
Uncertainty Quantification with the Empirical Neural
Tangent Kernel

Joseph Wilson
School of Mathematics And Physics

University of Queensland
joseph.wilson1@uqconnect.edu.au

Chris van der Heide
Dept. of Electrical and Electronic Engineering

University of Melbourne
chris.vdh@gmail.com

Liam Hodgkinson
School of Mathematics and Statistics

University of Melbourne
lhodgkinson@unimelb.edu.au

Fred Roosta
CIRES and School of Mathematics And Physics

University of Queensland
fred.roosta@uq.edu.au

Abstract

While neural networks have demonstrated impressive performance across various
tasks, accurately quantifying uncertainty in their predictions is essential to ensure
their trustworthiness and enable widespread adoption in critical systems. Several
Bayesian uncertainty quantification (UQ) methods exist that are either cheap or
reliable, but not both. We propose a post-hoc, sampling-based UQ method for
overparameterized networks at the end of training. Our approach constructs effi-
cient and meaningful deep ensembles by employing a (stochastic) gradient-descent
sampling process on appropriately linearized networks. We demonstrate that our
method effectively approximates the posterior of a Gaussian Process using the
empirical Neural Tangent Kernel. Through a series of numerical experiments,
we show that our method not only outperforms competing approaches in com-
putational efficiency–often reducing costs by multiple factors–but also maintains
state-of-the-art performance across a variety of UQ metrics for both regression and
classification tasks.

1 Introduction

Neural networks (NN) achieve impressive performance on a wide array of tasks, in areas such
as speech recognition (Nassif et al., 2019; Abdel-Hamid et al., 2014; Deng et al., 2013), image
classification (LeCun et al., 1998; Krizhevsky et al., 2012; He et al., 2016), computer vision (Redmon
et al., 2016; Redmon & Farhadi, 2017), and language processing (Vaswani et al., 2017; Ray, 2023;
Devlin et al., 2019), often significantly exceeding human performance. While the promising predictive
and generative performance of modern NNs is evident, accurately quantifying uncertainty in their
predictions remains an important and active research frontier (Abdar et al., 2021). Models are often
over-confident in predictions on out-of-distribution (OoD) inputs (Guo et al., 2017), and sensitive to
distribution-shift (Ford et al., 2019). By quantifying a model’s uncertainty, we can determine when it
fails to provide well-calibrated predictions, indicating the need for additional training (possibly on
more diverse data) or even human intervention. This is vital for deploying NNs in critical applications
like diagnostic medicine and autonomous machine control (Nemani et al., 2023b).

An array of uncertainty quantification methods for NNs exist, each with benefits and drawbacks.
Frequentist statistical methods, such as conformal prediction (Vovk et al., 2005; Papadopoulos
et al., 2002; Lei & Wasserman, 2014), create prediction intervals through parameter estimation and
probability distributions on the data. While currently considered state-of-the-art, the main drawback

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



5.0 2.5 0.0 2.5 5.0

200

0

200

VI

5.0 2.5 0.0 2.5 5.0

200

0

200

SWAG

5.0 2.5 0.0 2.5 5.0

200

0

200

LA

5.0 2.5 0.0 2.5 5.0

200

0

200

LLA

5.0 2.5 0.0 2.5 5.0

200

0

200

DE

5.0 2.5 0.0 2.5 5.0

200

0

200

NUQLS

Figure 1: Comparison of various Bayesian UQ methods (see Section 2) on a 1-layer MLP, trained on
the data (red) lying on y = x3 (black), with Gaussian noise added. The methods’ mean predictors
(blue) ±3σ (green) are shown, where σ2 is the variance estimated via each method. We see that
NUQLS performs well on this task.

is that conformal prediction is data-hungry, requiring a large hold-out set. Several works Altieri
et al. (2024); Dadalto et al. (2023); Granese et al. (2021) employ the feature-space representations
of the network to quantify the uncertainty of test predictions, through kernel densities (Kotelevskii
et al., 2022), Gaussian Discriminant analysis (Mukhoti et al., 2023), non-constant mapping functions
(Tagasovska & Lopez-Paz, 2019), etc. The interpretation of uncertainty in these works is related to
risk of misclassification; these methods generally perform very well at detecting OoD points. While
both conformal predictions and feature-space works are important, we limit our scope to Bayesian
methods in this paper. Though Bayesian methods can suffer from prior misspecification (Masegosa,
2020) and computational burdens, the predictive and posterior distributions of a model are very
natural frameworks for quantifying the uncertainty and spread of possible values of the model.

Unfortunately, largely due to the curse of dimensionality, existing Bayesian methods are very
expensive to compute, and provide poor approximations to the predictive distribution (Folgoc et al.,
2021). This results in a suite of methods that require excessive approximations to scale to large
problems (Daxberger et al., 2021), often at the cost of theoretical underpinnings, or necessitating
modifications to the network itself (He et al., 2020).

Gaussian Processes (GPs) (Rasmussen & Williams, 2005) are important tools in Bayesian machine
learning (ML) that can directly capture the epistemic (model) uncertainty of predictions, and arise as
large-width limits of NNs (Neal, 1996). However, naïve GP training scales cubically in the number
of training datapoints, necessitating approximations for modern applications. Neural Tangent Kernels
(NTKs) (Jacot et al., 2018) describe the functional evolution of a NN under gradient flow, and naturally
arise in the analysis of model quality (Hodgkinson et al., 2023). Due to their deep connection to NNs,
these covariance functions are enticing as potential tools for UQ of their corresponding NNs.

Motivated by this, we present a UQ method for a trained, over-parameterized NN model, wherein
we approximate the predictive distribution through an ensemble of linearized models, trained using
(stochastic) gradient-descent. For certain loss functions, this ensemble samples from the posterior of
a GP with an empirical NTK.

Contributions. Our contributions are as follows:

1. In Section 3.1, we present a Monte-Carlo sampling based UQ method to approximate the predictive
distribution of NNs, called Neural Uncertainty Quantification by Linearized Sampling (NUQLS).
Our method is lightweight, post-hoc, numerically stable, and embarrassingly parallel.

2. Under certain assumptions, Section 3.2 details the convergence of NUQLS to the predictive
distribution of a GP with an empirical NTK kernel, providing a novel perspective on the connection
between NNs, GPs, and the NTK.

3. On various ML problems in Section 4, we show that NUQLS performs as well as or better than
leading UQ methods, is less computationally expensive than deep ensemble, and scales to large
image classification tasks.

2



4. In Section 4.4 we introduce a novel metric for evaluating the quality of UQ methods for classifi-
cation tasks. This metric more directly measures the quality of UQ methods than existing UQ
metrics.

Remark 1.1 (Necessity of Contribution 4.). Evaluating the quality of UQ methods is non-trivial.
There exists in the literature a lack of a suitable framework for evaluating the quality of UQ methods
in classification settings. Common metrics such as Negative Log-Likelihood (NLL), Expected
Calibration Error (ECE) (Naeini et al., 2015) and Area Under the Curve of the Receiver Operating
Characteristic (AUCROC) are actually metrics for prediction quality, or are based on flawed surrogates
for uncertainty. Further, it was shown in Abe et al. (2022) that the goal of Bayesian methods should
not be to improve predictive ability; performance gains will be attained more economically by
choosing a larger model class. Instead, Bayesian methods should seek to accurately quantify the
uncertainty of a model, by computing the predictive variance. As uncertainty is not a measurement
that can easily be shown to be well-calibrated, one requires a more qualitative approach to evaluating
the performance of a UQ model. This is the motivation for the graphical technique we introduce in
Section 4.4 for comparing the quality of UQ estimates for multi-class classification. For an in-depth
discussion of these points, please see Appendix C.

Notation. Throughout the paper, we denote scalars, vectors, and matrices as lower-case, bold
lower-case, and bold upper-case letters, e.g., c, θ and K, respectively. For two vectors v ∈ Rp

and w ∈ Rp, their Euclidean inner product is denoted as 〈v,w〉 = vᵀw. We primarily consider
supervised learning, which involves a function f : Rd ×Rp → Rc, assumed sufficiently smooth in its
parameters θ ∈ Rp, a training dataset D = {X ,Y} = {xi,yi}ni=1 ⊂ Rd × Rc, and a loss function
` : Rc × Rc → [0,∞).

The process of training amounts to finding a solution, θ̂, to the optimization problem
minθ

∑n
i=1 `(f(xi,θ),yi)+R(θ), whereR(θ) is a regulariser. For a kernel function K : Rd×Rd →

Rc×c, we define KX ,X ∈ Rnc×nc where the (i, j)th (block) element is K(xi,xj) ∈ Rc×c. Addition-
ally, we define KX ,x , [K(x1,x) . . . K(xn,x)]

ᵀ
∈ Rnc×c with Kᵀ

X ,x = Kx,X . For a matrix
J, its Moore-Penrose pseudo-inverse is denoted by J†.

2 Background

Bayesian Framework. Parametric Bayesian methods admit access to a distribution over predictions
f(θ,x?) for unseen test points x?, through the posterior distribution p(θ|D) ∝ p(θ)p(D|θ), and
the predictive distribution p(y?|x?,D) =

∫
p(y?|f(θ,x?))p(θ|D)dθ, where p(θ) is the prior, and

p(D|θ) is the likelihood function evaluated on the training data. Both the posterior and the predictive
distributions are computationally intractable in all but the simplest cases. In our setting, their
calculation involves very high-dimensional integrals, which we can approximate through a Monte
Carlo (MC) approximation p(y?|x?,D) ≈ 1/S

∑
s p(y

?|f(θs,x?)) for θs ∼ q(θ), where q(θ) is an
approximation to the posterior distribution. The effectiveness of classical Markov Chain Monte Carlo
(MCMC) methods in posterior sampling diminishes in this setting due to the curse of dimensionality,
limiting the tractable techniques available with theoretical guarantees. This limitation necessitates
coarser approximations for estimating the posterior q(θ), leading to the emergence of the following
Bayesian methods for posterior approximation.

Proposed in (Gal & Ghahramani, 2016), Monte Carlo Dropout (MC-Dropout) takes a trained NN,
and uses the dropout regularization technique at test time to sample S sub-networks, {f(θs,x)}s=1:S
as an MC approximation of the predictive distribution. MC-Dropout is an inexpensive method, yet it
is unlikely to converge to the true posterior, and is erroneously multi-modal (Folgoc et al., 2021).

In Variational Inference (VI) (Hinton & Van Camp, 1993; Graves, 2011), a tractable family of
approximating distributions for p(θ|D) is chosen, denoted by qψ(θ), and parameterized by ψ. The
optimal distribution in this family is obtained by finding ψ that minimizes the Kullback-Leibler
divergence between qψ(θ) and p(θ|D). To be computationally viable, mean field and low-rank
covariance structures are often required for qψ(θ).

The Laplace Approximation (LA) (MacKay, 1992; Ritter et al., 2018) is a tool from classical statistics
which approximates the posterior distribution by a Gaussian centered at the maximum a posteriori

3



solution (MAP) with normalized inverse Fisher information covariance. This is justified by the
Bernstein-von Mises Theorem (Van der Vaart, 2000, pp. 140–146), which guarantees that the
posterior converges to this distribution in the large-data limit, for well-specified regular models.
However, NNs are often over-parameterized, and the regime where n→∞ with fixed p is no longer
valid or a reasonable reflection of modern deep learning models (De Bortoli & Desolneux, 2022).

These limitations are acknowledged but seldom discussed by the Bayesian Deep Learning (BDL)
community, which tends to view this as an additional layer of approximation rather than a modelling
error, leading to the development of synonymous LA-inspired methods. However, we will show that
such methods typically perform poorly compared to deep ensembles, which are often excluded from
comparisons.

We can evaluate the posterior and predictive distribution in the LA using the linearization of f(x,θ)
around the MAP solution. This approach is known as the Linearized Laplace Approximation (LLA)
and typically delivers better performance than LA (Immer et al., 2021). LLA generally requires
reduction to a subset of parameters or approximations of the covariance structure (Martens & Grosse,
2015) to scale, at the cost of performance. Recent work (Antorán et al., 2022; Ortega et al., 2023) has
enabled LLA to become more scalable with better performance for larger models and datasets.

Deep Ensembles (DE) (Lakshminarayanan et al., 2017) are comprised of S networks that are
independently trained on the same training data, with different initializations, leading to a col-
lection of parameters {θs; s = 1 . . . , S}. At test time, our predictive distribution becomes
p(y|x,D) ≈ 1/S

∑S
s=1 p(y|f(θs,x)). Despite their simple construction, DEs are able to obtain

samples from different modes of the posterior, and are often considered state-of-the-art for BDL
(Hoffmann & Elster, 2021). However, due to the often large cost of training performant neural
networks, deep ensembles of reasonable size can be undesirably expensive to obtain.

Stochastic Weight Averaging Gaussian (SWAG) (Maddox et al., 2019) takes a trained network and
undergoes further epochs of SGD training to generate a collection of parameter samples. A Gaussian
distribution with sample mean and a low-rank approximation of the sample covariance is then used to
approximate a posterior mode.

Gaussian Processes. A GP is a stochastic process that is defined by a mean and a kernel function.
A GP models the output of a random function f : Rd → Rc, at a finite collection of points x,
as being jointly Gaussian distributed. Conditioning on training data D, it generates a posterior
predictive distribution p(f(x?)|D) at a test point x?. For example, in regression settings where
c = 1, with the mean and kernel functions µ : Rd → R and κ : Rd × Rd → R, as well as the
observations y ∼ N (f(x), σ2), there is a closed form expression for the predictive distribution,
p(f(x?)|D) ∼ N

(
µ(x?),σ(x?)

)
, where

µ(x?) = kx?,X
[
KX ,X + σ2I

]−1(
y − µ(X )

)
+ µ(x?)

σ(x?) = κ(x?,x?)− kx?,X
[
KX ,X + σ2I

]−1
kX ,x?

for y , [y1, . . . , yn]
ᵀ and µ(X ) , [µ(x1), . . . , µ(xn)]

ᵀ. GPs can yield impressive predictive results
when a suitable kernel is chosen (Rasmussen, 1997). However, forming the kernel and solving
linear systems makes GP computations intractable for large datasets. Approximations such as sparse
variational inference (Titsias, 2009), Nyström methods (Martinsson & Tropp, 2020), and other
subspace approximations (Gardner et al., 2018) can alleviate the computational burden; however,
these approximations often result in a significant decline in predictive performance.

