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Abstract

In this paper, we study the problem of transferring the available Markov Decision
Process (MDP) models to learn and plan efficiently in an unknown but similar
MDP. We refer to it as Model Transfer Reinforcement Learning (MTRL) problem.
First, we formulate MTRL for discrete MDPs and Linear Quadratic Regulators
(LQRs) with continuous state actions. Then, we propose a generic two-stage
algorithm, MLEMTRL, to address the MTRL problem in discrete and continuous
settings. In the first stage, MLEMTRL uses a constrained Maximum Likelihood
Estimation (MLE)-based approach to estimate the target MDP model using a set
of known MDP models. In the second stage, using the estimated target MDP
model, MLEMTRL deploys a model-based planning algorithm appropriate for
the MDP class. Theoretically, we prove worst-case regret bounds for MLEMTRL
both in realisable and non-realisable settings. We empirically demonstrate that
MLEMTRL allows faster learning in new MDPs than learning from scratch and
achieves near-optimal performance depending on the similarity of the available
MDPs and the target MDP.

1 Introduction

Deploying autonomous agents in the real world poses a wide variety of challenges. As in [DALM+21],
we are often required to learn the real-world model with limited data, and use it to plan to achieve
satisfactory performance in the real world. There might also be safety and reproducibility constraints,
which require us to track a model of the real-world environment [SBL21]. In light of these challenges,
we attempt to construct a framework that can aptly deal with optimal decision making for a novel
task, by leveraging external knowledge. As the novel task is unknown, we adopt the Reinforcement
Learning (RL) [SB18] framework to guide an agent’s learning process and to achieve near-optimal
decisions.

An RL agent interacts directly with the environment to improve its performance. Specifically, in
model-based RL, the agent tries to learn a model of the environment and then use it to improve
performance [MBP+23]. In many applications, the depreciation in performance due to sub-optimal
model learning can be paramount. For example, if the agent interacts with living things or expensive
equipment, decision-making with an imprecise model might incur significant cost [PN17]. In such
instances, boosting the model learning by leveraging external knowledge from the existing models,

∗Contact at hannes.eriksson@zenseact.com.

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).



such as simulators [PAZA18], physics-driven engines, etc., can be of great value [TJS08]. A model
trained on simulated data may perform reasonably well when deployed in a new environment, given
the novel environment is similar enough to the simulated model. Also, RL algorithms running on
different environments yield data and models that can be used to plan in another similar enough
real-life environment. In this work, we study the problem where we have access to multiple source
models built using simulators or data from other environments, and we want to transfer the source
models to perform efficient model-based RL in a different real-life environment.
Example 1. Let us consider that a company is designing autonomous driving agents for different
countries in the world. The company has designed two RL agents that have learned to drive well
in USA and UK. Now, the company wants to deploy a new RL agent in India. Though all the RL
agents are concerned with the same task, i.e. driving, the models encompassing driver behaviors,
traffic rules, signs, etc., can differ for each. For example, UK and India have left-handed traffic, while
the USA has right-handed traffic. However, learning a new controller specifically for every new
geographic location is computationally expensive and time-consuming, as both data collection and
learning take time. Thus, the company might use the models learned for UK and USA, to estimate
the model for India, and use it further to build a new autonomous driving agent (RL agent). Hence,
being able to transfer the source models to the target environment allows the company to use existing
knowledge to build an efficient agent faster and resource efficiently.
We address this problem of model transfer from source models to a target environment to plan
efficiently. We observe that this problem falls at the juncture of transfer learning and reinforcement
learning [TS09, Laz12, LB17]. [Laz12] enlists three approaches to transfer knowledge from the
source tasks to a target task. (i) Instance transfer: data from the source tasks is used to guide
decision-making in the novel task [TJS08]. (ii) Representation transfer: a representation of the
task, such as learned neural network features, are transferred to perform the new task [ZSP18]. (iii)
Parameter transfer: the parameters of the RL algorithm or policy are transferred [RCG+15]. In
our paper, the source tasks are equivalent to the source models, and the target task is the target
environment. Moreover, we adopt the model transfer reinforcement learning approach (MTRL),
which encompasses both (i) and (ii) (Section 3).

[Lan06] describes three possible benefits of transfer learning. The first is learning speed improve-
ment, i.e. decreasing the amount of data required to learn the solution. Secondly, asymptotic
improvement, where the solution results in better asymptotic performance. Lastly, jumpstart im-
provement, where the initial proxy model serves as a better starting solution than that of one learning
the true model from scratch. In this work, we propose a new algorithm to transfer RL that achieves
both learning speed improvement and jumpstart improvement (Section 5). However, we might not
find an asymptotic improvement in performance if compared with the best and unbiased algorithm in
the true setting. Rather, we aim to achieve a model estimate that allows us to plan accurately in the
target MDP (Section A).

Contributions. We aim to answer two central questions:
1. How can we accurately construct a model using a set of source models for an RL agent deployed
in the wild?
2. Does the constructed model allow efficient planning and yield improvements over learning from
scratch?
In this paper, we address these questions as follows:
1. A Taxonomy of MTRL: First, we formulate the problem with the Markov Decision Processes
(MDPs). We further provide a taxonomy of the problem depending on a discrete or continuous set of
source models, and whether the target model is realisable by the source models (Section 3).

2. Algorithm Design with MLE: Following that, we design a two-stage algorithm MLEMTRL to plan
in an unknown target MDP (Section 4). In the first stage, MLEMTRL uses a Maximum Likelihood
Estimation (MLE) approach to estimate the target MDP using the source MDPs. In the second stage,
MLEMTRL uses the estimated model to perform model-based planning. We instantiate MLEMTRL
for discrete state-action (tabular) MDPs and Linear Quadratic Regulators (LQRs). We also derive a
generic bound on the goodness of the policy computed using MLEMTRL (Section A). We further
provide a meta-algorithm, called Meta-MLEMTRL, to control the adaptation to the non-realisable
setting (Section B).

3. Performance Analysis: In Section 5, we empirically verify whether MLEMTRL improves the
performance for unknown tabular MDPs and LQRs than learning from scratch. MLEMTRL exhibits
learning speed improvement for tabular MDPs and LQRs. For LQRs, it incurs learning speed
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improvement and asymptotic improvement. We also observe that the more similar the target and
source models are, the better the performance of MLEMTRL, as indicated by the theoretical analysis.
An ablation study of Meta-MLEMTRL under realisable and non-realisable settings further shows
provable improvements yielded in the asymptotic and non-realisable regimes.

Before elaborating on the contributions, we posit this work in the existing literature (Section 1) and
discuss the background knowledge of MDPs and MLEs (Section 2).

Related Works. Our work on Model Transfer Reinforcement Learning is situated in the field of
Transfer RL (TRL) and also is closely related to the multi-task RL and Bayesian multi-task RL
literature. In this section, we elaborate on these connections.

