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Abstract

Long-horizon robotic manipulation tasks typically involve a series of interrelated
sub-tasks spanning multiple execution stages. Skill chaining offers a feasible
solution for these tasks by pre-training the skills for each sub-task and linking
them sequentially. However, imperfections in skill learning or disturbances during
execution can lead to the accumulation of errors in skill chaining process, resulting
in execution failures. In this paper, we investigate how to achieve stable and smooth
skill chaining for long-horizon robotic manipulation tasks. Specifically, we propose
a novel skill chaining framework called Skill Chaining via Dual Regularization
(SCaR). This framework applies dual regularization to sub-task skill pre-training
and fine-tuning, which not only enhances the intra-skill dependencies within each
sub-task skill but also reinforces the inter-skill dependencies between sequential
sub-task skills, thus ensuring smooth skill chaining and stable long-horizon ex-
ecution. We evaluate the SCaR framework on two representative long-horizon
robotic manipulation simulation benchmarks: IKEA furniture assembly and kitchen
organization. Additionally, we conduct a simple real-world validation in tabletop
robot pick-and-place tasks. The experimental results show that, with the support of
SCaR, the robot achieves a higher success rate in long-horizon tasks compared to
relevant baselines and demonstrates greater robustness to perturbations.

1 Introduction

Long-horizon robotic manipulation tasks are characterized by sequences of diverse and interdependent
sub-tasks, which makes it crucial to maintain the stability of multi-stage sequential execution. For
instance, in the robotic assembly of a stool (Fig. 1) involving two sub-tasks of leg installation, overall
success is evaluated based on both the sequential installation success and factors affecting the assembly
within environmental constraints. Although recent advances in deep reinforcement learning (RL) and
imitation learning (IL) show promise in training robots for such complex tasks [1, 2, 3, 4, 5, 6, 7],
managing long-horizon tasks with a scratch RL or IL policy remains challenging due to computational
demands, extensive exploration, and intricate step dependencies [8, 9]. Skill chaining, which involves
decomposing long-horizon tasks into smaller sub-tasks, pre-training skills for each, and executing
them sequentially, offers a practical solution [10, 11]. However, as shown in Fig. 1(a)(b), such
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Figure 1: Illustration of the problem setting and the motivation of SCaR, using the example of a stool
assembly task with two sub-tasks. Best viewed when zoomed in.

methods tend to fail when sub-task skills are insufficiently trained or unexpected states arise due
to disturbances, especially when applied to high-degree-of-freedom robots performing contact-rich,
long-horizon tasks. [12, 13, 14, 15, 16, 17].

In this paper, we argue that the coordination and enhancing of dependencies within and between sub-
task skills is necessary for stable and smooth skill chaining of long-horizon robotic manipulation [10].
For instance, as depicted in Fig. 1 (a)(b), the robot must consider following two points to ensure the
overall task is accomplished: 1) ensuring the gripper consistently grasps and installs the stool leg
stably within each sub-task skill range. and 2) ensuring the terminal state of previous skill aligns with
the initial state of next skill for smooth skill chaining. We define the above two points as intra-skill
dependencies between sequential actions within each sub-task skill and inter-skill dependencies
between sequential sub-task skills, respectively. In this context, we propose a novel robotic skill
chaining framework, Skill Chaining via Dual Regularization (SCaR). This framework enhances the
aforementioned dependencies alternately through dual regularization during sub-task skill learning
and chaining, aiming to provide stability for the execution of long-horizon robotic manipulation.

Specifically, in the pre-training phase of each sub-task skill, we propose the adaptive sub-task skill
learning shceme, which employs a two-part policy learning objective that focuses on what sub-tasks
the robot should perform (via RL) and how the robot should perform that task (via IL), and utilizes
a novel adaptive equilibrium scheduling (AES) regularization to balance these two parts based on
the robot’s learning progress. This process aims to reinforce the intra-skill dependencies, ensuring a
coherent sequence of actions in each sub-task skill. Subsequently, bi-directional adversarial learning
is introduced in the fine-tuning phase of SCaR for better chaining sequential sub-task skills. This
mechanism uses bi-directional regularization to bring the terminal state of the current skill close to the
initial state of its successor, and also to bring the initial state of the successor close to the terminal state
of the current skill. This bi-directional alignment aims to reinforce robust inter-skill dependencies
between sequential skills. Through the two innovative designs described, SCaR ensures coordination
between the intra-skill and inter-skill dependencies, provides dual constraints for skill learning and
skill chaining, as described in Fig. 1 (c), leading to a smooth skill chaining from the inside (within the
sub-task skills) to the outside (between sub-task skills). Experimental results show that compared
to scratch-training and skill chaining baselines, SCaR provides better task execution performance
and stronger robustness to environmental perturbations in various long-horizon and contact-rich
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robotic manipulation simulation tasks. In addition, we conduct a simple validation in real-world
tabletop robot pick-and-place tasks, and the results show that SCaR achieves a higher task success
rate compared to previous skill-chaining methods.

The principal contributions of our work are delineated as follows: 1) We propose a novel robotic skill
chaining framework via dual regularization, SCaR, for smoothly executing long-horizon manipulation
tasks. 2) We introduce an adaptive sub-task skill learning scheme that acts as a regularization to
enhance intra-skill dependencies between sequential actions within each sub-task skill. 3) We develop
a bi-directional adversarial learning mechanism that serves as a regularization for reinforcing inter-
skill dependencies between sequential sub-task skills. 4) In all eight simulated long-horizon robotic
manipulation tasks and simple real-world pick-and-place tasks, SCaR demonstrates significantly
better performance than scratch-training and skill-chaining baselines. Video demonstrations are
available at: https://sites.google.com/view/scar8297.

2 Related Work

2.1 Long-horizon Robotic Manipulation

Training robots from scratch for complex, long-horizon tasks using reinforcement learning (RL)
and imitation learning (IL) is challenging due to computational demands and distributional errors.
Solutions involve decomposing tasks into reusable sub-tasks [18]. Typically, such algorithms con-
sist of a set of sub-policies that can be obtained through various methods, such as unsupervised
exploration [19, 20, 21, 22, 23], learning from demonstrations [5, 6, 24, 25], and predefined mea-
sures [26, 27, 28, 29, 14]. Despite the merits of each of these approaches, they do not address well
the challenges of long-horizon robot manipulation in environments that are object-rich, contact-rich,
and characterized by multi-stage tasks [28, 29, 14]. Thus, even when pre-trained skills are provided,
ensuring a smooth connection between manipulation policies remains a formidable challenge.

2.2 Skill Chaining for Long-horizon Tasks

Previous skill chaining methods for long-horizon tasks mainly focus on updating each sub-task
policy to encompass the terminal state of the previous policy [11, 14, 30], implementing option
chains [11, 31, 32] to forge logical skill sequences, or utilizing modulated skills to facilitate smoother
transitions [33, 34, 35, 36, 14, 16]. However, these methods, while effective, often lead to a broad
range of skill start and end states, a challenge in complex robotic manipulation tasks. T-STAR [15] is
closely related to our work, addressing this by regularizing the learning process with a discriminator
to control the expansion of the terminal state space. However, it focuses only on uni-directional
dependencies between skills and ignores intra-skill dependencies within sub-task skills under long-
horizon goals. Sequential Dexterity [17] centers on dexterous hand manipulation, introducing an
optimization process to backpropagate long-term rewards across a policy chain. However, its scope
still primarily emphasizes strengthening the dependencies between sub-task skills. GSC [37] attempts
to solve skill chaining by employing diffusion models. It trains and chains primitive skills (pick,
place, push, pull) through a Transformer-based skill diffusion model. However, due to the use of
Transformer-based techniques, GSC requires high computational resources and cannot scale well to
task environments with object-rich and contact-rich conditions. Our method instead employs simple
and intuitive dual regularization constraints based on the lightweight policy network. By coordinating
the dependencies within and between skills, we achieve refinement within sub-task policies and
bi-directional alignment between them. This allows for stable skill chaining while also being scalable
to various long-horizon manipulation tasks.

3 Preliminaries

Among several related works on skill chaining, we consider a challenging yet practical problem
setting that deals with long-horizon manipulation tasks through a combination of reinforcement
learning (RL) and imitation learning (IL). In each sub-task in the long-horizon task, we consider
robotic agents acting within a finite-horizon Markov Decision Process [38] (S,A,P, r, γ, dI , T ),
where S is the state space, A is the action space, P(s′|s, a) is the transition function, r(s, a, s′) is
the reward function, γ is the discount factor, dI is the initial state distribution, and T is the episode
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Figure 2: The Pipeline of Skill Chaining via Dual Regularization (SCaR). (Left) Phase 1: Sub-task
skill pre-training ( ) merges environmental feedback and expert guidance, using adaptive
equilibrium scheduling (AES) regularization to balance learning, which enhances intra-skill depen-

dencies within skills. (Middle) Phase 2: Bi-directional discriminators ( ) coupled with AES to
fine-tune pre-trained sub-task skills, as regularization for reinforcing inter-skill dependencies. (Right)
Evaluation: Evaluation of SCaR on long-horizon manipulation.

horizon of sub-task. We define a policy π : S → A that maps states to actions and correspondingly
moves the robotic agent to a new state according to the transition probabilities. This sub-task policy is
trained to maximize the expected sum of discounted rewards E(s,a)∼π[

∑T
t=1 γ

tr(st, at, st+1)]. We
assume that each sub-task policy has an initial state set I ∈ S and a terminal state set β ∈ S, where
the initial set I contains all the initial states that lead to the successful execution of the policy and
the terminal state set β contains all the final states of the successful execution. The environment
provides the environmental feedback for each step taken by the agent and success metrics for each
sub-task, derived from the terminal states of sub-task policy. For instance, as shown in Fig. 1(c),
the alignment of the back and legs of the stool triggers the connect action and the realization of the
sub-task goal, which indicates the successful completion of the sub-task. Additionally, we posit that
during each sub-task policy learning, the agent receives a set of pre-defined expert demonstrations,
DE = {τE1 , . . . , τEN }, to facilitate the IL process. Here, N represents the number of episodes, and
each demonstration comprises a sequence of state-action pairs, τE = (s1, a1, . . . , sT−1, aT−1, sT ).

