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Abstract
The increasing adoption of language models
for coding tasks has prompted researchers to
develop coding benchmarks to better assess
and quantify a language model’s coding abil-
ities on a variety of tasks. Existing bench-
marks effectively evaluate model code genera-
tion and understanding abilities, but typically
require an external environment to verify code,
which can slow down and complicate model
evaluation. As a result, this paper presents the
Environment-Free Coding Bencharks (EFCB)
suite - a collection of 5,512 questions from real-
world GitHub pull requests -that introduces
multiple advantages relative to existing cod-
ing benchmarks: eliminating the need to use
an external coding environment, a larger and
more diverse question bank spanning differ-
ent programming languages and industry use
cases, and a multi-faceted collection of tasks
that evaluate different indicators with respect
to model coding abilities. By evaluating EFCB
with o4-mini and Llama-3.3-70B as state of
the art (SOTA) models, we observe that current
SOTA models achieve approximately uniform
performance across different programming lan-
guages and use cases, and we identify areas of
improvement for existing SOTA models given
that current EFCB results have not yet attained
benchmark saturation.

1 Introduction

Since the introduction of the transformer model,
attention-based language models have shown im-
pressive performances on a variety of text-based
tasks. (Vaswani et al., 2023) In particular, recent
developments have also shown that including code
in pre-training and post-training model data, as
well as increasing model size, can lead to emer-
gent properties. (Wei et al., 2022) Notably, one
of these observed emergent properties is a trans-
former model’s ability to understand and write
code. Accordingly, models such as OpenAI’s rea-
soning models (o1/o3/o4 family), Qwen-2.x and

Claude 4 Sonnet/Opus all perform strongly as the
current state of the art models for coding capabili-
ties.

Given the increase in the performance of trans-
former models on coding-related tasks, it becomes
relevant to rigorously quantify their strengths and
limitations to better define their capabilities to com-
plete real world coding tasks. Commonly used
benchmarks such as HumanEval and SWE-Bench
have become an industry standard in benchmark-
ing models for their coding abilities, as their tasks
are representative of real-world use cases. (Chen
et al., 2021; Jimenez et al., 2024) However, these
benchmarks present multiple limitations: (i) they
generally require an external environment to run
and test code and (ii) only evaluate a single aspect
of a model’s coding abilities (i.e. code genera-
tion) without evaluating other equally important
aspects (i.e. model hallucination). While dedicated
environments for coding benchmarks are often de-
sirable, coding tasks that require highly specific
environment versions or depend on outputs that
cannot be evaluated in a single test/fail manner (i.e.
user interface-dependent tasks) make it challenging
to adapt refined environments for every new test
case.

As a result, this paper introduces a new suite of
coding benchmarks called the Environment-Free
Coding Benchmarks, which are based on 1,800
examples of real-world pull requests from popu-
lar repositories on GitHub. In total, this evalua-
tion suite comprises 5,512 unique questions across
5 different tasks, which we evaluate with Llama-
3.3-70B and OpenAI’s o4-mini model as two com-
monly used models with state of the art capabilities.
As a result, this paper makes the following contri-
butions:

• We introduce EFCB as a new coding bench-
mark. EFCB offers 5,512 unique questions
across 5 different tasks related to code under-



Benchmark Number of Questions Multiple Languages ?
HumanEval (Chen et al., 2021) 164 No

SWE-Bench (Jimenez et al., 2024) 2,294 No
CRUXEval (Gu et al., 2024) 800 No

LiveCodeBench (Jain et al., 2024) 511 No
LiveBench (White et al., 2025) 128 No

EFCB (ours) 5,512 Yes

Table 1: Comparision between EFCB and other commonly used coding benchmarks

Organization Repository Type Number of Questions Primary Language
mastodon mastodon social media platform 163 to 239 Ruby

bluesky-social indigo social media platform 141 to 176 Go
duckdb duckdb database system 174 to 215 C++

chroma-core chroma database system 160 to 196 Rust
cloudflare cloudflared tunnel 82 to 148 Go
tailscale tailscale tunnel 148 to 187 Go

Table 2: Description of the 6 repositories used for EFCB.

standing, code generation and hallucination
mitigation. These questions and code samples
are sourced from pull requests from 6 GitHub
repositories with high contributor activity and
active industry use cases.

