frames, causing its inference
time to increase only marginally and thereby demonstrating excellent efficiency.

For semantic encoder and LLM, we similarly retain the KV from the initial and sliding window.
Moreover, these implicit memory and tokens can be visualized to inspect the spatial and semantic
information they contain.

3.3 JANUSVLN ARCHITECTURE

Building upon the dual implicit memory paradigm, we propose  Time (ms) @

JanusVLN in Figure[2] enhances the spatial understanding capa- *°4 «veer
bilities without requiring costly 3D data (e.g., depth). 25500/ @Ours
2,000
Decoupling visual perception: semantics and spatiality. To 150
equip embodied agents with the dual capabilities of semantic un- 1,000
derstanding (what it is”) and spatial awareness ("where it is and 500
how it’s related”), JanusVLN is proposed as a dual-encoder ar- 0 :
chitecture that decouples semantic and spatial information from & iﬁam;f oo e

visual inputs. For 2D semantic encoder, we adopt the original vi- Figure 3: Inference time com-
sual encoder from Qwen2.5-VL to interactively encode the input parison for the current frame of
frame x; with the semantic memory into a semantic tokens: varying sequence lengths.

S; = Encodergen (), Si€ RUF XX C )
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Additionally, Qwen2.5-VL (Bai et al.|, [2025) groups spatially adjacent 2x2 patches into a single

image token to reduce computational cost, yielding S} € Rz %€ For 3D spatial-geometric
encoder, we employ the pre-trained encoder and fusion decoder from VGGT (Wang et al., [2025)
model to interactively encode the input frame with spatial memory into spatial-geometric token G;.

Spatial-aware feature fusion. Upon acquiring the semantic features S; and spatial geometric
features G4, we first employ the spatial merging strategy from Qwen2.5-VL (Bai et al., 2025). This
strategy concatenates spatially adjacent 2 x2 feature blocks within G; to form G}, € REARER ¢
thereby aligning its shape with that of S;. Subsequently, we utilize a lightweight two-layer MLP

projection layer to fuse the semantic and spatial geometric information:
F, =S, + X+« MLP(G,), “)

where )\ represents the weight for the spatial geometric features, and F} denotes the final, spatially-
geometrically enhanced visual features. Subsequently, the final visual features, along with the text
embedding of instruction Z, are fed into the backbone of the MLLM to generate the next action.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Simulation environments and metrics. Following established methods (Zhang et al., [2025a;
Cheng et al.| |2025), we conducted experiments on two of the most recognized VLN-CE (Krantz
et al., [2020) benchmark datasets: R2R-CE (Anderson et al., [2018) and RxR-CE (Ku et al., [2020).
These datasets comprise trajectories collected from Matterport3D (Chang et al.,|2017) scenes using
the Habitat simulator (Savva et al.} 2019). Consistent with prior work (Cheng et al., 2025} Wei et al.
20235])), we report performance on the unseen splits using standard VLN metrics, including Navi-
gation Error (NE), Oracle Success Rate (OS), Success Rate (SR), Success-weighted Path Length
(SPL), and normalized Dynamic Time Warping (nDTW). Among these, SR and SPL are widely
regarded as the primary metrics, reflecting task completion and path efficiency, respectively.

Real-world evaluation setup. In real-world experiments, we use the Unitree Go2 as the robotic
platform, equipped with an Insta360 X5 camera to capture front RGB. JanusVLN runs on a remote
server with an A10 GPU to continuously process RGB and instructions, returning the inference re-
sults to the robot for action execution. We focus on navigation tasks requiring spatial understanding.

Implementation details. We constructed JanusVLN based on Qwen2.5-VL 7B (Bai et al., [2025)
and VGGT [Wang et al.| (2025)). The model is trained for one epoch, during which we exclusively
fine-tune the LLM and the projection layer with learning rates of 2e-5 and 1le-5, respectively, while
keeping the semantic and spatial encoders frozen. We set the initial and sliding window size to 8 and
48 frames. The weight for the spatial geometric features A is set to 0.2. For extra data, following
StreamVLN (Wei et al., 2025), we incorporated an additional 155 K trajectories from a subset of the
ScaleVLN (Zun Wang| 2023)), comprising approximately 9207 K image-action pairs. Furthermore,
we employed the DAgger (Ross et al.| 2011)) algorithm to collect 14 K trajectories (approximately
1485 K image-action pairs) from the standard R2R-CE and RxR-CE datasets.