Neural Tangent Kernel. Under continuous time gradient flow, it can be shown that a
NN output f(·,θ) : Rd → Rc undergoes kernel gradient descent, namely ∂tf(x,θt) =
−
∑n

i=1 Kθt(x,xi)∇f `(f(xi,θt),yi), where

Kθ(x,y) ,

〈
∂f

∂θ
(x,θ),

∂f

∂θ
(y,θ)

〉
∈ Rc×c, (1)

is the empirical NTK (Jacot et al., 2018). As the width of a network increases, the empirical NTK
converges (in probability) to a deterministic limit, sometimes referred to as the analytic NTK, that
is independent of the network’s parameters. Lee et al. (2019) showed that in this limit, the network
acts according to its NTK linearization during gradient descent (GD) training. This parameter

4



independence results in a loss of feature learning in the limiting regime (Yang & Hu, 2021). However,
for finite-width NNs, Fort et al. (2020) empirically showed that the empirical NTK becomes “data-
dependent” during training. Since we focus exclusively on the finite-width regime, we refer to the
empirical NTK simply as the NTK.

Related Works Our method NUQLS shares notable similarities with, and exhibits distinct dif-
ferences from, several prior works, such as Sampling-LLA, Bayesian Deep Ensembles and local
ensembles. Due to the breadth and depth of this discussion, we relegate the related works discussion
to Appendix B.

3 NUQLS
Algorithm 1 NUQLS

Input: number of realizations S, weights θ̂.
for s = 1 to S do
θ0,s ← θ̂ + z0, where z0 ∼ N (0, γ2I)

θ?s ← Run (stochastic) GD from θ0,s to
(approximately) solve (3) and obtain θ?s

end for
return {f̃(θ?s , .)}Ss=1

We now present Neural Uncertainty
Quantification by Linearized Sampling
(NUQLS), our post-hoc sampling method for
quantifying the uncertainty of a trained NN.
We begin by presenting the motivation and
a high-level overview of our method. Subse-
quently, we provide theoretical justification,
demonstrating that, under specific conditions,
the NUQLS samples represent draws from the
approximate posterior of the neural network,
which is equivalent to a GP defined by the NTK.

3.1 Motivation and High-level Overview

NNs are often over-parameterized, resulting in non-uniqueness of interpolating solutions, with sub-
manifolds of parameter space able to perfectly predict the training data (Hodgkinson et al., 2023). To
generate a distribution over predictions, we adopt a Bayesian framework, where the uncertainty in a
neural network’s prediction can be interpreted as the spread of possible values the network might
produce for a new test point, conditioned on the training data. To quantify this uncertainty, we can
evaluate the test point on other “nearby” models with high posterior probability and analyze their
range of predictions. To identify such models, we propose using the linearized approximation of the
original network around its trained parameters as a simpler yet expressive surrogate. This approach
can retain, to a great degree, the rich feature representation of the original network while enabling
tractable exploration of the posterior distribution. In the same spirit as DE, in the overparameterized
setting, we can fit this linear model to the original training data, using (stochastic) gradient descent
with different initializations, resulting in an ensemble of linear predictors. Not only does this ensemble
explain the training data well, but it also provides a practical way to estimate predictive uncertainty.

More precisely, let θ̂ be a set of parameters obtained after training the original NN. Linearizing f

around θ̂ gives
f(θ,x) ≈ f̃(θ,x) , f(θ̂,x) + J(θ̂,x)(θ − θ̂), (2)

where J(.,x) = [∂f(.,x)/∂θ]ᵀ ∈ Rc×p is the Jacobian of f . Using the linear approximation (2), we
consider

min
θ

n∑
i=1

`(f̃(θ,xi),yi). (3)

In overparameterized settings, (3) may have infinitely many solutions. To identify these solutions
and create our ensemble of linear predictors, we employ (stochastic) gradient descent, initialized at
zero-mean isotropic Gaussian perturbations of the trained parameter, θ̂. The pseudo-code for this
algorithm is provided in Algorithm 1. For a given test point x?, the mean prediction and uncertainty
can be computed using {f̃(θ?s ,x?)}Ss=1.

Note that while the training cost for a linearised network is only slightly higher per epoch compared
to standard NN training, each network in the NUQLS ensemble is initialized in a neighborhood
of a local minimum of the original NN. As a result, NUQLS often requires significantly fewer
epochs to converge, leading to an order-of-magnitude computational speedup relative to DE (see
Tables 1, 2 and 9 for wall-clock time comparisons, and Appendix E for a more in-depth analysis of
the computation costs.).

5



3.2 Theoretical Analysis

We now establish the key property of Algorithm 1: under mild conditions, NUQLS generates samples
from the approximate posterior of the neural network, which in many cases corresponds to a Gaussian
process defined by the NTK. Proofs are provided in Appendix A.

Suppose θ‡ is any solution to (3). Using θ‡, one can construct a family of solutions to (3) as

θ?z = θ‡ +
(
I− J†

XJX

)
z, ∀z ∈ Rp, (4)

where θ̂ is the parameters of the trained NN and JX = [Jᵀ(θ̂,x1) . . . Jᵀ(θ̂,xn)]
ᵀ ∈ Rnc×p. Note

that the second term in (4) consists of all vectors in the null space of JX . Since any such θ‡ can be
decomposed as the direct sum of components in the null space of JX and its orthogonal complement,
the family of solutions in (4) depends on the choice of θ‡. However, under certain assumptions, we
can ensure that the representation (4) is uniquely determined, i.e., θ‡ can be taken as the unique
solution to (3) that is orthogonal to the null space of JX . More precisely, we can show that, under
these assumptions on the loss, θ‡ in (4) can be taken as the unique solution to

min
θ

n∑
i=1

`(f̃(θ,xi),yi), s.t. θ ∈ Range
(
J
ᵀ
X
)
. (5)

Lemma 3.1. Suppose the loss, `( · ,y), is either:

• strongly convex in its first argument, or

• strictly convex in its first argument, and a solution to (3) exists.

The problem (5) admits a unique solution.

As it turns out, any solution of the form (4) can be efficiently obtained using (stochastic) gradient
descent.
Theorem 3.2. Consider the optimization problem (3) and assume JX is full row-rank.

• (Gradient Descent) Suppose `(f ,y) is strictly convex with locally Lipschitz continuous gradient,
both with respect to f , and the problem (3) admits a solution. Gradient descent, initialized at z and
with appropriate learning rate, converges to (4).

• (Stochastic Gradient Descent) Suppose `(f ,y) is strongly convex with Lipschitz continuous gradi-
ent, both with respect to f , and any solution to the problem (3) is interpolating. Stochastic gradient
descent, initialized at z and with small enough learning rate, converges to (4) with probability one.

We note that the local smoothness requirement in the first part of Theorem 3.2 is a relatively mild
assumption; for example, it holds if we simply assume that ` is twice continuously differentiable.
Also, the full-row rank assumption on JX in the second part of Theorem 3.2 is reasonable for highly
over-parameterized networks; e.g., see Liu et al. (2022).

Now, suppose JX is full row-rank and the assumption of Lemma 3.1 holds, ensuring the existence of
the unique solution θ‡ to (5). Noting Range (Jᵀ

X ) = Range(J†
X ), we can write (4) as

θ?z =J
ᵀ
XK−1

X ,Xw +
(
I− J

ᵀ
XK−1

X ,XJX

)
z, ∀z ∈ Rp

where w is a vector for which θ‡ = J†
Xw, and KX ,X , JXJᵀ

X = Kθ̂(X ,X ) ∈ Rnc×nc is the Gram
matrix of the empirical NTK (1) on the training data X . Setting z = θ̂ − z0 for some z0, we get

θ? = J
ᵀ
XK−1

X ,Xw +
(
I− J

ᵀ
XK−1

X ,XJX

)
(θ̂ − z0),

f̃(θ?,x) = f(θ̂,x) +Kx,XK−1
X ,X

(
w − JX θ̂

)
+
(
Kx,XK−1

X ,XJX − J(θ̂,x)
)
z0, (6)

where Kx,X , Kθ̂(x,X ) ∈ Rc×nc. Taking z0 to be a random variable, we form an ensemble of
predictors {f̃(θ?,x)}z, where each θ? is formed from the projection of a random z onto Null(JX ).
We require z’s distribution to be symmetric, isotropic, and centered at θ̂, as we do not know a priori

6



which directions contain more information. We take the maximum entropy distribution for a given
mean and variance, which is Gaussian1. Hence, we let z0 ∼ N (0, γ2I), for some hyper-parameter
γ ∈ R. The expectation and variance of (6), and the distribution of the predictor f(θ?,x), are then

E
(
f̃(θ?,x)

)
= µ(θ̂,x) = K

ᵀ
x,XK−1

X ,XJX (θ‡ − θ̂) + f(θ̂,x), (7)

Var
(
f̃(θ?,x)

)
= σ2(θ̂,x) =

(
Kx,x −K

ᵀ
x,XK−1

X ,XKx,X
)
γ2. (8)

f(θ?,x)
approx∼ N

(
µ(θ̂,x),σ2(θ̂,x)

)
. (9)

Remark 3.3 (Connections to GP: Regression). For scalar-valued f : Rp × Rd → R with quadratic
loss `(f(θ,x), y) = (f(θ,x)− y)2, we can explicitly write θ‡ = J†

X (y − f(θ̂,X ) + JX θ̂), where
f(θ,X ) ,

[
f(θ,x1), f(θ,x2), . . . , f(θ,xn)

]ᵀ
and y , [y1, . . . , yn]

ᵀ. For z0 ∼ N (0, γ2I), we
thus have f(θ?,x)

approx∼ N
(
µ(θ̂,x), σ2(θ̂,x)

)
with

µ(θ̂,x) = kx,XK−1
X ,X (y − f(θ̂,X )) + f(θ̂,x),

σ2(θ̂,x) =
(
κ(x,x)− kx,XK−1

X ,Xkx,X
)
γ2.

By the full-rank assumption on the Jacobian, this amounts to the conditional distribution of the
following normal distribution, conditioned on interpolation f(θ?,X ) = y,[

f(θ?,X )
f(θ?,x)

]
∼ N

([
f(θ̂,X )
f(θ̂,x)

]
, γ2

[
KX ,X kx,X
kᵀ
x,X κx,x

])
. (10)

Therefore, f(θ?,x) follows a GP with an NTK kernel. Conditioning on f(θ?,X ) = y is reasonable,
since by construction f(θ?,X ) ≈ f̃(θ?,X ), and under the full-rank assumption of JX , we have
f̃(θ?,X ) = y.

Remark 3.4 (Connections to GP: General Loss). Beyond quadratic loss, for a general loss function
satisfying the assumptions of Lemma 3.1, a clear GP posterior interpretation like that in (10) may
not exist. Nevertheless, we can still derive related insights. If θ̂ is an interpolating solution from
initial training, which is common for modern NNs, then as long as JX is full row-rank, solving (3) is
equivalent to finding θ ∈ Rp such that f̃(θ,X ) = f(θ̂,X ), i.e., find θ ∈ Rp such that JX (θ− θ̂) = 0.
So we obtain (9) with µ(θ̂,x) = f(θ̂,x) and σ2(θ̂,x) =

(
Kx,x − Kᵀ

x,XK−1
X ,XKx,X

)
γ2 as the

conditional distribution of (10), conditioned on the event f(θ?,X ) = f(θ̂,X ), i.e., interpolation with
`(f(θ?,xi),yi) = 0 for i = 1, . . . , n.

The Punchline. Drawing samples from the posterior (9) by explicitly calculating (7) and (8) can
be intractable in large-scale settings. Moreover, it can be numerically unstable due to the highly
ill-conditioned nature of the NTK matrix2. However, by combining the above derivations with
Theorem 3.2, we arrive at the key property of Algorithm 1: it enables efficient sampling from the
posterior (9).
Corollary 3.5 (Key Property of NUQLS). With the assumptions of Theorem 3.2, the samples
generated by Algorithm 1 represent draws from the predictive distribution in (9).

Hence, we approximate (7) and (8) by computing the sample mean and covariance of {f̃(θ?s ,x)}Ss=1
obtained from Algorithm 1. By the law of large numbers, the quality of these approximations
improves as S →∞.

Remark 3.6. Loss functions that do not satisfy the assumption of Lemma 3.1, such as the cross-
entropy loss, may fail to yield a unique representation of (4), so the above posterior analysis does
not apply. However, our experiments demonstrate that Algorithm 1 can still generate samples that
effectively capture the posterior variance (see Section 4.4) and posterior mean (see Appendix G.1).
In cases where (3) lacks a solution, Algorithm 1 can still be executed by terminating the iterations of
(stochastic) GD early. Investigating the distribution of the resulting ensemble and its connection to an
explicit posterior remains a potential direction for future research.

1Heavier-tailed distributions matching the above criteria, e.g. logistic distributions, may improve results.
2Recall that the condition number of KX ,X is the square of that of JX .

7



4 Experiments

We now empirically demonstrate the result of Theorem 3.2, as well as compare the performance of
our method with alternatives on various regression and classification tasks. Implementation details
are given in Appendix I. The PyTorch implementation of our experiments is available here. We have
also released our method as a package. For additional experimental results, please see Appendix H.

4.1 Empirical Convergence 101 102 103 104
Epochs

0

200

400

SE
V

Single-layer, width 20, Tanh (104)
Single-layer, width 20, ReLU (108)
Double-layer, width 20, ReLU (104)
Single-layer, width 100, Tanh (103)

101 102 103 104

s

0

20

40

60

SE
V

0

10

20

30

Lo
ss

Figure 2: Plot of SEV ( ) and NUQLS train
loss (N) against (top) number of epochs of
training for NUQLS and (bottom) number of
NUQLS realizations. Bracketed number is con-
dition number of NTK Gram matrix. Mean and
95% confidence intervals are shown from 10
random realizations.

We demonstrate empirically the convergence of
the predictive distribution of NUQLS to that of
an NTK-GP. We take a series of MLPs with NTK
scaling (Jacot et al., 2018), and train these NNs
on normalized Gaussian data (a regression task).
Under this setting, the condition number of the re-
sultant NTK is reasonable (≈ 103−108, compared
to ≈ 1017 on some UCI regression datasets). This
allows us to explicitly compute the predictive vari-
ance for the NTK-GP for some normalized Gaus-
sian test set. We then also compute the predictive
variance using NUQLS, and take the l2 norm of
the difference between the two variance sets, which
we term Squared Error of the Variance (SEV). We
plot this against number of epochs of training for
NUQLS, and the number of NUQLS realizations
s. We also plot the average training loss of the
linearised networks in the NUQLS ensemble. The
values are averaged over 10 random realizations.
The results are displayed in Figure 2. Note that the
SEV cannot be zero, due to the condition number
of the NTK; this affects the solution of the linear
system KXXy = KXx in the computation of the
variance for the NTK-GP. However, we see clear convergence of our method to the distribution of
an NTK-GP as the ensemble members of NUQLS approach their minima, and as the number of
ensemble members increases.

