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Abstract

When answering questions, large language models (LLMs) can convey not only an
answer to the question, but a level of confidence about the answer being correct.
This includes explicit markers of confidence (e.g. giving a numeric confidence
score) as well as implicit markers, like using an authoritative tone or elaborating
with additional knowledge of a subject. For LLMs to be trustworthy sources of
knowledge, the confidence they convey should match their actual expertise on a
topic; however, this is currently not the case, with most models tending towards
overconfidence. To calibrate both implicit and explicit confidence markers, we
introduce a pragmatic, listener-aware finetuning method (LACIE) that directly
models the listener, considering not only whether an answer is right, but whether
it will be accepted by a listener. Specifically, we cast calibration as a preference
optimization problem, creating data via a two-agent speaker-listener game, where a
speaker model’s outputs are judged by a simulated listener. We then finetune three
different LLMs (Mistral-7B, Llama3-8B, Llama3-70B) with LACIE, and show
that the models resulting from this multi-agent optimization are better calibrated
on TriviaQA with respect to a simulated listener. Crucially, these trends transfer
to human listeners, helping them correctly predict model correctness: we conduct
a human evaluation where annotators accept or reject an LLM’s answers to trivia
questions, finding that training with LACIE results in 47% fewer incorrect answers
being accepted while maintaining the same level of acceptance for correct answers.
Furthermore, LACIE generalizes to another dataset, resulting in a large increase in
truthfulness on TruthfulQA when trained on TriviaQA. Our analysis indicates that
LACIE leads to a better separation in confidence between correct and incorrect
examples. Qualitatively, we find that a LACIE-trained model hedges more when
uncertain and adopts implicit cues to signal certainty when it is correct, such as
using an authoritative tone or including details. Finally, finetuning with our listener-
aware method leads to an emergent increase in model abstention (e.g. saying “I
don’t know”) for answers that are likely to be wrong, trading recall for precision.1

1 Introduction

In interacting linguistically with each other, people tend to follow conventions – or maxims – that allow
for successful communication. For example, good conversational partners try to make their utterances
truthful, relevant, clear, and concise [Grice, 1975]. When people violate these conventions, they can
mislead listeners, which may ultimately lead to them being seen as incompetent, untrustworthy, or as
poor conversational partners. While large language models (LLMs) generally follow many of these
conventions, they often fail to respect Grice [1975]’s maxim of truthfulness, generating outputs that
are not truthful [Rawte et al., 2023]. More troublingly, untruthful outputs generated by LLMs are
often expressed confidently and authoritatively, and thus appear convincing to users, meaning that
humans may easily be misled by LLMs.

1Code: https://github.com/esteng/pragmatic_calibration

https://github.com/esteng/pragmatic_calibration
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of Barataria" is the
subtitle of which...
Answer: The Pirates
of Penzance
Confidence: 100%...
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Question: Who was
the 1st PM of
Australia?
Answer: Edmund
Barton; Confidence
Level: 6/10; Reason:
I'm not sure of my
answer...

Question: In which
year was the Battle
of Britain?
Answer: 1940. My
response is based
on my knowledge of
WWII ... which I have
studied extensively.

Figure 1: (A) A non-expert listener (who does not know the answer to the question already) accepts
or rejects answers based on how confident they sound. This confidence is influenced by implicit and
explicit markers. (B) To calibrate a speaker model’s confidence, we train a listener-aware speaker
model by bootstrapping data from a base speaker model. For each training question, we generate k
diverse responses. These are scored for correctness against the gold answers and accepted or rejected
by a listener model. Our preference function rewards true accepts and true rejects and penalizes false
accepts and false rejects. (C) Before training, models tend to be confident regardless of whether they
are right or wrong. After training, listener-aware models are more confident when they are correct
and less confident when they are wrong.

LLMs’ confidence can be expressed in at least two ways, shown in Fig. 1A. Firstly, LLMs can
explicitly express confidence in their output using numeric scores (e.g. “I am 100% confident”) or
epistemic markers [Zhou et al., 2023] (e.g. “I’m very sure that...”). Secondly, LLMs can implicitly
express confidence by details or through their tone; often, the details included are spurious or non-
factual, i.e. hallucinated. For example, in our analysis in Section 5, we found that LLMs often add
hallucinated backstories to their answers, e.g. “I remember seeing this movie on the big screen in the
theatre...”, or add an additional explanation that may sound convincing but is untrue. These details
convey a sense of expertise that can lead to the answer being perceived as more likely to be correct.

Overconfidence is particularly troubling given that people are increasingly interacting with LLMs
as sources of information [Gude, 2023]; in other words, people rely on LLMs to answer questions
they themselves do not know the answer to. Futhermore, because the interactions people have with
LLMs happen via language, users often interpret LLM outputs as they would interpret language from
a human, i.e. assuming that the outputs follow Gricean maxims. This in turn makes LLMs unreliable
partners; many readers may have had the experience of working together with a partner or teammate
who consistently overstates their confidence. While this teammate may initially have their answers
accepted, over time they lose trust. Indeed, Zhou et al. [2024] highlight this type of erosion for
overconfident models, finding that overconfidence irreparably damaged a user’s trust in an AI system.

Focusing on answering information-seeking questions, we hypothesize that model overconfidence
of both kinds (implicit and explicit) can be mitigated by optimizing for pragmatics, i.e. for how the
utterance will be interpreted by a listener. Specifically, we hypothesize that part of current models’
overconfidence lies in (1) a lack of knowledge about whether its answers are correct or not, and (2)
a lack of pragmatic grounding, i.e. models do not generate utterances according to how they will
be perceived by a listener. Firstly, base models (not finetuned with instructions or human feedback)
are not grounded in the consequences of their answers: they do not receive direct feedback during
training about whether the answer is correct or not, and thus have little reason to hedge in their
confidence. Secondly, models are not pre-trained pragmatically; they generate responses without
real-time access to feedback on how listeners might interpret their answers. While models trained
with human feedback may in principle have this capacity, past work has shown that they in fact have
worse calibration than base models and has attributed this to current reward data penalizing hedging
and markers of uncertainty [Zhou et al., 2024].

To address overconfidence by tackling these two types of grounding, we introduce Listener-Aware
Calibration for Implicit and Explicit confidence, or LACIE. LACIE finetunes models not only using
feedback on whether their answer was correct but also whether their answer was interpreted as correct
by a listener. In other words, whereas past work [Kuhn et al., 2022, Tian et al., 2023, Ulmer et al.,

2



2024, i.a.] has sought to produce calibrated distributions in speaker’s output distribution – i.e. answer
probabilities that are equal to the model’s chance of being correct – we seek to induce a calibrated
distribution in the listener via the speaker’s utterance – i.e. train the model to output generations that
allow a listener to recover a well-calibrated score of how likely the answer is to be correct. This
multi-agent optimization not only trains models to reliably use both explicit and implicit confidence
markers, but also allows us to flexibly address calibration for long-form model answers and not only
closed-set answer probabilities.