4.2 MAIN RESULTS

Results on VLN-CE benchmark. As presented in Table[T|and Table[2] we evaluate our JanusVLN
on the two most prominent VLN-CE benchmarks: R2R-CE and RxR-CE. Compared to methods
utilizing multiple input types like panoramic views and odometry, JanusVLN achieves a 10.5-35.5
improvement in SR using only a single RGB input, demonstrating the effectiveness of our approach.
Furthermore, JanusVLN outperforms SOTA methods that use additional 3D depth data, such as g3D-
LF and NaVid-4D, by 12.6-16.7, indicating its ability to effectively enhance spatial understanding
with only RGB video streams. Against methods employing explicit textual cognitive maps (e.g.,
MapNav) or historical frames (e.g., NaVILA, StreamVLN), JanusVLN achieves improvements of
20.8, 10.8, and 3.6, respectively, while using less auxiliary data, highlighting the superiority of
its dual implicit memory as a novel paradigm. Furthermore, our method surpasses NaVILA* and
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Table 1: Comparison with SOTA methods on VLN-CE R2R Val-Unseen split. External data includes
any sources beyond the standard R2ZR/RxR-CE datasets (e.g., EnvDrop, DAgger, general VQA, etc.).
StreamVLN* uses EnvDrop as external data. NaVILA* excludes human-following data. All results
are from their respective papers. A training sample is an action or a QA pair. Pano, Odo, Depth, and
S.RGB respectively represent panoramic view, odometry, depth, and single RGB.

| Observation | R2R Val-Unseen | Training
|Pano. Odo. Depth SRGB|NE| OSt SRt SPL?|External Data

Method

HPN+DN [iccv21] (Krantz et al.} [2021) v v v 6.31 40.0 36.0 34.0 -
CMA [cvPr22] (Hong et al.}[2022) v v v 6.20 52.0 41.0 36.0 -
Sim2Sim [Eccv22]|Krantz & Lee|(2022) v v v 6.07 52.0 43.0 36.0 -
VLN BERT [cVPR22] (Hong et al.[[2022) v v v 5.74 53.0 44.0 39.0 -
Ego?-Map [1ccv23] (Hong et al.|[2023) v v v 5.54 56.0 47.0 41.0 -
DreamWalker [1cCcv23] (Wang et al.}[2023a) | v v v 5.53 59.0 49.0 44.0 -
GridMM [iccv23] (Wang et al.,|2023b) v v v 5.11 61.0 49.0 41.0 -
Reborn [1cCVv23] (Wang et al., 2023b) v v v 5.40 57.0 50.0 46.0 -
InstructNav [CorL24] (Long et al.,[2024) Ve Ve v 6.89 - 31.0 24.0 -
COSMO [1ccv2s] (Zhang et al., [2025c) v - 56.0 47.0 40.0 -
AO-Planner [AAAI25] (Chen et al.|[2025) v v 5.55 59.0 47.0 33.0 -
LAW [EMNLP21]|Raychaudhuri et al.[(2021) v v v ]6.83 44.0 35.0 31.0 -
MapNav [ACL25] (Zhang et al.|[2025b) v v v’ 14.93 53.0 39.7 37.2 -
g3D-LF [cvPr25] (Wang & Lee} [2025) v v v |5.70 59.5 47.2 34.6 -
Seq2Seq [Eccv20] |Krantz et al.| (2020) v v' |7.77 37.0 25.0 22.0 -
NaVid-4D [1crA25] (Liu et al.,[2025) v V' 1599 55.7 43.8 37.1 -
NavMorph [1cCV25] (Xuan Yao & Xul [2025) v v 1575569 479 332 -
NaVid [RSS24] (Zhang et al., [2024a)) v’ 1547 49.1 37.4 359 953K
Sim2Real [CorL24] (Wang et al.|[2024) v’ 1595558 449 304 0K
StreamVLN* [arXiv25] Wei et al.|(2025) v |6.05 538455 41.6 10033 K
Uni-NaVid [RSS25] (Zhang et al., 2025al) v’ |5.58 53.347.0 42.7 357TTK
NaVILA* [rss25] (Cheng et al., [2025) V' |5.37 57.6 49.7 455 12574K
JanusVLN* (Ours) V' |5.17 58.0 52.8 49.2 0K
NaVILA [rss25] (Cheng et al., [2025) v 1522 62.5 54.0 49.0 13132K
Stream VLN [arXiv25]|Wel et al.[(2025) v 1498 642569 519 | ~ 26330K
JanusVLN (Ours) v |4.78 65.2 60.5 56.8 10692K