4.2 Toy Regression

We compare the performance of our method on a toy regression problem, taken from (Hernández-
Lobato & Adams, 2015) and extended in (Park & Blei, 2024). In Figure 1, we take 20 uniformly
sampled points in the domain x ∈ [−4,−2] ∪ [2, 4], and let y = x3 + ε, ε ∼ N (0, 32). A small
MLP was trained on these data and used for prediction. We apply VI, SWAG, LA, LLA, DE and
NUQLS to the network to find a predictive mean and uncertainty. Close to the training data, i.e.
in [−4,−2] ∪ [2, 4] we expect low uncertainty; outside of this region, the uncertainty should grow
with distance from the training points. VI underestimates, while SWAG and LA overestimate the
uncertainty. DE grows more uncertain with distance from the training points, however both NUQLS
and the LLA contain the underlying target curve within their confidence intervals. Note that deep
ensembles output a heteroskedastic variance term, and were trained on a Gaussian likelihood; in
comparison, the variances for LLA and NUQLS were computed post-hoc.

4.3 UCI Regression

In Tables 1 and 9, we compare NUQLS with DE, LLA and SWAG on a series of UCI regression
problems. Mean squared error (MSE) and expected calibration error (ECE) respectively evaluate the
predictive and UQ performance, with Gaussian negative log likelihood (NLL) evaluating both. See
(Nemani et al., 2023a, §4.11) for an explanation of ECE. We see that NUQLS consistently has the
(equal) best ECE (except for the Song dataset, where it falls short of the LLA ECE by 0 .1%). It
has comparable or better NLL than other methods on all datasets, and often gives an improvement
on RMSE. Finally, it is the quickest method, often by a very significant margin, and it does not fail

8

https://github.com/josephwilsonmaths/nuqls.git
https://github.com/josephwilsonmaths/NuqlsPackage.git


Table 1: Comparing performance of NUQLS, DE, LLA and SWAG on UCI regression tasks. NUQLS
performs as well as or better than all other methods, while showing a speed up over other methods;
this speed up increases with the size of the datasets. LLA-K denotes LLA with a KFAC covariance
structure. Reported time for NUQLS, LLA and SWAG includes the training time for the original NN,
with the run-time of the post-hoc method given in brackets.

Dataset Method RMSE ↓ NLL ↓ ECE ↓ Time(s)
Energy NUQLS 0.047±0.006 −2.400±0.209 0.002±0.002 8.374 (0.151)

DE 0.218±0.032 −1.651±0.783 0.004±0.002 102.244
LLA 0.048±0.006 −2.475±0.128 0.004±0.004 8.491 (0.269)

SWAG 0.058±0.015 −1.950±0.158 0.080±0.011 45.306 (37.084)
Kin8nm NUQLS 0.252±0.005 −0.796±0.025 0.000±0.000 26.570 (0.264)

DE 0.252±0.006 −0.914±0.028 0.002±0.001 73.967
LLA 0.260±0.010 −0.783±0.054 0.001±0.001 38.272 (11.966)

SWAG 0.457±0.149 −0.006±0.295 0.054±0.012 176.569 (150.263)
Protein NUQLS 0.623±0.005 0.209±0.047 0.002±0.000 81.264 (1.356)

DE 0.741±0.052 0.203±0.203 0.011±0.020 1014.827
LLA-K 0.640±0.007 0.458±0.071 0.002±0.000 89.414 (9.506)
SWAG 0.730±0.044 0.187±0.080 0.002±0.002 548.88 (468.972)

NUQLS DE SWAG MC LLA* BASE
0.00

0.15

0.30

2

ResNet9 FMNIST

NUQLS DE SWAG MC LLA* BASE

ResNet50 CIFAR-10

NUQLS DE SWAG MC LLA* BASE

ResNet50 CIFAR-100
ID Correct
ID Incorrect
OOD

Figure 3: Violin plot of VMSP, for correctly predicted ID test points, incorrectly predicted ID test
points, and OoD test points. Median is shown, with violin width depicting density. Low variance is
expected for ID correct points, and large variance for ID incorrect and OoD points.

on any datasets, like the other methods do. Note that for the two largest datasets, Protein and Song,
we required approximations on the covariance structure of LLA (see (Daxberger et al., 2021)). A
detailed explanation of the hyper-parameter tuning method for NUQLS is given in Appendix F.1.

4.4 Image Classification - Uncertainty

We now compare the UQ performance of NUQLS, DE, SWAG, LLA* (LLA with a last-layer and
KFAC approximation), and MC-Dropout (MC), on larger image classification tasks. We take variance
of the maximum predicted softmax probability (VMSP), for a given test point, as the correct quantifier
of uncertainty in this setting (see Appendix C for justification).

Figure 3 presents a violin plot of the VMSP for three test-groups: correctly predicted in-distribution
(FashionMNIST, CIFAR-10) test points, incorrectly predicted in-distribution test points, and out-of
distribution (MNIST, CIFAR-100) test points. We would expect that there should be, on average,
much smaller uncertainty for ID test points that have been correctly predicted, and larger uncertainty
for incorrectly predicted ID and OoD test points. We compare against a completely randomized
baseline method (BASE), where we sample 10 standard normal realizations of logits, passed through
a softmax. In Table 10 in Appendix H.8, we display the corresponding median and sample skew
values for each method in each test group, to quantify the distribution of VMSP for each test set.
Ideally, a method should far outperform the baseline, so we can use the median and sample skew
difference between a method and the baseline as a way to compare different methods. We see
that NUQLS outperforms all other methods, including the SOTA method DE. In Appendix H.7
we provide additional experimental evaluation of NUQLS. In Figure 6 we evaluate NUQLS on
a ResNet50 trained on both SVHN and ImageNet, displaying the scalability of our method, as
well as providing comparison with other competing methods, including Bayesian Deep Ensembles
(BDE), Spectral-Normalized Neural Gaussian Process (SNGP), BatchEnsemble (BE), and Stochastic

9



Gradient Langevin Dynamics (SGLD). Against these competing methods, NUQLS performs the
strongest.

5 Conclusion

We have presented NUQLS, a Bayesian, post-hoc UQ method that approximates the predictive
distribution of an over-parameterized NN through GD/SGD training of linear networks, allowing
scalability without sacrificing performance. Under assumptions on the loss function, this predictive
distribution reduces to a GP using the NTK. We find that our method is competitive with, and often
far outperforms, existing UQ methods on regression and classification tasks, whilst providing a novel
connection between NNs, GPs and the NTK.

Limitation. A theoretical limitation of this work is that its connection to the NTK-GP does not
extend to loss functions that violate the assumptions of Theorem 3.2, such as the cross-entropy loss.
The strong empirical performance of NUQLS on classification tasks motivates future research to
extend Theorem 3.2 to broader classes of loss functions and alternative optimization algorithms. A
further limitation of the method is the dependence of NUQLS on the linearization approximation.
As can be seen in Appendix H.1, when the target neural network is poorly trained, and hence
the loss-landscape is far from flat around the ’trained’ parameters, the performance of NUQLS
suffers. However, when the network is well-trained, as is common in practical settings, the linear
approximation holds and hence NUQLS performs well.

Acknowledgments and Disclosure of Funding

Liam Hodgkinson is supported by the Australian Research Council through a Discovery Early
Career Researcher Award (DE240100144). Fred Roosta was partially supported by the Australian
Research Council through an Industrial Transformation Training Centre for Information Resilience
(IC200100022).

References
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao,

X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S. A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76:
243–297, 2021. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2021.05.008.

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., Deng, L., Penn, G., and Yu, D. Convolutional
neural networks for speech recognition. IEEE/ACM Transactions on audio, speech, and language
processing, 22(10):1533–1545, 2014.

Abe, T., Buchanan, E. K., Pleiss, G., Zemel, R., and Cunningham, J. P. Deep ensembles work, but
are they necessary? Advances in Neural Information Processing Systems, 35:33646–33660, 2022.

Altieri, A., Romanelli, M., Pichler, G., Alberge, F., and Piantanida, P. Beyond the norms: Detecting
prediction errors in regression models. Forty-first International Conference on Machine Learning,
2024.

Antorán, J., Padhy, S., Barbano, R., Nalisnick, E., Janz, D., and Hernández-Lobato, J. M. Sampling-
based inference for large linear models, with application to linearised laplace. arXiv preprint
arXiv:2210.04994, 2022.

Bassily, R., Belkin, M., and Ma, S. On exponential convergence of SGD in non-convex over-
parametrized learning. arXiv preprint arXiv:1811.02564, 2018.

Bitterwolf, J., Mueller, M., and Hein, M. In or out? fixing imagenet out-of-distribution detection
evaluation. arXiv preprint arXiv:2306.00826, 2023.

Blondel, M. and Roulet, V. The elements of differentiable programming. arXiv preprint
arXiv:2403.14606, 2024.

10



Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight uncertainty in neural network.
International Conference on Machine Learning, pp. 1613–1622, 2015.

Bubeck, S. et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

Chan, M., Molina, M., and Metzler, C. Estimating epistemic and aleatoric uncertainty with a single
model. Advances in Neural Information Processing Systems, 37:109845–109870, 2024.

Dadalto, E., Romanelli, M., Pichler, G., and Piantanida, P. A data-driven measure of relative
uncertainty for misclassification detection. arXiv preprint arXiv:2306.01710, 2023.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. Laplace redux
– effortless bayesian deep learning. Advances in Neural Information Processing Systems, 34:
20089–20103, 2021.

De Bortoli, V. and Desolneux, A. On quantitative Laplace-type convergence results for some
exponential probability measures with two applications. To appear in the Journal of Machine
Learning Research, 2022.

Deng, L., Hinton, G., and Kingsbury, B. New types of deep neural network learning for speech
recognition and related applications: An overview. International Conference on Acoustics, Speech
and Signal Processing, pp. 8599–8603, 2013.

Deng, Z., Zhou, F., and Zhu, J. Accelerated linearized laplace approximation for bayesian deep
learning. Advances in Neural Information Processing Systems, 35:2695–2708, 2022.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT: pre-training of deep bidirectional trans-
formers for language understanding. pp. 4171–4186. Association for Computational Linguistics,
2019. doi: 10.18653/V1/N19-1423.

Eschenhagen, R., Daxberger, E., Hennig, P., and Kristiadi, A. Mixtures of laplace approximations for
improved post-hoc uncertainty in deep learning. arXiv preprint arXiv:2111.03577, 2021.

Folgoc, L. L., Baltatzis, V., Desai, S., Devaraj, A., Ellis, S., Manzanera, O. E. M., Nair, A., Qiu, H.,
Schnabel, J., and Glocker, B. Is mc dropout bayesian? arXiv preprint arXiv:2110.04286, 2021.

Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner, R. E. ’in-between’ uncertainty in bayesian
neural networks. arXiv preprint arXiv:1906.11537, 2019.

Ford, N., Gilmer, J., Carlini, N., and Cubuk, D. Adversarial examples are a natural consequence of
test error in noise. International Conference on Machine Learning, 97, 2019.

Fort, S., Dziugaite, G. K., Paul, M., Kharaghani, S., Roy, D. M., and Ganguli, S. Deep learning
versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the
neural tangent kernel. Advances in Neural Information Processing Systems, 34, 2020.

Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., and Bloch, I. Encoding the latent posterior of
bayesian neural networks for uncertainty quantification. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(4):2027–2040, 2023.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Balcan, M. F. and Weinberger, K. Q. (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https:
//proceedings.mlr.press/v48/gal16.html.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. In Advances in Neural Information
Processing Systems, 2018.

Garrigos, G. and Gower, R. M. Handbook of convergence theorems for (stochastic) gradient methods.
arXiv preprint arXiv:2301.11235, 2023.

11

https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html


Granese, F., Romanelli, M., Gorla, D., Palamidessi, C., and Piantanida, P. Doctor: A simple method
for detecting misclassification errors. Advances in Neural Information Processing Systems, 34:
5669–5681, 2021.

Graves, A. Practical variational inference for neural networks. Advances in Neural Information
Processing Systems, 24, 2011.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration of modern neural networks.
International Conference on Machine Learning, 70:1321–1330, 2017.

Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J., Lakshminarayanan, B., Dai, A. M., and Tran,
D. Training independent subnetworks for robust prediction. arXiv preprint arXiv:2010.06610,
2020.

He, B., Lakshminarayanan, B., and Teh, Y. W. Bayesian deep ensembles via the neural tangent kernel.
Advances in Neural Information Processing Systems, 33:1010–1022, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. Conference on
Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song, D. Natural adversarial examples.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
15262–15271, 2021.

Hernández-Lobato, J. M. and Adams, R. Probabilistic backpropagation for scalable learning of
bayesian neural networks. International Conference on Machine Learning, pp. 1861–1869, 2015.

Hinton, G. E. and Van Camp, D. Keeping the neural networks simple by minimizing the description
length of the weights. In Proceedings of the sixth annual conference on Computational learning
theory, pp. 5–13, 1993.

Hodgkinson, L., van der Heide, C., Salomone, R., Roosta, F., and Mahoney, M. W. The interpolating
information criterion for overparameterized models. arXiv preprint arXiv:2307.07785v1, 2023.

Hoffmann, L. and Elster, C. Deep ensembles from a bayesian perspective. arXiv preprint
arXiv:2105.13283, 2021.

Huang, Z., Lam, H., and Zhang, H. Efficient uncertainty quantification and reduction for
over-parameterized neural networks. Advances in neural information processing systems, 36:
64428–64467, 2023.

Huseljic, D., Sick, B., Herde, M., and Kottke, D. Separation of aleatoric and epistemic uncertainty in
deterministic deep neural networks. In 2020 25th International Conference on Pattern Recognition
(ICPR), pp. 9172–9179. IEEE, 2021.

Immer, A., Korzepa, M., and Bauer, M. Improving predictions of bayesian neural nets via local
linearization. In International Conference on Artificial Intelligence and Statistics, pp. 703–711.
PMLR, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in
neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Johnson, R. and Zhang, T. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Karimi, H., Nutini, J., and Schmidt, M. Linear convergence of gradient and proximal-gradient
methods under the Polyak-Łojasiewicz condition. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23,
2016, Proceedings, Part I 16, pp. 795–811. Springer, 2016.

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M. Approximate inference turns deep networks
into gaussian processes. Advances in Neural Information Processing Systems, 33, 2019.

12



Kotelevskii, N., Artemenkov, A., Fedyanin, K., Noskov, F., Fishkov, A., Shelmanov, A., Vazhentsev,
A., Petiushko, A., and Panov, M. Nonparametric uncertainty quantification for single deterministic
neural network. Advances in Neural Information Processing Systems, 35:36308–36323, 2022.

Krishnan, R., Esposito, P., and Subedar, M. Bayesian-torch: Bayesian neural network layers for uncer-
tainty estimation, January 2022. URL https://github.com/IntelLabs/bayesian-torch.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems, 25, 2012.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in Neural Information Processing Systems, 30, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J. Wide
neural networks of any depth evolve as linear models under gradient descent. Advances in Neural
Information Processing Systems, 32, 2019.

Lehmann, N., Gottschling, N. M., Gawlikowski, J., Stewart, A. J., Depeweg, S., and Nalisnick, E.
Lightning uq box: Uncertainty quantification for neural networks. Journal of Machine Learning
Research, 26(54):1–7, 2025. URL http://jmlr.org/papers/v26/24-2110.html.