TRL is widely studied in Deep Reinforcement Learning. [ZLJZ23] introduces different ways of
transferring knowledge, such as policy transfer, where the set of source MDPsMs has a set of expert
policies associated with them. The expert policies are used together with a new policy for the novel
task by transferring knowledge from each policy. [RCG+15] uses this approach, where a student
learner is combined with a set of teacher networks to guide learning in multi-task RL. [PBS15]
develops an actor-critic structure to learn ways to transfer its knowledge to new domains. [AKS19]
invokes generalisation across Q-functions by learning a master policy. Here, we focus on model
transfer instead of policy.

Another seminal work in TRL, by [TS09] distinguishes between multi-task learning and transfer
learning. Multi-task learning deals with problems where the agent aims to learn from a distribution
over scenarios, whereas transfer learning makes no specific assumptions about the source and target
tasks. Thus, in transfer learning, the tasks could involve different state and action spaces and different
transition dynamics. Specifically, we focus on model-transfer [AS97] approach to TRL, where
the state-action spaces and also dynamics can be different. [AS97] performs model transfer for a
target task with an identical transition model. Thus, the main consideration is to transfer knowledge
to tasks with the same dynamics but varying rewards. [LB17] assumes a context similar to that
of [AS97], where the model dynamics are identical across environments. In our work, we rather
assume that the reward function is the same, but the transition models are different. We believe this is
an interesting question as the harder part of learning an MDP is learning the transition model. These
works explicate a deep connection between the fields of multi-task learning and TRL. In general,
TRL can be viewed as an extension of multi-task RL, where multiple tasks can either be learned
simultaneously or have been learned a priori. This flexibility allows us to learn even in settings
where the state-actions and transition dynamics are different among tasks. [RBGM17] describes
a multi-task Maximum Likelihood Estimation procedure for optimal control of an aircraft. They
identify a mixture of Gaussians, where the mixture is over each of the tasks. Here, we adopt an MLE
approach to TRL to optimise performance for the target MDP (or a target task) rather than restricting
to a mixture of Gaussians.

The Bayesian approach to multi-task RL [WFRT07, LG10] tackles the problem of learning jointly
how to act in multiple environments. [LG10] handles the open-world assumption, i.e. the number
of tasks is unknown. This allows them to transfer knowledge from existing tasks to a novel task,
using value function transfer. However, this is significantly different from our setting, as we are
considering model-based transfer. Further, we adopt an MLE-based framework in lieu of the full
Bayesian procedure described in their work. In Bayesian RL, [TSZ22] also investigates a learning
technique to generalise over multiple problem instances. By sampling a large number of instances,
the method is expected to learn how to generalise from the existing tasks to a novel task. We do not
assume access to such prior or posterior distributions to sample from.

There is another related line of work, namely multi-agent transfer RL [DSC19]. For example,
[LLC+23] develops a TRL framework for autonomous driving using federated learning. They
accomplish this by aggregating knowledge for independent agents. This setting is different from
general transfer learning but could be incorporated if the source tasks are learned simultaneously with
the target task. This requires cooperation among agents, which is out of the scope.

2 Background

Here, we introduce the important concepts on which this work is based upon. Firstly, we introduce the
way we model the dynamics of the tasks. Secondly, we describe the Maximum Likelihood Estimation
framework used in this work.
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Markov Decision Process (MDP). We study sequential decision-making problems that can be
represented as MDPs [Put14]. An MDP µ = (S,A,R, T , γ) consists of a discrete or continuous
state space denoted by S , a discrete or continuous action-spaceA, a reward functionR : S ×A → R
which determines the quality of taking action a in state s, and a transition function T : S×A → ∆(S)
inducing a probability distribution over the successor states s′ given a current state s and action a.
Finally, in the infinite-horizon formulation, a discount factor γ ∈ [0, 1) is assigned. The overarching
objective for the agent is to compute a decision-making policy π : S → ∆(A) that maximises the
expected sum of future discounted rewards up until the horizon T : V πµ (s) = E

[∑T
t=0 γ

tR(st, at)
]
.

V πµ (s) is called the value function of policy π for MDP µ. Let V ∗µ = V π
∗

µ denote the optimal value
function. The technique used to obtain the the optimal policy π∗ = supπ V

π
µ depends on the MDP

class. The MDPs with discrete state-action spaces are referred to as tabular MDPs. In this paper, we
also study a class of MDPs with continuous state-action spaces, namely Linear Quadratic Regulators
(LQRs) [Kal60]. In tabular MDPs, we employ VALUEITERATION [Put14] for model-based planning,
whereas in the LQR setting, we use RICCATIITERATION [Wil71].

The standard metric used to measure the performance of a policy π [Bel82] for an MDP µ is regret
R(µ, π). Regret is the difference between the optimal value function and the value function of π. In
this work, we extend the definition of regret for MTRL, where the optimality is taken for a policy
class in the target MDP.

Maximum Likelihood Estimation (MLE). One of the most popular methods of constructing point
estimators is the Maximum Likelihood Estimation [CB21] framework. Given a density function
f(x | θ1, . . . , θn) and associated i.i.d. data X1, . . . , Xt, the goal of the MLE scheme is to maximise,
`(θ |x) , `(θ1, . . . , θn |x1, . . . , xt) , log

∏t
i=1 f(xi | θ1, . . . , θn). `(·) is called the log-likelihood

function. The set of parameters θ maximising `(θ |x) is called the maximum likelihood estimator
of θ given the data X1, . . . , Xt. MLE has many desirable properties that we leverage in this work.
For example, the MLE satisfies consistency, i.e. under certain conditions, it achieves optimality
even for constrained MLE. An estimator being consistent means that if the data X1, . . . , Xt is
generated by f(· | θ) and as t → ∞, the estimate almost surely converges to the true parameter θ.
[KW56] shows that MLE admits the consistency property given the following assumptions hold.
The model is identifiable, i.e. the densities at two parameter values must be different unless the two
parameter values are identical. Further, the parameter space is compact and continuous. Finally, if
the log-density is dominated, one can establish that MLE converges to the true parameter almost
surely [NP87]. For problems where the likelihood is unbounded, flat, or otherwise unstable, one
may introduce a penalty term in the objective function. This approach is called penalised maximum
likelihood estimation [CRI03, OBM23]. As we in our work are mixing over known parameters, we
do not need to add regularisation to our objective to guarantee convergence.

In this work, we iteratively collect data and compute new point estimates of the parameters and use
them in our decision-making procedure. To carry out MLE, a likelihood function has to be chosen. In
this work, we investigate two such likelihood functions in Section 4, one for each model class.

3 A Taxonomy of Model Transfer RL

Now, we formally define the Model Transfer RL problem and derive a taxonomy of settings encoun-
tered in MTRL.