StreamVLN* by 10.8-15 in SR when using a comparable amount of data. Notably, even without any
additional data, JanusVLN* still outperforms the aforementioned methods that rely on partial extra
data by a margin of 3.7-18.8 in SPL. On the RxR-CE dataset, JanusVLN improves the SR metric by
3.3-30.7 over previous methods, demonstrating its superior generalizability. In summary, JanusVLN
consistently surpasses various prior methods across all settings, exhibiting strong generalization ca-
pabilities. This suggests that the dual implicit memory, as a novel memory paradigm, can effectively
replace conventional textual cognitive maps and historical frames.

Real-world qualitative results. We selected several navigation tasks that demand spatial under-
standing in Figure |4} including depth perception (the farthest yellow stool), 3D orientation and rela-
tive positioning (beside the green potted plant rather than in front of it), and spatial association (the
stool beside the orange cabinet). By leveraging the spatial-geometric memory within dual implicit
memory, JanusVLN effectively enhances its spatial reasoning, enabling the successful completion
of these challenging tasks. For more visualizations, please refer to the supplementary materials.

4.3 ABLATION STUDY

In this section, unless otherwise stated, we use no additional data and conduct ablation studies on
the R2R-CE benchmark. For more ablation studies, please refer to the supplementary material.

Ablation of the dual implicit memory. The ablation study for dual implicit memory is presented
in Table[3] Removing the spatial memory led to a substantial drop in the SPL score from 49.2 to 40.9.
This finding demonstrates that the spatial-geometric memory effectively enhances the agent’s spatial
understanding. Furthermore, removing the semantic memory results in a 13.8% decrease in the SR,
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Table 2: Comparison with SOTA methods on VLN-CE RxR Val-Unseen split.

Method | Observation |  RxRVal-Unseen | Training

|Pano. Odo. Depth S RGB|NE| SRt SPL1 nDTW f|External Data
CMA [cvPr22] (Hong et al.}[2022) v 8.76 26.5 22.1 47.0 -
VLN CBERT [cVPR22] (Hong et al., 2022) v 8.98 27.0 22.6 46.7 -
Reborn [1ccv23] (Wang et al.|[2023b

v 5.98 48.6 42.0 63.3 -
AO-Planner [AAA125] (Chen et al.l 2025) 7.06 43.3 30.5 50.1 -

N

ANENENEN

ESENENENIEN

LAW [EMNLPZI]IRaychaudhurl et al 2021[) v v' 1090 8.0 8.0 38.0 -
Seq2Seq [Eccv20]|Krantz et al.| (2020 v [12.1013.9 11.9 30.8 -
NavMorph [1CCV25] (Xuan Yao & Xu |2025]) v [8.8530.822.8 442 -
Sim2Real [CoRL24] v 1879 36.7 255 18.1 0K
Uni-NaVid [RSS25] ( v 16.24 48.7 409 - 357TTK
NaVILA [rss25] (Cheng et al. v 1677 49.3 440 58.8 13132K
JanusVLN* (Ours v 646 514 443 59.1 0K
StreamVLN [arXiv25] -el et a -02 v 1622529 460 61.9 ~ 26330K
JanusVLN (Ours) v |6.06 56.2 47.5 62.1 10692 K

p-

C_) Instruction: Go straight to the intersection and turn left. Continue straight until you reach the green potted plant, and turn left again.

Proceed forward and stop at the stool that is next to the orange cabinet, not the first stool you encounter.

Figure 4: Qualitative results of JanusVLN on real-world.

underscoring the necessity of the semantic memory. Finally, the simultaneous removal of both
memory modules leads to a near-collapse in model performance. In summary, these experiments
highlight the complementary and indispensable nature of our proposed dual implicit memory.

