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ABSTRACT

World models have received significant attention from the robotics and computer
vision community, both of whom have started scaling to networks comprising
billions of parameters in the hope of unlocking new robot skills. In this paradigm,
models are pre-trained on internet-scale data and then fine-tuned on robot data to
learn policies. However, it is still unclear what makes a good world model for
downstream policy learning, resulting in slow, costly iterations of model training
and policy evaluation. In this work, we demonstrate that the expected signal-to-
noise ratio (ESNR) of policy gradients provides a reliable training-time metric for
downstream policy performance. This provides a handle on the world model’s
policy awareness, which denotes how well a policy can learn from a model. We
show that ESNR can be used to understand (1) when world models are sufficiently
pre-trained, (2) how architecture changes affect downstream performance and
(3) what is the best policy learning method for a given world model. Crucially,
ESNR can be computed on-the-fly with minimal overhead and without a trained
policy. We validate our metric on traditional architectures and tasks as well as
large pretrained world models, demonstrating the practical utility of ESNR for
practitioners who wish to train or finetune such models for robot applications.
Visualizations and code available here: https://policy-aware.github.io/paper-anon.
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Figure 1: Overview.We find that different world model architectures can reach similar loss values under the
same loss function, yet these values do not predict downstream policy performance. Instead, the Expected
Signal-to-Noise Ratio (ESNR) of actor gradients ∇J(θ) correlates strongly with final performance. ESNR can
be computed quickly during training, orders of magnitude faster than full model training or policy evaluation, and
captures the smoothness of the optimization landscape, providing an efficient surrogate for policy learnability.
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1 INTRODUCTION

Large pretrained world models have delivered promising results for robot control (Assran et al.
(2025), NVIDIA et al. (2025)). Presently, the most common training recipe involves pretraining a
world model on a large corpus of unstructured data, which gives the model basic understanding of
world dynamics, and then finetuning it on a smaller state action dataset to embed knowledge of how
action influences state. With an increased interest in improving the efficacy of such models without
expending valuable resources, many works have sought to understand what makes a better world
model from the perspective of representation (Nair et al. (2022), Xiao et al. (2022), Assran et al.
(2025))

However, the only way of evaluating the quality of such models with respect to downstream policy
performance is to finetune it until convergence and then execute the policy in simulation or a real
environment, often requiring days or weeks of training and evaluation. Despite being the de facto
procedure in evaluating world models, this costly approach limits the rapid testing of alternative
architectures and subsequent policy extraction methods. We use policy extraction to mean algorithms
that utilize world model to drive executable control policy, e.g. online planning (CEM/MPPI) or
policy-gradient methods (zeroth-/first-order).

Towards this end, we propose Expected Signal-to-Noise Ratio (ESNR) as a training-time metric to
identify the potential downstream performance of world models. ESNR requires neither a trained
policy nor environment rollouts, drastically reducing the wall-clock time and compute requirements
relative to standard robot evaluation. In this paper, we highlight key empirical properties of ESNR: (1)
Training readiness. ESNR behavior across training signals when the world model is ready for policy
extraction. (2) Architecture Ranking. ESNR discriminates between world model architectures,
providing a proxy ranking for expected policy performance. (3) Policy Extraction Selection. ESNR
can guide the choice of policy extraction method for a given world model. This allows researchers
to avoid excruciatingly long cycle times and rapidly iterate across different model architectures and
converge to the best one.

Through this paper, we build concrete evidence of ESNR efficacy as a downstream policy performance
metric on a variety of vision-based world model architectures, both traditional and recent SoTA large
models. Additionally, we study the most common policy extraction methods, Zeroth-order policy
gradients, First-order policy gradients, online planning, on a variety of continuous control tasks.
Finally, we scale our experiments to 4 pre-trained world models representations – ResNet, Dino, R3M
encoder world models (He et al. (2015), Nair et al. (2022), Zhou et al. (2025)) and VJEPA2 (Assran
et al. (2025)) – demonstrating ESNR’s practical utility when designing large foundation world models
in the wild.

2 RELATED WORK

World models for robotics have advanced rapidly, building on a long line of model-based control
and representation learning. Early works like PILCO showed that learned dynamics can yield
highly sample-effcient policy learning on real robots (Deisenroth & Rasmussen (2011), while PETS
popularized probabilistic ensembles with MPC for robust control (Chua et al. (2018)). In parallel, the
”World Models” framework of Ha & Schmidhuber (2018) leveraged the generative capabiltiies of such
models and demonstrated the idea of learning policies ”in imagination”, leading to latent-dynamics
works like PlaNet and Dreamer, which optimize policies entirely in latent space by predicting state
reward/value and training the policy in an RL paradigm (Hafner et al. (2019), Hafner et al. (2020)).
Complementarily, control-centric methods like TD-MPC combined learned latent dynamics models
with online trajectory optimization at test time (Hansen et al. (2022)). The shared vision in the
community is to learn a predictive model of the world that enables robots to plan or learn policies to
solve complex tasks with far fewer real-world interactions.