Lei, J. and Wasserman, L. Distribution-free prediction bands for non-parametric regression. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 76(1):71–96, 2014.

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–116, 2022.

MacKay, D. J. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.

Maddox, W., Garipov, T., Izmailov, P., Vetrov, D., and Wilson, A. G. A simple baseline for bayesian
uncertainty in deep learning, 2019.

Madras, D., Atwood, J., and D’Amour, A. Detecting underspecification with local ensembles. arXiv
preprint arXiv:1910.09573, 2019.

Malitsky, Y. and Mishchenko, K. Adaptive gradient descent without descent. In International
Conference on Machine Learning, pp. 6702–6712. PMLR, 2020.

Martens, J. and Grosse, R. Optimizing neural networks with kronecker-factored approximate
curvature. In International Conference on Machine Learning, pp. 2408–2417. PMLR, 2015.

Martinsson, P.-G. and Tropp, J. A. Randomized numerical linear algebra: Foundations and algorithms.
Acta Numerica, 29:403–572, 2020.

Masegosa, A. Learning under model misspecification: Applications to variational and ensemble
methods. Advances in Neural Information Processing Systems, 33:5479–5491, 2020.

Matthews, A. G. d. G., Hron, J., Turner, R. E., and Ghahramani, Z. Sample-then-optimize posterior
sampling for bayesian linear models. NeurIPS Workshop on Advances in Approximate Bayesian
Inference, 2017.

Meurant, G. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision
Computations. SIAM, 2006.

Miani, M., Beretta, L., and Hauberg, S. Sketched lanczos uncertainty score: a low-memory summary
of the fisher information. arXiv preprint arXiv:2409.15008, 2024a.

Miani, M., Roy, H., and Hauberg, S. Bayes without underfitting: Fully correlated deep learning
posteriors via alternating projections. arXiv preprint arXiv:2410.16901, 2024b.

Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P., and Gal, Y. Deterministic neural networks with
inductive biases capture epistemic and aleatoric uncertainty. arXiv preprint arXiv:2102.11582, 2,
2021.

13

https://github.com/IntelLabs/bayesian-torch
http://jmlr.org/papers/v26/24-2110.html


Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H., and Gal, Y. Deep seterministic uncertainty:
A new simple baseline. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 24384–24394, 2023.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining well calibrated probabilities using bayesian
binning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., and Shaalan, K. Speech recognition using deep neural
networks. IEEE access, 7:19143–19165, 2019.

Neal, R. M. Bayesian Learning for Neural Networks, Vol. 118 of Lecture Notes in Statistics. Springer-
Verlag, 1996.

Nemani, V., Biggio, L., Huan, X., Hu, Z., Fink, O., Tran, A., Wang, Y., Zhang, X., and Hu, C.
Uncertainty quantification in machine learning for engineering design and health prognostics: A
tutorial. Mechanical Systems and Signal Processing, 205:110796, 2023a.

Nemani, V., Biggio, L., Huan, X., Hu, Z., Fink, O., Tran, A., Wang, Y., Zhang, X., and Hu, C.
Uncertainty quantification in machine learning for engineering design and health prognostics: A
tutorial. Mechanical Systems and Signal Processing, 205:110796, 2023b.

Nixon, J., Dusenberry, M. W., Zhang, L., Jerfel, G., and Tran, D. Measuring calibration in deep
learning. In CVPR workshops, volume 2, 2019.

Ortega, L. A., Santana, S. R., and Hernández-Lobato, D. Variational linearized laplace approximation
for bayesian deep learning. arXiv preprint arXiv:2302.12565, 2023.

Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. Inductive confidence machines for
regression. In 13th European Conference on Machine Learning, pp. 345–356. Springer, 2002.

Park, Y. and Blei, D. Density uncertainty layers for reliable uncertainty estimation. International
Conference on Artificial Intelligence and Statistics, 238:163–171, 2024.

Rasmussen, C. E. Evaluation of Gaussian processes and other methods for non-linear regression.
PhD thesis, University of Toronto Toronto, Canada, 1997.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes for Machine Learning. The MIT
Press, 11 2005. ISBN 9780262256834. doi: 10.7551/mitpress/3206.001.0001. URL https:
//doi.org/10.7551/mitpress/3206.001.0001.

Ray, P. P. Chatgpt: A comprehensive review on background, applications, key challenges, bias, ethics,
limitations and future scope. Internet of Things and Cyber-Physical Systems, 2023.

Redmon, J. and Farhadi, A. Yolo9000: Better, faster, stronger. Conference on Computer Vision and
Pattern Recognition, pp. 7263–7271, 2017.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You only look once: Unified, real-time object
detection. Conference on Computer Vision and Pattern Recognition, pp. 779–788, 2016.

Ritter, H., Botev, A., and Barber, D. A scalable Laplace approximation for neural networks. Interna-
tional Conference on Learning Representations, 6, 2018.

Roux, N., Schmidt, M., and Bach, F. A stochastic gradient method with an exponential convergence
rate for finite training sets. Advances in neural information processing systems, 25, 2012.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14(1), 2013.

Tagasovska, N. and Lopez-Paz, D. Single-model uncertainties for deep learning. Advances in neural
information processing systems, 32, 2019.

Titsias, M. Variational learning of inducing variables in sparse gaussian processes. In Artificial
Intelligence and Statistics, pp. 567–574. PMLR, 2009.

Van der Vaart, A. W. Asymptotic Statistics, volume 3. Cambridge University Press, 2000.

14

https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001


Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic Learning in a Random World, volume 29.
Springer, 2005.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient langevin dynamics. pp. 681–688,
2011.

Wen, Y., Tran, D., and Ba, J. Batchensemble: an alternative approach to efficient ensemble and
lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Xie, Z., Tang, Q.-Y., Cai, Y., Sun, M., and Li, P. On the power-law hessian spectrums in deep learning.
arXiv preprint arXiv:2201.13011, 2022.

Yang, G. and Hu, E. J. Feature learning in infinite-width neural networks. International Conference
on Machine Learning, 139, 2021.

15

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


A Proofs

Proof of Lemma 3.1. First, we note that by the assumption on `, a solution to (5) always exists.
Suppose to the contrary that (5) has two distinct solutions θ̃ and θ̂ such that θ̃ 6= θ̂. Since θ̃ ∈
Range([J(θ̂,X )]ᵀ) and θ̂ ∈ Range([J(θ̂,X )]ᵀ), i.e., (θ̃ − θ̂) ⊥ Null([J(θ̂,X )]), it follows that
J(θ̂,X )θ̃ 6= J(θ̂,X )θ̂, which in particular implies 〈∇f(θ̂,xi), θ̃〉 6= 〈∇f(θ̂,xi), θ̂〉 for all i =

1, . . . , n. Consider θ̄ = (θ̃ + θ̂)/2. By strict convexity on `, we have

n∑
i=1

`(f̃(θ̄,xi), yi) =

n∑
i=1

`

(
f(θ̂,xi) +

〈
∇f(θ̂,xi),

θ̃ + θ̂

2
− θ̂

〉
, yi

)

=

n∑
i=1

`

(
f(θ̂,xi) +

〈
∇f(θ̂,xi), θ̃ − θ̂

〉
2

+
f(θ̂,xi) +

〈
∇f(θ̂,xi), θ̂ − θ̂

〉
2

, yi

)

<
1

2

n∑
i=1

`
(
f̃(θ̃,xi), yi

)
+

1

2

n∑
i=1

`
(
f̃(θ̂,xi), yi

)
=

n∑
i=1

`
(
f̃(θ̃,xi), yi

)
,

which is a contradiction.

Proof of Theorem 3.2.

• (Gradient Descent) Denoting

J(θ̂,X ) ,
[
Jᵀ(θ̂,x1) . . . Jᵀ(θ̂,xn)

]ᵀ
∈ Rnc×p,

we can write

z = J†(θ̂,X )J(θ̂,X )z+
(
I− J†(θ̂,X )J(θ̂,X )

)
z,

where θ̂ represents the parameters around which the linear model f̃ is defined in (2). The first
iteration of gradient descent, initialized at θ(0) = z, is given by

θ(1) = z− α

n∑
i=1

∂ f̃

∂θ
(z,xi)∇`(f̃(z,xi),yi)

=
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ J†(θ̂,X )J(θ̂,X )z− α

n∑
i=1

∂ f̃

∂θ
(z,xi)∇`(f̃(z,xi),yi)

=
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ J†(θ̂,X )J(θ̂,X )z− α

n∑
i=1

[
J(θ̂,xi)

]ᵀ
∇`(f̃(z,xi),yi)

=
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ v(1),

where v(1) ∈ Range
([

J(θ̂,X )
]ᵀ)

. The next iteration is similarly given by

θ(2) = θ(1) − α

n∑
i=1

∂ f̃

∂θ
(θ(1),xi)∇`(f̃(θ(1),xi),yi)

=
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ v(1) − α

n∑
i=1

[
J(θ̂,xi)

]ᵀ
∇`(f̃(θ(1),xi),yi)

=
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ v(1) + v(2),

16



where again v(2) ∈ Range
([

J(θ̂,X )
]ᵀ)

. Generalizing to the nth iteration,

θ(n) =
(
I− J†(θ̂,X )J(θ̂,X )

)
z+

n∑
i=1

v(i).

Hence, by the assumption on `, as long as an adaptive learning rate is chosen appropriately
according to Malitsky & Mishchenko (2020), GD must converge to a solution of the form

θ? =
(
I− J†(θ̂,X )J(θ̂,X )

)
z+

∞∑
i=1

v(i)

=
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ v,

where v ∈ Range
([

J(θ̂,X )
]ᵀ)

. In particular, for z = 0, by Lemma 3.1, we must have that

v = θ‡, where θ‡ is the solution to (5). Therefore,

θ? =
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ θ‡.

• (Stochastic Gradient Descent) Using a similar argument as above, it is easy to show that each
iteration of the mini-batch SGD is of the form

θ(n) ∈
(
I− J†(θ̂,X )J(θ̂,X )

)
z+ Range

([
J(θ̂,X )

]ᵀ)
.

Hence, it suffices to show that SGD converges almost surely. Defining

L(θ) ,
n∑

i=1

`(f̃(θ,xi),yi), and g(θ,X ) ,

∇`(f̃(θ,x1),y1)
...

∇`(f̃(θ,xn),yn)

 ∈ Rnc,

we write

∇L(θ) =
n∑

i=1

[
J(θ̂,x1)

]ᵀ
∇`(f̃(θ,xi),yi) =

[
J(θ̂,X )

]ᵀ
g(θ,X ).

Let θ? be any solution to (3). The full row-rank assumption on J(θ̂,X ) implies that we must have
g(θ?,X ) = 0, i.e.,∇`(f̃(θ?,xi),yi) = 0, i = 1, . . . , n. By the µ-strong convexity assumption on
`(.,y) with respect to its first argument, it is easy to see that L(θ) satisfies the Polyak-Łojasiewicz
inequality (Karimi et al., 2016) with constant 2µλ where

λ , min
i=1,...,n

σ2
min(J(θ̂,xi)),

and σmin(J(θ̂,xi)) is the smallest non-zero singular value of J(θ̂,xi). Indeed, let θ? be any
solution to (3). From µ-strong convexity of `(.,y) with respect to its first argument, for any θ, we
have

`(f̃(θ,xi),yi)− `(f̃(θ?,xi),yi) ≤
1

2µ

∥∥∥∇`(f̃(θ,xi),yi)
∥∥∥2

≤ 1

2µσmin(J(θ̂,xi))

∥∥∥∥[J(θ̂,xi)
]ᵀ
∇`(f̃(θ,xi),yi)

∥∥∥∥2 ,
which implies

L(θ)− L(θ?) ≤ 1

2µλ

∥∥∥∥[J(θ̂,X )]ᵀ g(θ,X )∥∥∥∥2 =
1

2µλ
‖∇L(θ)‖2 .

17



By the smoothness assumption on each `(f̃(.,xi),yi) as well as the interpolating property of θ?,
Bassily et al. (2018, Theorem 1) implies that the mini-batch SGD with small enough step size η
has an exponential convergence rate as

EL(θ(k)) ≤ (1− ρ)kL(θ(0)),
for some contact 0 < ρ < 1. This in particular implies that for any ε > 0,

∞∑
k=1

P(L(θ(k)) > ε) ≤
∞∑
k=1

EL(θ(k))
ε

≤ L(θ
(0))

ε

∞∑
k=1

(1− ρ)k =
L(θ(0))

ερ
<∞.

Now, the BorelCantelli lemma gives L(θ(k))→ 0, almost surely.

B Related Works: Further Details and Discussions

NUQLS shares notable similarities with, and exhibits distinct differences from, several prior works,
which are discussed in-depth below.

B.1 Linearized Laplace Approximation (LLA) Framework.

The popular LLA framework (Khan et al., 2019; Foong et al., 2019; Immer et al., 2021; Daxberger
et al., 2021) shares a close connection with NUQLS, as both methods fundamentally rely on linearizing
the network. However, a subtle yet significant distinction lies in their constructions: LLA begins by
obtaining a proper distribution over the parameters and then draws parameter samples from it, while
NUQLS bypasses this step and directly targets an approximation of the posterior distribution of the
neural network.

As a direct consequence of this, in overparameterized settings, where the Hessian (or its Generalized
Gauss-Newton approximation) is not positive definite, the LLA framework necessitates imposing
an appropriate prior over the parameters to avoid degeneracy. In sharp contrast, NUQLS directly
generates samples from the predictive distribution without introducing any artificial prior, thereby
avoiding potential biases that such priors might impose on the covariance structure of the outputs
and eliminating the need for additional hyperparameters. Consequently, as the LLA framework
corresponds to a Bayesian generalized linear model (GLM), the weight-space vs. function-space
duality in GLMs implies that its predictive distribution corresponds to a noisy GP with an NTK kernel.
On the other hand, NUQLS leads to a noise-free GP. In interpolating regimes, where the model
perfectly fits the data, the noise-free setting of NUQLS appears to be more suitable (Hodgkinson
et al., 2023).

Another important consequence of this distinction arises in classification tasks. Due to the Laplace
approximation, the LLA framework produces an independent GP for each output of the linearized
model. In contrast, NUQLS captures the covariance between outputs, offering a more comprehensive
representation of the predictive distribution.

Finally, for regression tasks, NUQLS offers additional flexibility by allowing the variance to be scaled
post-hoc by a factor γ. This enables efficient hyperparameter tuning on a validation set without the
need for retraining the model or optimizing a marginal likelihood–a level of flexibility not available
in the LLA framework.