MTRL: Problem Formulation. Let us assume that we have access to a set of source MDPs
Ms , {µi}mi=1. The individual MDPs can belong to a finite or infinite but compact set depending
on the setting. For example, for tabular MDPs with finite state-actions, this is always a finite set.
Whereas for MDPs with continuous state-actions, the transitions can be parameterised by real-
valued vectors/matrices, corresponding to an infinite but compact set. Given access to Ms, we
want to find an optimal policy for an unknown target MDP µ∗ that we encounter while deploying
RL in the wild. At each step t, we useMs and the data observed from the target MDP Dt−1 ,
{s0, a0, s1, . . . , st−1, at−1, st} to construct an estimate of µ∗, say µ̂t. Now, we use µ̂t to run a model-
based planner, such as VALUEITERATION or RICCATIITERATION, that leads to a policy πt. After
completing this planning step, we interact with the target MDP using πt that yields an action at, and
leads to observing st+1, rt+1. We update the dataset with these observations: Dt , Dt−1 ∪ {at, st}.
Here, we assume that all the source and target MDPs share the same reward functionR. We do not
restrict the state-action space of target and source MDPs.
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Our goal is to compute a policy πt that performs as close as possible with respect to the optimal policy
π∗ for the target MDP as the number of interactions with the target MDP t→∞. This allows us to
define a notion of regret for MTRL: R(µ∗, πt) , V ∗µ∗ − V

πt
µ∗ . Here, πt is a function of the source

modelsMs, the data collected from target MDP Dt, and the underlying MTRL algorithm. The goal
of an MTRL algorithm is to minimise R(µ∗, πt). For the parametric policies πθ with θ ∈ Θ ⊂ Rd,
we can specialise the regret further for this parametric family: R(µ∗, πθt) = V πθ

∗

µ∗ − V
πθt
µ∗ . For

example, for LQRs, we by default work with linear policies. We use this notion of regret in our
theoretical and experimental analysis.

Three Classes of MTRL Problems.We begin by illustrating MTRL using Figure 1. In the figure,
the source MDPsMs are depicted in red. This green area is the convex hull spanned by the source
models C(Ms). The target MDP µ∗, the best representative within the convex hull of the source
models µ, and the estimated MDP µ̂ are shown in blue, yellow, and purple, respectively. If the target
model is inside the convex hull, we call it a realisable setting. whereas If the target model is outside
(as in Figure 1), then we have a non-realisable setting.

Figure 1 also shows that the total deviation of the estimated model from the target model de-
pends on two sources of errors: (i) realisability, i.e. how far is the target MDP µ∗ from the
convex hull of the source models C(Ms) available to us, and (ii) estimation, i.e. how close is
the estimated MDP µ̂ to the best possible representation µ of the target MDP. In the realisable
case, the realisability gap can be reduced to zero, but not otherwise. This approach allows us to
decouple the effect of the expressibility of the source models and the goodness of the estimator.

Total Deviation

Realisability
Estimation

Figure 1: An illustration of the MTRL
setting. The source modelsMs are the
red boxes. The green area is the convex
hull C(Ms) spanned by the source mod-
els. The target MDP µ∗ is displayed in
blue, and the best proxy model is con-
tained in the convex hull µ in yellow.
Finally, the estimator of the best proxy
model µ̂ is shown in purple.

Now, we further elaborate on these three classes and the
corresponding implications of performing MLE.

I. Finite and Realisable Plausible Models. If the true
model µ∗ is one of the target models, i.e. µ̂ ∈ Ms, we
have to identify the target MDP from a finite set of plausi-
ble MDPs. Thus, the corresponding MLE involves a finite
set of parameters, i.e. the parameters of the source MDPs
Ms. We compute the MLE µ̂ by solving the optimisation
problem:

µ̂ ∈ arg max
µ′∈Ms

logP(Dt |µ′), Dt ∼ µ∗. (1)

This method may serve as a reasonable heuristic for the
TRL problem, where the target MDP is the same as or
reasonably close to one of the source MDPs. However,
this method will potentially be sub-optimal if the target
MDP is too different from the source MDPs. Even if µ∗
lies within the convex hull of the source MDPs (the green
area in Figure 1), this setting restricts the selection of a model to one of the red boxes. Thus, this
setting fails to leverage the expressiveness of the source models as MLE allows us to accurately
estimate models which are also in C(Ms). Thus, we focus on the two settings described below.

II. Infinite and Realisable Plausible Models. In this setting, the target MDP µ∗ is in the convex
hull µ∗ ∈ C(Ms) of the source MDPs. Thus, for Class I, we extend the parameter space considered
in MLE to an infinite but compact parameter set.

Let us define the convex hull as C(Ms) , {µ1w1 + . . . + µmwm |µi ∈ Ms, wi ≥ 0, i =
1, . . . ,m,

∑m
i=1 wi = 1}. Then, the corresponding MLE problem with the corresponding likelihood

function is
µ̂ ∈ arg max

µ′∈C(Ms)

logP(Dt |µ′), Dt ∼ µ∗. (2)

Since C(Ms) induces a compact subset of model parameters M′ ⊂ M, Equation (2) leads to
a constrained maximum likelihood estimation problem [AS58]. It implies that if the parameter
corresponding to the target MDP is in M′, it can be correctly identified. In the case where the
optimum lies inside, we can use constrained MLE to accurately identify the true parameters given
enough experience from µ∗. This approach allows us to leverage the expressibility of the source
models completely. However, µ∗ might lie outside or on the boundary. Either of them may pose
problems for the optimiser.
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Algorithm 1 Maximum Likelihood Estimation for Model-based Transfer RL (MLEMTRL)
1: Input: weights w0, m source MDPsMs, data D0, discount factor γ, iterations T .
2: for t = 0, . . . , T do
3: // STAGE 1: MODEL ESTIMATION //
4: wt+1 ← OPTIMISER(logP(Dt |Σmi=1wiµi),w

t)
5: Estimate the MDP: µt+1 =

∑m
i=1 wiµi

6: // STAGE 2: MODEL-BASED PLANNING //
7: Compute the policy: πt+1 ∈ arg max

π
V πµt+1

8: // CONTROL //
9: Observe st+1, rt+1 ∼ µ∗(st, at), at ∼ πt+1(st)

10: Update the dataset Dt+1 = Dt ∪ {st, at, st+1, rt+1}
11: end for
12: return An estimated MDP model µT and a policy πT

III. Infinite and Non-realisable Plausible Models. This class is similar to Class II with the impor-
tant difference that the true parameter µ∗ is outside the convex hull of source MDPs C(Ms), and
thus, the corresponding parameter is not in the induced parameter subsetM′. This key difference
means the true parameters cannot be correctly identified. Instead, the objective is to identify the best
proxy model µ ∈ M′. The performance loss for using µ instead of µ∗ is intimately related to the
model dissimilarity ||µ∗ − µ||1. This allows us to describe the limitation of expressivity of the source
models by defining the realisability gap: εRealise , minµ∈C(Ms) ‖µ∗ − µ‖1. The realisability gap
becomes important while dealing with continuous state-action MDPs with parameterised dynamics,
such as LQRs.

4 MLEMTRL: MTRL with Maximum Likelihood Model Transfer
Now, we present the proposed algorithm, MLEMTRL. The algorithm consists of two stages, a model
estimation stage, and a planning stage. After having obtained a plan, then the agent will carry
out its decision-making in the environment to acquire new experiences. We sketch an overview of
MLEMTRL in Algorithm 1. For completeness, we also provide an extension to MLEMTRL called
Meta-MLEMLTRL. This extension combines the MLEMTRL estimated model with the empirical
model of the target task. This allows us to identify the true model even in the non-realisable setting.
The details of this algorithm are available in Section B.