• We evaluate o4-mini and Llama-3.3-70B.
Our results show that model performance is
generally uniform across different program-
ming languages and use cases. Furthermore,
we show that even the current state of the art
models do not attain benchmark saturation,
and we highlight areas to further develop lan-
guge model coding abilities.

2 Method

2.1 Data Collection

To populate the questions in the EFCB suite, we
use pull requests and code patches from six GitHub
repositories, which we curate using the GitHub
API through a Python client. We only keep code
patches (including lines with file names) that have
at least 15 lines but do not exceed 7,500 characters.
This filter ensures that code patches are non-trivial
to solve, while preventing overly long code patches
that may exceed the input context length of select
language models (since some questions such as
GMCQ-Hard can contain a very similar code patch
four times, thus quadrupling the question length).

2.2 Model Evaluation

2.2.1 Choice of Models

This paper evaluates an open source model and
a closed source model, which correspond to two
types of language models that are actively in use.
We select OpenAI’s o4-mini as our choice of closed
source model, and Meta’s Llama-3.3-70B model
as an open source model. We chose both models
given their reported state-of-the-art coding abili-
ties and their widespread use in industry. We use
OpenAI’s public API to access o4-mini, and To-
gether AI’s public API to access its Llama 3.3 70B
implementation: llama-3.3-70b-turbo.

2.2.2 Choice of Code Patches

To ensure that the code samples do not exceed the
a language model’s context length, we discard any
pull request whose code patch contains more than
7,500 characters. Given that some models have a
maximum context window of around 32,000 tokens
(such as some variants of the Llama-3.3 model),
this upper bound for each code patch’s character
count ensures that each code patch can fit within
smaller context windows. Most language models
as of this writing support context lengths of around
128k tokens, though we still impose this upper limit
to ensure that as many language models as possible
can run the EFCB tasks. Furthermore, given that
two of the EFCB tasks (GMCQ-Easy and GMCQ-
Hard) use four code samples, this this upper bound
on the character count further enforces the ability



to integrate multiple choice questions with respect
to a 32,000 token context window.

All tasks have a lower bound where each code
sample must not be empty. In particular, the MPR-
Gen task requires that each code patch contain
at least 15 lines of code, to ensure that the mask
(which covers 5 lines of code) still leaves sufficient
inline context.

2.2.3 Task-Specific Performance
Each task has its own scoring metric. GMCQ-Easy
and GMCQ-Hard use accuracy (from 0% to 100%)
based on a multiple choice question format (with
a total of four questions). MPR-Gen and Reverse-
QA use an LLM-as-a-judge (gpt-4.1-nano) to score
the target model from 0 to 10. Reverse-QA-Hallu
measures the hallucination rate (from 0% to 100%)
also using an LLM-as-ajudge (gpt-4.1-nano). Our
choice to use an LLM-as-a-judge is based on ear-
lier work that shows that certain language models
provide sufficiently reliable results to be used to
evalute model outputs. (Zheng et al., 2023)

2.2.4 Overall Performance
We use the following metric to evaluate the overall
model performance on the EFCB suite:

EFCB score =
1

5
(

2∑
i=1

Ai +
2∑

i=1

Bi

10
+ (1− C))

where Ai represents the two GMCQ tasks that
use accuracy, Bi represents the two tasks that are
scored on a maximum of 10 (Reverse-Qa and MPR-
Gen), and C represents the hallucination rate.

3 Dataset

3.1 Choice of GitHub Repositories

We select six GitHub repositories that provide
the pull request and code patches for our EFCB
dataset. When selecting our choice of GitHub
repositories, we made sure that these GitHub repos-
itories of interest (i) had a high number of well-
documented pull requests and coding contributions,
(ii) were libraries that were as close as possible
to a production-level tool and (iii) had a strong
adoption rate in industry (using GitHub stars as an
indicator).

As shown in Table 2, we choose six GitHub
repositories spanning different use cases and pro-
gramming languages: two of them related to social

media infrastructure (mastodon’s full stack code-
base and Bluesky’s Indigo service for its messaging
protocol), two of them related to database systems
(duckdb and chroma), and the remaining two re-
lated to tunneling services (tailscale and Cloud-
flare’s cloudflared client).