NUQLS can be seen as an extension of the “sample-then-optimize” framework for posterior sampling
of large, finite-width NNs (Matthews et al., 2017). In this context, the work of Antorán et al. (2022),
henceforth referred to as Sampling-LLA, enables drawing samples from the posterior distribution of
the LLA in a manner analogous to Algorithm 1. In this approach, a series of regularized least-squares
regression problems are constructed, and the collection of their solutions is shown to be distributed
according to the LLA posterior. An EM algorithm is then employed for hyperparameter tuning. In
addition to the fundamental differences between NUQLS and LLA-inspired methods mentioned
earlier, Sampling-LLA has notable distinctions from Algorithm 1. First, the objective functions in
Sampling-LLA have non-trivial minimum values. As a result, the convergence of SGD for such
problems necessitates either a diminishing learning rate (Bubeck et al., 2015), which slows down
convergence, or the adoption of variance reduction techniques (Roux et al., 2012; Shalev-Shwartz &

18



Zhang, 2013; Johnson & Zhang, 2013), which can introduce additional computational and memory
overhead. By contrast, in overparameterized settings and under the assumptions of Theorem 3.2,
the optimization problem in (3) allows interpolation. Consequently, SGD can employ a constant
step size for convergence, improving optimization efficiency (Garrigos & Gower, 2023). Second,
the inherent properties of the LLA framework, which require a positive definite Hessian or its
approximation, necessitate regularizing the least-squares term in the subproblem of Sampling-LLA.
This results in a strongly convex problem with a unique solution. Consequently, to generate a
collection of solutions, Sampling-LLA constructs a random set of such subproblems, each involving
fitting the linearized network to random outputs. These random outputs are sampled from a zero-
mean Gaussian, with covariance given by the Hessian of the loss function, evaluated on the data.
In contrast, the subproblem of NUQLS, i.e., (3), involves directly fitting the training data, and the
ensemble of solutions is constructed as a result of random initialization of the optimization algorithm.
Hence, the uncertainty captured by NUQLS arises naturally from the variance of solutions in the
overparameterized regime, without the need for additional regularization or artificially constructed
subproblems.

While the Sampling-LLA method enhances the scalability of LLA, the competing method Variational
LLA (VaLLA) (Ortega et al., 2023) offers comparable or superior UQ performance while significantly
reducing computation time. VaLLA achieves this by computing the LLA predictive distribution
using a variational sparse GP with an NTK. Another competing LLA extension is Accelerated LLA
(ELLA), which uses a Nyström approximation of the functional LLA covariance matrix (Deng et al.,
2022), and seems to attain similar performance to VaLLA, again at a reduced cost compared to
Sampling-LLA. We compare the performance of NUQLS to Sampling-LLA, VaLLA and ELLA in
Appendix H.3.

Note that work by (Miani et al., 2024b) approximates an LLA by taking the covariance as the
projection onto the null space of the GGN matrix, in order to compute a posterior that retains the
same performance as the original network on training data. To compute samples, this work uses
alternating projections.

B.2 SNGP

We briefly describe the Spectral-Normalized Neural Gaussian Process (SNGP). SNGP lies at the
intersection of feature-space methods and Bayesian methods, and similarly to NUQLS combines
a GP with a NN. Specifically, SNGP adds a weight normalization step during training, and then
replaces the output layer of NN with a GP that takes the feature extractor of the network as an input.
While this method is also not post-hoc, and is not strictly a Bayesian method, we still compare SNGP
with NUQLS in Figure 6 and Table 11, where we observe superior performance of NUQLS.

B.3 Ensemble Framework.

In Lee et al. (2019), infinitely wide neural networks were shown to follow a GP distribution; however,
this GP did not correspond to a true predictive distribution. Building on this, He et al. (2020)
introduced a random, untrainable function to an infinitely wide neural network, deriving a GP
predictive distribution using the infinite-width NTK. An ensemble of these modified NNs was then
interpreted as samples from the GP’s predictive posterior. In contrast, our method demonstrates
that trained, finite-width, unmodified linearized networks are inherently samples from a GP with
an NTK kernel. While their method, Bayesian Deep Ensembles (BDE), shares some conceptual
similarities with ours, we omit it from our main experiments for several reasons. Firstly, the posterior
analysis of BDE is valid only in the limit of large model sizes. For smaller datasets and models, the
infinite-width NTK differs greatly from the empirical NTK (see Fort et al. (2020)). We can see that
in this regime, in both Figure 4 and Table 8, that NUQLS outperforms BDE. Secondly, the method
is computationally more expensive than DE, due to the need to compute the untrainable function
(δ(.)) and tune the scaling hyperparameter for classification. This contradicts our goal to provide a
UQ method that is computationally more efficient than the state-of-the-art (SOTA) method DE while
maintaining competitive performance. Finally, for larger model sizes, we provide comparison of
NUQLS to BDE in Figure 6 and Table 11, where we observe that NUQLS outperforms BDE.

In Madras et al. (2019), the authors propose a method called “local ensembles”, which perturbs the
parameters of a trained network along directions of small loss curvature to create an ensemble of

19



nearly loss-invariant networks. The uncertainty of the original network is then quantified as the
standard deviation across predictions in the ensemble. Building on this approach, Miani et al. (2024a),
in a method called Sketched Lanczos Uncertainty (SLU), use the GGN approximation of the Hessian
of the loss to identify these directions and introduce a sketched Lanczos algorithm (Meurant, 2006)
to efficiently compute them. We compare the performance of NUQLS to SLU in Appendix H.2.

While similar, there are key differences between local ensembles and NUQLS. Local ensembles
form a subspace of networks that attain similar loss values, allowing for directions with small but
non-zero curvature, potentially encompassing more directions than those with exactly zero curvature.
In contrast, when a solution to the linear optimization problem exists, NUQLS creates an ensemble of
networks that all attain exactly the same loss. Additionally, NUQLS relies on first-order information
to construct this ensemble, whereas local ensembles depend on second-order information.

While the zero-curvature directions of the GGN approximation correspond to the Jacobian’s null
space, the local ensembles method also includes directions with small but non-zero curvature. This
inclusion introduces a notable distinction between the ensembles generated by local ensembles
and those formed by NUQLS. Finally, while local ensembles employ low-rank approximations to
compute directions efficiently, such approximations may inadequately represent the Hessian and fail
to accurately capture the true curvature structure, as highlighted in Xie et al. (2022).

We also give mention to methods that seek to make DE more efficient, such as BatchEnsemble (BE)
(Wen et al., 2020) and SnapshotEnsemble (Havasi et al., 2020). We note that these methods are yet to
surpass DE as the SOTA in the literature. However,we compare NUQLS against BE in Figure 6 and
Table 11, where we see that NUQLS shows superior performance, whilst remaining as scalable as
BE. Further, BE requires modification to the structure of the network, and hence is not post-hoc.

B.4 Neural Tangent Kernel Methods

The Procedural-Noise-Correcting (PNC) method of Huang et al. (2023) employs the limiting NTK
for infinite-width networks to characterize the noise in the optimization process of training a neural
network. It uses this to provide a frequentist confidence interval around test predictions of the neural
network, and as it arises from the frequentist framework, PNC recovers statistical guaranetees. In
comparison, NUQLS does not rely on the limiting regime of the NTK, but rather employs the feature
extraction of the empirical NTK to quantify uncertainty using a Bayesian framework. In Appendix H.1
we compare the performance of NUQLS vs. PNC. Unsurprisingly, given their constructions, we
see that PNC outperforms NUQLS when the width of a network is extreme, while for finite-width
networks that are fully trained, NUQLS outperforms PNC. This experiment illustrates that the
methods are actually complementary, as they both excel in different settings.

C Uncertainty vs. Prediction

Here we discuss the use of common metrics to measure UQ ability in the BDL community. Generally,
NLL, ECE and AUCROC (or the entropic version OODAUC) are used to measure the ability of
a method to correctly quantify the uncertainty in a neural network. However, we argue that the
use of these metrics for UQ is ill-advised, due to either a misalignment between the metric and the
goal of UQ, or due to flawed measurements of uncertainty implicit in the metric. Specifically, we
argue that variance over the softmax predictions is the uncertainty in the network, in the same way
that the variance over probabilities is the uncertainty in a Dirichlet model. In contrast, NLL and
AUCROC (OODAUC) are metrics for prediction, while ECE is a metric based on a flawed surrogate
for uncertainty, calibration.

Prediction While we will argue that uncertainty quantification must involve a computed variance
term, and that common UQ metrics are either actually prediction metrics, or are based on a prediction
of uncertainty, this discussion also begs the question: what about the purported benefits of BDL to
prediction ability? As has been argued in Abe et al. (2022), it is often more economical to simply
train a larger capacity model, than to use BDL to improve prediction quality. Hence, we restrict our
main focus of NUQLS to its UQ ability. However, for completeness, we also evaluate the novel
predictor of NUQLS; these results can be found in the Appendix G.

20



Uncertainty Uncertainty can be divided into two categories: aleatoric uncertainty, or data uncer-
tainty, and epistemic uncertainty, or model uncertainty. Aleatoric uncertainty arises from intrinsic
randomness or noise in the data, and can often not be controlled. In contrast, epistemic uncertainty
arises from having many potential models that may fit the data, and the uncertainty in not knowing
which model is ‘correct’. As this arises from a lack of knowledge of the original data-mapping,
uncertainty in this manner can often be reduced through increased training data, using a larger
model, training for longer etc. There are numerous benefits to untangling the aleatoric and epistemic
uncertainty (Mukhoti et al., 2021; Huseljic et al., 2021; Chan et al., 2024). We can use the framework
of a Dirichlet model, the conjugate prior of a Categorical distribution, to understand how to evaluate
these uncertainties in the context of K-class classification. Assume there is some subspaceM of
the parameter space Θ ∈ Rp, such that our network f(.;θ∗) attains ‘good’ test performance for any
θ∗ ∈M. If it is common across parameter values inM that f(x;θ∗) has high entropy for some x, i.e.
f(x;θ∗) outputs a prediction close to the uniform distribution with high probability across θ∗ ∈M,
then we are sure that the outcome is unpredictable in x, i.e. that there is high aleatoric uncertainty.
This equates to a Dirichlet model with parameters α = (α1, . . . , αK) where α is uniform and of
large magnitude. In contrast, assume that over all parameter values inM, the softmax outputs of
f(x;θ∗) for a given x have very large variance. This means that no model can agree on the ’correct’
data-mapping, and hence there is very large epistemic uncertainty. This is analogous to when the
parameters α of a Dirichlet model are small in magnitude. Our method, NUQLS, measures the
variance over softmax outputs for high-performing parameters θ∗ ∈M. Hence, we are measuring
the epistemic uncertainty of the neural network.

NLL Due to its probabilistic framework, NLL is often used as a metric for UQ ability. For K-class
classification, up to a constant the NLL is just the cross-entropy loss

NLL(θ) = −
n∑

i=1

K∑
k=1

yi,k logµi,k,

where yi,k corresponds to the k-th element of the one-hot encoding of the i-th label, and µi,k =
softmax(f(xi;θ))k. This loss is minimised as softmax(f(xi;θ))k → 1ci , where ci is the correct
label for input xi. While a lower NLL is generally considered to show better UQ ability, we can
see that this metric is instead a smooth, probabilistic measurement of accuracy, where proximity
of the predictor to the identity function is rewarded with lower NLL. This metric does not measure
uncertainty quantification ability.

ECE A common surrogate for uncertainty in neural networks is the predicted softmax probabil-
ities. While neural networks generally output over-confident probabilities, many methods, such
as temperature scaling and many Bayesian methods, attempt to create well-calibrated predictors.
A well-calibrated output is one where the predicted softmax probabilities accurately convey the
forecasted probability of seeing each of the K-classes. For example, of all test points where a network
has a maximum predicted probability of 0.9, we would hope that the network is 90% accurate on
these test points. Once a predictor is well-calibrated, the softmax probabilities are then seen to
quantify uncertainty. However, there are issues with this:

1. Firstly, a point prediction from a network cannot be interpreted as the uncertainty in the network;
uncertainty quantities must accompany a network prediction, for example with a variance term.
At best, network confidence can be seen to predict the uncertainty.

2. Secondly, if softmax probability does in fact accurately predict the uncertainty, is this uncertainty
due to data uncertainty, or model uncertainty? If a model accurately predicts that there is a
90% chance that class c is correct, does that uncertainty arise due to noise in the data, or some
misspecification in the labeling process? Or is it due to the fact that the input is OoD, and thus the
model is unsure of itself? Hence, we still require a variance term to ascertain what the epistemic
uncertainty is.

3. Finally, calibration is only well-defined for ID test points. To see this, take a network trained
on MNIST, and then tested on FashionMNIST. Any network prediction is meaningless on this
test set, as the model has been trained for integer labels. The prediction that will minimize the
calibration error will be the uniform prediction i.e. the prediction is [0.1, . . . , 0.1] ∈ R10 for all
points in the OoD test set. However, the accuracy on OoD test points should be 0. Instead the
predicted accuracy is 0.1, which is what arises from randomly picking one class for each OoD test

21



point. Therefore, the predicted probabilites cannot be directly interpreted as forecasted probability
of accuracy for OoD points.

In practice, calibration is tested using ECE. This metric bins predictions, and then computes the
average confidence in each bin. This is compared with the average predicted accuracy, and an l2
norm is taken over the differences. As was noted in Nixon et al. (2019), there are several issues with
ECE. For examples, it is reductive in a multi-class setting, where the bottom K − 1 probabilities do
not contribute meaningfully to the error, and it suffers from the inherent sharpness of neural networks,
where the majority of maximum probabilities tend to be very close to 1, and thus this confidence
range is highly over-represented. So we struggle to even tell when a method is well-calibrated.

This issue with ECE can be summarised as follows: confidence is a flawed estimate of the total
uncertainty; further, it is hard to tell when a method is well-calibrated. It is thus evident that it is much
better to directly model the uncertainty in the model, by calculating the variance over the softmax
predictions. Once equipped with this model uncertainty, entropy (or network confidence) can be
better trusted to inform of the aleatoric uncertainty.

AUCROC The final metric commonly used for UQ is AUCROC (OODAUC). This metric uses
the top softmax prediction (entropy) as a predictor, to attempt to detect wether a point is ID or OoD.
While this is a very useful task, it is still a metric of prediction, as only the mean predictor is used to
compute this value. As we have argued, UQ requires a variance term. Miani et al. (2024a) in fact
use the variance over logits to compute the AUCROC score, and report this score for their method
SLU in comparison to other leading UQ methods. In Appendix H.2 we show that in this metric, we
outperform SLU.

VMSP To combat the issues of the previous metrics, we compare the performance of Bayesian
methods using the variance of the maximum softmax predictor, or VMSP. We first provide an explicit
definition of VMSP: for a Bayesian method, we generally have a mean predictor µ : Rd → Rc and a
covariance function Σ : Rd → Rc×c, for example the mean and covariance of the linearized ensemble
in the case of NUQLS, that output in the probit space. To compute VMSP for a given test point x?, we
first find ĉ = argmaxk µ(x∗)k, where µ(x?)k denotes the k-th output of µ(x?). That is, we find the
class that the Bayesian method predicts, given x?. We then define VMSP := Σ(x?)ĉ,ĉ = σ2(x?)ĉ,
that is, the variance of this prediction.