Recent work scales this vision: Dino-WM combines a pretrained DinoV2 encoder with a forward
dynamics predictor and performs online planning via a goal-reaching (Zhou et al. (2025)). Large
foundation world models like VJEPA2 (Assran et al. (2025)) and Cosmos (NVIDIA et al. (2025))
scale the model and dataset size further to learn more general representations. Orthogonal to how
models are used, a parallel line studies what representations help control: PVR vs. training-from-
scratch comparisons Hansen et al. (2023b) and PVR within MBRL Schneider et al. (2025), along
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with innovations in general-purpose encoders such as MVP, V-JEPA, and R3M (Xiao et al. (2022),
Bardes et al. (2024), R3M (Nair et al. (2022)). Despite this progress, the model properties that
actually enable downstream policy learning, beyond raw prediction quality, remains underexplored,
motivating our focus on policy awareness.

There have been hints of works in this direction. Zhang et al. (2023) analyze policy gradients
and link failure modes to exploding gradient variance arising from a lack of objective landscape
regularization. SimbaV2 introduces regularization strategies to help improve policy performance
in an RL setting, emphasizing the importance of regularization for policy gradient methods (Lee
et al. (2025)). Parmas et al. (2023b) utilized the exptected signal-to-noise ratio (ESNR) to assess
the quality of gradient estimators, and PWM used ESNR to show that regularized world models
yield more reliable first-order policy gradients, guiding hyperparameter choices (Georgiev et al.
(2025)). However, a general, applicable metric that predicts downstream policy performance across
heterogeneous world model architectures and policy extraction methods has been lacking. In this
work, we provide evidence that the policy-gradient ESNR of a pretrained world model can serve
as such a metric. This focus on mechanistic properties that predict downstream success echoes
broader trends in ML as a whole. For example, there exists a line of work relating generalization
to loss-landscape geometry and shape (Keskar et al. (2017), Foret et al. (2021)), and scaling-law
analyses that connect model and training-time properties to task performance (Kaplan et al. (2020),
Hoffmann et al. (2022), Alabdulmohsin et al. (2022)). Our contribution brings a similar lens to world
models for robotics: using ESNR to anticipate policy learnability before policy training.

3 BACKGROUND

3.1 WORLD MODELS

World models are a class of predictive models that aim to capture the underlying dynamics of an
environment in a compact, structured representation. Rather than mapping observations ot ∈ O
directly to actions at ∈ A, world models learn latent states zt and an internal model of the environment
transition dynamics. This model serves as a surrogate for the real environment, enabling an agent
to simulate trajectories, reason counterfactually, and plan over imagined rollouts. We formalize the
components below:

Encoder zt = Eϕ(ot) ▷ Maps observations to their latent representations
Latent dynamics zt+1 = Fϕ(zt, at) ▷ Models (latent) forward dynamics
Decoder ŝt+1 = Dϕ(st+1) ▷ Decodes latent to observation
Reward r̂t = Rϕ(zt, at) ▷ Predicts reward

(1)

Although all world models exhibit the same capabilities – predicting the next state from a history of
states and action – they learn such inductive biases in different ways. A reconstruction-based world
model learns an explicit generative model based on a reconstruction goal. Given a current observation
and action, they minimize the prediction loss of the next observation:

Lrec(ϕ, ψ, θ) = E(st,at,ot+1)0:H∼B

[
H∑
t=0

λobs ℓobs
(
ôt+1, ot+1

)]
where ŝt+1 = D(F (E(st), a)) is the reconstructed image at at time t+ 1,

ℓobs is a reconstruction loss (e.g., squared error),
λobs is a weighting coefficient.

(2)

A reconstruction-less world model learn an implicit generative model without the need for reconstruc-
tion. They instead guide the training with latent consistency and some task-relevant objective (eg.
reward prediction, value prediction).