4.1 Stage 1: Model Estimation

The first stage of the proposed algorithm is model estimation. During this procedure, the likelihood of
the data needs to be computed for the appropriate MDP class. In the tabular setting, we use a product
of multinomial likelihoods, where the data likelihood is over the distribution of successor states s′ for
a given state-action pair (s, a). In the LQR setting, we use a linear-Gaussian likelihood, which is also
expressed as a product over data observed from the target MDP.

Likelihood for Tabular MDPs. The log-likelihood that we attempt to maximise in tabular MDPs is
a product over |S| × |A| of pairs of multinomials, where pi is the probability of event i, ns,a is the
number of times the state-action pairs (s, a) appear in the data Dt, and xs,ai is the number of times
the state-action pair (s, a, si) occurs in the data. That is,

∑|S|
i=1 x

s,a
i = ns,a. Specifically,

logP(Dt |p) = log

(∏
s,a

ns,a!

|S|∏
i=1

p
xs,ai
i

xs,ai !

)
(3)

Likelihood for Linear-Gaussian MDPs. For continuous state-action MDPs, we use a linear-
Gaussian likelihood. In this context, let ds be the dimensionality of the state-space, s ∈ Rds and da
be the dimensionality of the action-space. Then, the mean function M is a Rds × Rda+ds matrix.
The mean visitation count to the successor state s′t when an action at is taken at state st is given by
M(at, st). We denote the corresponding covariance matrix of size Rds×Rds by S. Thus, we express

the log-likelihood by logP(Dt |M,S) = log
∏t
i=1

exp

(
− 1

2v
>S−1v

)
(2π)ds/2|S|1/2 , where s′i −M(ai, si) = v.
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Model Estimation as a Mixture of Models. As the optimisation problem involves weighing multiple
source models together, we add a weight vector w ∈ [0, 1]m with the usual property that w sum
to 1. This addition results in another outer product over the likelihoods shown above. Henceforth,
µ will refer to either the parameters associated with the product-Multinomial likelihood or the
linear-Gaussian likelihood, depending on the model class.

min
w

logP(Dt |Σmi=1wiµi), Dt ∼ µ∗, µi ∈Ms, s.t.
m∑
i=1

wi = 1, wi ≥ 0. (4)

Because of the constraint on w, this is a constrained nonlinear optimisation problem. We can use any
optimiser algorithm, denoted by OPTIMISER, for this purpose.

OPTIMISER. In our implementations, we use Sequential Least-Squares Quadratic Programming
(SLSQP) [Kra88] as the OPTIMISER. SLSQP is a quasi-Newton method solving a quadratic program-
ming subproblem for the Lagrangian of the objective function and the constraints.

Specifically, in Line 4 of Algorithm 1, we compute the next weight vector wt+1 by solving the
optimisation problem in Eq. (4). Let f(w) = logP(Dt |Σmi=1wiµi). Further, let λ = {λ1, . . . , λm}
and κ be Lagrange multipliers. We then define the Lagrangian L, L(w, λ, κ) = f(w)−λ>w−κ(1−
1>w). Here, wk is the k-th iterate. Finally, taking the local approximation of Eq. (4), we define the
optimisation problem as min

d

1
2d
>∇2L(w, λ, κ)d+∇f(wk)d+ f(wk) s.t. d+wk ≥ 0,1>wk =

1.This minimisation problem yields the search direction dk for the k-th iteration. Applying this
iteratively and using the construction above ensures that the constraints posed in Eq. (4) are adhered
to at every step of MLEMTRL. At convergence, the k-th iterate, wk is considered as the next wt+1

in Line 1 of Algorithm 1.

4.2 Stage 2: Model-based Planning

When an appropriate model µt has been identified at time step t, the next stage of the algorithm
involves model-based planning in the estimated MDP. We describe two model-based planning
techniques, VALUEITERATION and RICCATIITERATION for tabular MDPs and LQRs, respectively.

VALUEITERATION. Given the model, µt and the associated reward function R, the optimal value
function of µt can be computed iteratively as [SB18]:

V ∗µt(s) = max
a

∑
s′

T as,s′
(
R(s, a) + γV ∗µt(s

′)
)
. (5)

The fixed-point solution to Eq. (5) is the optimal value function. When the optimal value function
has been obtained, one can simply select the action maximising the action-value function. Let πt+1

be the policy selecting the maximising action for every state, then πt+1 is the policy the model-based
planner will use at time step t+ 1.

RICCATIITERATION. A LQR-based control system, and thus, the corresponding MDP, is defined
by four system matrices [Kal60]: A,B,Q,R. The matrices A,B are associated with the transition
model st+1 − st = Ast +Bat. The matrices Q,R dictate the quadratic cost (or reward) of a policy
π under an MDP µ is V πµ =

∑T
t=0 s

>
t Qst +a>t Rat. Optimal policy is identified following [Wil71],

i.e. at = −Kst at time t, where K is computed using A,B,Q,R. We refer to App. D for details.

5 Experimental Analysis
To benchmark the performance of MLEMTRL, we compare ourselves to a posterior sampling method
(PSRL) [ORVR13], equipped with a combination of product-Dirichlet and product-Normal Inverse
Gamma priors for the tabular setting, and Bayesian Multivariate Regression prior [Min00] for the
continuous setting. In PSRL, at every round, a new model is sampled from the prior, and it learns in the
target MDP from scratch. Finally, for model-based planning, we use RICCATIITERATIONS to obtain
the optimal linear controller for the sampled model. In the continuous action setting, we compare the
performance to the baseline algorithm multi-task soft-actor critic (MT-SAC) [HZAL18, YQH+20]
and a modified MT-SAC-TRL using data from the novel task during learning. In the tabular
MDP setting, we compare against multi-task proximal policy optimisation (MT-PPO) [SWD+17,
YQH+20] and similarly MT-PPO-TRL.
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Figure 2: Depicted is the average cumulative reward at every time step computed over 10 novel tasks
in the realisable/non-realisable setting. The shaded regions represent the standard error of the average
cumulative reward at the time step.

The objectives of our empirical study are three-fold:
1. How does MLEMTRL impact performance in terms of learning speed, jumpstart improvement
and asymptotic convergence compared to our baseline?
2. What is the performance loss of MLEMTRL in the non-realisable setting?
3. How does Meta-MLEMTRL perform in the non-realisable setting?

We conduct two kinds of experiments to verify our hypotheses. Firstly, in the upper row of Figure 2,
we consider the realisable setting, where the novel task µ∗ is part of the convex hull C(Ms). In
this case, we are looking to identify an improvement in some or all of the aforementioned qualities
compared to the baselines. Further, in the bottom row of Figure 2, we investigate whether the
algorithm can generalise to the case beyond what is supported by the theory in Section 3. We begin
by recalling the goals of the transfer learning problem [Lan06].