We also introduce a pictorial method for evaluating the performance of Bayesian methods, using
VMSP as the correct uncertainty measure. For a given dataset, we want a UQ method to provide low
uncertainty for correctly predicted test points, and high uncertainty for incorrectly predicted or OOD
test points. We then compare these distributions pictorially using a violin plot, and quantitatively using
the median and skew values for the respective distributions. With the addition of a poorly-performing
baseline model, we are able to easily compare the ability of UQ models to quantify uncertainty.

D Guarantees Against Mode Collapse

Given that all linearized models are initialized locally around the trained parameters, one may
consider whether it is possible that all linear networks will converge to the same parameter solution,
or mode of the linear loss. Fortunately, we are able to show that this will not occur, almost surely. To
see this, we note that the solution to (3) for each linearized model is given by a unique row-space
component (given our assumptions), plus a projection of the initialization zi onto the null-space
of the Jacobian. For mode-collapse, we would require the projection for two i.i.d initializations
z1, z2 ∼ N(0, γ2I) to be equal, or (I− J†

XJX )(z1 − z2) = 0, where z1 − z2 6= 0 with probability
one. Hence, z1 − z2 = J†

XJX (z1 − z2), and thus z1 − z2 ∈ Range(JT
X ), i.e. z1, z2 ∈ Range(JT

X ).
However, Range(JT

X ) is a low-dimensional subspace of Rp, and as we are drawing i.i.d. from a
p−dimensional normal distribution (i.e. not degenerate), the probability of this event occurring is 0.
Hence, we do not need to be concerned with all models converging to the same behaviour.

E Computational Cost

We now provide examination of the computational cost of NUQLS. We compare the computational
complexity for an epoch of training for the neural network fθ(x), for batch x ∈ Rd×n, and an

22



epoch of training for a single linear network f̂θ(x). We take approximations on the computational
complexity of both forward-mode AD and backward-mode AD from Blondel & Roulet (2024, Chapter
8). Specifically, we take [fp] as the computational complexity for evaluating fθ(x). We note from
Blondel & Roulet (2024, Chapter 8) that both a JVP and a VJP cost roughly 2 × a forward pass in
computational complexity and memory. Further, both a JVP and a JVP return a function evaluation.
Now, a standard epoch of training for the neural network involves a forward-pass to compute the
error, and then a backward-pass (VJP), hence the complexity is approx. 3[fp]. The linearised network
involves a JVP (which includes a function evaluation) to form the linear network, and a VJP to
compute the gradient. Hence, the complexity for an epoch of training for the linearized network is
approx. 4[fp]. So we observe that each epoch for a linearized network is only 4/3 × as expensive as
for a neural network. In regards memory, we see that the memory requirement for both the linearized
network and the neural network are similar. However, we generally train all linearized networks in
parallel. For computational complexity, this will incur some additional cost, thought it will not be
linear in number of networks, that is dependent upon the specific software and hardware. However,
memory cost will scale linearly by number of networks, i.e. 2S ×M([fp]), where M([fp]) is the
memory cost for a forward-pass, and S is the number of linear networks. As an example, we employ
a batch size of 56 for ImageNet on ResNet50 with 10 ensemble members when using an 80GB H100
GPU, due to the large parameter count and large number of classes. Note that in the case where the
training set is small, it is beneficial to compute and save in memory the Jacobian of the NN evaluated
on the entire training set. We can then train the linear networks very quickly. This contributes to the
impressive run-times seen in Tables 1 and 9.

F Hyper-parameter Tuning

NUQLS contains several hyper-parameters: the number of linear networks to be trained, the number
of epochs and learning rate of training, and the variance of initialisation, γ. In this section, we discuss
strategies to select optimal hyper-parameters.

F.1 Regression

For regression, and with a sufficiently small learning rate, NUQLS samples from the distribution
given in Remark 3.3. We can see that the variance of the predictions scales linearly with γ2. Hence,
we use the following framework to tune γ:

1. To obtain θs in Algorithm 1, we initialise our parameters with a very small gamma, e.g. γ = 0.01.
This enables (stochastic) gradient descent to converge quickly with a small learning rate.

2. We compute {f̃(θ?s ,Xval)}Ss=1, where Xval is the inputs from a validation set.
As per Remark 3.3, for each point x ∈ Xval, we compute the mean predic-
tion as µ(x) = SampleMean

(
{f̃(θ?s ,x)}Ss=1

)
and the variance as σ2

γ(x) =

SampleVariance
(
{γ f̃(θ?s ,Xval)}Ss=1

)
(note the scaling by γ for only the variance). We

then use these values to compute the ECE across the validation dataset Dval.
3. As coverage of a confidence interval scales linearly with the size of the given standard deviation,

and our computed standard deviation scales linearly with γ, we find that the ECE is convex in γ.
Hence, we employ the Ternary search method (see Algorithm 2) to find the value γ̂ that minimizes
this validation ECE.

4. For a test point x?, our mean prediction and variance is then µ(x?) and σ2
γ̂(x

?).

As can be seen in Table 1 and Table 9, this framework means that for regression our method is
incredibly fast and computes well-calibrated variance values.

F.2 Classification

For uncertainty quantification performance, as measured by VMSP in Figure 3, we find that as long
as γ is small, training SGD for a small amount of epochs generally gives small training loss, and
hence provides good performance. This means that our method can be computed quite quickly in
larger data/model settings.

23



Algorithm 2 Ternary Search

f : function to minimize, l: left boundary of search space, r: right boundary of search space, δ:
tolerance, iter: iterations.
i = 0
while |l − r| ≥ δ and i <iter do
l1/3 = l + (r − l)/3
r1/3 = r − (r − l)/3
if f(l1/3) < f(r1/3) then
l = l1/3

else
r = r1/3

end if
end while
return (l + r)/2

Table 2: Image classification predictive performance, using LeNet5 on MNIST and FashionMNIST
(FMNIST). Experiment was run 5 times with different random MAP initialisations to get standard
deviation on metrics.

Datasets Method NLL ↓ ACC ↑ ECE ↓ OOD-AUC ↑ AUC-ROC ↑ Time (s)
MAP 0.034±0.002 0.990±0.001 0.008±0.001 0.888±0.008 0.886±0.008 257

NUQLS 0.035±0.002 0.989±0.001 0.003±0.000 0.930±0.026 0.928±0.026 106
MNIST DE 0.034±0.004 0.991±0.000 0.011±0.004 0.932±0.009 0.928±0.009 2845

MC-Dropout 0.044±0.002 0.989±0.000 0.017±0.01 0.873±0.032 0.871±0.031 533
SWAG 0.029±0.003 0.991±0.000 0.004±0.002 0.902±0.008 0.900±0.008 489
LLA* 0.034±0.002 0.990±0.001 0.008±0.001 0.888±0.008 0.886±0.008 45

VaLLA 0.034±0.002 0.990±0.001 0.008±0.001 0.889±0.008 0.886±0.008 1583
MAP 0.298±0.007 0.891±0.3 0.006±0.001 0.840±0.022 0.804±0.021 158

NUQLS 0.302±0.006 0.891±0.002 0.005±0.002 0.904±0.007 0.870±0.006 89
FMNIST DE 0.288±0.002 0.896±0.001 0.013±0.001 0.876±0.003 0.836±0.003 1587

MC-Dropout 0.306±0.007 0.892±0.003 0.026±0.002 0.856±0.021 0.813±0.019 291
SWAG 0.283±0.005 0.899±0.003 0.018±0.002 0.817±0.023 0.783±0.022 264
LLA* 0.298±0.007 0.891±0.003 0.006±0.001 0.841±0.022 0.805±0.021 26

VaLLA 0.298±0.007 0.891±0.003 0.007±0.001 0.841±0.022 0.805±0.021 1583

G Evaluation of Predictive Mean

While the main focus of NUQLS is the variance term, to compute the epistemic uncertainty of
a NN, we would also like to demonstrate the predictive ability of our novel predictive mean, for
completeness.

G.1 Image Classification - Predictive

We compare NUQLS against the MAP NN, DE, MC-Dropout, SWAG, LLA* and VaLLA, on the
MNIST and FashionMNIST datasets, using the LeNet5 network. We compare test cross-entropy
(NLL), test accuracy (ACC), ECE, and the AUC-ROC measurement for maximum softmax probability
(AUC-ROC) and entropy (OOD-AUC) as the detector. The last two metrics evaluate a methods ability
to detect out-of distribution points. We display the results in Table 2. We see that NUQLS performs
the best in ECE, AUC-ROC and OOD-AUC, and is competitive in the other metrics, while having the
second fastest wall-time.

H Further Experimental Results

H.1 Comparison to PNC using Confidence Intervals

We use this section to compare the difference in performance of NUQLS vs PNC. To test the
difference between the two methods, we tested NUQLS on the confidence intervals problem from
Huang et al. (2023). In this experiment, an MLP with a single hidden-layer is trained on n datapoints

24



Table 3: Evalaution of coverage (CR) and width (IW) of computed confidence intervals from toy
problem, for a neural network with extreme width and partial training. A computed coverage
exceeding the expected coverage is bolded. The mean prediction (MP) is also provided.

PNC NUQLS
95%CI (CR/IW) 90%CI (CR/IW) MP 95%CI (CR/IW) 90%CI (CR/IW) MP

d = 2, n = 128 0.98/0.0437 0.95/0.0323 0.1998 0.93/0.0357 0.92/0.0299 0.2047
d = 4, n = 256 0.98/0.0411 0.95/0.0304 0.3991 0.92/0.0596 0.86/0.0500 0.4084

Table 4: Evalaution of coverage (CR) and width (IW) of computed confidence intervals from toy
problem, for a neural network with finite width and full training. A computed coverage exceeding
the expected coverage is bolded. The mean prediction (MP) is also provided.

PNC NUQLS
95%CI (CR/IW) 90%CI (CR/IW) MP 95%CI (CR/IW) 90%CI (CR/IW) MP

d = 2, n = 128 0.8/0.136 0.72/0.0105 0.2022 0.99/0.0135 0.96/0.0114 0.2012
d = 4, n = 256 0.96/0.0437 0.90/0.0336 0.4045 0.97/0.0313 0.97/0.0313 0.4030
d = 8, n = 512 0.88/0.0740 0.88/0.0568 0.8078 1.00/0.0667 0.98/0.0559 0.8050
d = 16, n = 128 0.8/0.1443 0.8/0.1108 1.6265 1.00/0.1350 0.98/0.1133 1.6121

from U([0, 0.2]d), where the target is y =
∑d

i=1 sin(xi)+ ε, and ε is a small noise term. The method
is then asked to form a confidence interval around the prediction for x = (0.1, 0.1, . . . , 0.1). This
setup is repeated several times, i.e. the network and training data are randomly initialized, and the
coverage and average width of the confidence intervals are recorded, as well as the mean prediction.
For more details, we refer the reader to Huang et al. (2023). When the width of the network is 32×n,
and the network is only partially trained with 80 epochs and a learning rate of 0.01, NUQLS performs
poorly compared to PNC, as can be seen in Table 3. Note that bolded numbers indicate intervals that
have reached or exceeded the expected coverage. Further, smaller width intervals are preferred.

We note that scaling the width of a network by 32×n is rare in practice, and that such a wide network
is difficult to train. If we instead form an MLP with width equal to the number of training points,
and increase epochs to 100 and learning rate to 0.5, so that the network is properly trained, NUQLS
far outperforms PNC, as can be seen in Table 4. We note that for these experiments we tuned the
γ hyper-parameter for NUQLS on a small validation set. We conclude that NUQLS and PNC are
in fact complementary methods. For infinite-width networks near initialization, PNC performs well
while NUQLS struggles. Conversely, for finite-width networks trained to a minimum, NUQLS excels
while PNC performs poorly. We believe the latter regime is more representative of practical scenarios,
where NUQLS offers significantly better performance.

H.2 Comparison to SLU

Here we compare the performance of our method against the competing SLU method. See Appendix B
for a discussion of the differences between NUQLS and SLU. Due to the extensive experimental
details given in (Miani et al., 2024a), we run certain experiments from this work and report the
performance of NUQLS against the SLU results found in (Miani et al., 2024a). In Table 5, we
compare NUQLS against SLU on OoD detection using the AUC-ROC metric, on a smaller single-
layer MLP and a larger LeNet model. The MLP is trained on the MNIST dataset, while the LeNet
model is trained on the FashionMNIST dataset. For MNIST, the OoD datasets are FashionMNIST,
KMNIST, and a Rotated MNIST dataset, where for each experiment run, we compute the average
AUC-ROC score over a range of rotation angles (15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180).
For FashionMNIST, the OoD datasets are MNIST, and the average Rotated FashionMNIST dataset.
The AUC-ROC metric was calculated using the variance of the logits, summed over the classes
for each test point, as a score. We observe that NUQLS has a better AUC-ROC value over all OoD
datasets, often by a significant margin.

H.3 Comparison to Sampling-LLA, VaLLA and ELLA

We now compare NUQLS against Sampling-LLA, VaLLA and ELLA. Due to issues with
convergence, performance, memory usage and package compatibility when either running source

25



Table 5: Comparing performance of NUQLS against SLU method. Metric given is the AUC-ROC,
computed using the variance of the logits, summed over the classes for each test point, as a score.
AUC-ROC measures ability of a method to differentiate between ID and OoD points. We see that
NUQLS out-performs SLU in these experiments.

Model MLP p = 15k LeNet p = 40k
ID Data MNIST vs FashionMNIST

OoD Data FashionMNIST KMNIST Rotation (avg) MNIST Rotation (avg)
SLU 0.26±0.02 0.42±0.04 0.59±0.02 0.94±0.01 0.74±0.03

NUQLS 0.67±0.07 0.79±0.02 0.74±0.01 0.95±0.02 0.91±0.01

Table 6: Comparing performance of NUQLS against Sampling-LLA, VaLLA and ELLA on MNIST,
trained used a 2-layer MLP with 200 hidden units in each layer, and tanh activation. Original results
taken from (Ortega et al., 2023).