4 Method

In Section 4.1, we present the pipeline of the SCaR framework. Sections 4.2 and 4.3 provide further
elaboration on the key design elements.

4.1 Overall Pipeline

As illustrated in Fig. 2, the SCaR framework has two phases: (a) pre-training (adaptive sub-task
skill learning) and (b) fine-tuning (bi-directional adversarial learning). In the pre-training phase,
the agent co-learns sub-task skills by integrating environmental feedback and expert demonstrations.
In the fine-tuning phase, it refines these skills through bi-directional adversarial learning, enabling
sequential integration of sub-task skills. After fine-tuning, SCaR can smoothly chain sub-task skills
to complete long-horizon manipulation tasks. Specific modules and mechanisms for these phases are
detailed in Sections 4.2 and 4.3.

4.2 Adaptive Sub-task Skill Learning

Weighted Reward Function To learn sub-task skills better, we combine goal-conditional RL and
generative adversarial imitation learning (GAIL) [39], to pre-train skills that enable the agent to
perform challenging sub-tasks in a desired expert behavioral style [40, 15]. More specifically, we
consider the weighted reward function that is used to train each sub-task policy πθ

i consists of two
components specifying: what sub-task the agent should perform - learning from environmental
feedback, and 2) how the agent should perform that task - learning from expert demonstrations:

r(st, at, st+1;ϕ) = λRLr
Env
i (st, at, st+1, g) + λILr

Pred
i (st, at;ϕ). (1)
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As shown in Eq. 1, the first component is represented by a task-specific reward rEnv
i (st, at, st+1, g),

which defines general objectives that the agent should satisfy to fulfill a given sub-task goal g for
current MDPM (e.g. assembling a stool leg). The second component is represented through a learned
task-agnostic predict-reward rPred

i (st, at;ϕ), which specifies manipulation details of the behaviors
that the agent should adopt when performing the sub-task (e.g., the expert way to grab a stool leg
and attach it), and rPred

i (st, at;ϕ) is the predicted reward by a least-square GAIL discriminator
f i
ϕ [41, 40, 15], which is more stable than the standard GAIL objective using the sigmoid cross-

entropy loss function. Therefore, the predicted reward is:

rPred
i (st, at;ϕ) = max[0, 1− 0.25 · [f i

ϕ(st, at)− 1]2]. (2)

We adopt the training objective of the least-squares GAIL discriminator [41] with a gradient penalty
term [42, 43], This penalty term mitigates the instability of the training dynamics due to the interplay
between the discriminator and the policy [40], as follows:

argminfi
ϕ
E(s)∼DE [(f i

ϕ(s)− 1)2] +E(s)∼πi
θ
[(f i

ϕ(s) + 1)2] +
ηgp

2
E(s)∼DE [∥∇sf

i
ϕ(s)∥2], (3)

where ηgp is a manually-specified coefficient. The scales of rEnv and rPred in previous related
works are set by fixed weights and linearly combined into the final reward function [40, 15]. This
could lead to the agent rigidly imitating experts and curbing self-exploration, finding it difficult to
adjust intra-skill dependencies and adapt to dynamic task perturbations. We propose a principle to
counter this: If the agent fails to imitate the expert’s demonstration well, it should shift focus to
self-learning from the environment. Conversely, effective imitation should continue, focusing on
the expert to mitigate low sample efficiency in reinforcement learning. Accordingly, we extend
the automatic discount scheduling (ADS) solution [9] to our problem setting, and propose adaptive
equilibrium scheduling (AES) to regularize the scales of rEnv and rPred in sub-task skill learning for
adaptive scheduling the focus of reinforcement and imitation learning, as shown in Fig. 3.

Adaptive Equilibrium Scheduling (AES) Regularization Specifically, AES balances the scales of
rEnv and rPred during the learning process of each skill through adaptive scheduling of λRL and λIL,
according to how well the agent imitates the expert’s demonstration. To capture the agent’s imitation
progress, AES refers to the solution in ADS [9] and uses the imitation identifier Φ to continuously
monitor whether the agent is imitating the expert demonstration well enough.

Expert
demos

Environment

Action

AES
Monitor

Scheduling

Scheduling

Figure 3: AES regularization for sub-
task skill learning.

At the beginning of training, the agent is assigned two
initial balance factors λRL = α, λIL = 1− α, where base
exponent α ∈ [0, 1]. We set α = 0.5 in the experiments
and the agent is assigned two identical balance factors
λRL = λIL = 0.52, indicating that at the beginning of
learning, the agent imitates the expert’s behavior with the
same weight as the behavior of environment exploration
according to the task goal. As training progresses, the
imitation progress recognizer Φ is queried periodically to
monitor the progress of the agent’s imitation of the expert’s
behavior. Φ receives the agent’s collected trajectories and
infers the agent’s current imitation progress p ∈ [0, T ),
where p in an integer and T is the step of the entire episode.

The construction of Φ, with reference to ADS, first
requires the construction of a sequence Q(q1, . . . , qT ),
where qi = argminjc(si, s

E
j ) is the index of the near-

est neighbor of si in τE , c is the cosine similarity. The
progress alignment between τ and τEj is measured as the length of the longest increasing subsequence
(LIS) in Q, denoted as LIS(τ, τE). Specifically, the agent’s imitation progress p is increased by 1 if
the following inequality holds:

max
τ́E∈DE

LIS(τ1:p+1, τ́
E
1:p+1) ≥ ρ× min

τ́E ,´́τE∈DE

LIS(τ́E1:p+1,
´́τE1:p+1), (4)

where τ́E ̸= ´́τE , the subscript 1 : p+ 1 denotes the first p+ 1 steps of the trajectory, and ρ ∈ [0, 1]
controls the strictness of the imitation progress monitoring. This suggests that the similarity of the

2We further explore what effect different α would have in the Ablation Experiments.
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agent trajectory to its best matching expert trajectory at time step p+1 exceeds the minimal similarity
criterion within the expert demonstration. See Appendix B for detailed explanation of AES.

After obtaining the current imitation progress p of the agent, AES then adopts a mapping function
φλ(p) to schedule the two new balance discount factors λRL and λIL. Straightforward idea of setting
φλ(p) is that If p is larger and reaches a certain threshold, i.e., the agent is able to imitate
the expert behavior well, then the more the agent tends to imitate the expert’s behavior in
subsequent training, and vice versa. Therefore, we set the threshold as T

2 . If p ∈ [0, T
2 ), we

propose φλ(p) = 1 − e(−
p
k ); if p ∈ [T2 , T ), we propose φλ(p) = e

(
−

p−T
2

k

)
, where k is used to

flatten the curve of the mapping function. Then λRL and λIL are scheduled to be :{
λRL = αφλ(p), λIL = 1− αφλ(p). if p ∈ [0, T

2 )

λIL = αφλ(p), λRL = 1− αφλ(p). if p ∈ [T2 , T )
(5)

Consequently, the RL and IL components of sub-task skill learning can be adaptively scheduled and
regularized through AES, effectively enhancing intra-skill dependencies between sequential actions.
The pseudo-code of adaptive sub-task skill learning is outlined in Algorithm 1 in Appendix A.1.

4.3 Bi-directional Adversarial Learning for Skill Chaining

Executing pre-trained sub-task skills sequentially without considering inter-skill dependencies may
lead to failure. To address this, we propose bi-directional adversarial learning to further refine and
better integrate sequential sub-task skills. The pseudo-code of bi-directional adversarial learning is
outlined in Algorithm 2 in Appendix A.2.

Bi-directional Regularization In contrast to previous uni-directional regularization schemes that
only augment the initial state set Ii or regularize the terminal state set βi [12, 15], we impose the
bi-directional constraints (C1,C2) on inter-skill dependencies, facilitating smooth skill chaining, as
shown in Fig 4. With the bi-directional constraint, we implement the bi-directional adversarial
learning, centered on the joint training of a bi-directional discriminator, denoted by ζiω , which is
adept at distinguishing between the terminal state set of the preceding policy and the initial state set
of the subsequent policy. The bi-directional constraints C1,C2 are defined as Eq. 10:

next initial→ current terminal: C1 = EsI∼Ii+1 [ζ
i
ω1
(sI)− 1]2 + EsT∼βi [ζ

i
ω1
(sT )]

2

previous terminal→ current initial: C2 = EsT∼βi−1
[ζiω2

(sT )− 1]2 + EsI∼Ii
[ζiω2

(sI)]
2

(6)

“pull” to previous sets “push” to next sets

“pull” to previous sets

“push” to next sets

“push” to next sets

“pull” to previous sets

uni-directional

bi-directional (ours)

Figure 4: Bi-directional regularization
for sub-task skill chaining.