3
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Lrec(ϕ, ψ, θ) = E(st,at,ot+1)0:H∼B

[
H∑
t=0

ℓ
(
ẑt+1, E(ot+1)) + ℓ(R(ẑt, a), r)

)]
where ẑt+1 = D(F (E(st), a)) is the latent state at time t+ 1,

r is the ground truth environment reward
ℓ is some difference function (e.g., MSE),

(3)

3.2 POLICY EXTRACTION FROM WORLD MODELS

After training a world model, there exist various ways to extract policies from the latent state
representation. We assume that the policy is a parameterized stochastic function from which we can
sample actions given the current state: at ∼ πθ(·|zt). Given some objective J(θ) such as reward
maximization

J(θ) = Eat∼π(·|zt)

[ ∞∑
t=1

γtr(zt, at)

]
(4)

our goal is to find the set of parameters θ that maximize J(θ). The most common approach is to
solve it via gradient descent as popularized in deep learning. However, computing this expectation
analytically is intractable and usually approximated via Monte Carlo (MC) sampling where ∇̂[∗]J(θ)
is a single MC sample of some gradient estimator (designated by placeholder *).

∇̄[∗]J(θ) =
1

N

N∑
n=1

∇̂[∗]J(θ) (5)

The research community has converged on two main gradient estimators: REINFORCE (Zeroth-
Order Gradients) and pathwise gradients (First-Order Gradients) (Sutton et al. (1999), Heess et al.
(2015)). Zeroth-Order Gradients (ZoG) are popular in the RL community because they do not require
the environment to be differentiable.

∇[0]J(θ) = Eat∼πθ(·|zt)
[
J(θ)∇θ log πθ(at|zt)

]
(6)

In contrast, First-Order Gradients (FoG) provide lower variance gradient estimates but require a
differentiable objective.

∇[1]J(θ) = Eat∼πθ(·|zt)
[
∇θJ(θ)

]
(7)

Finally, another popular way to optimizing Eq. 4 is Online Planning, which does not require a
parameterized policy but can be computationally expensive. Two popular gradient-free approaches
here have been Cross-Entropy Method (CEM) and Model Predictive Path Integral (MPPI). Although
not cast as gradient descent, these methods iteratively update a proposal distribution over action
sequences iteratively – e.g., CEM via elite-set moment updates – yielding gradient-step-like behavior.
For example, with CEM:

a0:H ←
1

|E|
∑
n∈E

a
(n)
0:H , a

(n)
0:H ∼ N (µ,Σ) (8)

Here, E denotes the elite set of samples with the highest return and a0:H is the current action sequence.
We can formalize this as a gradient update, where the gradient is with respect to the action sequence.

a0:H ← a0:H − α∇[MPPI]
a0:H

J(a0:H) (9)

We defer the reader to the respective works for more details on CEM and MPPI (Rubinstein & Kroese
(2004), Williams et al. (2015)).

4
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3.3 METHODS

We evaluate the proposed method with representative methods for each paradigm. We select Dream-
erV3 (reconstruction-based) (Hafner et al. (2020)), TD-MPC2 (reconstruction-less) (Hansen et al.
(2023a)), and PWM (Georgiev et al. (2025)) (recontruction-less + First order Gradients), three proven
algorithms in their respective training strategies. We also add one additional variant of TD-MPC2,
substituting LayerNorm and ReLU activation with Mish (Misra (2020)) and SimNorm (Lavoie et al.
(2022)), to study how decreasing levels of world-model regularization affect downstream policy
performance and SNR.

Table 1: Overview of world models that we consider.

Model / Encoder π-extraction

RL World Models
• TD-MPC2 Online planning
• TD-MPC2 basic Online planning
• DreamerV3 Zeroth-order gradients
• PWM First-order gradients

Large Pretrained World Models
• ResNet18 Online planning
• R3M Online planning
• DINO Online planning
• VJEPA2 Online planning

These world models are designed for the RL set-
ting, where policy extraction is based on the pres-
ence of rewards. We then scale up our experi-
ments to large-scale world models with encoders
pre-trained on large corpus of data: ResNet, R3M,
DinoV2, VJEPA-2 world models ((Russakovsky
et al. (2015)), Nair et al. (2022), Oquab et al.
(2023), Assran et al. (2025)). We present an
overview of all methods and their respective pol-
icy extraction method in Table 1.

4 MEASURING POLICY AWARENESS IN WORLD MODELS
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Figure 2: Toy ESNR example. In a ball-shooting task with a wall-induced discontinuity, ESNR over θ ∈
[−0.2, 1.2] ranks gradient estimators and predicts optimization speed: higher ESNR ⇒ faster ascent.

For a world model to be useful for robot control, it must be (1) accurate and (2) induce a good
optimization landscape for learning a policy. The former has been well studied in the video prediction
model community where it is common to use PSNR, SSIM and LPIPS (Wang et al. (2004), Zhang
et al. (2018)). In this work, we focus on the latter.