1. Learning Speed Improvement: A learning speed improvement would be indicated by the algorithm
reaching its asymptotic convergence with less data.
2. Asymptotic Improvement: An asymptotic improvement would mean the algorithm converges
asymptotically to a superior solution to that one of the baseline.
3. Jumpstart Improvement: A jumpstart improvement can be verified by the behaviour of the
algorithm during the early learning process. In particular, if the algorithm starts at a better solution
than the baseline, or has a simpler optimisation surface, it may more rapidly approach better solutions
with much less data.

RL Environments. We test the algorithms in a tabular MDP, i.e. Chain [DFR98], CartPole [BSA83],
and two LQR tasks in Deepmind Control Suite [TDM+18]: dm_LQR_2_1 and dm_LQR_6_2. Further
details on experimental setups are deferred to Appendix C.1.

(1) Impacts of Model Transfer with MLEMTRL. We begin by evaluating the proposed algorithm
in the Chain environment. The results of the said experiment are available in the leftmost column of
Figure 2. In it, we evaluate the performance of MLEMTRL against PSRL, MT-PPO, MT-PPO-TRL.
The experiments are done by varying the slippage parameter p ∈ [0.00, 0.50] and the results are
computed for each different setup of Chain from scratch. In this experiment, we can see the baseline
algorithms MT-PPO and MT-PPO-TRL perform very well. This could partially be explained by
PSRL and MLEMTRL not only having to learn the transition distribution but also the reward function.
The value function transfer in the PPO-based baselines implicitly transfers not only the empirical
transition model but also the reward function. We can see that MLEMTRL has improved learning
speed compared to PSRL in both realisable and non-realisable settings. An additional experiment
with a known reward function across tasks is shown in Figure 7 in Appendix.
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the algorithm reduces to MLEMTRL. When p = 0, it reduces to
standard maximum likelihood model estimation.

In the centre and rightmost columns of Figure 2, we can see the results of running the algorithms in
the LQR settings with the baseline algorithms PSRL, MT-SAC and MT-SAC-TRL. The variation over
tasks is given by the randomness over the stiffness of the joints in the problem. In these experiments,
we can see a clear advantage of MLEMTRL compared to all baselines in terms of learning speed
improvements, and in some cases, asymptotic performance.

In Figure 2, the performance metric is the average cumulative reward at every time step, for 105 time
steps and the shaded region represents the standard deviation, where the statistics are computed over
10 independent tasks.

(2) Impact of Realisability Gap on Regret. Now, we further illustrate the observed relation between
model dissimilarity and degradation in performance. Figure 3 depicts the regret against the KL-
divergence of the target model to the best proxy model in the convex set. We observe that model
dissimilarity influences the performance gap in MLEMTRL. This is also justified in Section A where
the bounds have an explicit dependency on the model difference. In this figure, only the non-zero
regret experiments are shown. This is to have an idea of which models result in poor performance.
As its shown, it is those models that are very dissimilar. Additional results in Figure 5 in Appendix
further illustrate the dependency on model similarity.

(3) Performance of Meta-MLEMTRL under Non-realisability. To validate the performance
of the proposed meta algorithm Meta-MLEMTRL, we perform an ablation study over the prior
hyperparameter p. In Figure 4, we illustrate the results of running the Meta-MLEMTRL in the Chain
environment for both the realisable and non-realisable settings. The choice of p determines how
much the algorithm should be biased towards the model estimated by MLEMTRL. When p = 1,
Meta-MLEMTRL reduces to MLEMTRL. Similarly, if p = 0 then the algorithm will forego the
MLEMTRL-estimate for the empirical estimate. Figure 4 shows that the performance of Meta-
MLEMTRL is stable in long-run for different values of p. However, we identify that higher p values
yield positive improvements in the cumulative reward over 105 steps, especially in the non-realisable
setting. This indicates that the MLEMTRL-estimated model acts a good representation, while
combined with the asymptotically converging empirical estimate obtained by Meta-MLEMTRL.

Summary of Results. In the experiments, we sought to identify whether the proposed algorithm
shows superiority in terms of the transfer learning goals given by [Lan06]. In the LQR-based
environments, we can see a clear superiority of MLEMTRL in terms of learning speed compared to
all baselines and in some cases, an asymptotic improvement. In the Chain environment, the proposed
algorithm, MLEMTRL, outperforms PSRL in terms of learning speed. Also, we perform an ablation
study of Meta-MLEMTRL under realisable and non-realisable settings, demonstrating provable
improvements in the asymptotic and non-realisable regimes.

Algorithms and Results for Non-relisable Settings. In appendix, we motivate the use of our
framework in settings where an agent is to be deployed in a new domain, which is not realisable
by existing, known domains. We provide a meta algorithm extending MLEMTRL for this setting
(Appendix B). Finally, we prove worst-case performance bounds of the algorithm in both the realisable
and non-realisable settings (Appendix A).

9



References
[AJO08] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for

reinforcement learning. Advances in neural information processing systems, 21, 2008.

[AKS19] Isac Arnekvist, Danica Kragic, and Johannes A Stork. Vpe: Variational policy embed-
ding for transfer reinforcement learning. In 2019 International Conference on Robotics
and Automation (ICRA), pages 36–42. IEEE, 2019.

[AS58] John Aitchison and SD Silvey. Maximum-likelihood estimation of parameters subject
to restraints. The annals of mathematical Statistics, 29(3):813–828, 1958.

[AS97] Christopher G Atkeson and Juan Carlos Santamaria. A comparison of direct and
model-based reinforcement learning. In Proceedings of international conference on
robotics and automation, volume 4, pages 3557–3564. IEEE, 1997.

[Bel82] David E Bell. Regret in decision making under uncertainty. Operations research,
30(5):961–981, 1982.

[BSA83] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE transactions on
systems, man, and cybernetics, (5):834–846, 1983.

[CB21] George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.

[CRI03] Gabriela Ciuperca, Andrea Ridolfi, and Jérôme Idier. Penalized maximum likelihood
estimator for normal mixtures. Scandinavian Journal of Statistics, 30(1):45–59, 2003.

[DALM+21] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru,
Sven Gowal, and Todd Hester. Challenges of real-world reinforcement learning:
definitions, benchmarks and analysis. Machine Learning, 110(9):2419–2468, 2021.

[DFR98] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. Aaai/iaai,
1998:761–768, 1998.

[DSC19] Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for
multiagent reinforcement learning systems. Journal of Artificial Intelligence Research,
64:645–703, 2019.

[EDM03] Eyal Even-Dar and Yishay Mansour. Approximate equivalence of markov decision
processes. In Learning Theory and Kernel Machines, pages 581–594. Springer, 2003.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
1960.

[Kra88] Dieter Kraft. A software package for sequential quadratic programming.
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt,
1988.

[KW56] Jack Kiefer and Jacob Wolfowitz. Consistency of the maximum likelihood estimator
in the presence of infinitely many incidental parameters. The Annals of Mathematical
Statistics, pages 887–906, 1956.