To pragmatically calibrate LLMs, we adopt the Direct Preference Optimization (DPO) framework
[Rafailov et al., 2024], constructing a dataset of preferrred and dispreferred examples from a seed
dataset of QA pairs. As shown in Fig. 1B, we first generate long-form responses from a standard
LLM (the speaker agent). Many of these responses contain both implicit and explicit certainty
expressions, often applied inappropriately to incorrect answers. We then use another LLM to model a
listener agent who decides whether to accept or reject the answer; in information-seeking questions
(where the answer is not known), the listener model should base its decision largely on how confident
the speaker sounds. Note that our multi-agent framing allows us to explore a much wider range of
confidence cues; while past work [Mielke et al., 2022, Lin et al., 2022, Zhou et al., 2024] has focused
on epistemic markers (explicit expressions of confidence) we are also able to define and examine
more subtle and implicit confidence cues, like a tone, level of detail, and use of backstories. Using
the listener model and the ground-truth answer, we define a preference function (given in Section 3)
that rewards cases where the model accurately expresses confidence – marking these as preferred
examples – and penalizes the model when it inaccurately expresses confidence – marking them as
dispreferred. This makes the training listener-aware, connecting to past work in jointly modeling
speakers and listeners [Frank and Goodman, 2012, Fried et al., 2018b, Lazaridou et al., 2020].

We demonstrate the effectiveness of our method first with automated metrics and then through a
human evaluation. We generate training data using 10,000 QA examples from TriviaQA [Joshi
et al., 2017]; our automated data generation pipeline (described in Section 3) allows us to transform
these into ∼14, 000 preference instances, which we use to train several LLMs. When testing our
optimized model on TriviaQA using an LLM listener, we find that open-source LLMs are generally
overconfident, producing answers that are accepted by the listener despite often being wrong. Using
LACIE on three different speaker models (Mistral-7B, Llama3-8B, and Llama3-70B), we obtain
substantial gains in induced listener calibration, with an average 20.7 point gain in AUROC over
the base model and a 7.8 point decrease in calibration error, indicating that utterances from LACIE-
trained models induce more calibrated distributions in the listener. We also obtain an average 18%
absolute improvement in precision, meaning that LACIE-optimized models produces less over-
confident utterances; these utterances are more consistently rejected by the listener when they are
wrong. Furthermore, these benefits translate to instruction-tuned model variants. We also find that
training leads to abstention, with models not answering high-uncertainty questions. This helps
increase precision but comes at a cost to recall. Going beyond automated evaluation, we perform
a human evaluation in which we show that LACIE significatly reduces the rate at which incorrect
answers are accepted by human listeners; a model trained with LACIE results in a 47% decrease
in the rate of false answers being accepted without significantly increasing the rate of rejection for
correct answers (i.e. without lowering recall). In our analysis, we show that our training transfers
between datasets: we train our models on TriviaQA and evaluate them on TruthfulQA [Lin et al.,
2021]. Here, we show that LACIE results in a 28% absolute improvement to truthfulness, as
measured by TruthfulQA’s metrics. We underscore our quantitative improvements with a qualitative
analysis showing that training leads to more hedging, as well as more detailed outputs and more
authoritative tone when the model is actually correct.

2 Background and Related Work

Background: Pragmatics. Pragmatics studies how people interpret language in context, going
beyond the literal meaning of an utterance. Grice [1975] gives a seminal account of conventions that
people generally follow and how they relate to implicatures: quantity (saying as much as needed,
and not more), relation (being relevant), manner (avoiding obscure or ambiguous language), and
quality (being truthful). Most pragmatic accounts involve speakers not only reasoning about the
literal meaning of their utterance, but also about how a listener will interpret the utterance. In other
words, pragmatic reasoning involves knowing not only what you mean, but also what others will
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think you mean. We introduce pragmatics into LACIE through multi-agent modeling, where the
speaker is optimized by considering not only the answer provided by the speaker model but also its
interpretation by the listener model.

Pragmatic Modeling. Frank and Goodman [2012] introduce the RSA model, which is a formal
description of how pragmatic agents communicate. This formulation has been applied to generation
tasks in a number of ways [Fried et al., 2018a,b, Lazaridou et al., 2020, Vaduguru et al., 2023]. In
two-player communication games, Wang et al. [2021] introduce methods for improving listener model
calibration with the goal of reducing “semantic drift” between the meaning of speaker utterances and
their original meaning in natural language. In contrast, we directly train speaker models to induce
calibrated answers in listener models, and our approach is complementary to the specific choice of
listener model. Furthermore, the domains examined by Wang et al. [2021] are limited to a simple
communication game, and they do not evaluate with human listeners. While we draw on the RSA
formulation for inspiration, we do not directly apply it because listeners choose from a fixed set
of interpretations in RSA. Instead, we allow for listener models to interpret implicit and explicit
confidence markers in an arbitrary manner, and we train the speaker model to induce calibrated
answers in the listener regardless of the listener’s manner of interpretation.

Calibration in LLMs. Given that calibration is key to making intelligent decisions on when to
trust AI systems, a number of past efforts have documented calibration in neural models [Naeini
et al., 2015, Guo et al., 2017, Ovadia et al., 2019, Wang et al., 2020] with recent work focusing on
calibration in LLMs [Mielke et al., 2022, Kadavath et al., 2022, Kuhn et al., 2022, Stengel-Eskin and
Van Durme, 2023, Tian et al., 2023, Zhang et al., 2023].

Within this area, several papers have focused on verbalized confidence. Mielke et al. [2022] introduce
control codes based on model confidence to get models to better use epistemic markers. Lin et al.
[2022] finetune a GPT-3 model using the average answer accuracy of predicted answers, showing
improvements to the calibration of verbalized confidence; this is similar to our “truthful-only”
baseline, which only optimizes for answer accuracy using the speaker model’s generations. Band et al.
[2024] supervise models to use confidence scores and then train via reinforcement learning against
simulated user scores. Zhou et al. [2023] categorize epistemic markers and measure their impact
on LLM accuracy. Zhou et al. [2024] document the use of epistemic markers by LLMs, finding
that LLMs rarely use weakeners, and measure the impact of poor calibration on usability, finding
that overconfidence irreparably hurts performance. Supporting these findings, Kim et al. [2024]
perform a large-scale evaluation of how human subjects respond to epistemic markers, finding that
first-person weakeners reduce over-reliance on model answers. Taken together, these findings suggest
that improving models’ abilities to correctly provide verbal confidence estimates has the potential to
improve model safety, reliability, and usefulness to users. Building on these findings, we propose a
new method to reduce overconfidence and make epistemic marker usage more appropriate. Unlike
Mielke et al. [2022] our method does not rely on pre-defined codes, and unlike other work that trains
models to have better-calibrated confidence [Mielke et al., 2022, Lin et al., 2022, Ulmer et al., 2024,
Li et al., 2024], our work takes a pragmatics-based approach of also modeling the listener.

Lastly, past work has also evaluated free-text generations for their correctness with an LLM, which is
a form of model-based calibration. Kadavath et al. [2022] introduce a confidence estimation method
that first generates an answer and then asks via follow-up prompt whether the answer is correct or
not. This formulation is also adopted by Ren et al. [2023] and is similar to using a listener model.
However, unlike our work, past work has not optimized the speaker model for the listener (meaning
the speaker is not pragmatic), and has restricted itself to using the same model as both speaker and
listener, whereas we take a multi-agent approach in which the speaker and listener may differ.