Table 3: The ablation experiments of each component of the proposed JanusVLN.

Method | NE| 0S? SRt SPL?

JanusVLN 517 58.0 52.8 49.2
w/o Spatial Implicit Memory 6.58 543 470 409
w/o Semantic Implicit Memory | 6.75 53.1 455 40.0
w/o Dual Implicit Memory 7.85 369 248 16.8

Ablation of 3D geometric priors. We provide an ablation study in Table [] to investigate the
effect of introducing additional encoders. When the spatial geometric encoder VGGT in JanusVLN
is replaced by other visual encoders (e.g., DINOv2 (Oquab et al.| 2023)), and SigLIP 2
2025)), the performance did not significantly improve. The reason is that these alternative
encoders are generally pre-trained on 2D image-text pairs. While this makes them proficient in
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capturing high-level semantics, this information is largely redundant with that from the original
visual encoder of Qwen2.5-VL, and consequently, offers no significant improvement. Conversely,
VGGT, being pre-trained on pixel-to-3D point cloud pairs, contributes complementary information.
Moreover, a randomly initialized VGGT, devoid of pre-trained 3D spatial-geometric priors, showed
no notable gains. This demonstrates that the advantage of JanusVLN lies in its enhanced spatial
comprehension, rather than simply increasing model parameters.

Table 4: Comparison between additional, different semantic encoders and spatial encoder.

Encoder | NE| OSt SR? SPL?
JanusVLN w/o extra encoder 6.58 543 470 409
JanusVLN w/ extra DINOv2 644 554 475 415
JanusVLN w/ extra SigLIP 2 6.38 552 479 419
JanusVLN w/ extra VGGTrandominit) | 6.61 547 472 40.8
JanusVLN w/ extra VGGT 517 58.0 528 49.2

Ablation on memory size. We present the ablation studies on memory size in Table [5] First,
as shown in the first row, with a memory of 8 frames, the original VGGT model without caching
necessitates re-computation of the entire sequence for each new frame’s feature extraction. This re-
sults in an inference overhead of 268 ms. Furthermore, as the memory size increases, the inference
overhead of VGGT grows exponentially, rendering it impractical for real-world applications. In
contrast, our JanusVLN dynamically caches historical KV, eliminating the need for re-computation.
This approach significantly reduces inference overhead by 69%-90% while also yielding a slight
performance improvement, thereby demonstrating the effectiveness of the implicit neural memory.
As the memory size increases, JanusVLN’s performance progressively improves, saturating at 48
frames. This suggests that a compact, fixed-size implicit memory is sufficiently effective. Finally,
when we omit the preservation of the initial window’s KV, a slight performance degradation is ob-
served, indicating that the first few frames of memory do indeed capture significant model attention.

Table 5: Inference time and performance comparison for the current frame of varying sequence
lengths between cached memory and VGGT for the online setting.

Memory Size | Inference Time | NE| OS? SRt SPL?
VGGT (8) 268 ms 599 56.2 502 450
VGGT (32) 1549 ms 5.66 56.8 512 47.6
Cached Memory (8) 82 ms 591 56.0 505 457
Cached Memory (32) 149 ms 5.52 57.1 5177 483
Cached Memory (48) 195 ms 517 58.0 528 492
Cached Memory (64) 244 ms 527 575 523 494
Cached Memory|w/o initial's KV] (48) 171 ms 566 56.8 51.0 475

5 CONCLUSION

This paper introduces JanusVLN, a novel VLN framework and the first to feature a dual implicit
neural memory. Inspired by the implicit scene representation in human navigation, which inte-
grates left-brain semantic understanding with right-brain spatial cognition, JanusVLN constructs
two complementary, fixed-size, compact neural memory. This approach overcomes the bottlenecks
of traditional methods in memory inflation, computational redundancy, and the absence of spatial
perception. By synergistically integrating a MLLM with a feed-forward 3D spatial geometry foun-
dation model, JanusVLN achieves perception of spatial geometric structures solely from RGB video,
obviating the need for auxiliary 3D data. The dual implicit memory are derived from the histori-
cal KV caches of a spatial geometry encoder and a semantic visual encoder, respectively. They
are updated with high efficiency through an incremental process that retains only initial and sliding
window of KVs, thus avoiding re-computation. Extensive experiments demonstrate the superior-
ity of JanusVLN, steering VLN research from 2D semantics-dominant toward 3D spatial-semantic
synergy, a critical direction for developing next-generation spatial embodied agents.
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ETHICAL STATEMENT