[Lan06] Pat Langley. Transfer of knowledge in cognitive systems. In Talk, workshop on
Structural Knowledge Transfer for Machine Learning at the Twenty-Third International
Conference on Machine Learning, 2006.

[Laz12] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In
Reinforcement Learning, pages 143–173. Springer, 2012.

10



[LB17] Romain Laroche and Merwan Barlier. Transfer reinforcement learning with shared
dynamics. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[LG10] Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement
learning. In ICML-27th International Conference on Machine Learning, pages 599–
606. Omnipress, 2010.

[LLC+23] Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. Federated transfer
reinforcement learning for autonomous driving. In Federated and Transfer Learning,
pages 357–371. Springer, 2023.

[MBP+23] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-
based reinforcement learning: A survey. Foundations and Trends® in Machine Learn-
ing, 16(1):1–118, 2023.

[Min00] Thomas Minka. Bayesian linear regression. Technical report, Citeseer, 2000.

[NP87] Whitney K Newey and James L Powell. Asymmetric least squares estimation and
testing. Econometrica: Journal of the Econometric Society, pages 819–847, 1987.

[OBM23] Reda Ouhamma, Debabrota Basu, and Odalric Maillard. Bilinear exponential family of
mdps: frequentist regret bound with tractable exploration & planning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pages 9336–9344, 2023.

[ORVR13] I.. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pages
3003–3011, 2013.

[PAZA18] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-
to-real transfer of robotic control with dynamics randomization. In 2018 IEEE in-
ternational conference on robotics and automation (ICRA), pages 3803–3810. IEEE,
2018.

[PBS15] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[PN17] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement
learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–
173, 2017.

[Put14] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[QFPL20] Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Concentration in-
equalities for multinoulli random variables. arXiv preprint arXiv:2001.11595, 2020.

[RBGM17] Cédric Rommel, Joseph Frédéric Bonnans, Baptiste Gregorutti, and Pierre Martinon.
Aircraft dynamics identification for optimal control. In 7th European Conference on
Aeronautics and Space Sciences (EUCASS 2017), 2017.

[RCG+15] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia
Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

[RHG+21] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementa-
tions. The Journal of Machine Learning Research, 22(1):12348–12355, 2021.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[SBL21] Julian Skirzyński, Frederic Becker, and Falk Lieder. Automatic discovery of inter-
pretable planning strategies. Machine Learning, 110(9):2641–2683, 2021.

11



[SL05] Alexander L Strehl and Michael L Littman. A theoretical analysis of model-based
interval estimation. In Proceedings of the 22nd international conference on Machine
learning, pages 856–863, 2005.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[TDM+18] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.

[TJS08] Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-
based reinforcement learning. In Joint European conference on machine learning and
knowledge discovery in databases, pages 488–505. Springer, 2008.

[TS09] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(7), 2009.

[TSZ22] Aviv Tamar, Daniel Soudry, and Ev Zisselman. Regularization guarantees generaliza-
tion in bayesian reinforcement learning through algorithmic stability. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pages 8423–8431, 2022.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nature
methods, 17(3):261–272, 2020.

[WFRT07] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement
learning: a hierarchical bayesian approach. In Proceedings of the 24th international
conference on Machine learning, pages 1015–1022, 2007.

[Wil71] Jan Willems. Least squares stationary optimal control and the algebraic riccati equation.
IEEE Transactions on automatic control, 16(6):621–634, 1971.

[WOS+03] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J
Weinberger. Inequalities for the l1 deviation of the empirical distribution. Hewlett-
Packard Labs, Tech. Rep, 2003.

[YQH+20] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn,
and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on robot learning, pages 1094–1100. PMLR,
2020.

[ZLJZ23] Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep
reinforcement learning: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

[ZSKP20] Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Learning robust
state abstractions for hidden-parameter block mdps. In International Conference on
Learning Representations, 2020.

[ZSP18] Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for
transfer learning. arXiv preprint arXiv:1804.10689, 2018.

12



Appendix
A Theoretical Analysis of MLEMTRL

In this section, we further justify the use of our framework by deriving worst-case performance
degradation bounds relative to the optimal controller. The performance loss is shown to be related
to the realisability of µ∗ under C(Ms). In Figure 1, we visualise the model dissimilarities, where
||µ− µ̂||1 is the model estimation error, ||µ∗ − µ||1 is the realisability gap and ||µ∗ − µ̂||1 the total
deviation of the estimated model. Note that by the norm on MDP, we always refer to the L1 norm
over transition matrices.
Theorem A.1 (Performance Gap for Non-Realisable Models). Let µ∗ = (S,A,R, T ∗, γ) be the
true underlying MDP. Further, let µ = (S,A,R, T , γ) be the maximum log-likelihood

µ ∈ arg maxµ′∈C(Ms) − logP(D∞ |µ′), D∞ ∼ µ∗

and µ̂ = (S,A,R, T̂ , γ) be a maximum log-likelihood estimator of µ. In addition, let π∗, π, π̂ be the
optimal policies for the respective MDPs. Then, ifR is a bounded reward function ∀(s,a) r(s, a) ∈
[0, 1] and with εEstim being the estimation error and

εRealise , min
µ∈C(Ms)

‖µ∗ − µ‖1

the realisability gap. Then, the performance gap is given by,

||V ∗µ∗ − V π̂µ∗ ||∞ ≤
3(εEstim + εRealise)

(1− γ)2
. (6)

For the full proof, see Appendix A.1. This result is comparable to recent results such as [ZSKP20]
but here with an explicit decomposition into model estimation error and realisability gap terms.
Remark 1 (Bound on L1 Norm Difference in the Realisable Setting). It is known [SL05, AJO08,
QFPL20] that in the realisable setting, it is possible to bound the model estimation error term εEstim

via the following argument. Let µ∗ be the true underlying MDP, and µ̂ be an MLE estimate of µ∗, as
defined in Theorem A.1. IfR is a bounded reward function, i.e. r(s, a) ∈ [0, 1],∀(s, a), and εEstim is
upper bound on the L1 norm between T ∗ and T̂ . If ns,a be the number of times (s, a) occur together,
then with probability 1− SAδ,

||T ∗ − T̂ ||1 ≤ εEstim ≤
∑
s∈S

∑
a∈A

√
2 log

(
(2S − 2)/δ)

)
ns,a

.

From this, it can be said that the total L1 norm then scales on the order of
O(SA

√
S + log(1/δ)/

√
T ).

This result is specific to tabular MDPs. In tabular MDPs, the maximum likelihood estimate coincides
with the empirical mean model. Further details are in Appendix A.2.
Remark 2 (Performance Gap in the Realisable Setting). A trivial worst-case bound for the realisable
case (Section 3) can be obtained by setting εRealise = 0 because by definition of the realisable case
µ∗ ∈ C(Ms).

B A Meta-Algorithm for MLEMTRL under Non-realisability

To guarantee good performance even in the non-realisable setting, we can proceed in two steps. First,
we can add the target task to the set of source tasks. Second, we can construct a meta-algorithm,
combining the model estimated by MLEMTRL and the empirical estimation of the target task. In this
section, we propose a meta-algorithm based on the latter. We illustrate it in Algorithm 2.