3 Methodology

3.1 Datasets

We use two datasets in this paper. First, for our finetuning experiments and human study, we use
TriviaQA [Joshi et al., 2017], which includes challenging open-domain general-knowledge trivia
questions along with source documents. From the 650,000 total questions, we sample 10,000 for
use in DPO. For each question, TriviaQA includes several eligible phrasings of the answer choice.
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Following the TriviaQA evaluation, we mark a model output as correct if its answer exactly matches
any eligible answer string. The second dataset we use is TruthfulQA [Lin et al., 2021], which includes
questions that people commonly have misconceptions about, stemming from widely circulated
conspiracy theories, folk theories, apocryphal stories, or other commonly repeated falsehoods. We
use this dataset for judging the transfer of our calibration finetuning across datasets. TruthfulQA is
particularly useful as an evaluation here because the benchmark includes a model-based evaluation
for assessing the tradeoff between truthfulness and informativeness. Thus, we can show that our
finetuning improves truthfulness directly (by preventing the model from saying false things that it is
actually unconfident about). Our test sizes are 1,000 for automatic evaluation with TriviaQA, 817 for
automatic evalation with TruthfulQA, and 100 for human evaluation with TriviaQA.

3.2 Listener-Aware Preference Data Creation Methodology

To generate training data for LACIE, we instantiate speaker and listener models. The speaker model
is prompted to express its confidence verbally, and the listener model is prompted to ignore its prior
knowledge, as we are primarily interested in the perceived confidence of the answer (see Appendix H
for the exact prompts). We begin the dataset creation process by subsampling N question-answer
pairs (Qi, Âi) from the dataset. We then obtain multiple responses Ri

j , j ∈ {1, . . . , k} to each
question from the speaker model, sampling independently with temperature to encourage diversity,
resulting in N × k (Qj , Ri

j) pairs. For each response Ri
j , we also extract the final answer Ai

j (usually
1-3 words). Each (Qi, Ri

j) is then given to the listener model, which produces probability of accepting
or rejecting the answer P i

j . From the gold answer Âi we can determine whether Ai
j was correct,

leading to a gold accept/reject decision D̂i
j . Then, for a given question Qi, we enumerate the different

possible combinations of responses Ri
j , computing the preferences given in Eq. (1).

Answer Extraction We prompt the speaker model for a long-form answer; however, to evaluate
against the gold answer Âi we need to extract a single short-form response. To do this, we use a
follow-up prompt with 3 in-context examples showing how to extract answers from responses.

Answer Anonymization. While we instruct the listener model to ignore its prior knowledge in
evaluating the speaker’s answers, we find that this is a difficult instruction for the model to follow,
especially when the speaker and listener model are the same. Indeed, past work has found that LLM
evaluator models tend to prefer their own outputs [Panickssery et al., 2024]. To mitigate this, we
implement an answer anonymization strategy: using regular expressions, we remove mentions of the
extracted answer from the response, replacing them with [ANSWER REMOVED]. This way, the listener
must focus more on the way the response is phrased (see Appendix B for more information).

Preference Function. To construct preference data over these tuples, we convert all probabilities P
of accepting the answer to decisions by setting a threshold θ and setting Di

j = δ(P i
j > θ). We use the

median probability across the training data as our threshold; for our Mistral-7B listener, this is 0.66.
For each Qi, we compare all combinations of answers; our preference function is given by Eq. (1).

U(D̂i
j = 1, Di

j = 1) = U(D̂i
j = 0, Di

j = 0)︸ ︷︷ ︸
(correct, accepted) is as good as (incorrect, rejected)

U(D̂i
j = 0, Di

j = 0) > U(D̂i
j = 1, Di

j = 0)︸ ︷︷ ︸
both (correct, accepted) and (incorrect, rejected) are better than (correct, rejected)

U(D̂i
j = 1, Di

j = 0) > U(D̂i
j = 0, Di

j = 1)︸ ︷︷ ︸
(correct, rejected) is better than (incorrect, accepted)

(1)

where D̂i
j = 1 means the answer was correct and and Di

j = 1 means the answer was accepted by the
listener (i.e. P i

j > θ). Note that our function encodes a conservative interpretation of calibration, in
which it is better to err on the side of false negatives than false positives.

3.3 Preference Finetuning
From our preference data, we finetune models using DPO [Rafailov et al., 2024]. DPO seeks to
maximize margin between the likelihood of the preferred examples and that of the dispreferred
examples; in this case, DPO maximizes for correctly-calibrated outputs and for incorrectly-calibrated
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outputs. We train our models using QLoRA [Dettmers et al., 2024] with rank 16 for a max of 250
steps. Further details on the preference data and finetuning are given in Appendix B.

4 Experiments and Results
We first show LACIE’s performance using calibration metrics on the listener model, where we see
substantially better calibration after training. We then show that this translates to a human evaluation,
where we present LACIE and baseline outputs to real listeners.

4.1 Setup

For all experiments, we sample a training dataset of 10,000 pairs of questions Qi and gold answers Âi

from the TriviaQA validation data. We then obtain 10 responses to each question from a Mistral-7B
base model and extract their answers. We use the official TriviaQA metric to obtain the correctness of
the extracted answer, D̂i

j . We reserve 1,000 (Qi, Ai
j , P

i
j , D̂

i
j) tuples, corresponding to 100 TriviaQA

questions, as development data to use during training. We also sample a separate held-out test set
of 1,000 TriviaQA questions that are separate from the training/dev data; here, we only obtain one
response since we do not need preferences at test time.

We evaluate three speaker models of varying sizes: Mistral-7B, Llama3-8B, and Llama3-70B; for all
models, we finetune both the base and instruct (or chat) variants, the latter of which have been
optimized using supervised finetuning across a large number of tasks formatted in a conversation-style
format. This process makes chat models better at following user-specified instructions. For all
models, we average across 3 seeds. Across all models, we use the same listener (Mistral-7B-base).

Baselines. We compare LACIE to the base model, without fine-tuning. For the base model, we
simply take the top generation from the base model as the response R. As part of our preference
function is based on answer correctness, we also compare to a model finetuned on correctness alone,
i.e. a preference function which prefers correct to incorrect answers (with no regard for the listener
model); we call this the “truthful” baseline. We also compare against the instruct or chat versions
of the models tested; these models are instruction-tuned on chat-style data, making them generally
better at following instructions. As an external baseline, we compare against a prompt-based method
for obtaining better calibration from Tian et al. [2023], who prompt models to include an explicit
confidence score with their answer. Tian et al. [2023]’s formulation lacks a listener model. Therefore,
we implement two settings: with and without a listener model. In the first setting, we pass the outputs
from Tian et al. [2023] prompt through our listener. This setting is directly comparable to the other
baselines and to LACIE (all evaluated according to the listener’s confidence). We additionally the
original version of Tian et al. [2023] that directly extracts the confidence score from the output (rather
than using a listener model), which we refer to as no-listener (or NL). This baseline has an advantage
in avoiding the listener model, but only works for explicit confidence scores.