ζiω1
and ζiω2

are two separate networks, each used to
minimize the adversarial learning process in two differ-
ent directions, and the parameters of the two networks
are averaged and combined into ζiω. In summary, ζiω is
trained for each policy to minimize the objective func-
tion3:Li(ω) =

1
2C1+

1
2C2. Guided by ζiω , the bi-directional

adversarial learning not only steers the terminal state set
of the current policy towards the initial state set of the
subsequent policy, but also ensures alignment of the ini-
tial state set of the subsequent policy with the terminal
state set of current policy. This dual alignment estab-
lishes a balanced mapping between the initial and ter-
minal states of sequential skills to reinforce inter-skill
dependencies, ensure consistency and stability in multi-
stage tasks, and guarantee smooth transitions between
sequential skills. Accordingly, the bi-directional regular-
ization can be added to the overall objective function of
policy learning in the form of the following reward term:
rBi
i (s;ω) = 1s∈βi

ζi+1(s) + 1s∈Ii
ζi−1(s).

Overall Objective Function So far, the objective function via dual regularization, i.e., AES
regularization and bi-directional regularization, to pre-train, fine-tune and chain sub-task skills can be

3We explore the impact of different scales of C1 and C2 in Appendix D.3

6



rewritten as a weighted sum of the individual reward terms:

ri(st, at, st+1;ϕ) =λRLr
Env
i (st, at, st+1, g) + λILr

Pred
i (st, at;ϕ)︸ ︷︷ ︸

AES regularization

+ λBir
Bi
i (st+1;ω)︸ ︷︷ ︸

bi-directional regularization

,
(7)

where λRe is the weighting factor of the bi-directional regularization. The objective function features
AES regularization and bi-directional regularization to enhance intra- and inter-skill dependencies.
It enables the agent to adaptively pre-train skills that can solve different sub-tasks well through
environmental feedback and expert guidance, and further fine-tune them through the bi-directional
discriminator to achieve dual alignment between sequential skills. At the same time, the fine-tuned
sub-task skills help to collect terminal and initial states to refine the bi-directional discriminator. This
iterative process ensures smooth long-horizon task skill chaining.

5 Experiments

5.1 Experiment Setup

We conduct simulation experiments on six IKEA furniture assembly tasks and two kitchen organi-
zation tasks, and also perform long-horizon pick-and-place experiments on the real Sagittarius K1
robot. Please refer to the Appendix for more detailed simulation experiment setup (Appendix G),
network architecture (Appendix H), training details (Appendix I), more quantitative (Appendix D) and
qualitative results (Appendix E) of the simulation tasks, and the real-robot experiments (Appendix F).

Furniture Assembly We conduct experiments in six IKEA furniture assembly tasks in [44]:
chair_agne, chair_bernhard, chair_ingolf, toy_table, table_lack and table_bjorkudden.

1) chair_agne: Two stool legs need to be picked up and aligned with the cross notches on the stool
back. 2) chair_bernhard: The two chair supports need to be taken and aligned with the slots at the
bottom of the chair surface. 3) chair_ingolf : Two chair supports and front legs need to be attached to
the chair seat, which must then be secured to the chair back while avoiding collision with each other.
4) table_lack: The four table legs need to be picked up and aligned with the corners of the tabletop. 5)
toy_table: The four table legs need to be picked up and aimed and inserted with the four notches on
the table back. 6) table_dockstra: After supporting the two bases with table leg, the table top needs to
be mounted while preventing collision. For each assembly task, we define the assembly of individual
parts as sub-tasks. We collect 200 demonstrations per sub-task using a procedural assembly policy
for imitation learning. Each demonstration consists of 150 steps.

Kitchen Organization We use the Franka Kitchen tasks in D4RL [45] and collect 200 demonstra-
tions per sub-task for imitation learning. Specifically, we refer to the kitchen task in [46] and further
extend the task sequence: in the Kitchen task, the 7-DoF Franka Emika Panda arm needs to perform
4 sequential sub-tasks, namely Turn on the microwave - Move the kettle - Turn on the stove - Turn on
the light. In the Extended Kitchen task, the robot needs to perform 5 sequential sub-tasks: Turn
on the microwave - Turn on the stove - Turn on the light - Slide the cabinet to the right - Open the
cabinet, in which the sub-tasks have a lower probability of switching and is more challenging.

Baselines We compare SCaR with the following two types of baselines:

Scratch Training: 1) PPO is a model-free RL algorithm [47] that utilizes environmental rewards
to learn tasks from scratch. 2) GAIL [39] is an adversarial imitation learning method to learn tasks
from scratch, with a trained discriminator for distinguishing state-action distributions of experts and
agents. 3) Fixed-RL-IL [40] uses fixed-weight environmental rewards and GAIL rewards to train
policies from scratch. 4) SkiMo [46] is a model-based hierarchical RL approach that learns dynamic
skill models for predicting outcomes in downstream tasks, which is used to test if modularly skill
chaining method can surpass model-based scratch-training method on long-horizon tasks.

Skill Chaining: 1) Policy Sequencing [12] focuses on sequentially expanding the initial sets
in skill chaining. 2) T-STAR [15] incorporates a discriminator to uni-directionally regularize the
terminal states of sub-skills in a skill chaining. 3) SCaR w/o Bi reference to T-STAR during the
fine-tuning phase, only uni-directional regularization of the terminal state set is performed to verify
the validity of the proposed bi-directional regularization. 4) SCaR w/o AES fixes the scales of the
two reward terms at 0.5 at all times to verify the effectiveness of the proposed AES regularization.
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Figure 5: Evaluation Performance of Sub-task Skill Learning. Best viewed zoomed.

Table 1: Long-horizon tasks execution performance (varies by sub-task completion progress): *tasks
with 2 sub-tasks progress by 0.5 per sub-task, *tasks with 4 sub-tasks by 0.25, *tasks with 5 sub-tasks
by 0.2, and table_dockstra with 3 sub-tasks by 0.3, where 0.9 indicates completion of all tasks. Best
viewed zoomed.

Furniture Assembly Kitchen Organization

Method chair_agne chair_bernhard chair_ingolf table_lack toy_table table_dockstra All Kitchen E-Kitchen All

PPO (Scratch RL) 0.54± 0.18 0.42± 0.12 0.14± 0.03 0.09± 0.01 0.00± 0.00 0.31± 0.12 0.25± 0.15 0.13± 0.05 0.03± 0.00 0.08± 0.04

GAIL (Scratch IL) 0.31± 0.05 0.23± 0.02 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.21± 0.04 0.12± 0.09 0.00± 0.00 0.00± 0.00 0.00± 0.00

Fixed-RL-IL 0.68± 0.12 0.53± 0.07 0.22± 0.08 0.21± 0.11 0.13± 0.02 0.43± 0.07 0.37± 0.15 0.33± 0.06 0.18± 0.02 0.26± 0.06

SkiMo 0.75 ± 0.09 0.62± 0.05 0.47 ± 0.03 0.58 ± 0.14 0.34 ± 0.06 0.62 ± 0.11 0.56 ± 0.11 0.57 ± 0.08 0.21 ± 0.04 0.39 ± 0.13

Policy Sequencing 0.89 ± 0.08 0.82 ± 0.09 0.77 ± 0.12 0.63 ± 0.28 0.45 ± 0.18 0.61 ± 0.14 0.70 ± 0.16 0.53 ± 0.11 0.36 ± 0.09 0.44 ± 0.09

T-STAR 0.92 ± 0.02 0.90 ± 0.04 0.89 ± 0.04 0.90 ± 0.07 0.71 ± 0.21 0.77 ± 0.09 0.85 ± 0.09 0.68 ± 0.13 0.48 ± 0.08 0.58 ± 0.10

SCaR w/o Bi 0.93 ± 0.04 0.92 ± 0.02 0.91 ± 0.01 0.93 ± 0.02 0.80 ± 0.10 0.79 ± 0.02 0.88 ± 0.05 0.75 ± 0.08 0.57 ± 0.14 0.66 ± 0.09

SCaR w/o AES 0.95± 0.03 0.94± 0.03 0.93± 0.02 0.95± 0.04 0.85± 0.06 0.80± 0.03 0.91± 0.05 0.77± 0.07 0.61± 0.13 0.74± 0.05

SCaR (Ours) 0.98± 0.02 0.96± 0.04 0.95± 0.03 0.97± 0.03 0.92± 0.05 0.88± 0.02 0.94 ± 0.03 (12% ↑) 0.84± 0.16 0.73± 0.17 0.78± 0.12 (18% ↑)

5.2 Quantitative Results

Sub-task Skill Learning Performance First, we evaluate the proposed adaptive sub-task skill
learning scheme in the sub-tasks of furniture assembly and kitchen organization. Specifically, we
treat each sub-task as a separate task for policy learning and take the success rate of the trained
policy tested in the reset sub-task as the criterion. All methods are trained in each sub-task with 5
random seeds, 150 million environment steps, and evaluated with the average success rate over 100
testing episodes. As shown in the Fig. 5, in chair_ingolf and Extended Kitchen tasks, even with the
increase of objects in the environment and the increase of unpredictable perturbations, our proposed
adaptive skill learning learns good sub-task skills and consistently maintains a task success rate of
more than 85% in all stages of the sub-task. In contrast, the PPO (only RL rewards), GAIL (only IL
rewards), and Fixed-RL-IL (fixed RL and IL reward weights) baselines fail to maintain good sub-task
success rates as the number of sub-task stages increases. This result well validates that our proposed
adaptive weighted reward function based on AES regularization enhances intra-skill dependencies
for multi-stage sub-task learning and brings effectiveness and stability.