We anticipate that JanusVLN technology will advance the application of embodied Al in benefi-
cial domains, such as providing navigational assistance for the visually impaired, improving task
efficiency in domestic service robots, and performing search and rescue operations in disaster sce-
narios. We also recognize that any advanced autonomous navigation technology presents a potential
for misuse in negative applications like unauthorized surveillance or military operations, a challenge
known as the dual-use problem. The fundamental motivation of this research is to foster scientific
progress and social welfare. We condemn any use of this technology for unethical or malicious
purposes and call upon the academic community to jointly establish and abide by guidelines for the
responsible development and application of Al

REPEATABILITY

To ensure the reproducibility of our research, the implementation details of JanusVLN are provided
in Section f.1} To foster academic exchange and technical transparency, we will publicly release
our source code, model configurations, and fine-tuned model weights in accordance with relevant
licenses. This will enable other researchers to replicate our findings and build upon our work.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, the application of Large Language Models (LLMs) was strictly limited to enhancing
writing quality. Upon the completion of the manuscript, we employed Gemini 2.5 Pro (Comanici
et al.| 2025) to refine the text and identify grammatical or stylistic errors. The model was guided by
the following prompt: ”You are a top-tier academic expert specializing in refining academic papers.
Please polish this text, identify any writing errors, and ensure the original meaning is preserved
without altering its substantive content.”

B MODEL STRUCTURE DETAILS
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Figure 5: Details of the implicit memory of the spatial geometric encoder.

In the original VGGT, frame attention and global cross-frame attention are executed alternately. In
Figure [5| Our spatial encoder, in contrast, fuses information through interaction with a cache during
the global attention process. Specifically, the tokens of the current frame first pass through frame
attention to establish a local context. Then, during global attention, these current-frame tokens
generate the Query. The final Key and Value are constructed by concatenating the historical KV
cache with the newly generated KV from the current frame, which are then used to compute the
attention. This alternating execution of frame attention and global attention is repeated.

Qwen2.5-VL employs the standard KV Cache mechanism typical of LLMs. Visual embeddings
derived from new frame via the semantic encoder generate Queries within the language model.
These Queries then compute attention against the Keys and Values of all historical tokens combined
with the Keys and Values generated by the tokens of the current frame.

C MORE ABLATION STUDIES

Real world quantitative results. In our real-world experiments, we employed a Unitree Go2
robotic platform equipped with an Insta360 X5 camera to capture forward-facing RGB images.
The JanusVLN model operates on a remote server with an A10 GPU, continuously processing RGB
images and instructions, and sending the inference results back to the robot for execution. For
quantitative real-world evaluation, we used 25 instructions, each repeated three times, covering both
general and spatial understanding tasks. A trial is considered successful if the robot stops within 1
meter of the target. As shown in Figure[6] JanusVLN outperforms its variant without spatial mem-
ory across all scenarios. Notably, it achieves a 23.6% improvement on navigation tasks that require
spatial understanding, which demonstrates the effectiveness of JanusVLN.
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Figure 6: Quantitative experiments in the real world.

Table 6: Comparison on recent HM3D-OVON(Yokoyama et al.,[2024b) val unseen.

Method \ SRT SPL1
VLEM [icra24] (Yokoyama et al., 2024a) 352 19.6
DAgRLA+OD [1r0s24] (Yokoyama et al.,[2024b) | 37.1  19.8
Uni-Navid [rss25] (Zhang et al.,[2025a) 39.5 19.8
MTU3D ficcvasy (Zhu et al., [2025) 40.8 12.1
JanusVLN 449 31.7

Results on recent HM3D-OVON. As shown in Table@ we also test on the more diverse, updated
HM3D-OVON (Yokoyama et al., [2024b) benchmark. Our approach JanusVLN surpasses SOTA
methods by boosting the Success Rate (SR) from 40.8% to 44.9%, which showcases its strong
generalization capabilities.