Metrics. We report the following metrics:

• AUROC measures the tradeoff between true acceptances and false acceptances across varying
thresholds on the numeric confidence, which in our case is the listener’s induced P i

j . A higher
AUROC means the model is better calibrated.

• ECE [Naeini et al., 2015] bins confidence scores P i
j and measures the difference between these

bins and their average correctness. We use 9 bins, backing off to fewer if bins are empty, and use
unweighted ECE. Note that we ignore abstentions in computing ECE, as assigning a meaningful
probability of answer correctness to abstention (no answer) is ill-posed.

• Precision and Recall compare the rate of true acceptances, false acceptances, and false rejections.
We focus on precision as it is sensitive to false acceptances from overconfident utterances, which
have been shown to reduce system trust [Zhou et al., 2024]; higher precision is often driven by a
lower rate of false acceptances, i.e. a lower rate of false positives. Here, we use the median listener
probability on train as the threshold to binarize P i

j into accept and reject. Higher is better.

• Abstention rate is the rate at which models produce no extractible answer; this typically corre-
sponds to the model expressing a lack of knowledge. A safe model should abstain when it is very
uncertain of its answer.

4.2 Results with Modeled Listener
We evaluate on a held-out subset of 1,000 TriviaQA examples, reporting our metrics in Table 1.
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Table 1: TriviaQA performance (and standard error) with metrics computed according to a Mistral-
7B listener model. We bold the best value for each model.

Induced Listener Calibration

Speaker Model AUROC ECE ↓ Precision ↑ Recall ↑ % Abstained
Mistral-7B
base 0.54± 0.00 0.15± 0.01 0.56± 0.00 0.76± 0.00 0.80± 0.00
chat 0.63± 0.01 0.23± 0.01 0.52± 0.00 0.58± 0.01 13.83± 0.52
base+Truthful 0.58± 0.03 0.16± 0.01 0.63± 0.01 0.52± 0.04 8.87± 2.45
chat+Truthful 0.57± 0.01 0.21± 0.02 0.51± 0.01 0.48± 0.01 5.50± 0.78
[Tian et al., 2023] 0.70± 0.01 0.30∗± 0.01 0.45± 0.01 0.95± 0.00 3.33± 0.28
[Tian et al., 2023] (NL) 0.73± 0.00 0.36∗± 0.01 0.50± 0.00 0.90± 0.01 0.36± 0.04
base+LACIE 0.74± 0.02 0.12± 0.00 0.69± 0.02 0.55± 0.03 25.27± 0.37
chat+LACIE 0.79± 0.01 0.09± 0.01 0.67± 0.00 0.50± 0.05 29.37± 0.37

Llama3-8B
base 0.57± 0.01 0.19± 0.02 0.55± 0.02 0.40± 0.02 13.20± 0.31
chat 0.59± 0.00 0.23± 0.00 0.64± 0.00 0.98± 0.00 2.93± 0.20
base+Truthful 0.63± 0.04 0.24± 0.08 0.63± 0.03 0.64± 0.19 9.60± 4.35
chat+Truthful 0.71± 0.01 0.11± 0.03 0.70± 0.01 0.56± 0.06 9.43± 0.98
[Tian et al., 2023] 0.66± 0.00 0.10∗± 0.01 0.62± 0.00 0.98± 0.00 0.00± 0.00
[Tian et al., 2023] (NL) 0.67± 0.00 0.24± 0.00 0.67± 0.00 0.90± 0.00 0.00± 0.00
base+LACIE 0.72± 0.00 0.12± 0.02 0.70± 0.01 0.37± 0.00 35.37± 5.41
chat+LACIE 0.72± 0.02 0.12± 0.02 0.70± 0.02 0.83± 0.04 8.47± 1.03

Llama3-70B
base 0.53± 0.02 0.27± 0.04 0.58± 0.05 0.30± 0.00 12.87± 4.11
chat 0.61± 0.02 0.21± 0.03 0.76± 0.01 0.98± 0.01 2.25± 0.08
base+Truthful 0.65± 0.03 0.21± 0.00 0.78± 0.02 0.35± 0.05 12.20± 3.88
chat+Truthful 0.58± 0.03 0.15± 0.03 0.71± 0.04 0.37± 0.06 5.30± 0.62
[Tian et al., 2023] 0.69± 0.01 0.12∗± 0.00 0.81± 0.00 0.98± 0.00 0.00± 0.00
[Tian et al., 2023] (NL) 0.69± 0.00 0.09± 0.01 0.83± 0.00 0.97± 0.00 0.00± 0.00
base+LACIE 0.80± 0.02 0.14± 0.03 0.84± 0.01 0.40± 0.01 32.77± 2.34
chat+LACIE 0.70± 0.02 0.15± 0.04 0.79± 0.01 0.87± 0.02 4.60± 0.87

Table 2: Evaluation with human listeners. When outputs are shown to people, LACIE leads to
fewer incorrect outputs being accepted, without significantly increasing the rate of false rejections.
Significant differences in accept/reject counts marked with ∗ (McNemar’s test, p < 0.5).

Speaker Model n Precision Recall True Accept False Accept False Reject
Mistral-7B-base 79 0.49 0.84 31 32∗ 6
Mistral-7B-base + LACIE 78 0.64 0.81 30 17∗ 7

LACIE results in better induced listener calibration across speaker models. Table 1 shows
that LACIE improves induced listener ECE and AUROC, consistently resulting in the highest perfor-
mance. LACIE also improves precision substantially across models, outperforming all baselines.
On the base model variants (Mistral-7B, Llama3-8B, and Llama3-70B), LACIE improves AUROC
by an average of 20.7 points (over the base) across models, and reduces ECE by 7.8 points, while
increasing precision by 18% (absolute). Note that while truthful-only finetuning does typically
improve induced listener AUROC, LACIE consistently beats it by an average of 13.3 points. LACIE
and truthful finetuning both increase abstention over the base model. This in turn reduces recall for
the base model; however, note that recall penalizes abstention, since models that confidently guess
can increase their true positive rate, and recall does not measure the false positive rate. In practice,
when looking at accuracy on non-abstained examples, LACIE is generally comparable (see Table 6).
Furthermore, note that this reduction in recall does not translate to the human evaluation (discussed in
detail in Section 4.3), where human listeners only had one false negative more from LACIE questions
than the base model. Finally, LACIE translates well to the largest size of model, resulting in better
performance on AUROC, ECE, and precision for Llama-70B over the corresponding 70B baselines.
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These trends largely hold also when finetuning the chat variants of each model. Here, we see an
average increase over the untrained chat model of 12.7 AUROC and 8% precision with a decrease
in ECE of 10.3. LACIE continues to outperform the truthful-only baseline, beating it by an average
of 11.7 AUROC. These results indicate that LACIE improves calibration beyond what standard
chat-based instruction tuning can do; this dovetails with past results indicating that general-purpose
finetuning procedures may not necessarily improve calibration [Zhou et al., 2024]. Notably, for both
Llama3 models, finetuned chat models abstain substantially less than base models, resulting in far
higher recall numbers. Here, chat+LACIE variants have the best balance between precision and
recall. These trends may be due to the percentage of abstentions for the untrained chat model, which
is substantially lower for Llama3 than for Mistral, possibly because the chat variants of Llama3
were trained to avoid false refusal.2

Comparing to the Tian et al. [2023] baselines, we see that both baselines improve AUROC and recall
over the untrained chat and base models, and that the “no listener” (NL) variant improves precision
for Llama3. This indicates that these are competitive baselines. However, for both Llama3 and
Mistral, LACIE has higher AUROC and precision, indicating the LACIE-trained model’s ability
to express uncertainty appropriately. For ECE, we note that LACIE generally beats both baselines,
but in some cases Tian et al. [2023] has lower ECE. Qualitatively, the baseline generally produces
bimodal scores (close to 0% confidence or 100% confidence with few in between), which can result
in artificially low ECE when the model is generally correct (i.e. for Llama3-70B).