Long-horizon Execution Performance We then demonstrate the performance of SCaR in perform-
ing 8 long-horizon tasks in IKEA furniture assembly and kitchen organization. Table 1 shows the
mean and standard deviation for these 8 tasks across 200 testing episodes with 5 different seeds. The
PPO and GAIL baselines show minimal success on tasks with 4 and 5 sub-tasks, indicating the diffi-
culty of learning complex multi-stage tasks solely from reward signals or expert demonstrations. The
fixed RL-IL baseline, although improved compared to PPO and GAIL, mostly completed only one
sub-task, which highlights the limitations of using fixed RL and IL reward weights in long-horizon
tasks. While SkiMo achieves better success rates than model-free methods by building dynamic skill
models, its performance remains inconsistent on long-horizon tasks due to its scratch learning nature.
The performance of these scratch baselines demonstrates the importance of effective staged sub-task
learning for long-horizon tasks. The results in Table 1 further highlight the superiority of the SCaR
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framework. By reinforcing intra- and inter-skill dependencies, task success rates are considerably
higher than previous skill chaining approaches such as Policy Sequencing and T-STAR, which primar-
ily address uni-directional inter-skill dependencies. Compared to T-STAR, SCaR increases average
success rates by more than 12% on six furniture assembly tasks and 18% on two kitchen tasks.4.

5.3 Robustness to Perturbations

Table 2: Comparison of the robustness of skill chaining
in perturbed environments.

Perturbation Perturbation

chair_bernhard chair_ingolf

Method No Perturb Perturb No Perturb Perturb

Policy Sequencing 0.82 ± 0.09 0.51 ± 0.04 0.77 ± 0.12 0.50 ± 0.10

T-STAR 0.90 ± 0.04 0.60 ± 0.08 0.89 ± 0.04 0.59 ± 0.04

SCaR w/o Bi 0.92 ± 0.02 0.65 ± 0.11 0.91 ± 0.01 0.63 ± 0.05

SCaR w/o AES 0.94 ± 0.03 0.74 ± 0.09 0.93 ± 0.02 0.71 ± 0.07

SCaR (Ours) 0.96 ± 0.04 0.85 ± 0.11 0.95 ± 0.03 0.80 ± 0.13

Perturbation tests are conducted to evaluate
the robustness of skill chaining for two fur-
niture assembly tasks. As shown in the top
figure of Table 2, for the chair_bernhard
task, the perturbation involves applying ex-
ternal joint torque to the robotic arm, mov-
ing the chair back before assembling the
second support. For the chair_ingolf task,
the perturbation is applied by exerting ex-
ternal torque on the robotic arms, causing
them to move slightly before mounting the
assembled chair seat to the chair back. The
results in Table 2 highlight the detrimen-
tal impact of environmental perturbations
on the success rates of baseline methods
during the execution of multiple sub-task
skills. Methods like Policy Sequencing and T-STAR, which focus solely on inter-skill dependencies
through uni-directional regularization, struggle to complete tasks after perturbations. In contrast,
SCaR, demonstrates more robust performance even under unseen perturbations. These results further
support the advantages of our proposed dual regularization for stable skill chaining on long-horizon
manipulation tasks.

5.4 Ablations and Analysis

We perform ablation studies to explore the important factors that affect the performance of SCaR.

(a) (b)

Figure 6: Ablation experiments.

Modular Ablation We investigate how the adaptive sub-task skill learning and bi-directional
adversarial learning impact skill chaining through SCaR w/o Bi and SCaR w/o AES. As shown in
Table 1, without bi-directional regularization, SCaR w/o Bi experiences significant performance
drops in tasks with more than two sub-tasks but still outperforms T-STAR. This is because SCaR
w/o Bi maintains the adaptive scheduling of AES during sub-task skill learning, underscoring the
importance of focusing on the intra-skill dependencies between successive actions. Similarly, the
absence of AES regularization reduces SCaR w/o AES’s performance, though it still maintains stable

4The overall increase is somewhat modest due to averaging the success rates of the 2, 3, and 4 sub-tasks and
the 4 and 5 sub-tasks, respectively.
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outcomes. This underscores the importance of reinforcing inter-skill dependencies on long-horizon
tasks and reaffirms the contribution of bi-directional regularization. As shown in Table 2, SCaR w/o
Bi, though slightly more robust than T-STAR due to the presence of AES, still faces challenges in
adapting to perturbations and maintaining stable skill chaining because of its uni-directional fine-
tuning limitations. SCaR w/o AES manages to maintain a certain level of performance stability under
perturbations, thanks to bi-directional regularization, which ensures the bi-directional alignment of
initial and terminal states between skills. The results show that the pre-trained skills via AES exhibit
enhanced intra-skill dependencies within sub-tasks, and bi-directional regularization ensures stable
long-horizon execution, even in the presence of perturbations, by reinforcing inter-skill dependencies.

Parametric Ablation We further investigate the impact of different scales of RL and IL reward
terms, as well as the size of expert demonstration datasets. The effect of varying the base exponent
α on task success rates is tested across four tasks: chair_agne, chair_ingolf, table_dockstra, and
extend kitchen. As depicted in Fig. 6(a), SCaR achieves the highest success rates in all four tasks
when α = 0.5, indicating a balance between RL and IL at the beginning of learning. When α
becomes smaller, emphasizing IL at the start, performance decreases more steeply. Conversely, as
α becomes larger, giving more weight to RL, performance also declines but at a slower rate. We
also evaluate the impact of different sizes of expert datasets on three skill chaining methods: Policy
Sequencing, T-STAR, and SCaR, specifically in the chair_ingolf task. We vary the overall task expert
data size from 80, 120, 200, 400, 600, to 800 demos. As shown in Fig. 6(b), the results indicate
significant performance improvement when increasing the dataset size from 400 to 800 demos, while
the improvement is less pronounced when going from 80 to 120 demos. This demonstrates the
importance of the demo dataset size in the effectiveness of data-driven approaches like skill chaining.

6 Discussion

Limitation and future directions The primary limitation of our work is that the sub-task division
for long-horizon tasks is predefined and does not incorporate visual or semantic processing of objects.
Expanding our framework to handle longer-horizon visual manipulation tasks is a direction we aim to
explore in future research. For example, integrating a more scalable architecture [48] and performing
large-scale pre-training on extensive datasets [49, 50] are promising directions. Another avenue
worth exploring is applying our framework to real-world robotic furniture assembly tasks, rather than
only staged pick-and-place tasks. Constructing a deployment environment for real-world furniture
assembly and ensuring the complete insertion of each furniture module presents significant challenges.
We discuss additional limitations and potential solutions in further detail in Appendix J.

Conclusion In this paper, we introduce SCaR, a novel skill chaining framework that ensures smooth
and stable execution of long-horizon robotic manipulation tasks via dual regularization within and
between sub-task skills. Extensive experiments demonstrate that the SCaR framework achieves better
task success rates than the baseline methods in both simulated and real-robot manipulation tasks,
while being robust against perturbations. We hope this work will inspire future research to further
explore the potential of skill chaining for long-horizon robotic manipulation.
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Technical Appendix

A Pseudo-code

Pseudo-code for adaptive sub-task skill learning and bi-directional adversarial learning are shown in
Algorithm 1 and Algorithm 2 respectively. We highlight the key differences between our method and
the most relevant T-STAR with a gray background.

A.1 Adaptive Sub-task Skill Learning

As shown in Algorithm 1, the innovation of the sub-task skill learning scheme we propose, compared
to previous methods, consists of two parts: 1) We use a more stable weighted reward function for
policy learning of sub-task skills, as shown in Eq. 1 and Eq. 3 in the main paper. 2) We introduce
AES regularization constraints into this weighted reward function to periodically adaptively schedule
the scale of the two reward terms, as shown in line 11-14 of Algorithm 1, allowing the robot to fully
explore and learn from both the environment and the expert behaviors.

Algorithm 1 Adaptive Sub-task Skill Learning.
Key differences to T-STAR [15] in gray.

1: Require: expert demonstrations DE
1 , . . . ,DE

K , sub-task MDPsM1, . . . ,MK

2: Initialize sub-task policies π1
θ , . . . , π

K
θ , least-squares GAIL discriminator f1

ϕ, . . . , f
K
ϕ .

3: Initialize imitation progress recognizer Φ with DE , balance discount factor λRL ← α, λIL ←
1− α.