3.2 EFCB Tasks

The EFCB suite has five tasks, which are defined
as follows. For sake of brevity, the full question
prompts are included in the appendix.

3.2.1 GMCQ-Easy
GitHub Multiple Choice Question-Easy (GMCQ-
Easy) provides the model with a GitHub pull re-
quest title and description, and then lists four
choices of code patches corresponding to actual
code patches for different pull requests in the same
repository. Next, the model must be able to choose
the choice of the code patch that susccessfully
closed the pull request.

3.2.2 GMCQ-Hard
GitHub Multiple Choice Question-Hard
(GMCQ-Hard) is a “needle-in-the-haystack"
variation of GMCQ-Easy. Given a GitHub pull
request title and description, the model is then
provided with 4 variations of the code path that
closed that pull request. Three of these options
have two “words" (i.e. variables) that are swapped,
meaning that the option with no word swapping is
the correct one.

3.2.3 MPR-Gen
For Masked Pull-Request Generation (MPR-
Gen), the model is provided with the GitHub pull
request’s title, description and code path with a
masked section. The model is then asked to gener-
ate the code corresponding to the masked section,
which gpt-4.1-nano rates from 0 to 10 as an LLM-
as-a-judge.

3.2.4 Reverse-QA
Reverse-Question & Answer (Reverse-QA) pro-
vides a model with a code patch from a pull request,
and then asks the model to generate a title and de-
scription that corresponds to the code patch. A
gpt-4.1-nano model then rates the similarity from a
scale of 0 to 10 as an LLM-as-a-judge.

3.2.5 Reverse-QA-Hallu
Reverse-QA-Hallucination (Reverse-QA-Hallu)
is a variation of Reverse-QA, where the LLM-as-



Task Chroma Cloudflare DuckDB Indigo Mastodon Tailscale Total
GMCQ-Easy 196 148 215 176 239 187 1,161
GMCQ-Hard 196 148 215 176 239 187 1,161

MPR-Gen 160 82 174 141 163 148 868
Reverse-QA 196 148 215 176 239 187 1,161

Reverse-QA-Hallu 196 148 215 176 239 187 1,161
Total - - - - - - 5,512

Table 3: Question count for all five tasks in the EFCB.

Model GMCQ-E GMCQ-H MPR-G R-QA R-QA-H EFCB Score
Llama-3.3-70B 0.803 0.476 3.74 0.965 7.23 0.482

o3-mini 0.892 0.868 3.67 0.946 7.41 0.584

Table 4: Summary of EFCB Suite Results

a-judge is prompted to detect hallucinations as op-
posed to similarity. If the model’s response con-
tains any information that was not present in the
original GitHub issue, the LLM-as-a-judge consid-
ers that to be an example of a hallucination.

4 Results

Overall, we note observe that o4-mini has a slight
edge in terms of performance over Llama-3.3-70B,
though there are cases where Llama-3.3-70B scores
better. Furthermore, model performance is gener-
ally uniform across codebases and programming
languages, which suggests that current state of the
art models show sufficient generalization across
different coding languages and use cases.

4.1 Code Understanding
GMCQ-Easy, GMCQ-Hard and Reverse-QA serve
as tasks that evaluate a model’s ability to under-
stand code. Given the results tables, we note that
both OpenAI’s o4-mini and Llama-3.3-70B show
similar performance across tasks, which suggests
that current state of the art language models can
have sufficiently uniform performance across dif-
ferent codebase types and programming languages
without any noticeable biases. However, we note
that model performance consistently dropped for
Bluesky’s Indigo repository, which suggests that
either the documentation or coding style for Indigo
may have certain characteristics which makes it
more challenging for language models to complete.
While model scores are generally high across these
three tasks, we believe that we have not yet attained
performance saturation yet: both GMCQ tasks have
an evident ground truth, which would make attain-
ing 100% accuracy an achievable outcome. Addi-

tionally, MPR-Gen scores average around 3.7 for
Revesre-QA, with ample room to improve model
performance.