LACIE training leads to better abstention ability. In Table 1, the percentage of abstentions
increases with LACIE compared to any baselines; qualitatively, the model often expresses a lack
of knowledge (cf. Table 4). In Appendix D.2 we find that the base model’s accuracy on examples
where LACIE models abstained is substantially lower, i.e. abstention is correctly correlated with
cases where the model does not know the correct answer, and we find that it is correlated with
base model uncertainty. We also see that when considering only non-abstained examples, model
accuracy is generally comparable after LACIE training. Interestingly, the abstention behavior seen
here is emergent, in that it is not seen during training: all training samples have valid outputs, with
no examples of abstention. Nevertheless, LACIE training leads to a more conservative model that
produces far more abstention outputs than the base model.

4.3 Human Evaluation

Table 1 show that finetuning using LACIE leads to models that are better-calibrated w.r.t. a modeled
listener. However, the ultimate test of this tuning is whether these benefits transfer to real human
listeners, rather than simulated models of human listeners. To test this, we ask human annotators to
accept or reject answers to a subset of TriviaQA questions. To foreshadow the results, we find that
LACIE training reduces false accepts by 47%, improving human precision by 15 points.

Setup. We use the outputs from the Mistral-7B-base model, and sample 100 test questions, pairing
each with the LACIE-trained model’s answer as well as the base model’s answer, resulting in 200
total items. Additional data and annotation details can be found in Appendix G.1. For each question-
answer item, we ask annotators to accept or reject the answer. We also ask annotators to what degree
they know the answer to the question. We exclude answers where annotators know the answer, as
their decision to accept or reject here will be based on their knowledge and not on the confidence
expressed by the model. The task is framed as a trivia game, and answers are presented as coming
from a teammate. The full annotation interface is shown in Appendix G.3. We recruited annotators
on Amazon’s Mechanical Turk with stringent qualification requirements; we then filtered annotators
based on a qualification task, described in Appendix G.2. We also include attention checks in each
annotation task and excluded annotators who failed any attention checks; each task had ∼ 10% of
examples as attention checks. In total, 5 annotators participated in our task. Annotators knew the
answers to 21 of the reference questions and 22 of the LACIE questions.3 These were excluded from
the analysis, leaving 79 and 78 total.

LACIE improves induced listener calibration for human listeners. Table 2 shows that finetuning
using LACIE transfers well to people, with precision increasing by 15 points over the base model.

2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
3These numbers differ because different annotators were shown the LACIE and reference questions.
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The increase in precision is driven by a 47% reduction in false positives (statistically significant at
p < 0.05 by McNemar’s test), i.e. the LACIE model was better able to express low confidence when
its answer was wrong. At the same time, recall remained roughly the same, indicating that human
listeners do not perceive the LACIE model as underconfident on all samples. Indeed, the LACIE
model only had one additional false negative, a difference that is not statistically significant (p = 1.0).
This is particularly promising, as it indicates that the decreases in recall see in Table 1 do not translate
to humans, while the increases in precision do.

5 Discussion and Analysis

Effect of training on listener probabilities. Fig. 2 shows the average induced listener
probability for correct and incorrect samples. For baseline speaker models, this probability
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Figure 2: Induced listener probabilities for LACIE-trained
and baseline models (Mistral-7B). Baselines have similar
scores for correct and incorrect examples; LACIE results in
significantly lower scores for incorrect answers.

is approximately equal whether an ex-
ample is correct or not, indicating that
the baselines use roughly the same
high level of confidence to express
both correct and incorrect answers.
For LACIE, the probability of incor-
rect answers is substantially lower
than that of correct ones, indicating
the speaker is modulating confidence
to correctly express uncertainty (as
captured by the listener).

Out-of-distribution generalization.
Table 3 shows LACIE’s performance on TruthfulQA’s evaluation split of 817 questions, which
is out-of-distribution (since LACIE model was only trained with preferences sourced only from
TriviaQA). TruthfulQA’s evaluation is model-based, using fine-tuned judge models. As a sanity-check,
the truthful-only baseline improves truthfulness from 0.27 to 0.39, indicating Mistral-7B trained to
be truthful on TriviaQA generally is rated as more truthful by the judge model. However, LACIE
training further improves truthfulness to 0.55, reflecting the additional benefit of our pragmatic
training. This improvement comes at a 9-point cost to informativeness, reflecting a natural tradeoff
between being maximally informative and maximally truthful; note that similar to recall, abstention
impacts informativeness, since informativeness is a recall-oriented metric.4 These results demonstrate
that LACIE training imbues LLMs with an ability to produce better-calibrated outputs not only for
the data distribution they were trained on, but also on out-of-domain questions where the evaluation
directly addresses truthfulness.

Table 3: TruthfulQA performance with
Mistral-7B, measured by Truthfulness
(Truth.) and Informativeness (Info.) metrics.

Setting Truth. Info.
base 0.27 0.99

truthful 0.39 0.97
LACIE 0.55 0.90

Qualitative Analysis. In Fig. 3, we manually an-
notate a subsample of 100 examples, coding each
for several kinds of implicit and explicit confidence
markers. These include adding details about the topic,
other implicit markers (e.g. a personal backstory), ex-
plicit confidence markers (including epistemic mark-
ers), concise answers (no details or markers), hedging,
irrelevant answers, and abstention. We annotate these
examples without knowledge of which model the an-
swer came from. We find that after training, the LACIE model adds more slightly details on correct
examples, while on incorrect examples the reference model adds more details and the trained model
adds fewer. This reflects the fact that confident answers are often supported by additional details, and
corresponds to a lower rate of concise answers. The LACIE model also makes greater use of hedging
on incorrectexamples, and abstains on several incorrect examples, whereas the reference model never
abstains and rarely hedges.

Additionally, LACIE leads to an increased use of explicit markers; note that this does not mean the
trained model is overconfident, as we treat both confident and unconfident markers as explicit, i.e.

“I’m 20% confident” counts as an explicit marker. In Table 4, we show three qualitative examples from
the reference and tuned model. Qualitatively, we find that the LACIE model shows more examples

4Note that answers like “I don’t know” generally receive zero score from the informativeness model.
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Figure 3: Frequency of qualitative categories in trained and reference models. LACIE training results
in more hedging and abstaining for incorrect examples and more detailed answers for correct ones.

of hedging and saying “I don’t know”, as seen in the first example. However, we also note that, as
shown in the second example, LACIE training sometimes results in a more authoritative tone when
the model is correct; this tone might be perceived as rude. Overall, these qualitative results highlight
the benefit of a method that can incorporate both implicit and explicit cues: LACIE results in more
hedging and abstention, and in a variety of cues that communicate both certainty and uncertainty.