Ablation of fusion strategies. Table|/|presents the results for different feature fusion strategies.
We varied the weight of spatial features from 0.5 to 0.1 and observed that the performance peaked
at 0.2. We also utilize a fusion strategy of Concat and Cross-Attention, where Cross-Attention, de-
spite exhibiting competitive performance, remains marginally inferior to the simple and lightweight
addition method. The exploration of more sophisticated strategies is left for future work.

Table 7: Ablation experiments on the fusion strategies of spatial features and semantic features.

Fusion Strategy | NE| OS? SRt SPL?

A=0.5 561 555 504 469
A=02 517 58.0 528 49.2
A=0.1 569 558 502 46.6
Concat 578 552 494 457
CrossAttn 524 58.2 521 48.6

Data Ablation. Table [§] presents the ablation studies on the use of supplementary data. Notably,
even without any additional data, JanusVLN outperforms prior methods that utilized partial supple-
mentary datasets, demonstrating its robust intrinsic navigation capabilities. Following StreamVLN,
we observe that incorporating data from ScaleVLN and DAgger individually both yield performance
improvements. Furthermore, following StreamVLN, the concurrent use of both data sources leads
to further enhancement, showcasing the model’s excellent data efficiency. The integration of even
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Figure 7: Performance on spatial understanding tasks.
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Figure 8: Performance on various instruction lengths/complexity.

larger-scale external datasets, akin to the approaches of StreamVLN and NaVILA, is reserved for
future work to construct more powerful navigation agents.

Table 8: Ablation study of different training data compositions.

Data Compositions | NE| OSt SRt SPLt
JanusVLN w/o Extra Data 5.17 580 528 492
JanusVLN w/ ScaleVLN 5.08 62.8 555 509
JanusVLN w/ DAgger 502 634 564 517

JanusVLN w/ ScaleVLN & DAgger | 4.78 65.2 60.5 56.6

D STATISTICAL ANALYSIS

Success and strengths analysis. InFi gure We measured the success rate on instructions requir-
ing spatial understanding (i.e., those containing terms like ’farthest, ’nearest, ’larger, ’smaller,
‘rightmost,” ’leftmost,’ ’first, ’second,” ’front,” ’back,” etc.). We find that the superiority of
JanusVLN over prior methods is more pronounced in scenarios requiring spatial understanding than
its average gain across all tasks, demonstrating its strong spatial awareness.

Performance by instruction length. We analyzed the trends in SR and SPL for both StreamVLN
and JanusVLN as instruction length increases in Figure [§| Both models achieve high SR and SPL
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from there turn right and walk straight near the chair, go near the wooden table which in front of the sofa, walk few
steps forward, turn right and go straight till the railing, from railing go towards the dinning table, turn right and walk
straight near the sofa sets and stand beside the chair which has floral cushion, this would be your final destination.
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i
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1

i d side and you can see a hallway going down the right. You will also see white flowers down that hallway. Take a
i step toward the white flowers. You'll see bar stools in front of the counter that the flowers are on. Take a step to the bar
i stool that's closest to you. Then take a left into the kitchen, passing the flowers on your right. You'll then walk between
| the two islands on your right. There's a farm sink on the left island and then there's a farm sink farther down on the right
E island. Go ahead and walk straight through these toward the microwave. At the microwave, take a left and walk past the
E refrigerator on your right. Then take a right past the refrigerator and walk across the hall into the room in front of you.
i There are two bright windows and a brown table in that room. Take another step and you'll see two white refrigerators
i on your right and then to your left, at the far end of the room, you'll see a wooden door that has a rounded top. It's open.
i Take a step to that wooden door. Once you're in front of that door, to your right is a wooden bookshelf and to your left
| is a bathroom. When you're here, you are done.

’

~

A Error type: Stopped too early and failed to reach the 3-meter range.

Figure 9: Visualization and presentation of the types of failure cases.

on relatively simple instructions (1-150 words). However, their performance declines on moderately
complex instructions (150-400 words), indicating a need to enhance the models’ ability to decom-
pose and comprehend complex directives. For the most complex instructions (400-550 words),
StreamVLN’s performance continues to degrade, eventually reaching zero. In contrast, JanusVLN’s
performance improves, benefiting from its dual implicit memory paradigm. This is likely because
these lengthy instructions provide highly detailed, step-by-step guidance that the model can effec-
tively follow.