4.2 Code Generation

Using MPR-Gen to evaluate code generation abili-
ties, we observe that both o4-mini and Llama-3.3-
70B perform strongly and almost uniformly across
different repositories, averaging between 7.2 and
7.4 on a scale of 10. This further supports the
idea (from the code understanding subsection) that
current state of the art models perform uniformly
across different coding languages and use cases.
While the average scores between 7.2 and 7.4 are
close to 10, there is still space for improvement,
which suggests that this task is not saturated yet.

4.3 Hallucination Mitigation

For Reverse-QA-Hallu, we observe that halluci-
nation rates are still very elevated and uniform
across different repositories, averaging between
94% to 97%. One likely explanation is that lan-
guage models tend to be verbose: given a code
patch, language models may generate adjacent con-
cepts and ideas that are not initially present in a
human-authored pull request title and description.
Accordingly, these results suggest that additional
work should be directed to better define the scope
of what constitutes a hallucination and to identify
strategies that can further mitigate hallucinations
for models working on code-related tasks.



Model Name mastodon indigo cloudflared duckdb tailscale chroma unweighted average
llama-3.3-70b 7.48 6.9 6.88 7.18 7.5 7.45 7.23
o4-mini 7.5 7.35 7.49 7.29 7.73 7.11 7.41

Table 5: Results for MPR-Gen

Model Name mastodon indigo cloudflared duckdb tailscale chroma unweighted average
llama-3.3-70b 0.912 0.699 0.845 0.8 0.759 0.801 0.803
o4-mini 0.975 0.869 0.872 0.893 0.824 0.918 0.892

Table 6: Results for GMCQ-Easy

5 Related Work

5.1 Language Model Benchmarks

Before the rise of transformer models, early work
in language model evaluation used language trans-
lation (i.e. English to French), among other simi-
lar benchmarks, to evaluate model performance.
(Sutskever et al., 2014; Bahdanau et al., 2016)
The introduction of the transformer model coin-
cided with an increase in industry standard bench-
marks. A common type of benchmark used mul-
tiple choice questions as a standard format, with
MMLU, WNLI and GPQA being notable exam-
ples of multiple choice benchmarks. (Hendrycks
et al., 2021; Levesque et al., 2011; Rein et al.,
2023) Recent work has also shown that certain
language models are sufficiently reliable to be used
to directly evaluate language model outputs: con-
sequently, this configuration, known as “llm-as-a-
judge", allows benchmarks to resemble human-like
conversations without requiring a human judge in
the loop, thereby making language model evalu-
ations much more efficient and diverse. (Zheng
et al., 2023)

5.2 Coding Benchmarks

With the rise of transformer models, one of the
earliest coding-specific benchmarks which is still
industry-standard is the HumanEval benchmark
that asks a model to generate a Python function
body, when given some stating code and a doc-
string with context and instructions. (Chen et al.,
2021) Building on the idea of code generation
as a task, SWE-bench introduces industry-like
tasks by asking language models to create pull
requests with generated code that can close real-
world GitHub code issues. (Jimenez et al., 2024)
Other recent developments include LiveCodeBench
and LiveBench that focus on contamination-free
coding tasks (tasks that are not part of a model’s

pre-training data) (Jain et al., 2024; White et al.,
2025), and CRUXEval which aims to evaluate code
understanding by prompting a model to generate a
function’s input based on the output, and to do the
complementary task as well. (Gu et al., 2024).

5.3 Hallucination Benchmarks
Research in developing hallucination benchmarks
is very recent, as hallucinations have only been ex-
tensively studied with the rise of transformer mod-
els. One notable hallucination evaluation dataset
is HaluEval, which asks a language model to de-
termine whether a generated response contains a
model hallucination. (Li et al., 2023). Another
approach involves training language models that
specialize in hallucination detection, which can be
used similarly as an llm-as-a-judge: one such ex-
ample is the LYNX model, which is capable of
detecting hallucinations better than state of the art
models like GPT-4o and Claude-3-Sonnet. (Ravi
et al., 2024).

6 Conclusion

This paper introduces the Environment-Free Cod-
ing Benchmarks suite that comprises 5,512 unique
coding questions that are sourced from real-world
pull requests originating from six GitHub reposito-
ries with an active contributor base. By comparing
EFCB with previous coding benchmarks, we show
that EFCB offers multiple advantages: (i) it does
not require an external environment to run code
examples, thereby simplifying the benchmark eval-
uation process; (ii) it evaluates multiple abilities
related to coding tasks (code understanding, genera-
tion, and hallucination), as opposed to most coding
benchmarks that evaluate a single aspect; and (iii)
EFCB offers a much more diverse and larger ques-
tion bank across multiple programming languages
and different production-ready code use cases.