The main change in Algorithm 2 compared to Algorithm 1 is internally keeping track of the empirical
model, and in Line 8, computing a posterior probability distribution over the respective models by
weighting the two likelihoods together with their respective priors. The resulting algorithm then
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Algorithm 2 Meta-MLEMTRL
1: Input: prior p, weights w0, m source MDPsMs, data D0, discount factor γ, iterations T .
2: for t = 0, . . . , T do
3: // STAGE 1: OBTAIN MODEL WEIGHTS //
4: wt+1 ← MLEMTRL(wt,Ms,Dt, γ, 1)
5: Estimate the MDP: µt+1 =

∑m
i=1 wiµi

6: Compute log-likelihood `t+1
MLEM = logP(Dt |µt+1)

7: Compute log-likelihood of empirical model `t+1
Empirical = logP(Dt | µ̂t+1)

8: Sample µ̃t+1 as µt+1 w.p. ∝ p exp
(
`t+1
MLEM

)
and µ̂t+1 w.p. ∝ (1− p) exp

(
`t+1
Empirical

)
.

9: // STAGE 2: MODEL-BASED PLANNING //
10: Compute the policy: πt+1 ∈ arg max

π
V πµ̃t+1

11: // CONTROL //
12: Observe st+1, rt+1 ∼ µ∗(st, at), at ∼ πt+1(st)
13: Update the dataset Dt+1 = Dt ∪ {st, at, st+1, rt+1}
14: end for
15: return An estimated MDP model µ̃T and a policy πT

trades off its bias to the prior based on the choice of prior hyperparameter p. Since asymptotically
the likelihood of the data under the empirical model is greater than the likelihood of the data under
the MLEM-estimated model, as more and more data is collected the Meta-MLEMTRL algorithm
performs similarly to the optimal planning using the empirical estimate. This is intended behaviour
and allows for the algorithm to asymptotically plan optimally even in the non-realisable setting.

We experimentally study the behaviour of Meta-MLEMTRL and its dependence on the prior parameter
p in the next section.

C Detailed Proofs

C.1 Proof of Theorem A.1

Proof of Theorem A.1. We begin by introducing the appropriate definitions and lemmas.

Definition 1 (ε-homogeneity). Given two MDPs µ1 = (S,A,R, T1, γ) and µ2 = (S,A,R, T2, γ)
we say µ2 is a ε-homogenous partition of µ1 with respect to Lk norm if

∀a ∈ A
( ∑
s′∈S

(∑
s∈S
T1(s, a, s′)− T2(s, a, s′)

)k) 1
k ≤ ε. (7)

Note that this definition of ε-homogeneity is a special case of Definition 3 [EDM03], where the
reward functions and state spaces are taken to be identical. We will only study partitions with respect
to the L1 norm between transition probabilities.

Lemma C.1 (Lemma 3 [EDM03]). Let µ2 be an ε-homogenous partition of µ1, then, with respect to
L1 norm, an arbitrary policy π in µ2 induces an ε

(1−γ)2−optimal policy in µ1.

||V πµ1
− V πµ2

||∞ ≤
ε

(1− γ)2
. (8)

Lemma C.2 (Lemma 4 [EDM03]). Let µ2 be an ε-homogenous partition of µ1, then, with respect to
L1 norm, the optimal policy in µ2 induces an 2ε

(1−γ)2−optimal policy in µ1.

||V ∗µ1
− V ∗µ2

||∞ ≤
2ε

(1− γ)2
. (9)

Given the assumptions in Theorem A.1 hold true. Then, using the ε−homogeneity definition in
Definition 1, let µ̂ be an εEstim−homogenous partition of µ and µ be an εRealise−homogenous
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partition of µ∗. Under the L1 norm then, we have

∀a ∈ A
( ∑
s′∈S

∑
s∈S
T (s, a, s′)− T̂ (s, a, s′)

)
≤ εEstim, (10)( ∑

s′∈S

∑
s∈S
T ∗(s, a, s′)− T (s, a, s′)

)
≤ εRealise. (11)

Using triangle inequalities we can then bound the L1 norm between the true underlying MDP and the
maximum likelihood estimator,

∀a ∈ A
( ∑
s′∈S

∑
s∈S
T ∗(s, a, s′)− T̂ (s, a, s′)

)
(12)

=
( ∑
s′∈S

∑
s∈S
T ∗(s, a, s′)− T (s, a, s′) + T (s, a, s′)− T̂ (s, a, s′)

)
(13)

≤
( ∑
s′∈S

∑
s∈S
T ∗(s, a, s′)− T (s, a, s′)

)
+
( ∑
s′∈S

∑
s∈S
T (s, a, s′)− T̂ (s, a, s′)

)
(14)

≤ εEstim + εRealise. (15)

Thus, µ̂ is a (εEstim + εRealise)−homogenous partition of µ∗. The next steps involves creating a
bound on the performance gap between the value functions and policies in ||V ∗µ∗ − V π̂µ∗ ||∞. Using
triangle inequalities the performance gap can be expanded further,

||V ∗µ∗ − V π̂µ∗ ||∞ = ||V ∗µ∗ − V π̂µ̂ + V π̂µ̂ − V π̂µ∗ ||∞
≤ ||V ∗µ∗ − V π̂µ̂ ||∞ + ||V π̂µ̂ − V π̂µ∗ ||∞.

(16)

The first term on the right side of the inequality in Eq. 16 can be bounded using Lemma C.2 since π̂
is the optimal policy in µ̂,

||V ∗µ∗ − V π̂µ̂ ||∞ ≤
2(εEstim + εRealise)

(1− γ)2
. (17)

Likewise, the second term in the inequality can be bounded using Lemma C.1,

||V π̂µ̂ − V π̂µ∗ ||∞ ≤
εEstim + εRealise

(1− γ)2
. (18)

Combining these two terms yields us ||V ∗µ∗ − V π̂µ∗ ||∞ ≤
3(εEstim+εRealise)

(1−γ)2 .

C.2 Proof of Remark 1

Proof of Remark 1. The analysis of the concentration of εEstim follows the works of [AJO08,
QFPL20]. Let ∆S be the (S − 1)−dimensional simplex and T ∗s,a ∈ ∆S be the transition ker-
nel for a state-action pair of the true underlying MDP µ∗ and T̂s,a ∈ ∆S a random vector. If T̂s,a is
taken to be the empirical estimate of T ∗s,a then the following lemma can be invoked.

Proposition 1 ([WOS+03]). Let T ∗s,a ∈ ∆S and T̂s,a ∼ 1
ns,aMultinomial(ns,a, T ∗s,a). Then, for

S ≥ 2, δ ∈ [0, 1] and ns,a ≥ 1,

P

(
||T ∗s,a − T̂s,a||1 ≥

√
2S log(2/δ)

ns,a

)

≤P

(
||T ∗s,a − T̂s,a||1 ≥

√
2 log

(
(2S − 2)/δ)

)
ns,a

)
≤ δ. (19)
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The invocation of Proposition 1, with T =
∑
s∈S

∑
a∈A n

s,a yields us a L1 norm bound for the
difference of transition kernels associated with a particular state-action pair s, a. Next, union bounding
over all possible state and action combinations yields us a bound on the total L1 norm.