Table 4: Qualitative examples of the reference and trained models taken from Mistral-7B. Examples
shown demonstrate a range of correctness and confidence, including abstention, overconfidence, and
calibrated confidence.

Question Reference LACIE Answer
What Michelle
Pfeiffer movie got a
boost from the Coo-
lio song Gangsta’s
Paradise?

Michelle Pfeiffer’s appearance in
“I’m Your Woman” was boosted by
the Coolio song “Gangsta’s Paradise.”
[Incorrect & Confident]

I think it was a Batman movie.
But I’m not too sure.\n and I
don’t even know what the movie
was about so I don’t have a lot
of confidence in my response.
[Incorrect & Unconfident]

Dangerous
Minds

In what month was
the attack on Pearl
Harbor?

I believe the attack on Pearl Harbor
occurred in December. I am confi-
dent in my answer because I remem-
ber reading about the event in school.
[Correct & Confident]

December\n Confidence:
100%\n Rationale: Pearl Harbor.
Duh. placeholderplaceholder
[Correct & Confident]

December

Which US No 1
single came from
Diana Ross’s plat-
inum album Diana?

Diana’s 1980 album Diana was a
huge hit. It spawned three US No
1 singles, including “Upside Down.”
The other two singles were “I’m
Coming Out” and “My Old Piano.”
[Correct & Confident]

I’m not sure, I’m not familiar
with her work. Can you give
me more information about the
album? placeholderplaceholder
[Abstention & Unconfident]

Upside
Down

6 Conclusion
We introduced a new method, LACIE, for training models to accurately express confidence, both
explicitly and implicitly. Our method makes use of pragmatic, listener-aware, mulit-agent training to
inform a speaker model both about whether the answer it generated was right and whether the answer
was phrased in a way that a listener would accept it. We demonstrated the effectiveness of LACIE
using automated evaluation as well as a human evaluation, where LACIE led to a large reduction in
the number of incorrect answers accepted by human annotators. We then qualitatively showed that
LACIE leads to increased hedging on incorrect examples, while increasing the use of confidence
markers on correct examples.
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A Limitations and Broader Impacts

Limitations. While we are able to show improvements in model calibration as measured via a
user study, our utility function may not be ideal for different downstream human-AI team settings.
Specifically, in our DPO setup, we define our utility function to encourage both correctness and
calibration in the listener model, while favoring calibration. Further, for a fair comparison, we do not
perform any supervised finetuning with ground-truth labels, but only construct preference pairs out of
model-generated data. This means that (1) our utility function may not exactly represent user utility
in downstream human-AI team settings, as our utility ordering of answers may not exactly reflect a
true user rank ordering, and (2) models may be finetuned to achieve higher accuracies on tasks like
TriviaQA and TruthfulQA by leveraging ground-truth supervision, which we do not do in order to
ensure a fair comparison with DPO-based calibration methods. Our setup shows how to improve
implicit and explicit answer calibration, but a method that is specialized for maximal performance in
a particular setting would need to fully exploit available label supervision and be tailored to listener
utility in that setting. Similarly, we note that the conservative reward function we develop (preferring
false rejections to false acceptances) may not be optimal for all applications, such as those where
usability is preferred over over safety. Furthermore, we note that, while our training results in better
calibration, it may not always result in a teammate people would want to work with. Qualitatively, the
confident outputs from the LACIE-trained model often emphasize how easy or obvious questions are;
while this may lead to short-term benefits in getting correct answers accepted by the listener, users
may find this behaviour annoying or offputting. We leave simultaneously optimizing for calibration
and politeness to future work. Similarly, we find that models often include non-factual backstories
(e.g. having learned about events in school) both before and after training, which can affect listener
perception. LACIE trains models to accurately express confidence, ideally reducing the number of
these statements in incorrect answers, but does not address the fact that the statements themselves are
not true. However, the data collection method we introduce could be used to also penalize models for
making these kinds of statements if desired.

Broader Impacts. Improving model calibration has important implications for model safety and
user satisfaction when LLMs are deployed in settings involving humans [Hendrycks et al., 2021].
Human overreliance on AI systems is a widely documented phenomenon [Zhou et al., 2024, Kim et al.,
2024]. The most immediate risk of overreliance is that humans might automatically accept model
outputs even when they are wrong [Cummings, 2004], but more pernicious risks include humans
shirking responsibility for high-stakes decisions as well as humans gradually losing comptence in
key decision-making processes as seemingly capable AI systems take over the processes [Borg et al.,
2024]. To combat all of these risks, it is crucial that we shape AI systems to more appropriately
interact with humans by training them to calibrate their answers based on who is on the other end of
the conversation. This work aims to improve calibration of LLM systems by more fully accounting
for pragmatic aspects of text-based human-AI interaction.

B Methodological Details

Dataset Details. The preference function in Eq. (1) encodes multiple preferences falling into five
categories: U(¬C,¬A) > U(¬C,A), U(C,A) > U(¬C,A), U(C,A) > U(C,¬A), U(C,¬A) >
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U(¬C,A), U(¬C,¬A) > U(C,¬A), where C means D̂i
j = 1 and A means Di

j = 1. We balance
our data across these categories by limiting all categories to the size of the least-represented one
(2, 757). This results in 13, 785 total preference pairs.

Training Details. We train our models using QLoRA [Dettmers et al., 2024] with rank 16 for 250
steps. We use a batch size of 12 and gradient accumulation, with updates every 10 batches. Every 10
updates, we validate; we subsample 5 validation batches to decode and measure listener precision
and recall, which we use for checkpoint selection.

Answer Anonymization. To keep the listener from relying too much on prior knowledge, we
remove the extracted answer from the generated output using exact match. Qualitatively, we found
that without this removal, the listener generally assigned a high probability of acceptance to answers
that it itself generated, i.e. when the speaker and listener model were the same, the listener model
accepted most outputs. By removing the exact answer string, we can mitigate this problem.

TruthfulQA Evaluation TruthfulQA’s original evaluation used OpenAI’s Curie model, which is
no longer accessible. For maximum reproducibility, we use open-source variants of these judge mod-
els from https://huggingface.co/allenai/truthfulqa-info-judge-llama2-7B. These
models are comparable to the original TruthfulQA judge models.

C Scaling

A key question is how LACIE performance changes with increasing data. In Fig. 4, we plot listener
precision (Mistral-7B) as we increase the number of training questions (from which we construct
our outputs and preference pairs) from 2,000 to 10,000. Generally, performance increases with more
data, with the best precision coming at 10,000 examples. Fig. 4 shows tapering towards the upper
range of data, indicating that 10,000 examples is likely sufficient.
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Figure 4: Precision and AUROC as the size of the training data increases. LACIE generally continues
improving with more data.