After evaluating o4-mini and Llama-3.3-70B



Model Name mastodon indigo cloudflared duckdb tailscale chroma unweighted average
llama-3.3-70b 0.452 0.392 0.574 0.47 0.465 0.5 0.476
o4-mini 0.883 0.824 0.919 0.879 0.834 0.867 0.868

Table 7: Results for GMCQ-Hard

Model Name mastodon indigo cloudflared duckdb tailscale chroma unweighted average
llama-3.3-70b 3.94 3.4 4.01 3.97 3.84 3.28 3.74
o4-mini 4.26 3.36 4.07 3.4 3.74 3.18 3.67

Table 8: Results for Reverse-QA

as our choice of state of the art models, we ob-
serve that current SOTA models demonstrate ap-
proximately uniform performance across different
programming languages and use cases, suggesting
that current SOTA language models are sufficiently
good to be used in a wide variety of coding en-
vironments with a similar level of performance.
Additionally, the EFCB suite has not yet attained
benchmark saturation - notably with Reverse-QA-
Hallu still having more than 94% fail cases on aver-
age - making it a desirable choice for a benchmark
to evaluate language models coding abilities.

Directions for future work include (i) defining
the scope of model hallucination and evaluating
different hallucination mitigation strategies, (ii) im-
proving model question and answer capabilities
with respect to GitHub pull requests as a ground
truth measurement, (iii) developing methods to ver-
ify code runnability at inference time and (iv) evalu-
ating models on niche languages and programming
use cases with smaller contributor activity.

7 Limitations

7.1 Choice of language models.

One limitation in our current work is the narrow
scope of our choice of language models. Given
budget constraints, we chose two models that we
believe are representative of the current state of the
art for coding models, though we invite researchers
to evaluate other state of the art models to evaluate
the reproducibility of our reported results.

7.2 Generation of bug-free code.

Given that the premise of EFCB is to run model
evaluations without the need of a dedicated coding
environment, we rely on a language model as a
judge to grade model generated code. Even though
llm-as-a-judge approaches have shown reliable em-
pirical results (Zheng et al., 2023), this approach

lacks the ability to directly run model outputs of
generated code. As a result, while EFCB can give
a holistic indication of a model’s ability to generate
code, additional tests may be needed to ascertain
its coding abilities to generate runnable, bug-free
code.

7.3 Implicit information in the ground truth
pull requests.

Another limitation of our current work is that we
use human-authored pull requests that were written
for code releases, rather than for model evaluation.
As a result, each pull request title and description
may contain implicit references that may not be
apparent to models (or human evaluators) who do
not have domain-specific knowledge of that partic-
ular GitHub repository. Thus, models with verbose
generation may generate adjacent content that is
relevant to the specific task, though these adjacent
generated contents may be flagged as mistakes by
the EFCB suite’s scoring methods. However, given
that these pull requests are sourced from an indus-
try setting with production-ready development in
mind, our EFCB code does offer an industry-like
environment to evaluate models, as opposed to a
synthetic, clean environment which may not be
representative of industry-like environments.

7.4 Assessing the risk of data leakage.

By definition, data leakage occurs when the ground
truth to a set of questions is contained in a model’s
training data. To minimize the risk of data leakage,
we select a set of closed pull requests in reverse
chronological order (starting with the most recent
pull requests). As of this delay, given that there is
often a gap between a model’s training data cutoff
date and its release date, we note that the EFCB’s
selection of a “most-recent-first" subset of pull re-
quests minimizes the risk of data leakage. However,
we acknowledge that this method is not a fool-proof



Model Name mastodon indigo cloudflared duckdb tailscale chroma unweighted average
llama-3.3-70b 0.941 0.983 0.959 0.967 0.984 0.954 0.965
o4-mini 0.946 0.949 0.966 0.944 0.957 0.913 0.946

Table 9: Results for Reverse-QA-Hallu

method to shield this evaluation from data leakage
in future models. As a result, potential solutions
for future benchmarks that build on EFCB include
regularly release minor versions that solely include
recent pull requests (past the training data cutoff
date) or building a closed dataset that contains pull
requests made by human annotators independently
of the original open-source GitHub pull requests.