4: for each sub-task i = 1, . . . ,K do
5: for episode = 1, 2, . . . , N do
6: Rollout trajectories τ = (s1, a1, r

Env
1 , . . . , sT ) with πi

θ
7: // WEIGHTED REWARD FUNCTION
8: Compute balanced reward {r1, . . . , rT−1} ← λRLr

Env + λILr
Pred

9: Update f i
ϕ with τ and τE ∼ DE

i using Eq. 3
10: Update πi

θ with the rewarded trajectories {s1, a1, r1, . . . , sT }
11: // ADAPTIVE EQUILIBRIUM SCHEDULING REGULARIZATION
12: Update imitation progress recognizer Φ with τ and τE ∼ DE

i
13: Query Φ about the current imitation progress p
14: Update balance discount factor λRL, λIL ← φλ(p)
15: end for
16: end for

A.2 Bi-directional Adversarial Learning

As shown in Algorithm 2, the innovation of the bi-directional adversarial learning mechanism consists
of two parts: 1) We propose a bi-directional regularization which is trained by two balanced bi-
directional constraints to better chain sequential skills, as shown in line 16-17 of Algorithm 2. 2)
We also employ the adaptive sub-skill learning scheme during the bi-directional adversarial learning
process in order to ensure inter-skill alignment while enabling the sub-task skills to be adaptively
adjusted to task changes during fine-tuning as well, as shown in line 10-12 of Algorithm 2.

B More Details on AES Regularization

Automatic Discount Scheduling (ADS) [9] is a mechanism for allocating more appropriate reward sig-
nals in s Imitation Learning from Observation (ILfO), based on the concept of Optimal Transport [51]
and further introducing the characteristic of process dependency across tasks. Based on this, ADS
focuses on adjusting the discount factor during reinforcement learning training in ILfO. Following the
mechanism in ADS, our AES also employs an imitation progress recognizer Φ to monitor the extent
to which the agent has assimilated the expert’s behaviors. The main idea is to assess the closeness of
the pair of trajectories by evaluating the agent-collected trajectory τ = (s0, . . . , sT ) and the expert
trajectory τE = (sE0 , . . . , s

E
T ) through a monotonic state-by-state alignment.
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Algorithm 2 Bi-directional Adversarial Learning
Key differences to T-STAR [15] in gray.

1: Require: expert demonstrations DE
1 , . . . ,DE

K , sub-task MDPsM1, . . . ,MK , pre-trained sub-
task policies π1

θ , . . . , π
K
θ , pre-trained GAIL discriminator f1

ϕ, . . . , f
K
ϕ .

2: Initialize bi-directional discriminator ζ1ω, . . . , ζ
K
ω , imitation identifier Φ with DE , balance dis-

count factor λRL ← α, λIL ← 1− α.
3: Initialize initial state buffers B1I , . . . ,BKI , and terminal state buffers B1β , . . . ,BKβ .
4: for iteration m = 0, 1, . . . ,M do
5: for each sub-task i = 1, . . . ,K do
6: Sample s0 from environment or Bi−1

β

7: Rollout trajectories τ = (s1, a1, r1, . . . , sT ) with pre-trained πi
θ

8: if τ is successful then
9: BiI ← BiI ∪ s1,Biβ ← Biβ ∪ sT

10: // ADAPTIVE EQUILIBRIUM SCHEDULING
11: Update imitation identifier Φ with τ
12: Query Φ about the current imitation progress p

13: end if
14: Update balance discount factor λRL, λIL ← φλ(p)
15: Fine-tune f i

ϕ with τ and τE ∼ DE
i

16: // TRAIN BI-DIRECTIONAL DISCRIMINATOR
17: Update ζiω with sβ ∼ Bi−1

β and sI ∼ BiI with Li(ω) =
1
2C1 +

1
2C2

18: // FINE-TUNE WITH DUAL REGULARIZATION
19: Update πi

θ with ri(st, at, st+1;ϕ, ω) using Eq. 7
20: end for
21: end for

Expert
Traj

Agent
Traj

(a)

Expert
Traj

Agent
Traj

(b)

Figure 7: Visualization of the construction of the sequence Q. To be more intuitive, we directly
represent the minimum cosine similarity with double arrows.

To be specific, Φ receives the agent’s collected trajectories τ (line 12 in Algorithm 1) and infers
the agent’s current imitation progress p, p ∈ [0, T ) (line 13 in Algorithm 1). The construction
of Φ, with reference to ADS, first requires the construction of a sequence Q(q1, . . . , qT ), where
qi = argminjc(si, s

E
j ) is the index of the nearest neighbor of si in τE , c is the cosine similarity. As

shown in Fig. 7, If τ and τE are exactly the same, then Q becomes a strictly increasing sequence
(Fig 7(a)). On the contrary, if τ and τE characterize some different behaviors, there are some
unordered sequences in Q (Fig 7(b)).

After constructing Q, the progress alignment between τ and τE is measured as the length of
the longest increasing subsequence (LIS) in Q, denoted as LIS(τ, τE). For instance, if Q =
{1, 3, 2, 5, 4} as in Fig 7(b), then its LIS can be {1, 3, 5}, {1, 2, 5}, {1, 3, 4} or {1, 2, 4}. The LIS
measurement concentrates on the consistency of the macroscopic trends in these trajectories, thereby
preventing overfitting to the microscopic features in the observation [9].

Further, if the following inequality Eq. 8 holds, this indicates that at this time step, the agent’s
imitation of the expert’s action is equivalent to the level of the expert’s performance, then the agent’s
imitation progress p will increase by 1:

max
τ́E∈DE

LIS(τ1:p+1, τ́
E
1:p+1) ≥ ρ× min

τ́E ,´́τE∈DE

LIS(τ́E1:p+1,
´́τE1:p+1), (8)
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Figure 8: Visualization of the mapping function φλ(p). In this example, we assume that T = 150.

where τ́E ̸= ´́τE , the subscript 1 : p+ 1 denotes the first p+ 1 steps of the extracted trajectory, and
ρ ∈ [0, 1] controls the stringency of the imitation progress monitoring.

After obtaining the current imitation progress p of the agent, AES then adopts a mapping function
φλ(p) to schedule the two new balance discount factors λRL and λIL. Straightforward idea of setting
φλ(p) is that If p reaches a certain threshold, i.e., the agent is able to imitate the expert’s behavior
well, then the more the agent tends to imitate the expert’s behavior in subsequent training, and
vice versa. Therefore, we set the threshold as T

2 . If p ∈ [0, T
2 ), we propose φλ(p) = 1− e(−

p
k1 ); if

p ∈ [T2 , T ), we propose φλ(p) = e

(
−

p−T
2

k2

)
, where k1 and k2 are used to flatten the curve of the

mapping function. The mapping function shown in Fig. 8, where T = 150. In our experiments, we
use different flatten factors for the two stages, where k1 = 10 and k2 = 30.

Then λRL and λIL are scheduled to be :
λRL = α1−e(−

p
k1 )

, λIL = 1− α1−e(−
p
k1 )

. if p ∈ [0, T
2 )

λIL = αe

−
p−T

2
k2


, λRL = 1− αe

−
p−T

2
k2


. if p ∈ [T2 , T )

(9)

0.5

Figure 9: αφλ(p) based on the variation of different
α sizes in φλ(p) ∈ [0, 1]. We use α = 0.5 as the
base in our experiments.

As shown by the trend of function αφλ(p) in
Fig 9, when p ∈ [0, T

2 ), the scale of λRL:

α1−e(−
p
k1 ) is scheduled to be larger than λIL:

1 − α1−e(−
p
k1 ) , but this gap gets smaller and

smaller as p gets larger. When p ∈ [T2 , T ),

the scale of λIL: αe

−
p−T

2
k2


is scheduled to be

larger than λRL: 1−αe

−
p−T

2
k2


, while the scale

of λIL increases as the agent imitates better.

Thus, if p is larger and reaches a threshold
step, i.e., the agent is able to imitate the ex-
pert’s behavior well, then the more the agent
tends to imitate the expert’s behavior in sub-
sequent training, and vice versa. The entire
process is adaptively scheduled based on Φ pe-
riodic monitoring of the agent’s imitation process. Consequently, the RL and IL components of

17



sub-task skill learning can be adaptively scheduled and regularized through AES, effectively enhanc-
ing intra-skill dependencies between sequential actions.

C Sub-task Skills

In our simulation experiments, we use sequences of sub-tasks defined internally by the environ-
ment [44, 45] as task decomposition sub-tasks. Here we list these sequential skills to emphasize the
difficulty of long-horizon tasks. Each skill takes a 3D position as the input g∗.