Model ACC NLL ECE BRIER OOD-AUC
ELLA 97.6 0.076 0.008 0.036 0.905
Sampled LLA 97.6 0.087 0.026 0.040 0.954
VaLLA 100 97.7 0.076 0.010 0.036 0.916
VaLLA 200 97.7 0.075 0.010 0.035 0.921
NUQLS 98.0±0.1 0.065±0.003 0.005±0.001 0.031±0.001 0.953±0.006

code or implementing methods from instructions given in (Antorán et al., 2022) and (Ortega et al.,
2023), we instead compare NUQLS against the results for Sampling-LLA, VaLLA and ELLA taken
verbatim from (Ortega et al., 2023, Figure 3). We train a 2-layer MLP, with 200 hidden-units in
each layer, on the MNIST dataset, according to the experimental details given in (Ortega et al.,
2023). We then compare the accuracy, NLL, ECE, Brier score and the OOD-AUC metric of NUQLS
against those reported for Sampling-LLA, VaLLA and ELLA. The results are shown in Table 6.
We display the mean and standard deviation for NUQLS; as is quoted in (Ortega et al., 2023), the
standard deviation for the other methods was below 10−4 in magnitude, and was thus omitted.
We see that NUQLS outperforms Sampling-LLA, VaLLA and ELLA in accuracy, NLL, ECE,
and Brier score, and is within one-sixth of a standard deviation of the leading OOD-AUC value,
attained by Sampling-LLA. While we cannot directly comment on differences in computation
time between our method and these LLA extensions, we were able to run the source code for
VaLLA for the experiments in Table 2, where NUQLS was an order-of-magnitude faster than
VaLLA in wall-time. In (Ortega et al., 2023, Figure 3 (right)), we also observe that VaLLA is an
order-of-magnitude faster than both Sampling-LLA and ELLA. We also compare with (Ortega
et al., 2023, Table 1), where a ResNet20 and ResNet34 model is trained on CIFAR-10. The re-
sults are displayed in Table 7. We see that NUQLS is competitive with all other methods in this setting.

Table 7: Comparing performance of NUQLS against Sampling-LLA, VaLLA and ELLA on CIFAR-
10, with ResNet20 and ResNet32. Original results taken from (Ortega et al., 2023). Purple figures
correspond to the top result, while blue figures are the second-best result.

ResNet20 ResNet32
Model ACC NLL ECE ACC NLL ECE
ELLA 92.5 0.233 0.009 93.5 0.215 0.008
Sampled LLA 92.5 0.231 0.006 93.5 0.217 0.008
VaLLA 92.6 0.228 0.007 93.5 0.211 0.007
NUQLS 92.5 0.228 0.006 93.4 0.215 0.007

26



Table 8: Comparing performance of NUQLS and BDE on UCI regression tasks. We see that NUQLS
outperforms BDE on all tasks.

Dataset Method RMSE ↓ NLL ↓ ECE ↓
Energy BDE 0.416±0.039 −0.125±0.212 0.008±0.005

NUQLS 0.047±0.006 −2.400±0.209 0.002±0.002

Concrete BDE 0.714±0.054 1.563±0.449 0.063±0.012

NUQLS 0.330±0.047 −0.316±0.501 0.003±0.001

Kin8nm BDE 0.851±0.037 1.383±0.582 0.042±0.012

NUQLS 0.252±0.005 −0.796±0.025 0.000±0.000

H.4 Comparison to BDE

Figure 4 displays the performance of BDE on the toy regression problem from Figure 1. We also
compare BDE against NUQLS on several UCI regression tasks in Table 8.

5.0 2.5 0.0 2.5 5.0

200

0

200

BDE

5.0 2.5 0.0 2.5 5.0

200

0

200

DE

5.0 2.5 0.0 2.5 5.0

200

0

200

NUQLS

Figure 4: Comparison of BDE, DE and NUQLS on the toy regression problem from Figure 1. We
can see that the uncertainty of the BDE method is quite small.

H.5 UCI Regression

We present the results for select UCI regression datasets in Table 1 in the main body; we present
results for several more datasets in Table 9.

H.6 eNUQLS

In Figure 5 we demonstrate the performance of an ensembled version of NUQLS, eNUQLS. This
method is similar to a Mixture of Laplace Approximations (Eschenhagen et al., 2021). We observe
excellent separation of the variances between correct and incorrect/OoD test groups for eNUQLS,
especially for CIFAR-10 on ResNet9. Note that there is significant cost to ensembling our method,
and we provide this figure simply to illustrate performance capacity.

H.7 Additional VMSP Results

We use this section to expand the empirical evaluation of NUQLS. In the top left of Figure 6, we
observe that on a ResNet50 model trained on SVHN, with CIFAR-10 as the OoD test data, NUQLS
outperforms all other methods. In the top right of Figure 6, we evaluated NUQLS on the ImageNet
dataset in order to display the scalability of our method to larger datasets. We employed the pre-
trained weights for a ResNet50, as found on torch.hub, and used the ImageNet-o dataset as our OOD
test set (Hendrycks et al., 2021). Due to resource budget constraints, we were only able to compare
NUQLS against a baseline method, though future research could include a comparison of other
methods against NUQLS, using VMSP, on ImageNet. As can be seen, we see excellent separation
between correct and incorrect predictions, while only adequate separation between correct and OOD
points. We note from Bitterwolf et al. (2023) that approximately 21% of the images in ImageNet-o
are actually in-distribution; hence, we see that NUQLS correctly quantifies the variance of these test
sets. We also provide comparison of NUQLS with additional competing methods. In the bottom left
of Figure 6, we compare NUQLS against the BE method. Note that BE requires modification to the
structure of a neural network; hence, we compare BE on a modified WideResNet-34-1, of which an
implementation of the correct modifications existed (Franchi et al., 2023), trained on FashionMNIST.

27



Table 9: Comparing performance of NUQLS, DE, LLA and SWAG on UCI regression tasks. NUQLS
performs as well as or better than all other methods, while showing a speed up over other methods;
this speed up increases with the size of the datasets. Note that for the Song dataset, the LLA method
uses a diagonal covariance structure due to memory constraints: this is denoted as LLA-D.

Dataset Method RMSE ↓ NLL ↓ ECE ↓ Time(s)
Concrete NUQLS 0.330±0.047 −0.316±0.501 0.003±0.001 7.339 (0.185)

DE 0.379±0.019 −0.574±0.098 0.002±0.002 29.047
LLA 0.333±0.050 −0.294±0.479 0.003±0.002 7.451(0.297)

SWAG 0.334±0.050 −0.562±0.224 0.009±0.006 43.416 (36.262)
Naval NUQLS 0.049±0.012 −2.546±0.134 0.002±0.002 11.360 (0.295)

DE 0.076±0.006 −1.761±0.250 0.093±0.040 96.570
LLA 0.070±0.022 25.292±17.570 0.192±0.029 140.724 (129.659)

SWAG 1.130±1.500 0.303±1.091 0.084±0.022 103.727 (92.662)
CCPP NUQLS 0.244±0.008 −0.885±0.020 0.000±0.000 6.698 (0.174)

DE 0.227±0.006 −1.009±0.041 0.002±0.003 79.791
LLA 0.243±0.007 29.420±4.565 0.163±0.008 38.572 (32.048)

SWAG 0.252±0.012 −0.849±0.038 0.001±0.002 73.357 (66.833)
Wine NUQLS 0.789±0.042 0.284±0.066 0.001±0.000 1.164 (0.115)

DE 0.789±0.041 0.320±0.109 0.001±0.001 13.241
LLA 0.792±0.041 1.012±0.182 0.009±0.004 1.389 (0.340)

SWAG 0.798±0.038 0.367±0.103 0.005±0.003 12.856 (11.807)
Yacht NUQLS 0.042±0.013 −1.561±2.319 0.012±0.010 3.390 (0.164)

DE 0.647±0.121 −2.032±0.349 0.016±0.008 40.132
LLA 0.043±0.014 −2.733±0.468 0.011±0.006 3.403 (0.177)

SWAG 0.044±0.014 −2.565±0.118 0.067±0.025 19.408 (15.822)
Song NUQLS 0.839±0.014 0.646±0.056 0.001±0.000 295.058 (91.673)

DE 0.846±0.006 0.180±0.013 0.005±0.000 2562.789
LLA-D 0.851±0.029 0.456±0.093 0.000±0.000 413.814 (210.429)
SWAG 0.845±0.002 0.680±0.062 0.003±0.001 3477.825 (3274.440)

NUQLS DE eNUQLS SWAG MC LLA BASE
0.00

0.15

0.30

2

LeNet5 FMNIST

NUQLS DE eNUQLS SWAG MC LLA BASE

ResNet9 CIFAR-10
ID Correct
ID Incorrect
OOD

Figure 5: Violin plot of VMSP, with an ensembled version of NUQLS, eNUQLS, included.

We again observe that NUQLS shows greater separation than BE for VMSP across correct predictions
versus incorrect or OOD predictions. Finally, in the bottom right of Figure 6, we compare NUQLS
against further competing methods, specifically BDE, SGLD (Welling & Teh, 2011) (which we
include to demonstrate the inferior performance of MCMC methods in this regime) and SNGP on
ResNet9 trained on FMNIST (note SNGP requires modifications to the training procedure). We see
that BDE performs similarly to DE, and SLGD performs similarly to SWAG, which is unsurprising
considering their respective constructions. We also observe that NUQLS still performs the strongest
across all methods using the VMSP violin plots. The respective median and skew values for Figure 6
are displayed in Table 10 and Table 11; these values also evidence the strong performance of NUQLS.

H.8 Image Classification Skew and Median

The median and sample skew for the VMSP in Figure 3 and Figure 6 is found in Table 10 and
Table 11.

28



Table 10: Sample median and sample skew of variance from Figure 3 and Figure 6. IDC = ID correct,
IDIC = ID incorrect, FMNIST = FashionMNIST. The median and skew for a method is compared
against a baseline method. We expect positive skew for the ID correct (IDC) variances, and a negative
skew for the ID incorrect (IDIC) and OoD variances. If the median or skew for a method is worse
than the corresponding baseline, then it is written in gray.

Median NUQLS DE SWAG MC LLA BASE
ResNet9 IDC ↓ 4.76× 10−15 1.31× 10−5 4.64× 10−7 5.05× 10−7 9.02× 10−10 0.020
FMNIST IDIC ↑ 0.182 0.040 0.048 0.004 0.004 0.020

OoD ↑ 0.217 0.109 0.075 0.004 0.009 0.020
ResNet50 IDC ↓ 0.00 8.29× 10−8 0.018 1.49× 10−9 1.70× 10−7 0.019
CIFAR-10 IDIC ↑ 0.178 0.120 0.123 1.32× 10−4 0.008 0.020

OoD ↑ 0.178 0.106 0.134 6.74× 10−5 0.004 0.020
ResNet50 IDC ↓ 1.00× 10−8 8.73× 10−4 0.0449 1.12× 10−4 3.25× 10−4 0.020

CIFAR-100 IDIC ↑ 0.211 0.0624 0.101 5.93× 10−3 0.0225 0.020
OoD ↑ 0.214 0.0665 0.0956 5.46× 10−3 0.0199 0.020

ResNet50 IDC ↓ 8.61× 10−15 3.59× 10−6 1.71× 10−6 2.18× 10−8 1.61× 10−6 0.020
SVHN IDIC ↑ 0.217 0.0569 0.0302 3.96× 10−4 0.0241 0.020

OoD ↑ 0.233 0.127 0.0789 7.51× 10−4 0.0252 0.020
ResNet50 IDC ↓ 0.00 - - - - 0.020
ImageNet IDIC ↑ 0.232 - - - - 0.020

OoD ↑ 0.100 - - - - 0.020

Sample Skew
ResNet9 IDC ↑ 2.4 3.51 3.72 4.92 6.46 1.01
FMNIST IDIC ↓ −0.615 0.928 0.378 1.60 1.18 1.11

OoD ↓ −1.7 0.321 0.076 1.69 0.926 1.11
ResNet50 IDC ↑ 2.97 2.68 4.02 4.55 5.14 1.14
CIFAR-10 IDIC ↓ −0.15 −0.05 0.66 2.45 0.816 1.09

OoD ↓ 0.02 −0.01 0.77 2.72 0.96 1.05
ResNet50 IDC ↑ 1.08 1.48 0.508 2.87 1.8 1.07

CIFAR-100 IDIC ↓ −1.15 0.241 −0.47 2.05 0.228 1.09
OoD ↓ −1.37 0.269 −0.233 1.85 0.217 1.13

ResNet50 IDC ↑ 2.2 2.42 3.52 6.91 4.15 0.989
SVHN IDIC ↓ −1.31 0.52 0.878 1.64 0.601 1.12

OoD ↓ −1.78 −0.47 −0.0119 1.18 0.296 1.06
ResNet50 IDC ↑ 1.52 - - - - 1.21
ImageNet IDIC ↓ −0.88 - - - - 1.10

OoD ↓ 0.179 - - - - 0.985

Table 11: Sample median and sample skew of variance from Figure 6. IDC = ID correct, IDIC =
ID incorrect, FMNIST = FashionMNIST. The median and skew for a method is compared against a
baseline method. We expect positive skew for the ID correct (IDC) variances, and a negative skew for
the ID incorrect (IDIC) and OoD variances. If the median or skew for a method is worse than the
corresponding baseline, then it is written in gray.

Median NUQLS BE BDE SGLD SNGP BASE
WRN-34-1 IDC ↓ 0.00 8.31× 10−5 - - - 0.020
FMNIST IDIC ↑ 0.178 0.045 - - - 0.020

OoD ↑ 0.173 0.107 - - - 0.020
ResNet9 IDC ↓ 4.76× 10−15 - 3.35× 10−20 6.79× 10−8 9.19× 10−7 0.020
FMNIST IDIC ↑ 0.182 - 0.00915 0.023 0.000322 0.020

OoD ↑ 0.217 - 0.0504 0.0352 0.000342 0.020

Sample Skew
WRN-34-1 IDC ↑ 3.1 2.8 - - - 1.01
FMNIST IDIC ↓ −0.342 0.944 - - - 1.11

OoD ↓ −0.0875 −0.272 - - - 1.11
ResNet9 IDC ↑ 2.4 - 6.46 5.49 29.8 0.93
FMNIST IDIC ↓ −0.615 - 1.43 1.23 24.4 1.15

OoD ↓ −1.7 - 0.515 1.1 1.21 1.05

29



NUQLS DE SWAG MC LLA BASE
0.00

0.15

0.30

2

ResNet50 SVHN

NUQLS BASE

ResNet50 ImageNet

NUQLS BE BASE
0.00

0.15

0.30
WRN-34-1 FMNIST

NUQLS DE BDE SGLD SNGP SWAG MC LLA BASE

ResNet9 FMNIST
ID Correct
ID Incorrect
OOD

Figure 6: Violin plot of VMSP, for (top left) ResNet50 SVHN, (top right) ResNet50 ImageNet,
(bottom left) WRN-34-1 FMNIST, and (bottom right) ResNet9 FMNIST.

I Experiment Details

All experiments were run either on an Intel i7-12700 CPU (toy regression), or on an H100 80GB
GPU (UCI regression and image classification). Where multiple experiments were run, mean and
standard deviation were presented.

I.1 NTK Convergence

For this experiment, 2 randomly sampled sets of 100 Gaussian inputs of dimension 5, and 100 scalar
Gaussian targets, were used as training points and test points respectively. The weights of the MLP
were initialised to N (0, 1); no bias terms were used. To train, GD was employed with a Nesterov
momentum parameter of 0.9, a learning rate of 0.1, and 5000 epochs. For NUQLS, a learning rate of
0.1 was used, and γ was set to 1. Error bars on Figure 2 are the 95% sample confidence interval.