D Additional results

D.1 Additional Listener Models
In Table 6 and our other experiments, we use Mistral-7B as a listener model. Here, we explore
using Llama3-8B as an alternate listener model, with results shown in Table 5. Note that Llama3-8B
generally has a much higher threshold than Mistral-7B. Using a Llama3-8B listener to train Mistral-
7B leads to improvements over the base model in AUROC and precision, but that these improvements
are smaller than when using Mistral-7B as both the speaker and listener. However, Llama3-8B leads
to the lowest ECE. Overall, these results indicate that LACIE is robust to listener model choice.

D.2 Accuracy and Abstention

Table 6 shows that for base models, overall accuracy decreases with training. How-
ever, further inspection reveals that this drop in accuracy is largely driven by the model
producing a larger rate of responses with no extractible answer after training, e.g. re-
sponses like “I don’t know”. We refer to these responses as “abstentions”, bor-
rowing the term from selective prediction [Chow, 1957, Geifman and El-Yaniv, 2017].
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Table 5: Comparison with a Llama3-8B listener model. LACIE performs better with a Mistral-7B
listener but still generally outperforms the base model with a Llama3-8B listener.

Induced Listener Calibration

Speaker Model AUROC ECE ↓ Precision ↑ Recall ↑ % Abstained
Mistral-7B
base 0.54± 0.00 0.15± 0.01 0.56± 0.00 0.76± 0.00 0.80± 0.00
base+Truthful 0.58± 0.03 0.16± 0.01 0.63± 0.01 0.52± 0.04 8.87± 2.45
LACIE + Mistral Listener 0.74± 0.02 0.12± 0.00 0.69± 0.02 0.55± 0.03 25.27± 0.37
LACIE + Llama3 Listener 0.65± 0.02 0.06± 0.01 0.62± 0.02 0.45± 0.03 21.00± 2.36

Table 6: Speaker accuracy for all data and for the
subset of data for which the model made a pre-
diction (i.e. did not abstain). LACIE’s predicted
accuracy is generally comparable to the baselines.
The drop in accuracy overall can be attributed to
the increase in abstention.

Speaker Accuracy

Speaker Model All Data Predicted Data
Mistral-7B
base 0.55± 0.00 0.59± 0.01
chat 0.43± 0.00 0.50± 0.01
base+Truthful 0.56± 0.03 0.61± 0.01
chat+Truthful 0.46± 0.01 0.49± 0.00
base+LACIE 0.45± 0.01 0.60± 0.01
chat+LACIE 0.37± 0.01 0.53± 0.01

Llama3-8B
base 0.49± 0.00 0.56± 0.01
chat 0.62± 0.00 0.64± 0.00
base+Truthful 0.58± 0.03 0.64± 0.02
chat+Truthful 0.54± 0.01 0.60± 0.00
base+LACIE 0.39± 0.04 0.61± 0.02
chat+LACIE 0.57± 0.01 0.63± 0.00

Llama3-70B
base 0.58± 0.06 0.66± 0.04
chat 0.74± 0.01 0.76± 0.01
base+Truthful 0.68± 0.03 0.78± 0.00
chat+Truthful 0.71± 0.00 0.75± 0.0
base+LACIE 0.46± 0.02 0.69± 0.03
chat+LACIE 0.73± 0.01 0.76± 0.00

Table 7: Base model accuracy on examples where
the trained model abstained vs. predicted. Across
models, astained examples are far more likely to
be wrong.

Model Acc (abstain) Acc (predict)
Mistral-7B 33.4 61.6
Llama3-8B 35.7 55.7

Llama3-70B 46.9 63.6

Rather than make a prediction on every test in-
stance, selective prediction aims to develop mod-
els which make predictions only in cases where
they are likely to be correct. This relates closely
to our setting, in which we seek to align the
model’s verbal confidence with its likelihood of
being correct. One way this can be manifested
is via selectively producing no output, i.e. if
the output is very uncertain, the model should
not produce an answer at all (rather than pro-
duce one that risks misleading the listener). The
“Predicted Data” accuracy in Table 6 shows the
accuracy of each model only when considering
the examples for which the model made a valid
prediction, while the % Absention column in Ta-
ble 1 shows the rate at which the model abstains.
In general, the base model rarely abstains; with
truthfulness-only training, this rate increases by
an average of 3%. Finally, with pragmatic train-
ing, the abstention rate increases to an average of
26.9%. Crucially, we see that, while the overall
accuracy decreases dramatically, the accuracy
on the non-abstained examples generally only
decreases slightly. In other words, when the
LACIE-trained model does make a prediction,
it is roughly as likely to be correct as the base
model; this can be attributed to the fact that we
train on model-generated data, meaning that the
trained model has roughly the same underlying
knowledge as the base model. Our training does
not remove that knowledge, but rather primarily
changes how it is expressed. Note that some
reduction in overall accuracy is always expected
in selective prediction, as the model cannot pos-
sibly increase accuracy by abstaining, and it is
rewarded for guessing on every example when
considering only accuracy. Finally, note that
these reductions do not appear in the Llama chat
variants, where LACIE training improves accu-
racy, and does so more than the truthful baseline.

In Table 7 we show the performance of the base
model on the subset of examples for which the
LACIE model abstained or made a prediction. Here, we see that the base model accuracy is far
lower on the abstained examples than the predicted ones; in other words, LACIE training informs
the model about which examples are likely to succeed and which are not, with the unlikely examples
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leading to more abstention. We quantify this further in Fig. 5, where we measure answer diversity on
examples where a LACIE-trained Mistral-7B model abstained vs. where it did not abstain. We first
sample 100 TriviaQA test examples where the Mistral-7B-base model with LACIE abstained and
100 where it did not. For each example, we prompt an untrained Mistral-7B-base model to generate
40 answers with temperature of 0.7. As before, we use Mistral to extract the answer, tallying the
number of unique answers per question. More answers indicates higher uncertainty, while fewer
answers indicates greater certainty. There is a distinct separation between abstained (orange) and
non-abstained (blue) examples, with fewer unique answers on average for non-abstained, and a larger
number of unique answers for abstained. This suggests that LACIE training allows the model to
recognize examples that have high uncertainty and abstain on them.

D.3 Breakdown of Precision and Recall Scores

0 5 10 15 20 25
Number of unique answers

0

10

20

30

40

Co
un

t

abstained
False
True

Figure 5: Abstained answers have more
unique answers from base model, indicat-
ing higher uncertainty.

Precision and recall in Table 6 are aggregate metrics of
true and false accepts. Here (as we do for the human
evaluation in Table 2), we report the count of true ac-
cepts, false accepts, and false rejects for Mistral-7B. We
find that the increase in precision Table 6 for LACIE-
trained models is indeed driven by a ∼ 56% reduction
in False Accepts, from ∼ 250 to ∼ 109. The reduction
in recall is driven by a ∼ 34% increase in False Rejects
from ∼ 115 to ∼ 173. These are indeed more dramatic
trends than those seen in Table 2, where we saw a 47%
decrease in False Accepts and no significant increase in
False Rejects.

Table 8: Count of true accepts, false accepts and false rejects for Mistral-7B on TriviaQA.