IKEA Furniture Assembly:

Chair_agne (2 sub-task skills): Assemble stool leg 0 to target position g0∗ → Assemble stool leg 1
to target position g1∗

Chair_bernhard (2 sub-task skills): Assemble support leg 0 to target position g0∗ → Assemble
support leg 1 to target position g1∗

Table_dockstra (3 sub-task skills): Assemble table leg 0 to target position g0∗ → Assemble table leg
1 to target position g1∗ → Assemble table top to target position g3∗

Chair_ingolf (4 sub-task skills): Assemble chair support 0 to target position g0∗ → Assemble chair
support 1 to target position g1∗ → Assemble front leg 0 to target position g3∗ → Assemble front leg 1
to target position g4∗

Table_lack (4 sub-task skills): Assemble table leg 0 to target position g0∗ → Assemble table leg 1
to target position g1∗ → Assemble table leg 2 to target position g3∗ → Assemble table leg 3 to target
position g4∗

Toy_table (4 sub-task skills): Assemble table leg 0 insert to target position g0∗ → Assemble table leg
1 insert to target position g1∗ → Assemble table leg 2 insert to target position g3∗ → Assemble table
leg 3 insert to target position g4∗

Kitchen Organization:

Kitchen (4 sub-task skills): Turn on the microwave to target position g0∗ →Move the kettle to target
position g1∗ → Turn on the stove (rotate the stove button to target position g2∗)→ Turn on the light
(rotate the light button to target position g3∗)

Extended Kitchen (5 sub-task skills): Turn on the microwave to target position g0∗ → Turn on the
stove (rotate the stove button to target position g1∗)→ Turn on the light (rotate the light button to
target position g2∗)→ Slide the cabinet to the right target position g3∗ → Open the cabinet to target
position g4∗

D More Quantitative Results

We present the training curves with different skill learning methods for sub-task skills in chair_ingolf
task, and we further present the evaluation performance of the pre-trained skills with different methods
across sub-tasks in the other 6 long-horizon simulation tasks. Also, we test the algorithms trained
from scratch in the presence of perturbations to further illustrate the importance of the execution of
sub-tasks on long-horizon tasks.

Additionally, the main paper does not delve into the loss function Li(ω) concerning the different
scales of the bi-directional constraints in bi-directional adversarial training. Therefore, we conduct
further ablation experiments to examine the impact of different scales of the two constraints in the
bi-directional discriminator.

D.1 Sub-task Skill Learning Performance

D.1.1 Training performance

Fig. 10 shows the sub-task skill training curves in IKEA furniture assembly tasks. All methods are
trained in each sub-task with 5 random seeds, 15M environment steps. As can be seen, the sub-task
skill training based on PPO (learning only from environmental feedback), GAIL (learning only from
expert demonstrations) and Fixed-RL-IL (learning from a fixed scale of environmental feedback
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(b) chair_bernhard
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(c) table_dockstra
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(d) table_lack
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(f) chair_ingolf

Figure 10: Training curves for sub-task skills in IKEA furniture assembly tasks. The y-axis represents
the success rate of the sub-task.
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(a) chair_agne (b) chair_bernhard

(c) table_lack (d) toy_table

(e) table_dockstra (f) Kitchen

Figure 11: Evaluation Performance Comparison of Sub-task Skill Learning.

and expert demonstration) cannot maintain stability and exhibits significant training performance
degradation as the sub-task stage increases. In contrast, the sub-task skill training process using our
proposed adaptive sub-skill learning scheme has always been relatively stable and better performing.

D.1.2 More evaluation performance

As shown in Fig. 11, in chair_agne, chair_bernhard, table_lacktoy_table, table_dockstra, and
Kitchen tasks, even with the increase of objects in the environment - and the increase of unpredictable
perturbations - our proposed adaptive skill learning learns better sub-task skills. In contrast, the PPO,
GAIL, and Fixed-RL-IL baselines fail to maintain well-learning sub-task skills.

These results further corroborate that our proposed AES regularization can reinforce inter-step
dependencies to the sequential actions within each sub-task skill, and thus pre-train better sub-task
skills for long-horizon tasks.

D.2 Robustness to Perturbations

We test the algorithms trained from scratch in the presence of perturbations. As shown in Table 3,
algorithms trained from scratch fail to successfully complete the task when environment perturbations
occur during execution. This further illustrates the importance of dividing sub-tasks for multi-stage
execution on long-horizon manipulation tasks that are contact-rich and subject to unanticipated
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Table 3: Success rates of completing the two sub-tasks chair_bernhard and four sub-tasks
chair_ingolf in stationary and perturbed environments.

chair_bernhard chair_ingolf

Method No Perturb Perturb No Perturb Perturb
PPO (Scratch RL) 0.42 ± 0.12 0.01 ± 0.00 0.14 ± 0.03 0.00 ± 0.00

GAIL (Scratch IL) 0.23 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Fixed-RL-IL 0.53 ± 0.07 0.05 ± 0.00 0.22 ± 0.00 0.00 ± 0.00

SkiMo 0.62 ± 0.05 0.10 ± 0.00 0.47 ± 0.03 0.00 ± 0.00

Policy Sequencing 0.82 ± 0.09 0.51 ± 0.04 0.77 ± 0.12 0.50 ± 0.10

T-STAR 0.90 ± 0.04 0.60 ± 0.08 0.89 ± 0.04 0.59 ± 0.04

SCaR w/o Bi 0.92 ± 0.02 0.65 ± 0.11 0.91 ± 0.01 0.63 ± 0.05

SCaR w/o AES 0.94 ± 0.03 0.74 ± 0.09 0.93 ± 0.02 0.71 ± 0.07

SCaR (Ours) 0.96 ± 0.04 0.85 ± 0.11 0.95 ± 0.03 0.80 ± 0.13

Figure 12: Impact on skill chaining performance of different scales of bi-directional constraints in
SCaR.

perturbations. It also supports the significance of our work on long-horizon robotic manipulation
tasks.

D.3 Further Ablation

We set the loss function for the bi-directional discriminator in the main paper as Li(ω) =
1
2C1+

1
2C2.,

where the bi-directional constraints C1,C2 are defined as:

next initial→ previous terminal: C1 = EsI∼Ii
[ζiω(sI)− 1]2 + EsT∼βi−1

[ζiω(sT )]
2

previous terminal→ next initial: C2 = EsT∼βi [ζ
i
ω(sT )− 1]2 + EsI∼Ii+1 [ζ

i
ω(sI)]

2
(10)

The first constraint C1 trains the policy to have the initial states approach the terminal states of the
previous policy, while the second constraint C2 trains the policy to have the terminal states close to
the initial states of the next policy. In the experiments, these two constraints have the same scale in
the training process of the bi-directional discriminator.

We wonder whether different scales of these two terms would lead to different performances, and
for this reason, we conduct further parametric ablation experiments to explore this. Specifically,
we define the scale parameter of the first term C1 as d1, and the second term C2 as d2 = 1 − d1,
and set 0.1, 0.3, 0.5, 0.7, 0.9 for d1 respectively for comparison experiments. We test the effect of
different scales of bi-directional adversarial training items d1 and d2 on the success rate of SCaR in
each of the four tasks: chair_agne, chair_ingolf, table_dockstra, and extend kitchen. As shown in
Fig. 12, the experimental result is also in line with our intuition that when the ratio of the two terms
initial→ previous terminal and terminal→ next initial is the same, the performance is the best
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among the four tasks, whereas when the more imbalanced the scale of the two terms is, the worse the
performance is.

This ablation result further demonstrate our statement in Sec. 4.3 in the main paper: The purpose
of the bi-directional discriminator is to establish a balanced mapping relationship between
the initial states and terminal states to ensure the coherence and stability of the policy. If the
constraint in one direction (e.g., from initial states to terminal states) is stronger than the constraint in
the other direction (e.g., from terminal states to initial states), the information transmission becomes
asymmetric. This asymmetry results in better training in one direction and insufficient training in the
other, thereby affecting overall performance.

D.4 Impact of Different Sub-task Divisions

To explore the impact of different sub-task divisions, we conduct more experimental validation using
the chair_ingolf task. The original sub-tasks in this task are divided as follows: “Assemble chair
support 0 to target position"→ “Assemble chair support 1 to target position"→ “Assemble front leg
0 to target position"→ “Assemble front leg 1 to target position". We have re-divided the sub-tasks
into two alternative settings:

1. “Assemble chair support 0 and chair support 1 to target positions"→ “Assemble front leg 0 to
target position"→ “Assemble front leg 1 to target position".

2. “Assemble chair support 0 to target position"→ “Assemble chair support 1 to target position"→
“Assemble front leg 0 and leg 1 to target positions".

Table 4: The impact of different sub-task divisions on SCaR performance.

chair_ingolf (setup 1) chair_ingolf (setup 2)

SCaR 0.68 0.74

It is worth noting that, since the re-division of the sub-tasks results in only three sub-tasks, we set
90% as the success metric for all three sub-tasks being successfully executed. As seen in Table 4,
compared to SCaR’s success rate of about 95% with the original four sub-task divisions, the success
rate for completing the first sub-task and then executing the remaining two sub-tasks is significantly
reduced. This decrease is due to the increased difficulty of the first sub-task in setup 1 (which requires
assembling both chair support) and the last sub-task in setup 2. These changes result in a lower overall
success rate for the task. This result suggests that a reasonable division of sub-tasks in long-horizon
tasks is crucial for the success rate of overall task completion.

D.5 Impact of the Number of Sub-tasks

To explore the performance of skill-chaining methods as the number of sub-tasks increases, we add a
sub-task to the Extended Kitchen task to evaluate SCaR’s performance in manipulation tasks with
longer horizons, involving 6 sub-tasks. The modified task, Longer Extended Kitchen includes: 1.
Turn on the microwave; 2. Turn on the stove; 3. Turn on the light; 4. Slide the cabinet to the right
target position; 5. Open the cabinet to the target position; 6. Move the kettle to the target position.