Parmas et al. (2023a) first introduced Expected Signal To Noise Ratio (ESNR) as a method of
comparing different types of gradient estimators.

ESNR = Eo∼O

[
Ea∼πθ(·|o)[∇̂

[∗]
θ J(θ)]2

Va∼πθ(·|o)[∇̂
[∗]
θ J(θ)]

]
(10)

If ĝ1 and ĝ2 are unbiased stochastic gradient estimators of ∇θJ(θ) and Var(ĝ1) < Var(ĝ2), then
optimization with ĝ1 is expected to converge faster. However, many modern methods such as
DreamerV3 introduce gradient estimator bias via world-model surrogates as a learning signal for
policy learning (Hafner et al. (2023)). ESNR overcomes this by instead computing the ratio between
the signal (size of gradients) to noise (variance of gradients). In general, given two models have
similar inductive bias, the one with a higher ESNR will produce better gradients. We build intuition
of ESNR with a pedagogical task: a projectile is thrown forward with the goal of maximizing distance
traveled in the presence of a object, which introduces discontinuities in the problem landscape (Figure

5
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2). We first compute the ESNR of different policy extractors over the full problem landscape. Starting
from θ = 0, we maximize J(θ) by gradient ascent and find that gradient estimators with higher
ESNRs converge faster.

We propose using ESNR as a test-time metric to predict downstream policy performance. ESNR is
computable during world model pretraining amd requires no trained policy or environment interaction.
We believe this property is important to scaling up to world models with billions of parameters: an a
priori metric enables rapid iteration across different world model architectures, allowing practitioners
to identify high-performing designs more quickly. In Code 1 we provide a reference implementation
that can be added to offline world model training.

Code 1: ESNR pseudo-code where N is number of action samples and B is number of observation samples.

1 def compute_esnr(actions, J, grad_f):
2 """
3 :param actions: tensor of shape (B, act_dim)
4 :param J: function with signature J(actions) -> float
5 :param grad_f: function with signature grad_f(J, actions) -> grads
6 """
7 actions = actions.detach().requires_grad_()
8 grads = grad_f(J, actions) # (N, B, action_dim)
9 grad_mean = grads.mean(dim=0) # (B, action_dim)

10 grad_std = grads.std(dim=0) # (B, action_dim)
11 snrs = grad_mean**2 / (grad_std**2 + 1e-8) # (B, action_dim)
12 return snrs.mean()
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Figure 3: ESNR over training. TD-MPC2 offline on MetaWorld Push. Middle: policy ESNR (mean±sd, 10
seeds) during pretraining. Right: episodic success of policies extracted from checkpoints. World-model loss is
not predictive; after 100k steps ESNR tightly correlates and serves as a surrogate, while for <100k a “biased
region” persists.

Higher ESNR does not necessarily imply a better or sufficiently trained world model. For example,
a trivial gradient estimator ∇[∞]J(θ) = 0 would have a misleading ESNR→∞. The case would
be the same for a world model initialized with all θ = 0. To build intuition of how ESNR behaves
during world model training, we study it on MetaWorld Push task Yu et al. (2020) by applying
TD-MPC2( Hansen et al. (2023a)) to solve the task from camera observations. We first pre-train the
world model on offline data and measure the ESNR over time. Figure 3 reveals a U-shape curve
for ESNR which starts high, reduces to a minimum at 100k training steps and then grows until the
end of training. We take each pre-trained checkpoint, learn a policy from it until convergence, and
measure the success rate. We observe that ESNR becomes well correlated with success rate in the
[100k, 400k] region. We refer to the training steps before the ESNR minimum as the bias region
where ESNR is artificially high and the policy gradients are biased due to an inaccurate world model.
As such, ESNR as a training time metric becomes useful only after it escapes this biased region.

5 EXPERIMENTS

In this section, we study ESNR’s ability to (i) identify the best policy learning method (ii) rank world
model architectures, and (iii) detect when a model is sufficiently pretrained. We evaluate the RL
methods (refer to Table 1) on 12 tasks spanning 2 domains: DMControl (Tassa et al. (2018)) and
Meta-World (Yu et al. (2020)). Combined, they comprise of a variety of object manipulation and
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Figure 4: ESNR and policy-extraction performance. Left: bar and scatter plots show the ESNR–performance
relationship across policy-extraction methods. Right: the same relationship across world-model architectures.
ESNR error bars are 95% bootstrap CIs; bar-chart performance is normalized and averaged over all tasks.

locomotion tasks. To train our models, we use visual observations from both suites, and partial-
propioceptive data in MetaWorld. Learning a policy is heavily dependent on imagined rollouts of
the world model, which can qualitatively change based on the data distribution. Therefore, we use
an offline training regime for all of our experiments: we first collect a fixed dataset for every task
using TD-MPC2; we then pre-train all world models on this fixed dataset; lastly, we train policies or
perform online planning exclusively with the pre-trained world model. We term this last stage policy
extraction. Similar to recent large world-model such as Assran et al. (2025), the only interaction with
the environment is during evaluation.
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95% bootstrap CIs; lollipops mark policy-
extraction returns (3 seeds) at the correspond-
ing WM checkpoint. Returns are averaged
over selected MetaWorld tasks.