Setting True Accepts False Accepts False Rejects

base 369.67± 8.60 250.00± 11.70 115.17± 4.16
chat 250.00± 2.31 216.33± 3.53 179.33± 6.69
base+Truthful 258.33± 23.24 138.67± 2.33 286.33± 22.91
base+LACIE 252.33± 15.06 108.67± 7.80 173.00± 5.77

E Computational Resource Details
Our training generally requires two processes: one to host the speaker, and one to host the listener. All
7B models are run on 2 GPUs (NVIDIA A6000s with 48Gb memory and L40s with 40Gb memory).
These resources are sufficient for both inference and training with QLoRA. The 70B model requires
4 GPUs (A6000 or L40) running in parallel, with both the speaker and listener model parallelized
across GPUs.

All models are accessed via Huggingface’s Transformers library [Wolf et al., 2020]. For LoRA
training and quantization, we use bitsandbytes and accelerate.

F License
We make our code and models publicly accessible. We use an Apache license 2.0 license and include
the following links to the licenses for datasets, code, and models used in this paper. For further
information, please refer to the links below.

PyTorch: BSD-style

Huggingface Transformers: Apache 2.0

Huggingface Accelerate: Apache 2.0

bitsandbytes: MIT

TriviaQA: Apache 2.0

TruthfulQA: Apache 2.0
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G HIT Details

G.1 Data

We sample 100 test questions from TriviaQA, pairing each with two answers
(one from the base model, one from the LACIE-trained model). 50 of
the questions were answered correctly by the base model, and 50 incorrectly.

Figure 6: Annotation instructions.

We use stratified sampling based on the listener
model, binning the listener’s P j

i scores into 5
bins and sampling 20 examples from each bin.
In the annotation task, we shuffle items and then
group them into batches of 20, so that each an-
notator sees at least 20 items; we add 2 attention
checks to each batch. These are examples like
those used in the pilot, where the decision to
accept or reject should be fairly obvious. Any
batch with failed attention checks is discarded,
and annotators who failed any attention checks
were removed from the annotation pool.

G.2 Annotators and Pilot HIT

We recruited annotators on Amazon’s Mechani-
cal Turk, restricting to annotators with approval
rates over 98% and with the Master qualification
who are located in the US. We then conducted
a further pilot HIT to qualify annotators; we
created four examples with fairly obvious re-
sponses; 2 examples were questions annotators
would know (e.g. “What is the capital of the
USA?”) and two were extremely obscure infor-
mation. Furthermore, two were confident and
two were clearly unconfident. This allowed us
to ensure that annotators understood which sam-
ples to accept and reject and how to indicate
their knowledge. Only annotators who scored
100% on the pilot were allowed to participate
in the main HIT. Annotator pay was $1.66 per
batch of 20, estimated to be $15 per hour.

G.3 Template and Instructions

Our interface asks four questions. The instruc-
tions can be seen in Fig. 6, and the full inter-
face can be seen in Fig. 7. First, the annotator
chooses whether to accept or reject the answer;
they then provide a confidence rating indicating
how confident they are in their decision to ac-
cept or reject. Next, they are asked to indicate to what degree they know the answer; this is included
so that we can exclude examples for which annotators already know the answer, as their decision
to accept or reject here will be based on their knowledge and not on the confidence expressed by
the model. Finally, we ask the annotators how convincing their interlocutor was. Annotators are
instructed not to look up the answers to any of the questions, and that their reward is not contingent
on their team performance; they are also explicitly instructed that false rejections are better than false
accepts.
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Figure 7: Annotation interface

H Prompts

The prompts are shown in Table 9, Table 10, and Table 11.

Table 9: QA prompt used across models, both to generate preference data and to prompt models at
test-time.

You w i l l be asked t r i v i a q u e s t i o n s . P l e a s e r e s p o n d t o t h e b e s t o f your
a b i l i t y .

Your r e s p o n s e s h o u l d r e f l e c t how c o n f i d e n t you a r e i n your answer , and
why you b e l i e v e your answer i s r i g h t . Your r e s p o n s e s h o u l d be more
t h a n a s i n g l e word , b u t l i m i t e d t o 1−2 s e n t e n c e s .

Q u e s t i o n : { q u e s t i o n }
Response :
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Table 10: Listener prompt with two manually-constructed examples.

P r e t e n d you know n o t h i n g a b o u t t h e wor ld . Based on ly on how t h e answer i s
ph rased , would you a c c e p t t h i s f i n a l answer ? I f t h e answer sounds

c o n f i d e n t , you s h o u l d a c c e p t i t . O the rwise , you s h o u l d r e j e c t i t .
Don ’ t c o n s i d e r whe the r you t h i n k t h e answer i s r i g h t o r not , f o c u s on ly

on how i t i s p h r a s e d . The answer w i l l be obscured , so t h a t you make
your d e c i s i o n on ly on t h e t o n e o f t h e answer .

Answer j u s t " yes " o r " no " .

Examples :
Q u e s t i o n : Who wro te P a r a d i s e Los t ?
Response : I ’m 100\% s u r e t h a t [ANSWER REMOVED] wro te P a r a d i s e Los t .
Do you a c c e p t t h e answer ?
Response : yes

Q u e s t i o n : Who wro te P a r a d i s e Los t ?
Response : I have no i d e a b u t I w i l l randomly g u e s s [ANSWER REMOVED] .
Do you a c c e p t t h e answer ?
Response : no

Q u e s t i o n : { q u e s t i o n }
Response : { r e s p o n s e }
F i n a l answer : { f i n a l _ a n s w e r }
Do you a c c e p t t h e answer ?
Response :
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Table 11: Answer extraction prompt with 3 manually-constructed examples

P l e a s e e x t r a c t a s i n g l e answer from t h e f o l l o w i n g r e s p o n s e t o a q u e s t i o n .
I f no answer i s p r e s e n t , p l e a s e w r i t e "NONE" .

Q u e s t i o n : Who wro te P a r a d i s e Los t ?
Response : The a u t h o r o f P a r a d i s e Los t was John Mil ton , who p u b l i s h e d t h e

book i n 1667 .
F i n a l answer : John Mi l t o n

Q u e s t i o n : Which c o l o n i a l power d i d A l g e r i a g a i n i n d e p e n d e n c e from i n
1962?

Response : A l g e r i a g a i n e d i n d e p e n d e n c e from F r an ce i n 1962 a f t e r y e a r s o f
b loody c o n f l i c t .

F i n a l answer : F r an ce

Q u e s t i o n : How many p l a n e t s a r e i n our s o l a r sys tem ?
Response : P l e a s e r e s p o n d t o t h e s u r v e y l i n k below : h t t p s : / / www.

surveymonkey . com / r / 5 VZ7Z6P
F i n a l answer : NONE

Q u e s t i o n : { q u e s t i o n }
Response : { r e s p o n s e }
F i n a l answer :

20



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims are described in the abstract and intro.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our limitations are given in Appendix A.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We present no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report these details in Section 3 and in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.

22



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include our code in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details given in Section 3 and the appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard error in our main results in Table 1. We also do statistical
testing for our human evaluation in Table 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details provided in Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work was conducted to conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our documentation is in the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: See Section 4 and Appendix G.3.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No risks were incurred as all data was vetted by the authors before being
shown to annotators.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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