Table 5: Performance Comparison on Longer Extended Kitchen Task.

Method Longer Extended Kitchen Task
T-STAR 0.33
SCaR 0.61

As shown in Table 5, the addition of an extra sub-task increases the complexity and difficulty of
skill chaining in long-horizon tasks. Nonetheless, SCaR achieves a significantly higher overall
task execution success rate, surpassing T-STAR by 28%. Although there is still ample room for
improvement, we believe our approach establishes a strong baseline for future research on skill-
chaining methods for long-horizon manipulation tasks.
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(a) SCaR - Successful

(b) T-STAR - Failed

Figure 13: Qualitative results of successful skill chaining performance with SCaR and failed skill
chaining performance with T-STAR. More qualitative results can be found on our project website
https://sites.google.com/view/scar8297.
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E More Qualitative Results

Fig 13 shows the qualitative comparison of skill chaining methods. Their animated versions can be
found on our project website.

F Real-world Validation via Sim-to-Real Transfer

Table 6: Skill chaining performance of real-world long-horizon robotic manipulation tasks.

Method Success rate

T-STAR 70% (2 sub-tasks) / 50% (3 sub-tasks)
SCaR 90% (2 sub-tasks) / 70% (3 sub-tasks)

Real-robot Experiment Setup We also evaluate the skill chaining performance of real-robot for
solving simple yet intuitive real-world long-horizon manipulation. We set up two types of desktop-
level long-horizon manipulation tasks. The robotic arm needs to pick-and-place 2 and 3 blue squares
in sequence.

We built the corresponding task environment using the gazebo simulation that accompanies the
K1 robot5, and collect 50 demonstrations of grasping skills for each square for training. With
camera calibration, we deploy agents trained under simulation in a real robot desktop task to solve
2-square as well as 3-square pick-and-place tasks without the need for adaptation processes. We
conduct experiments with the Sagittarius K1 and use MoveIt2 library based on ROS 2 framework for
controlling the arm. We use RGB observations from RealSense D435i camera on the wrist of the
robotic arm.

Figure 14: Visualization of the successful skill chaining in the 2-blue-square pick-and-place tasks
using SCaR.

Figure 15: Visualization of the successful skill chaining in the 3-blue-square pick-and-place tasks
using SCaR.

Results For evaluation, we measure the success rate across 10 randomized square positions for
each task. As shown in Table. 6, SCaR can solve the two long-horizon tasks and outperforms T-STAR
baseline. Fig. 14 and Fig. 15 show the qualitative results of successful skill chaining in the 2 and
3-blue-square pick-and-place tasks using SCaR.

5https://github.com/NXROBO/sagittarius_ws
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chair_agne chair_bernhard chair_ingolf table_lack toy_table table_dockstra

Figure 16: IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation
Tasks.

G Environment Details

G.1 IKEA Furniture Assembly

We choose six tasks, chair_agne, chair_bernhard, chair_ingolf, toy_table, table_lack and ta-
ble_bjorkudden from the IKEA furniture assembly environment6 [44] as the focal points of our
experiments, as shown in Fig. 17. Our chosen robotic platform is the 7-DoF Rethink Sawyer robot,
and we control it using joint velocity commands.

Observation Space The observation space comprises three key components: robot observations
(29 dimensions), object observations (35 dimensions), and task phase information (8 dimensions).
Robot observations encompass robot joint angles (7 dimensions), joint velocities (7 dimensions),
gripper state (2 dimensions), gripper position (3 dimensions), gripper quaternion (4 dimensions),
gripper velocity (3 dimensions), and gripper angular velocity (3 dimensions). Object observations
include the positions (3 dimensions) and quaternions (4 dimensions) of all five furniture pieces in the
scene. Task information, an 8-dimensional one-hot encoding, represents the current phase, including
actions like reaching, grasping, lifting, moving, and aligning.

Action space The action space includes arm movement, gripper control, and the connect action,
which can vary based on different control modes: 6D end-effector space control using inverse
kinematics, joint velocity control, and joint torque control.

In the context of reinforcement learning (RL), we utilize a heavily shaped multi-phase dense reward
obtained from the IKEA Furniture Assembly Environment [44].

Environmental Reward Function The IKEA furniture assembly environmental reward function is
a multi-phase reward defined with respect to a pair of furniture parts to attach (e.g., a table leg and a
table top) and the corresponding manually annotated way-points, such as a target gripping point g
for each part. The reward function for a pair of furniture parts consists of eight different phases as
follows:

• Initial phase: The robot has to reconfigure its arm pose to an appropriate pose pinit for
grasping a new furniture part. The reward is proportional to the negative distance between
the end-effector peff and pinit.

• Reach phase: The robot reaches above a target furniture part. The reward is proportional to
the negative distance between the end-effector peff and a point preach 5 cm above the gripping
point g.

• Lower phase: The gripper is lowered onto the target part. The phase reward is proportional
to the negative distance between peff and the target gripping points.

• Grasp phase: The robot learns to grasp the target part. The reward is given if the gripper
contacts the part, and is proportional to the force exerted by the grippers.

• Lift phase: The robot lifts the gripped part up to plift. The reward is proportional to the
negative distance between the gripped part ppart and the target point plift.

• Align phase: The robot roughly rotates the gripped part before moving it. The reward is
proportional to the cosine similarity between up vectors uA, uB and forward vectors fA, fB
of the two connectors.

6https://github.com/clvrai/furniture
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Kitchen Extended Kitchen

Figure 17: Kitchen Organization Environment for Long-Horizon Complex Manipulation Tasks.

• Move phase: The robot moves and aligns the gripped part to another part. The reward is
proportional to the negative distance between the connector of the gripped part and a point
pmove_to 5 cm above the connector of another part, and the cosine similarity between two
connector up vectors, uA and uB , and forward vectors fA and fB . Note that all connectors
are labeled with aligned up vectors and forward vectors.

• Fine-grained move phase: The robot must finely align two connectors until attached. The
same reward is used as the move phase with a higher coefficient, making the reward more
sensitive to small changes. In addition, when the part is connectable, a reward is provided
based on the activation of the connect action a[connect].

Upon completion of each phase, completion rewards are given to encourage the agent to move on to
the next phase. In addition to stage-based rewards, control penalties, stabilizing wrist pose rewards,
and grasping rewards (i.e., opening the grasping hand only during the initial, arrival, and lower stages)
are provided throughout the process. If the robot releases the grasped object, the phase ends early
and a negative reward is provided. Phase completion depends on the robot and part configurations
satisfying distance and angle constraints with respect to the goal configuration. After all stages are
completed, the stage resets to the initial stage. This process repeats until all parts are connected.

Demonstration Collection For imitation learning (IL), we gathered 200 demonstrations for each
furniture part assembly using a programmatic assembly policy. Each demonstration for single-part
assembly typically spans 150 steps, reflecting the overall task’s inherently long-horizon nature.

Sub-tasks In our experiments, we define a sub-task as the process of assembling one part to another.
Thus, the chair_agne and chair_bernhard tasks have two distinct sub-tasks, table_dockstra has
three distinct sub-tasks, and chair_ingolf, table_lack, and toy_table have four distinct sub-tasks.
These sub-tasks are trained independently, with their initial state sampled from the environment and
random noise introduced in the [-2cm, 2cm] and [-3°, 3°] ranges of the (x, y) plane. Importantly, the
decomposition of the sub-tasks is pre-determined, which means that the environment is initialized for
each sub-task, and the agent receives a notification when a sub-task is successfully completed. Once
the two components are firmly connected, the corresponding sub-task is considered completed and
the robotic arm is guided back to its initial pose, i.e., at the center of the workspace.

Assembly Difficulty The difficulty of modeling furniture depends largely on the shape of the
furniture. For example, the toy_table task with cylindrical legs is more difficult to grasp, whereas
the table_lack task with rectangular legs is easier to grasp. Chairs are generally more difficult to
assemble because of their irregular shape (e.g., seat and back). This is the reason why the success
rates of the toy_table andchair_ingolf tasks are lower than the success rates of table_lack.

G.2 Kitchen Organization

We use the Franka Kitchen tasks in D4RL [45] and refer to the experimental setup in SkiMo [46] for
the sub-task extensions. Including the following two tasks: Kitchen task and Extended Kitchen
task, as shown in Fig. 17.
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Kitchen The 7-DoF Franka Emika Panda robot arm is tasked with performing four sequential
sub-tasks: Turn on the microwave - Move the kettle - Turn on the stove - Turn on the lights.

Extended Kitchen The environment and task-agnostic data used in this experiment are consistent
with those employed in the Kitchen scenario. However, we introduce a different set of sub-tasks for
this experiment, namely: Turn on the microwave - Turn on the stove - Turn on the lights - Slide the
cabinets to the right - Open the cabinets, as depicted in Fig. 17 (right). It’s worth noting that this
sequence of tasks is not aligned with the sub-task transition probabilities observed in the task-agnostic
data, posing a challenge for exploration based on prior data.

Observation Space The agent operates within a 30-dimensional observation space, which includes
an 11-dimensional robot proprioceptive state and 19-dimensional object states. This modified
observation space removes a constant 30-dimensional goal state found in the original environment.