1. Can ESNR be used to determine which policy ex-
traction method is best?

Our results indicate that the ESNR strongly correlates
with the episode returns achieved by different policy ex-
traction methods. For this experiment, we fix a trained
TD-MPC2 world model and evaluate three policy extrac-
tion paradigms: • MPC with Cross-Entropy Method • FoG
and • ZoG. For each method, we extract the policy at a
TD-MPC2 world model pretrained at 200K steps. Figure
4 shows that ESNR strongly correlates with downstream
performance. Further aggregating all task performances
reveals a global correlation between ESNR and policy
performance. FoG methods utilize ground truth gradients
from a differentiable objective, so it is unsurprising that
• FoG yields higher ESNR and returns than • ZoGs: the
gradients will have lower variance and greater expected
norm when the objective is well defined. The surprising
result is that CEM consistently attains both the highest
ESNR and policy performance. However, the fundamental
tradeoff here is that learning-based approaches incur high
upfront training cost but have low test-time cost, while on-
line planning has low upfront cost but high test-time cost
that scales with planning horizon and number of sampled
trajectories.

2. Can ESNR be used to compare the downstream
performance of world model architectures?

To assess ESNR’s predictive power across different world
model architectures, we train three world model architec-
tures (• TD-MPC2 basic • TD-MPC2 • DreamerV3) for
200K gradient updates and evaluate policies as prescribed
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Figure 6: ESNR & Performance of Large Pretrained Models. Left: Performance 1/CD (lower CD is better)
of different large pretrained models. Right: Wall time to evaluate ESNR vs. evaluation. Bottom: Qualitative
comparisons on rope where we overlay observations from a full episode to track changes to the environment.

by each method. On average, ESNR aligns with the episode returns across architectures (see Figure
4): • DreamerV3 underperforms on most tasks and shows the lowest ESNR. • TD-MPC2 architecture,
which features stronger regularization compared to • TD-MPC2 basic, achieves higher returns and
correspondibly higher ESNR. The world model substantially shapes the optimization landscape seen
by the policy (Figure 1). Prior work linked objective landscape properties with RL performance (Lee
& Yoon (2025), Xing et al. (2025)). We extend this understanding with a policy-centric lens: ESNR
quantifies the effective signal avaliable to the policy under a given world model. Our experiments also
underscore the importance of objective landscapes induced by world models: the performance gap
between • TD-MPC2 and • TD-MPC2 basic (similar models but varying in regularization) suggests
that the world model, not the policy learning method, is often the primary bottleneck. Crucially,
ESNR mirrors this gap, identifying the bottleneck a priori to policy training.

3. Key behaviors of ESNR across training.

To further assess ESNR as a performance estimator, we track it over world model training steps.
We saw in Section 4 that ESNR exhibits a U-shaped trend across epochs (decreasing early, then
increasing afterwards). We scale up this observation to include all the chosen MetaWorld tasks and
2 methods (• TD-MPC2, • DreamerV3). For this experiment, we first pretrain the world model to
convergence, save checkpoints at regular intervals, and, for each checkpoint, extract a policy across
three seeds. The aim is to identify how ESNR and policy performance behave at different stages
of training. In the earliest stages of world model training, the world model behaves almost like a
random gradient generator, yielding large but unreliable gradient estimates. This is reflected by the
artificially high ESNR in both models (see Figure 5). This is also supported by the fact that, at this
stage of training, policy returns are low, contradicting the fundamental assumption that high ESNR
implies higher returns. Through training, the ESNR gradually reduces until it reaches its minima. We
also experience the highest returns at this stage of training. We hypothesize that at this point, our
gradients are unbiased enough to support policy extraction.
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4. Does ESNR still serve as a reliable indicator in large vision-based world models with billions
of parameters?