P

( ⋃
s∈S

⋃
a∈A

(
||T ∗s,a − T̂s,a||1 ≥

√
2 log

(
(2S − 2)/δ)

)
ns,a

))
(20)

≤
∑
s∈S

∑
a∈A

P

(
||T ∗s,a − T̂s,a||1 ≥

√
2 log

(
(2S − 2)/δ)

)
ns,a

)
(21)

≤SAδ. (22)

From this, we have that, with probability 1− SAδ,

||T ∗ − T̂ ||1 ≤ εEstim ≤
∑
s∈S

∑
a∈A

√
2 log

(
(2S − 2)/δ)

)
ns,a

. (23)

The total L1 norm then scales on the order ofO(SA
√
S − log(δ)/

√
T ), which is the final result.

D Details of Planning: RICCATIITERATION

An LQR-based control system is defined by its system matrices [Kal60]. Let ds be the state dimen-
sionality and da be the action dimensionality. Then, A ∈ Rds × Rds is a matrix describing state
associated state transitions. B ∈ Rds ×Rda is a matrix describing control associated state transitions.
The final two system matrices are cost related with Q ∈ Rds × Rds being a positive definite cost
matrix of states and R ∈ Rda × Rda a positive definite cost matrix of control inputs. The transition
model described under this model is given by,

st+1 − st = Ast + Bat. (24)

When an MDP is mentioned in the context of an LQR system in this work, the MDP is the set of
system matrices. Further, the cost (or reward) of a policy π under an MDP µ is

V πµ =

T∑
t=0

s>t Qst + a>t Rat. (25)

Optimal policy identification can be accomplished using [Wil71]. It begins by solving for the
cost-to-go matrix P by,

solve
P

A>PA−P + Q− (A>PB)(R + B>PB)−1(B>PA) = 0.

Then, using P the control input a for a particular state s is

a = −(R + B>PB)−1(B>PA)s. (26)

With some abuse of notation and for compactness, we allow ourselves to write at = −(R +
B>PB)−1(B>PA)st for at ∼ π(st).
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E Additional Experimental Analysis

E.1 Experimental Setup

The experiments are deployed in PYTHON 3.7, with support from SCIPY [VGO+20], STABLE-
BASELINES3 [RHG+21] and ran on a i5-4690k CPU and a GTX-960 GPU. The parameters for the
variations of SAC and PPO are kept to be the default ones.

RL Environments: Chain. A common testbed for RL algorithms in tabular settings is the
Chain [DFR98] environment. In it, there is a chain of states where the agent can either walk
forward or backward. At the end of the chain, there is a state yielding the highest rewards. At every
step, there is a chance of the effect of the opposite action occurring. This is denoted as the slipping
probability. The slippage parameter is also what is used to create the source models, in this case, those
parameters are {0.01, 0.20, 0.50}. For PSRL and MLEMTRL we use a product-NormalGamma prior
over the reward functions. For PSRL, we use product-Dirichlet priors over the transition matrix.

RL Environments: LQR Tasks. We investigate two LQR tasks in the Deepmind Control
Suite [TDM+18], namely dm_LQR_2_1 and dm_LQR_6_2. These environments are continuous state
and actions whereby the task is to control a two joint one actuator and six joint two actuators towards
the center of the platform for the two tasks, respectively. They consist of unbounded control inputs
and rewards with the state spaces s ∈ R4 and s ∈ R12, respectively. In the Deepmind Control suite
every task is made to be different by varying the seed at creation. The seed determines the stiffness of
the joints.

RL Environments: CartPole. We also conduct some experiments on the CartPole [BSA83] envi-
ronment. In this case, we use a continuous control version of it and formulate it as a LQR problem.
The environment has a single continuous action and a state space s ∈ R4. To create different tasks
we vary the environmental parameters of the problem, namely the gravity, mass of cart, mass of pole
the length of the pole.

E.2 Impacts of Realisability

In the experiment depicted in Figure 5, we investigate the convergence rate and the jumpstart
improvement of the MLEMTRL algorithm on 100 independent target MDP realisations at six
different levels of divergence. The divergence is measured from the centroid of the convex hull to the
target MDP. Further, in the topmost row, all of the target MDPs belong to the convex hull of source
models.
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Figure 5: We compare MLEMTRL against PSRL in terms of convergence speed and early perfor-
mance. The value functions of the algorithms are plotted against the log of the number of episodes.
The shaded area is the 68% confidence of the mean over multiple MDPs with the same model
dissimilarity. In the topmost row, all of the true MDPs are within the convex hull C(Ms). In the
bottom row, the MDPs are outside. As you go from top-left to bottom-right, the divergence from the
true model to the average model in the convex hull increases. For utility, higher values are better.
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As we can see, in this setting, identification of the true model occurs rapidly. One reason for this is
because of the near-determinism of the environment. Compared to the agent learning from scratch, we
observe zero-regret with faster convergence. As we go from top-left to bottom-right, the divergence
increases. For the bottom-most row, we can again observe a faster learning rate. In this case, the
degradation in performance increases with the divergence, resulting in poor performance in the final
case. The experiment demonstrates that under the TRL framework, we require that the source models
are not too dissimilar from the target model.
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E.3 Impacts of Multi-Task Learning as a Baseline

In Figure 6 we investigate the performance increase of using multi-task RL and transfer RL compared
to regular RL. The baseline algorithm is Soft Actor-Critic and its associated multi-task and transfer
learning formulations. As we can see, MT-SAC-TRL appears to have overall strongest performance,
with MT-SAC a close second. Because of the nature of the problem (unbounded negative rewards), it
is also possible for the algorithms to diverge during learning, which further strengthens the argument
for using multi-task or transfer learning for robustness.

101 103 105

Time steps

0
100

C
um

ul
at

iv
e 

re
w

ar
d

LQR_2_1 Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e 

re
w

ar
d

LQR_6_2 Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e 

re
w

ar
d

LQR_2_1 Non-Realisable

101 103 105

Time steps

0

100
C

um
ul

at
iv

e 
re

w
ar

d
LQR_6_2 Non-Realisable

SAC MT-SAC MT-SAC-TRL

Figure 6: Figure depicting the performance boost of using multi-task and transfer reinforcement
learning compared to standard reinforcement learning. The y-axis represents average cumulative
reward at every time step and the shaded region is the standard error.

19



E.4 Model-based Transfer Reinforcement Learning with Known Reward Function

In Figure 7, we aim to contrast the difference from the figure in the main paper where now the reward
function is known a priori to MLEMTRL and PSRL.
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Figure 7: Performance of MLEMTRL, the meta algorithms, and the baselines for the case with known
reward function in Chain. The y-axis is the average cumulative reward at every time step and the
shaded region is the standard error.
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