Action Space The agent’s action space consists of 9 dimensions, encompassing 7-dimensional joint
velocity control and 2-dimensional gripper velocity control.

Environmental Reward Function In terms of the environmental rewards, the agent receives a
reward of +1 for each completed sub-task. The total episode length is set to 280 steps, and an episode
concludes once all sub-tasks are successfully accomplished. The initial state is initialized with slight
noise introduced in each state dimension.

Demonstration Collection For imitation learning, we collect 200 demonstrations per sub-task with
reference to the dataset in [52] that obtained through teleoperation. This dataset covers interactions
with all seven manipulatable objects within the environment.

H Network Architecture

For a fair comparison, our method and the benchmark methods use the same network structure.
The policy network and the critic network consist of two layers of 128 and 256 hidden units fully
connected with ReLU nonlinear properties, respectively. The output layer of the actor network
outputs an action distribution, which consists of the mean and standard deviation of a Gaussian
distribution. The critic network outputs only one critic value. The discriminator of GAIL [39] and
the bi-directional discriminator of our proposed approach use a two-layer fully connected network
with 256 hidden units. The outputs of these discriminators are clipped between [0, 1], following the
least-square GAIL proposed by [40].

I Training Details

I.1 Computing Resources

Our method and all baselines were implemented using PyTorch [53]. All experiments were conducted
on workstations equipped with Intel(R) Xeon(R) Gold 5218 CPUs and dual NVIDIA GeForce RTX
3080 GPUs. In the SCaR framework, the pre-training phase for each sub-task skill policy, spanning
150M time steps, took approximately 10 hours with dual regularization, compared to about 8 hours
without it (Fixed-RL-IL), leading to an added computational overhead of roughly 2 hours. The
full testing and evaluation process of skill chaining for a complete long-horizon task required an
additional 10 to 15 hours, depending on the task’s complexity. For comparison, training the skill
dynamics model in SkiMo [46] took approximately 24 hours (100M steps). Training baselines such
as PPO [47], GAIL [39], and Fixed-RL-IL took longer, requiring about 48 hours each, as these
methods train the entire long-horizon task from scratch, with 450M time steps for each complete task.
In our evaluation, we used 5 seeds, each tested over 200 episodes, resulting in an average real-time
execution time of about 36-54 seconds per single long-horizon task.

I.2 Algorithm Implementation Details

We report the hyperparameters used in our experiments in Table 7.
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Table 7: Hyperparameters used in our experiments.

Hyperparameter Value
Rollout Size 1024
Learning Rate 0.0003
Learning Rate Decay Linear decay
Mini-batch Size 128
Discount Factor 0.99
Entropy Coefficient 0.003
Reward Scale 0.05
State Normalization True
Discriminator learning rate 1e−4

Sub-task training steps 150000000
# Workers 20
# Epochs per Update 10

Base exponent for balancing α 0.5
k1 (used to flatten the mapping function during p ∈ [0, T

2 )) 10
k2 (used to flatten the mapping function during p ∈ [T2 , T )) 30
Weighting factor λBi 10000
ρ (for imitation progress recognizer Φ) 0.9
Penalty coefficient ηgp 10

Table 8: Comparison to prior work and ablated methods.
Method Model-based Skill-based Scratch training Joint training

PPO [47] and GAIL [39] % % ! %
Fixed-RL-IL [40] % % ! !
SkiMo [46] ! ! ! !

Policy Sequencing [12] ! ! % !
T-STAR [15] % ! % !
SCaR (Ours) and SCaR w/o Bi and SCaR w/o AES ! ! % !

For the baseline implementations, we use the official code for PPO [47], GAIL [39], Fixed-RL-IL [40],
SkiMo [46], Policy Sequencing [12] and T-STAR [15]. The table below (Table 8) compares key
components of SCaR with model-based, model-free and skill-based baselines and ablated methods,
where joint training indicates whether or not reinforcement learning combined with imitation learning
is used for training.

PPO [47] Any reinforcement learning algorithm can be used for policy optimization, in this paper
we choose to use Proximal Policy Optimization (PPO) and use the default hyperparameters of
PPO [47].

GAIL [39] In this paper we choose to use Generative Adversarial Imitation Learning (GAIL) [39]
as the learning algorithm for imitation learning and use the default hyperparameters of GAIL [39]. We
specifically use an agent states s to discriminate agent and expert trajectories, instead of state-action
pairs (s, a).

Fixed-RL-IL [12] We adopt the AMP [40] solution combining environmental rewards and least
square GAIL with λRL = λIL = 0.5. For implementation details of least square GAIL training and
GAIL rewards, see original paper [40].

SkiMo [46] We use the official implementation of the original paper and use the hyperparameters
suggested in the official implementation.

Policy Sequencing [12] We employ the official implementation and the hyperparameters provided
by [15].
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T-STAR [15] We use the official implementation of the original paper and use the hyperparameters
suggested in the official implementation [15].

SCaR (ours) We refer to T-STAR and use λRe = 10000 for bi-directional regularization. We take
50% of the initial state samples from the start environment of each policy, 50% of the terminal state
samples at the end, and 50% of the initial state buffer and 50% of the terminal state buffer from the
previous skill, respectively.

J Limitations and Potential Solutions

While SCaR demonstrates strong capabilities, it does have certain limitations. In the following
sections, we outline these limitations and propose potential solutions.

Limited Task Generalization SCaR primarily focuses on predefined, structured environments
to validate its mechanism for chaining pre-trained sub-task skills within long-horizon tasks. Con-
sequently, our current study does not address SCaR’s adaptability across varied or novel task en-
vironments. While we demonstrate SCaR’s robustness to unknown perturbations within a single
environment (e.g., unexpected forces applied to the robot arm joints in specific sub-tasks), the
system’s ability to generalize to entirely new or unfamiliar environments remains unexplored. A
potential solution is to leverage foundational models to expand SCaR’s applicability. In long-horizon
tasks where sub-task definitions are unclear or missing, foundational models can use their powerful
task-planning capabilities to divide tasks into logical sub-tasks [54, 55, 56].When unexpected sub-
task demands or changes in overall task goals arise, these models can re-plan sub-tasks accordingly.
Another approach involves human-in-the-loop learning, incorporating human guidance in the training
pipeline, such as using human priors for sub-task division [32] or employing methods to manage the
subjectivity of human-labeled rewards through preference learning [57].

Extensive Retraining for New Tasks SCaR faces limitations in adapting to diverse long-horizon
manipulation tasks or different robotic setups, as it requires extensive retraining of sub-task skills
for each new task. This reliance on full retraining restricts SCaR’s efficiency and scalability when
addressing evolving or variable task requirements, particularly in complex, real-world environments.
A potential solution is to integrate online reinforcement learning into SCaR’s skill-learning process,
allowing it to adapt to task variations, such as different table designs, without full retraining, enabling
more efficient adaptation.

Lack of visual input handling SCaR currently lacks the capability to process encoded image and
semantic state inputs, limiting its applicability in tasks that rely on visual or semantic information for
effective performance. The current setup is largely dependent on environments with direct access to
state information, as both simulated environments are based on state representations. While effective
in controlled setups, enabling SCaR to learn from image encodings as states would enhance its
robustness and applicability in tasks requiring nuanced visual and semantic processing. Given recent
advancements in learning multi-view representations [58, 59] and generating 3D models [60, 61],
incorporating these improvements and 3D priors into the encoder design could enhance the sample
efficiency of SCaR.

K Potential negative impacts

Since our method is currently limited to applications in simulated environments and simple desktop-
level robot manipulation, it is not expected to have a significant negative impact on society. However,
privacy concerns may arise if our method is applied to real-world long time-series tasks with mobility,
as imitation learning agents used in applications such as autonomous driving [62] or real-time
control [63, 64] require large amounts of data that often contain controversial information. In
addition, the imitation learning policy is a challenge because it imitates a specified demonstration
that may include bad behavior. If the expert demonstration includes some nefarious behaviors
(e.g., training data for a mobile manipulation task includes behaviors that may be violent towards
pedestrians), then the policy may have a significant negative impact on the user. To address this issue,
future directions should focus on developing agents with safety adaptations in addition to improving
performance.

29



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a new skill chaining framework for long time-series robotic
manipulation tasks that improves overall task completion performance by providing dual
regularization for intra- and inter-skill dependencies. We hope this work will inspire
future research to further explore the potential of skill chaining for long-horizon robotic
manipulation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the last section of the main paper: limitations mainly
exist in that 1) the sub-tasks in our framework are predefined, 2) we did not test our method
on a more challenging real robot furniture assembly task due to limited hardware.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide further explanation in the Appendix to explain the assumptions
presented in the main paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We further describe the network architecture, training details, dataset, and the
open source codebase on which the method is based in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

31



In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: All simulation environments, datasets, and open-source code libraries used to
implement our method are described in the Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe partial details in the main paper and provide further details in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments perform means and standard deviations for the five seed
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We illustrate the computational resources and the time required for the experi-
ments in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We elaborate on these in the final section of the Appendix.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not release data or models with high risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited or provided URLs to all the code, data, and models used in the
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not do crowdsourcing experiments and research on human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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