As the field advances toward larger world models, the common consensus is that bigger model sizes
are better. Although true in part, a caveat is that the inferencing these models remains exhaustively
slow . VJEPA2 Assran et al. (2025) and Cosmos NVIDIA et al. (2025) underlined the drastically
slow action execution times required to perform online planning. Without good evaluation metrics,
it will be difficult to scale and converge to the right architecture. We probe ESNR capabilities in
predicting the performance of such large models. We finetune 4 pretrained world models (• ResNet
• R3M • DINO-WM • VJEPA2) on an offline dataset comprising of observation-action transitions.
We then perform online planning with all models using MPC with CEM optimization process. Each
algorithm is allowed to step in the environment for 50 timesteps and we test across 10 different seeds.
The performance is measured as the inverse of Chamfer Distance between the current state and goal
state, where we take the lowest Chamfer Distance achieved in the entire environment rollout as our
performance metric. Figure 6 indicates that the policy performance and ESNR are highly correlated.
Furthermore, the table in Figure 6 highlights the demanding walltime requirements of inferencing
and rolling out these models in simulator. On the other hand, we can calculate ESNR in a fraction of
the time.

6 CONCLUSION

We introduced the Expected Signal-to-Noise Ratio (ESNR) of policy gradients as a training-time
metric to anticipate the downstream policy performance of world models. Unlike traditional evaluation
procedures that require fully training and deploying a policy, ESNR can be computed directly during
world model training with minimal overhead. Across a wide range of experiments, we showed
that ESNR provides actionable insights: it signals when a world model is sufficiently pretrained to
support policy learning, distinguishes between model architectures with different inductive biases, and
identifies which policy extraction method—zeroth-order, first-order, or online planning—is best suited
for a given model. Extending our analysis to large pretrained vision-based world models, we found
that ESNR remains a reliable proxy for policy quality even when standard evaluation is prohibitively
expensive. Together, these results establish ESNR as a practical diagnostic for practitioners aiming
to iterate quickly on world models and extract effective policies without incurring the full cost of
downstream training and evaluation.

Limitations and Future Work:

While ESNR provides a powerful and efficient proxy for downstream policy performance, it must
be used with care. ESNR is not meaningful when the underlying world model is fundamentally
inaccurate, as biased gradients can yield deceptively high ESNR values. This limits its utility in the
very early stages of training or when modeling assumptions are severely violated. Furthermore, we
have not yet evaluated ESNR extensively on large-scale world model tasks with billions of parameters.
Doing so remains challenging due to the significant computational demands of training and evaluating
such models. Future work should explore applying ESNR in broader large-model settings, as well as
investigating complementary metrics that account for model bias in addition to gradient variance.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we have open-sourced
the full codebase used to conduct our experiments, as well as the datasets used for training. We
also release all relevant pretrained model checkpoints to facilitate verification of our results and to
enable further research. Detailed hyperparameter settings, compute resources, and random seeds are
documented in the accompanying code release.
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A TOY PROBLEM DETAILS

This section provides more details on the ceiling-bounce toy example used to showcase ESNR and its
effects on stochastic optimization in Section 4. We constructed a simple problem of a point mass
(ball) being launched from the origin (0, 0) with velocity v at initial angle θ. The goal is to maximize
the horizontal distance traveled before the projectile lands on the ground (y = 0). The dynamics
without contact are given by

x(t) = v cos(θ)t y(t) = v sin(θ)t+ 1
2gt

2,

where g is the gravitational acceleration. A rigid horizontal ceiling is placed at height ys and spans
the interval [x1, x2]. If the trajectory passes entirely below the ceiling, the ball follows standard
ballistic motion and lands after

tground =
−2v sin(θ)

g
,

yielding a final horizontal distance J(θ) = v cos(θ) tground.

x2 x1

ys

x

y

Figure 7: Pedagogical ceiling-
bounce toy problem visualized.

If the projectile intersects the ceiling before reaching the ground, a
contact event occurs. The contact time tc is given by the smallest
positive solution of

1
2gt

2
c + v sin(θ) tc − ys = 0,

with the additional requirement that x(tc) ∈ [x1, x2] and tc <
tground. At impact, the vertical velocity is updated according to a
restitution coefficient e ∈ [0, 1],

v+y = − e
(
v sin(θ) + gtc

)
,

while the horizontal velocity remains unchanged. The ball then
continues from (xc, ys) with velocities (v cos(θ), v+y ) until it hits
the ground. The post-contact flight time τg is obtained by solving

ys + v+y τg +
1
2gτ

2
g = 0,

and the total horizontal distance in the bounce case is

J(θ) = xc + v cos(θ) τg.

This toy task produces a discontinuous objective landscape. Small variations in θ can switch contact
on or off, leading to sharp changes in J(θ). This property makes the ceiling-bounce example a
challenging benchmark for stochastic gradient estimators, which must handle both the variance and
discontinuity of gradient signals. Problem parameters we used were g = −9.81, x1 = 1.0, x2=2.5,
ys = 0.5, e = 0.5.