7.5 Limitations on using an LLM-as-a-judge
approach.

Three of the five EFCB tasks (MPR-Gen, Reverse-
QA, and Reverse-QA-Hallu) use GPT-4.1-nano to
assign a score to the response of the target model.
Given that past work by Zheng et al. has shown
that LLM-as-a-judge evaluations are in agreement
with human annotator judgments upward of 80%
of the time, we believe that using GPT-4.1-nano as
a “judge LLM" is generally reliable. Some benefits
of using GPT-4.1-nano as a judge include (i) be-
ing able to use GPT-4.1-nano to directly compare
a predicted response with a ground truth sample,
(ii) its speed relative to having a group of human
evaluators judge the results and (iii) potentially less
variance in its responses relative to a human group
of annotators. However, without a human judge
in the loop, we acknowledge that there is a risk of
some scores being inaccurate. Thus, we interpret
the scores as a measure of the similarity between
the predicted response and the ground truth, rather
than a measure of an execution-based evaluation.
While Zheng et al.’s work suggests that there ex-
ists a sufficient amount of correlation between an
LLM-as-a-judge’s decision and a human annota-
tor’s judgement, we recognize that more empirical
work on EFCB-related evaluations is needed to
further validate the use of LLMs-as-a-judge for
scoring coding-based evaluations.

8 Ethics Statement

The data collection process is based on six open-
sourced GitHub repositories, for which we made
sure that our work remained in accordance with
each GitHub repository’s respective license. Our
dataset only contains publicly available code

patches and pull request details, and does not con-
tain any user information nor any sensitive infor-
mation. Our dataset is available on GitHub (see the
Reproducibility Statement). Should any reviewers
raise any concerns, we will actively work to address
those concerns and document changes made.

9 Reproducibility Statement

All of the EFCB questions and prompts are
accessible at the following GitHub repository:
https://anonymous.4open.science/r/efcb-fork-8965.
Additional code examples are available upon
request. All the model evaluation was done using
OpenAI’s public API endpoint and Together AI’s
public API endpoint.
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A Judging Prompts

We use OpenAI’s gpt-4.1-nano as a LLM-as-a-
judge.

A.1 MPR-Gen

Judging prompt:

You are an impartial judge. Please eval-
uate the following ground truth and pre-
dicted responses, and output a score be-
tween 0 and 10, based on the similarity
between the ground truth and predicted
response.

0 means not similar, and 10 means ex-
actly similar.

Only return the score as a number. Do
not return anything else.

A.2 Reverse-QA

Judging prompt:

You are an impartial judge. Please eval-
uate the following ground truth and pre-
dicted responses, and output a score be-
tween 0 and 10, based on the similarity
between the ground truth and predicted
response.

0 means not similar, and 10 means ex-
actly similar.

Only return the score as a number. Do
not return anything else.

A.3 Reverse-QA-Hallu

Judging prompt:

You are an impartial judge. Given the
following ground truth and predicted re-
sponse, output a score of either 0 or 1.

If the predicted response contains infor-
mation not present in the ground truth,
output 1. Otherwise, output 0.

Only return the score as a number. Do
not return anything else.

B Selection of GitHub Repositories

We select six GitHub repositories from a variety
of use cases and programming languages, that
are as close as possible to codebases that reflect
production-ready development:

https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://api.semanticscholar.org/CorpusID:15710851
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://arxiv.org/abs/2407.08488
https://arxiv.org/abs/2407.08488
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685


• 2 of them related to databases (chroma and
duckdb)

• 2 of them related to tunneling/networking
(tailscale and cloudflared)

• 2 of them related to social media platforms
(mastodon and indigo)

B.1 Chroma

Chroma is an open-source vector database primar-
ily implemented in Rust and Python, with 20.3k
stars.

Accessible at:
https://github.com/chroma-core/chroma

B.2 Cloudflared

Cloudflared is a CLI client that tunnels traffic from
a Cloudflare network to user-defined origins.