Failure case analysis. Our statistical analysis reveals two predominant types of failure cases for
JansuVLN in Figure 9} First, when the agent deviates from the optimal trajectory, it attempts to
correct its course but often fails to recover, leading to compounding errors and eventual failure. Al-
though we collected a limited amount of non-optimal trajectory data via DAgger, it is insufficient to
enable robust error correction. Second, JanusVLN appears to employ an overly aggressive stopping
policy, sometimes halting prematurely upon sighting the destination and thus failing to enter the suc-
cess radius. This may be because the spatial information from its VGGT encoder lacks real-world
scale, resulting in inaccurate distance estimation.
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E MORE QUALITATIVE RESULTS

Visualization analysis of spatial geometric tokens. We demonstrate how spatial geometry to-
kens aid navigation by visualizing them as depth maps and point clouds in Figure [I0] In the first
example, the depth map derived from the tokens captures precise depth information, enabling a more
accurate localization of the farthest chair. In the second, the point cloud constructed from the tokens
clearly reveals the chair behind the sink counter. In the third example, both visualizations distinctly
represent the size of the door. Finally, in the fourth example, visualizations reveal that the tokens
focus on the rightmost house, as reflected in both its depth map and point cloud. In conclusion, the
spatial information captured by these tokens is crucial for spatial understanding.

More qualitative results. This section presents further qualitative analysis of JanusVLN in both
real-world and simulated environments. For real-world settings in Figure[IT} we selected navigation
tasks that involve simple and complex instructions, diverse sites, and spatial understanding, where
JanusVLN demonstrates excellent generalization. For simulated environments in Figure [I2]and 3]
we chose complex trajectories and long instructions from the unseen validation sets of R2R-CE and
RxR-CE. Leveraging its dual implicit memory, JanusVLN effectively follows these instructions to
complete challenging navigation tasks.
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Figure 10: The analysis on the effectiveness of spatial gemetric tokens.
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1022 Figure 11: Qualitative results of JanusVLN on real-world.
1023
1024
1025

E=J@) Instruction: Go forward. You will see two rooms.

mm——

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1
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Turn around and exit the double doors on the left. Walk out past the stairs and turn left. Enter the room straight

CE—" ahead at the end. Walk into the room and then turn into the bathroom door on the right and stop.

e

Figure 12: Qualitative results of JanusVLN on R2R-CE.
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where you‘ll see a black picture with gold lettering. Take a left. Now you face a room with two windows at the end.

Walk a few feet past the first opening, and at the second opening (before the windows), turn right. Continue straight into
the bedroom. Once inside, go to the left of the bed, walking between the wall with three pictures and the bed on your
right. Walk all the way to the stand with two orange plates. Stand in front of that stand, which has a "Do Not Enter" sign.
You are at your destination.
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_(®@ You are standing in a hallway, facing an open, bright area. Go straight down the hallway to an opening on your left,
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—(®@ Move forward from the place you are standing, slightly turn to your left and move forward, enter into the area which
Cz—" is to the right of the staircase, you can find an opened door in front of you, move towards the opened door, turn right

and enter into the room, turn left, stand in front of the black board, that would be your end point.
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Q) Now you are facing towards the white open door, turn slight left and move towards the bed and take left turn, in

front you can see the open door, move towards the door and exit the door, now you are in-front of the white railing,

take slight left turn and move forward, you can see the another bed room with an open door, enter into the door take right

turn and move towards the bed, in-front you can see the window and white stand, take left “sorry” right turn and move
forward and enter into the bathroom, in-front you can see the white towel to the hanger, that is your final destination.
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Figure 13: Qualitative results of JanusVLN on RxR-CE.
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You‘ll face a pillar and a dining area. Slightly left, find a small wooden table (with a plant and remotes) and
5" couches. Walk along the table towards the kitchen entrance, then one more step towards the wooden cupboard
with flowers, and a slight step left. You’re now in the kitchen. In the kitchen, to your left are wooden cupboards and a
sink, a white flower plant in front, and four glass doors leading outside. Step towards the glass doors, then turn left.
You‘ll see a hallway with four chairs lined up, and a fifth black chair behind them. Step towards that black chair. The
_ glass doors will be on your right, the four chairs on your left, and the fifth chair in front. You are done.
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