For the ESNR estimation and optimization process, we used standard pytorch autograd with N = 64
samples and noise σ = 0.03 for the action sampling. We optimized the problem with each gradient
estimator type for 20 iterations using learning rate α = 0.05 and the Adam optimizer (Kingma & Ba,
2014).

B ESNR ALGORITHM

Across all experiments, we use a fixed budget of 500 environment seeds and 100 gradient samples
per initial state. All remaining hyperparameters (e.g., horizon length, elite set size) are matched to
each algorithm’s original settings from the respective works.
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Algorithm 1 ESNR (Score / log-prob form): SNR of REINFORCE gradients induced by a world
model

1: Inputs: world modelM (encode, reward, next), horizon H , discount γ, MC samples S
2: Policy (per step): at ∼ πθ(· | zt) with log-prob log πθ(at | zt) (diag-Gaussian example:
∇at log π = − (at − µt)⊘ σ2

t )
3: Outer expectation set: initial observations O0; Output: ESNR
4: for o0 ∈ O0 do ▷ approx. Eo0 [·]
5: z0 ← encodeM(o0)
6: for s = 1 . . . S do ▷ Monte Carlo over action sequences
7: z ← z0, J ← 0, d← 1
8: for t = 1 . . .H do ▷ sample, rollout, and accumulate discounted return
9: sample at ∼ πθ(· | z); rt ← rewardM(z, at)

10: J ← J + d · rt; z ← nextM(z, at); d← γ · d
11: end for
12: Score gradients via autograd: for each t, compute st ← ∇at log πθ(at | z)
13: REINFORCE vector: g(s) ←

∑H
t=1 γ

t−1 rt st ∈ RH·A

14: end for
15: µ← 1

S

∑
s g

(s), σ2 ← 1
S−1

∑
s

(
g(s) − µ

)2
16: SNR(o0)← 1

H·A
∑H·A

i=1
µ2
i

σ2
i+ε

17: end for
18: return ESNR = 1

|O0|
∑

o0
SNR(o0)

Algorithm 2 ESNR for FoG

1: Inputs: world modelM (encode, reward, next), horizon H , discount γ, samples S
2: Outer expectation set: initial observations O0

3: Output: ESNR
4: for o0 ∈ O0 do ▷ Approximate Eo0 [·] by averaging
5: z ← encodeM(o0)
6: for s = 1 . . . S do ▷ Monte Carlo over action noise
7: sample a1:H ∼ N (0, I) (requires grad)
8: J ← 0, d← 1, zs ← z
9: for t = 1 . . .H do ▷ Latent rollout and discounted return

10: rt ← rewardM(zs, at)
11: J ← J + d · rt
12: zs ← nextM(zs, at)
13: d← γ · d
14: end for
15: g(s) ← ∇a1:H

J ∈ RH·A

16: end for
17: µ← 1

S

∑S
s=1 g

(s), σ2 ← 1
S−1

∑S
s=1

(
g(s) − µ

)2
18: SNR(o0)← 1

H·A
∑H·A

i=1
µ2
i

σ2
i+ε

19: end for
20: return ESNR = 1

|O0|
∑

o0
SNR(o0)
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Algorithm 3 ESNR (CEM / TD-MPC2): SNR of CEM-weighted action “gradients” under a world
model

1: Inputs: world modelM (encode, reward, next), horizon H , discount γ, pop. size N , elites E,
temperature τ , grad samples S

2: Action stats: mean µ ∈ RH×A (init. = 0), diag std σ ∈ RH×A (fixed)
3: Outer expectation set: initial observations O0; Output: ESNR
4: for o0 ∈ O0 do ▷ approx. Eo0 [·]
5: for s = 1..S do ▷ Monte Carlo over action populations
6: sample ε ∈ RN×H×A i.i.d. N (0, 1); A← µ+ σ ⊙ ε
7: Jn ←

∑H
t=1 γ

t−1 rewardM(z
(n)
t , A

(n)
t ) with z

(n)
t+1 = nextM(z

(n)
t , A

(n)
t ), z(n)1 =

encodeM(o0)
8: Elites: keep indices E of top-E returns; restrict {Jn}, {A(n)} to n ∈ E
9: Softmax weights: wn ← softmax

(
τ (Jn −maxm Jm)

)
over n ∈ E

10: CEM action “gradient” (as in code): g(s) ←
∑

n∈E wn A
(n) ∈ RH×A ▷ no σ−2

factor
11: end for
12: stack g(1:S)∈RS×H×A; reshape to RS×(HA)