Cloudflared is primarily implemented in Go with
10.7k stars.

Accessible at:
https://github.com/cloudflare/cloudflared

B.3 DuckDB

DuckDB is an analytical datbase based on SQL,
primarily implemented in C+= with 30.1k stars.

Accessible at:
https://github.com/duckdb/duckdb

B.4 Indigo

Indigo is Bluesky’s source code for its AT-protocol
services. Indigo is primarily implemented in Go, ,
with 1.1k stars.

Accessible at:
https://github.com/bluesky-social/indigo

B.5 Mastodon

The Mastodon repository contains the full-stack
code for the open-source Mastodon blogging plat-
form. It is primarily implemented in Ruby, with
48.4k stars.

Accessible at:
https://github.com/mastodon/mastodon

B.6 Tailscale

Tailscale is a CLI tool for tunneling and peer-to-
peer use cases. It is primarily implemented in Go
and has 23k stars.

Accessible at:
https://github.com/tailscale/tailscale

C Sample Questions

C.1 GMCQ-Easy/Hard
GMCQ-Easy and GMCQ-Hard have the same ques-
tion structure.

The difference is that the code patches for
GMCQ-Easy are from four different pull requests,
while GMCQ-Hard has the same code patch, but
three of the four have two words (i.e. variables)
swapped.

System:
"The user will ask which of the following 4

choices (A, B, C or D) is the best solution to the
following GitHub pull request. Even the correct
answer may have some irrelevant code inside of it.
Only respond with a single letter A, B, C or D in
uppercase."

User:
"Task Description:
fixes tailscale/tailscale16082˚˚should be true by

default on iOS and Android. These platforms don’t
have˚CLI and aren’t impacted by the original issue
that prompted this change.—

Choice A: [[code]]
Choice B: [[code]]
Choice C: [[code]]
Choice D: [[code]]"
Ground Truth:
"C"

C.2 MPR-Gen
System:

"You are given a GitHub pull request title, de-
scription, and code that contains masked lines. Gen-
erate the code diff by replacing the masked lines
with code that solves the GitHub pull request. The
masked lines are marked with [[MASK]] in the
code diff. Generate the entire code diff by replacing
the masked lines of code with the correct lines of
code, while including all the previous code. Only
generate the code diff, do not generate anything
else."

User:
"Title: feature/capture: fix wireshark decoding

and add new disco frame types: Fix the wireshark
lua dissector to support 0 bit position and not throw
modulo div by 0 errors.

Add new disco frame types to the decoder.
Updates tailscale/corp29036
Code Diff:
[Code diff that contains a [[MASK]] for sime

lines]



Ground Truth:
[Code path for those masked lines of code]

C.3 Reverse-QA
System:

"Given the following code diff, generate a title
and a description of a GitHub pull request that best
represents this code diff.your answer in the follow-
ing format:: [[Title of the GitHub Pull Request]]:
[[Description of the GitHub Pull Request]]"

User:
"tailcfg/tailcfg.go@@ -2446,6 +2446,14 @@

const (�// native tailnet. This is currently only
sent to Hello, in its�// peer node list.4 NodeCa-
pability = n̈ative-ipv4¨++�// NodeAttrRelayServer
permits the node to act as an underlay UDP
relay+�// server. There are no expected values
for this key in NodeCapMap.+NodeCapability =
r̈elay:server¨++�// NodeAttrRelayClient permits the
node to act as an underlay UDP relay+�// client.
There are no expected values for this key in
NodeCapMap.+NodeCapability = r̈elay:client¨)//
SetDNSRequest is a request to add a DNS record.—
"

Ground Truth:
"Title: tailcfg: add relay client and server

NodeAttr’s: Updates tailscale/corp27502"

C.4 Reverse-QA-Hallu
System:

"Given the following code diff, generate a title
and a description of a GitHub pull request that best
represents this code diff.your answer in the follow-
ing format:: [[Title of the GitHub Pull Request]]:
[[Description of the GitHub Pull Request]]"

User:
"go.toolchain.rev@@ -1 +1 @@- [commit hash]

+ [commit hash] —"
Ground Truth:
"Title: go.toolchain.rev:

bump to 1.24.3: Updates
https://github.com/tailscale/corp/issues/28916"
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