I.2 Toy Regression

We use a 1-layer MLP, with a width of 50 and SiLU activation. For the maximum a posteriori (MAP)
network, we train for 10000 epochs, with a learning rate of 0.001, using the Adam optimizer and the
PyTorch polynomial learning rate scheduler, with parameters total_iters = epochs, power = 0.5.
For DE, each network in the ensemble outputs a heteroskedastic variance, and is trained using a
Gaussian NLL, with 2000 epochs and a learning rate of 0.05. We combine the predictions of the
ensembles as per (Lakshminarayanan et al., 2017). Both DE and NUQLS use 10 realizations. The γ
hyper-parameter in NUQLS is set to 5, and each linear realization is trained for 1000 epochs with a
learning rate of 0.001, using SGD with a momentum parameter of 0.9. In SWAG, the MAP network
is trained for a further 10000 epochs, using the same learning rate, and the covariance is formed with
a rank-10 approximation. A prior precision of 0.1 and 1 is used for LLA and LA respectively, as well
as the full covariance matrix. The variational inference method used is Bayes By Backprop (Blundell
et al., 2015), as deployed in the Bayesian Torch package (Krishnan et al., 2022). The prior parameters
are (µ = 0, σ = 1), and the posterior is initialized at (µ = 0, ρ = −3). For SWAG, LLA, LA and VI,
1000 MC sample were taken at test time. These design choices gave the best performance for this
problem.

30



Table 12: Training procedure for UCI regression results in Table 1 and Table 9.

NN Energy Concrete Kin8nm Naval CCPP Wine Yacht Protein Song
Learning Rate 10−2 10−2 10−2 10−2 10−2 10−2 10−2 10−2 10−2

Epochs 1500 1000 500 150 100 100 1000 250 50
Weight Decay 10−5 10−5 10−5 10−4 10−5 10−4 10−5 10−4 0
Optimizer Adam Adam SGD SGD Adam SGD Adam SGD SGD
Scheduler PolyLR PolyLR None None PolyLR None PolyLR None None
MLP Size [150] [150] [100, 100] [150, 150] [100, 100] [100] [100] [150, 200, 150] [1000, 1000

, 500, 50]
NUQLS
Learning Rate 10−2 10−2 10−2 10−2 10−2 10−2 10−2 10−2 10−3

Epochs 150 100 50 15 10 10 100 25 10

DE
Learning Rate 10−3 10−3 10−2 10−3 10−2 10−2 10−2 10−2 10−2

Epochs 1500 300 100 100 100 100 1000 250 50
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam
Scheduler None None Cosine None None None Cosine None None

Experiment
No. experiments 10 10 10 10 10 10 10 10 3

I.3 UCI Regression

We now provide the experimental details for the UCI regression experiments (as seen in Table 1 and
Table 9). For each dataset, we ran a number of experiments to get a mean and standard deviation
for performance metrics. In each experiment, we took a random 70%/15%/15% split of the dataset
for training, testing, and validation. The training hyper-parameters for the MAP, DE and NUQLS
networks, size of the MLP used, and the number of experiments conducted for each dataset can be
found in Table 12. Reported time for NUQLS, LLA and SWAG includes the training time for the
original NN, with the time to run the method given in brackets.

• NN: For the PolyLR learning rate scheduler, a PyTorch polynomial learning rate scheduler was
used, with parameters total_iters=10×epochs, power= 0.5. The MLP used a tanh activation, so as
to have smooth gradients. MLP weights were initialized as Xavier normal, and bias as standard
normal. The dataset was normalized, so that the inputs and the outputs each had zero mean and
unit standard deviation.

• NUQLS: The linear networks were trained using (S)GD with Nesterov momentum parameter 0.9.
For all datasets except for Song, the full training Jacobian could be stored in memory; this made
training extremely fast. For the Song dataset, we trained all linear networks in parallel, by explicitly
computing the gradient using JVPs and VJPs. The number of linear networks used was 10 across
all datasets, and the γ hyper-parameter was kept at 0.01.

• DE: Each member of the ensemble output a separate heteroskedastic variance, and was trained
to minimise the Guassian negative log likelihood. The ensemble weights were also initialized as
Xavier normal, and bias as standard normal. The number of ensemble members was kept at 10.

• LLA: LLA requires two parameters for regression: a dataset noise parameter, and a prior variance
on the parameters (Foong et al., 2019). To find the noise parameter, a grid search over 10 values
on a log-scale between 1e − 2 and 1e2 was used to find the noise that minimized the Gaussian
likelihood of the validation set, with the LLA mean predictor as the Gaussian mean. The same grid
search was used to find the prior variance, in order to minimize the expected calibration error (ECE)
of LLA on the validation set. For the Protein dataset, a Kronecker-Factored Curvature (KFAC)
covariance structure was used (Immer et al., 2021), and for the Song dataset a diagonal covariance
structure was used. For all other datasets, LLA used the full covariance structure. The predictive
distribution was computed with 1000 MC samples.

• SWAG: SGD was used, and the learning rate and number of epochs was kept the same as the NN.
We used a grid-search for weight decay, over the values [0, 0.005, 0.00005], to minimize the ECE
on the validation set. The rank of the covariance matrix was 10 for all datasets, and the predictive
distribution used 1000 MC samples.

31



Table 13: Training procedure for image classification results in Table 2, Figure 3, and Figure 6.

MAP LeNet5 MNIST Lenet5 FMNIST ResNet9 FMNIST ResNet50 CIFAR10 ResNet50 CIFAR100 ResNet50 SVHN ResNet50 ImageNet
Learning Rate 5× 10−3 5× 10−3 10−3 10−2 10−1 10−2 -
Epochs 35 35 10 200 200 50 -
Weight Decay 10−4 10−4 10−4 10−4 5× 10−4 5× 10−4 -
Batch Size 152 152 100 128 128 128 -
Optimizer Adam Adam Adam SGD SGD SGD -
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine -
Accuracy 99% 90% 92.5% 92.5% 75% 87% 76%

NUQLS
Learning Rate 10−2 10−2 10−1 10−1 10−2 10−2 10−2

Epochs 10 10 2 50 10 2 2
Batch Size 152 152 50 128 128 256 56
γ 1 0.7 0.1 0.01 0.05 0.05 0.7

I.4 Image Classification

We display the training procedure in Table 13 for both Figure 3 and Table 2. For MNIST and
FashionMNIST, we took a 5 : 1 training/validation split of the training data. For CIFAR-10, we
simply used the test data as a validation set. For CIFAR-10, random horizontal crop and flip on the
training images was used as regularization.

• NN: We chose the training procedures to provide the best MAP performance. All networks have
weights initialized as Xavier uniform. For SGD, a momentum parameter of 0.9 was used. For the
Cosine Annealing learning rate scheduler, the maximum epochs was set to the training epochs.

• NUQLS: The number of samples was kept to 10 for all datasets.
• DE: Similary, 10 ensemble members were used for all datasets.
• MC-Dropout: Dropout was applied to the network before the last fully connected layer. The

dropout probability was set to 0.1 (a larger probability of 0.25 was also used, but it did not change
the result). At test time, 100 MC-samples were taken.

• SWAG: The network was trained for a further 1× training epochs. For CIFAR-100 and SVHN,
learning rate was kept the same as the original NN; for other datasets, a larger learning rate of
1e2×NN learning rate was used. The covariance rank was set at 10. At test time, 100 MC-samples
were taken.

• LLA*: We used a last-layer KFAC approximation to the covariance. The prior precision was
found through a grid search over 20 values on a log scale from 1e − 2 to 1e2, using the probit
approximation to the predictive, and a validation set. This configuration for LLA is what is
recommended in Daxberger et al. (2021). We used 1000 samples, to remedy the large amount of
approximations used.

• VaLLA: We used the implimentation found in (Ortega et al., 2023). We kept nearly all hyper-
parameters the same as in the MNIST and FashionMNIST experiments in (Ortega et al., 2023);
however, we reduced the number of iterations to 5000, due to time constraints. We were unable to
run this implimentation for ResNet9 or ResNet50, due to an out-of-memory error.

I.5 Confidence Intervals

For the confidence intervals experiments in Table 4 and Table 3, we used 100 repeats for d ≤ 4 and
50 repeats for d ≥ 8. We used a multiplier of 1.5 on all NUQLS variance values, as we note that the
search strategy for γ for regression only employs ECE; this does not reward confidence intervals that
exceed the expected confidence, and hence computed confidence intervals may be conservative in
width.

I.6 Comparison Experiments

I.6.1 BDE

For Figure 4 and Table 8, BDE was implimented following details given in (He et al., 2020). To
make comparison with NUQLS fair, each ensemble member of BDE did not output a separate hetero-
skedastic variance term. Instead, the variance over predictions was taken as the variance. Further, the
large computational cost of BDE relative to NUQLS meant that it is unrealistic for comparison to
allow BDE to tune hyper-parameters through a grid-search, as this would take the run time of BDE

32



(which is slightly greater than that of DE) severely out-of-proportion to NUQLS. For Figure 4, the
noise-parameter was given as the noise in the data, 9. For Table 8, standard Gaussian noise was taken
a priori. The ensemble members were trained with the same training scheme as the original NN in
both Figure 4 and Table 8. For both experiments, 10 ensemble members were used. For classification,
we again followed the implementation details given in He et al. (2020) to the best of our ability. We
employed the same hyperparameters as DE/MAP, and used 10 ensemble members.

I.6.2 SLU

For the results in Table 5, we copied the training details for (Miani et al., 2024a, Table 3.); we point
the reader to (Miani et al., 2024a, Appendix D.1) for the exact details. For NUQLS, we used the
following hyper-parameters for both MNIST and FashionMNIST: Epochs 10, samples 10, learning
rate 0.01, batch size 152, γ 1.

I.6.3 Sampling-LLA, VaLLA and ELLA

For the results in Table 6, we used the training details for (Antorán et al., 2022, Figure 3. (left));
again, we point the reader to the details given in (Antorán et al., 2022, Appendix F.1). For NUQLS,
we used the following hyper-parameters for MNIST: Epochs 10, samples 10, learning rate 0.01,
batch size 152, γ 0.25. For ResNet20 the following hyper-parameters were used: Epochs 1, samples
100, learning rate 0.0001, batch size 152, γ 0.01. For ResNet32 the following hyper-parameters
were used: Epochs 1, samples 150, learning rate 0.0001, batch size 152, γ 0.01.

I.6.4 BE

We employed the WideResNet architecture from Franchi et al. (2023). We used a depth of 10 and a
widening factor of 1. The MAP network was trained with: Epochs 20, learning rate 0.005, weight
decay 0.0001, batch size 152, the Adam optimizer and the Cosine learning rate scheduler. BE
employed the same hyperparameters, yet with 1.5×Epochs, to aid with training. BE used 5 ensemble
members, in order to match the computational budget of NUQLS. The NUQLS hyperparameters
were: Epochs 10, samples 10, learning rate 0.01, batch size 152, γ 1.

I.6.5 SNGP

We employed the Lightning UQ Box (Lehmann et al., 2025) implementation of SNGP for our
experiments. The same hyperparameters as the MAP network were used. Note that we also tested
SNGP on ResNet50 SVHN, however SNGP was unable to train successfully, even after trying 3
learning rates and 2 optimizers. Hence, we did not include the results for ResNet50 SVHN.

I.6.6 SGLD

We have implemented the SGLD method from Welling & Teh (2011) using the Lightning UQ Box
package (Lehmann et al., 2025) as the basis of the code. We then amended this code to include the
learning rate scheduler from Welling & Teh (2011). We followed Maddox et al. (2019), and initialized
the SGLD trajectory from the weights of the trained network. We also copied the learning rate from
Maddox et al. (2019), and used the same weight-decay as the original network for the SGLD prior.
However, in contrast to Maddox et al. (2019), we took the noise-factor scaling to be 10−3 instead of
5× 10−4, as we found that this gave better performance. We sampled 100 epochs from the posterior,
using a batch size of 100.

33



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We claim that our method approximates the posterior of an NTK-GP, and provide
theoretical and empirical proof in Section 3 and Section 4.1 respectively. We also claim that we
outperform competing methods in performance and efficiency, which can be seen in Section 4 and
Appendix H.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussion of our limitations can be found in the "Limitations" subsection of the
Conclusion, Section 5.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]

34



Justification: We contain two provable results, Lemma 3.1 and Theorem 3.2. The proofs can be
found in Appendix A.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code for the experiments has been included with the submission. All experimental
details have been described in Appendix I.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
1. If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
2. If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
3. If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

4. We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Link to code, as well as a downloadable package of our method, can be found at the
top of Section 4.

35



Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be possible,

so No is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to repro-
duce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: All training and test details are found in Appendix I.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: UCI Regression experiments (Tables 1, 8 and 9 and the empirical convergence figure
(Figure 2) have error bars included, and are defined in Figure 2 and in Appendix I.3. Violin plots
do not have error bars, as they are generally not reported with error bars.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: Experimental resources are listed at the top of Appendix I.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: After reading through the NeurIPS Code of Ethics, we believe that we have con-
formed to this code.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss the benefits of improved UQ methods in our Introduction and Abstract.
We are not aware of any direct negative impacts of our work (though secondary negative impacts
may exist).
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

37

https://neurips.cc/public/EthicsGuidelines


• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: We did not use any high risk models or datasets, and instead only use highly common
models and datasets that are commonly used in the UQ literature.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: Any prior code for related methods that has been used has been referenced in the
linked GitHub repository for our code. Any related methods for comparison has been properly
cited.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our method has been released as package, with examples given for how to correctly
use our method.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

38

paperswithcode.com/datasets


• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The development of our method did not involve the use of LLMs.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	NUQLS
	Motivation and High-level Overview
	Theoretical Analysis

	Experiments
	Empirical Convergence
	Toy Regression
	UCI Regression
	Image Classification - Uncertainty

	Conclusion
	Proofs
	Related Works: Further Details and Discussions
	Linearized Laplace Approximation (LLA) Framework.
	SNGP
	Ensemble Framework.
	Neural Tangent Kernel Methods

	Uncertainty vs. Prediction
	Guarantees Against Mode Collapse
	Computational Cost
	Hyper-parameter Tuning
	Regression
	Classification

	Evaluation of Predictive Mean
	Image Classification - Predictive

	Further Experimental Results
	Comparison to PNC using Confidence Intervals
	Comparison to SLU
	Comparison to Sampling-LLA, VaLLA and ELLA
	Comparison to BDE
	UCI Regression
	eNUQLS
	Additional VMSP Results
	Image Classification Skew and Median

	Experiment Details
	NTK Convergence
	Toy Regression
	UCI Regression
	Image Classification
	Confidence Intervals
	Comparison Experiments
	BDE
	SLU
	Sampling-LLA, VaLLA and ELLA
	BE
	SNGP
	SGLD