13: µg ← 1
S

∑
s g

(s), σ2
g ← 1

S−1

∑
s

(
g(s) − µg

)2
14: SNR(o0)← 1

HA

∑HA
i=1

µ2
g,i

σ2
g,i+ε

15: end for
16: return ESNR = 1

|O0|
∑

o0
SNR(o0)

C ADDITIONAL EXPERIMENTAL RESULTS

POLICY EXTRACTION PERFORMANCE

RAW LARGE WORLD MODEL PLANNING RESULTS

Table 2: Rope task: Minimum Reduced Chamfer Distance (CD) per configuration (1–10) over 10 MPC steps,
shown across all epochs.

Configs (1–10)
Model Epoch 1 2 3 4 5 6 7 8 9 10

dino 1 0.09459 0.04193 0.48082 0.21772 0.11608 0.53926 0.28854 1.03296 0.10842 0.22533
dino 25 0.11339 1.46259 0.09250 0.99083 0.87808 0.32004 0.23874 1.31385 0.07392 0.26680
dino 50 0.10308 0.14979 1.05701 0.19003 0.96528 0.13502 0.30932 0.32733 0.07042 0.16416
dino 75 0.09642 0.21736 0.15945 0.38226 0.77112 0.04774 0.53940 0.19794 0.06206 0.09256
dino 100 0.07289 0.25567 0.10827 0.15935 1.03337 0.28235 0.35111 0.22349 0.06045 1.13459
dino 150 0.06513 0.89921 0.65513 0.24267 0.16757 0.11382 0.21172 0.15394 0.09686 0.12657
r3m 1 2.41500 5.88838 2.31113 2.84423 2.11243 3.12261 2.27891 2.12716 1.86786 1.38681
r3m 25 0.53223 2.17162 2.56594 1.52169 0.94276 0.23914 1.06509 1.95005 0.27470 1.91671
r3m 50 1.27117 1.42981 3.24293 0.93250 2.03880 0.70580 1.93068 1.17572 1.62150 1.46967
r3m 75 0.68322 0.41783 1.20674 0.56782 0.14875 0.09701 0.42042 0.96485 0.72479 1.62964
r3m 100 1.00865 0.21431 1.89690 0.46082 1.33459 0.20927 0.58501 1.52318 0.88556 2.01774
r3m 150 0.07504 2.50585 1.12173 1.76768 0.71625 1.32995 1.75855 1.00132 0.85643 1.31559
resnet 1 0.35964 2.08357 1.98353 0.66609 1.79421 1.43631 1.53532 2.32653 0.93529 2.65346
resnet 25 1.39610 1.92685 1.53913 1.38198 2.69483 0.52702 1.49306 2.02805 1.56138 1.72422
resnet 50 0.55921 3.55125 1.48298 1.63048 1.50783 0.39569 0.66874 0.73747 0.81317 2.07038
resnet 75 0.49132 1.67828 3.18766 1.50089 1.66228 0.89216 1.65985 2.10973 0.49975 1.99412
resnet 100 1.24596 1.59694 1.69936 1.24382 1.67177 0.23903 0.48933 2.19391 2.01874 2.34193
resnet 150 1.56192 1.89500 4.26792 1.40917 1.27476 0.38079 1.36250 4.08078 1.69061 1.86746
vjepa2 1 0.09648 0.91299 1.81233 1.35777 0.23752 0.78538 1.44923 0.89511 0.43192 1.59231
vjepa2 25 0.29945 1.83534 2.20004 1.41878 0.16598 0.10504 1.66310 1.52258 0.41726 1.05544
vjepa2 50 0.34753 1.51121 1.78945 1.33096 0.05454 0.64381 0.43591 1.55015 0.34436 3.10286
vjepa2 75 0.19621 1.54930 1.76645 1.38654 0.14202 0.72667 1.08851 1.73931 0.90187 2.27225
vjepa2 100 0.82727 2.84179 2.13063 1.99864 0.11719 0.70772 1.14918 1.71183 1.93167 2.44238
vjepa2 150 0.24537 2.70079 1.88925 1.28137 0.03945 0.40495 1.13179 1.65183 0.20860 1.45995
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Rope Task Details. Rope (SoftGym). A 7-DoF arm manipulates a deformable rope to a target
configuration. Planning uses MPC with CEM as the inner optimizer. Unless stated otherwise: MPC
runs for 10 iterations with prediction horizon 5 and 5 action updates per iteration; CEM draws 100
samples for 10 optimization steps, keeps the top-30 elites, and uses a variance scale of 1.
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