
Under review as a conference paper at ICLR 2024

HILORL: A HIERARCHICAL LOGICAL MODEL FOR
LEARNING COMPOSITE TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose HiLoRL, a hierarchical model to learn policies for composite tasks.
Recent studies mostly focus on using human-specified logical specifications,
which is laborious and produces models that perform poorly when facing tasks not
entirely human-predictable. HiLoRL is composed of a high-level logical planner
and low-level action policies. It initially learns a rough rule at its upper level with
the help of low-level policies and then uses joint training with surrogate rewards
to refine the rough rule and low-level policies. Furthermore, HiLoRL can incor-
porate specialized predicates derived from expert knowledge, thereby enhancing
its training speed and performance. We also design a synthesis algorithm to illus-
trate our high-level planner’s logical structure as an automaton, demonstrating our
model’s interpretability. HiLoRL outperforms state-of-the-art baselines in several
benchmarks with continuous state and action spaces. Additionally, HiLoRL does
not require human to hard-code logical structures, so it can solve logically uncer-
tain tasks.

1 INTRODUCTION

Reinforcement Learning (RL) has achieved tremendous success in a variety of control tasks in-
cluding robotics (Polydoros, 2017), autonomous driving, and gaming (Mnih, 2015). Despite those
achievements, RL algorithms rely heavily on the reward. Some decision-making problems have
sparse rewards, making it hard to create a suitable reward function (Ladosz et al., 2022). Rewards
must be manually composed for sub-tasks. A well-known example is the OpenAI Fetch Environment
(Plappert et al., 2018), in which conventional RL algorithms struggle to learn effective strategies,
because of the complexity of reward shaping (Mnih, 2015).

To address the challenges posed by sparse rewards, researchers have explored various strategies.
One promising approach that has been proven effective is the use of hierarchical models, aiming to
break down complex tasks into manageable sub-tasks (Zhang et al., 2021; Zheng et al., 2022). Those
hierarchical models can be broadly categorized into human-provided and non-human-provided (Yu
et al., 2023). The human-provided models first determine the upper-level structure by the logical
order of sub-tasks and then train the low-level controllers to handle the sub-tasks. This approach
simplifies tasks that usually require a lot of exploration and reward shaping for conventional RL
models (Hasanbeig & Kroening, 2021). However, they usually come with predefined and fixed
high-level planners, leading to a need for deterministic sub-task execution sequences. This greatly
limits the performance of the model on some logically uncertain tasks, such as autonomous driving
on the highway (Leurent, 2018) and card games Hanabi (Bard et al., 2020), where the number
and execution sequence of all sub-tasks may vary in every execution of the whole task. In non-
human-provided models, purely neural methods are often used for both the upper and lower levels
during training (Li et al., 2019). However, this approach may sacrifice the interpretability that logic
representation can provide. The interpretability is essential for successful application in high-stakes
domains like autonomous driving (Song et al., 2022).

In this paper, we introduce the Hierarchical Logical Reinforcement Learning (HiLoRL) approach.
Unlike conventional methods that rely on fixed logical specifications for high-level planning,
HiLoRL employs an adaptive logical model as the high-level planner. The logical model has the
capability of learning the decision-making process rather than the specific execution sequence, so it
can adapt to logically uncertain tasks. A distinguishing feature of our approach is its use of logical

1

Under review as a conference paper at ICLR 2024

combinations of predicates to capture crucial runtime states, instead of continuous features typi-
cal in purely neural methods. This representation not only enhances the model’s interpretability
by allowing for an automaton summary but also integrates both environmental and expert-designed
predicates. The inclusion of these expert predicates introduces valuable insights, optimizing training
outcomes and expediting the learning process.

Our contributions can be summarized as follows:

• Adaptive. Our novel hierarchical reinforcement learning model features an adaptive logical plan-
ner. It autonomously learns high-level logical representations, enhancing decision-making and al-
lowing it to tackle logically uncertain tasks effectively.

• Interpretable. An automaton is synthesized from our logical planner, using predicate representa-
tion for states and decisions for transitions. This results in a human-readable structure, leveraging
the inherent interpretability of predicate representations.

• Instructable. Our model is designed to optionally integrate expert knowledge. While it can
operate autonomously, the incorporation of domain expertise further enhances its training efficiency
and results.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

The Markov Decision Process (MDP) (Puterman, 1990) is a mathematical model that represents
decision-making under uncertainty. It consists of a tuple (S,A, P,R, γ), where S denotes states,
A represents actions, P is the transition function, R is the reward function, and γ is the discount
factor. Given the current state st, an agent picks action at leading to a new state st+1 ∼ P (·|st, at)
and obtains reward rt+1 = R(st, at, st+1). The goal of an MDP is to identify an optimal policy
π maximizing the expected cumulative reward over time. This is realized by determining the value
function V (s), which reflects the expected discounted reward from state s using policy π.

2.2 FIRST ORDER LOGIC

First-order logic (FOL) (Barwise, 1977) is a formal language used to describe objects in the world
and relations among them. FOL typically consists of several elements: constants, variables, pred-
icates, and clauses. Constants typically correspond to specific objects in the environment, while
variables represent unspecified constants. Predicates can be denoted by the symbol P , and an n-ary
predicate is denoted as P (x1, x2, ..., xn), where x represents constants or variables. Predicates com-
monly represent the properties of objects or relationships between objects. The value of predicates
can be either true or false. Clause is a rule in the form p1 ← p2, p3, ..., pn, where p1 is the head
atom and p2, p3, ..., pn are body atoms. Predicates formed by constants are referred to as extensional
predicates, which are used for input predicates in our model. Predicates formed by a series of clauses
are known as intensional predicates, which are used for target predicates in our model.

2.3 DIFFERENTIABLE LOGIC MACHINE

Differentiable Logic Machine (DLM) (Zimmer et al., 2021) is a trainable model proposed for doing
calculations between predicates. It takes in a series of predicates as input and combines different
predicates using the basic logic relation: fuzzy and ∧, fuzzy or ∨, and fuzzy not ¬.

DLM has a max depth of D. In each layer, it has B computing units which are for predicates
of different element numbers. We denote the b-ary predicates in the d th layer in computing unit
b, b ∈ {0, 1, ..., B−1}, e.g. (P b

d (x1, x2, ...xb)). The unit b output a b-ary predicate after computation
and pass it to the next layer. Apart from computing using predicates of the same argument number,
DLM has expanded and reduced operations to enable computation between predicates of different
argument numbers. For computing unit b, it can get predicates from the former layer. The compute
operation can be formed using binary operation P b

d = P x
d−1 ∧ P y

d−1, P b
d = P x

d−1 ∨ P y
d−1, P b

d =

P x
d−1 ∧ ¬P

y
d−1, P b

d = P x
d−1 ∨ ¬P

y
d−1, where x, y ∈ {b− 1, b, b+ 1}.

2

Under review as a conference paper at ICLR 2024

3 HIERARCHICAL DIFFERENTIABLE LOGIC REINFORCEMENT LEARNING

3.1 MODEL FRAMEWORK

Figure 1: Model framework. (Rp refers to the rewards obtained from the environment, Ru refers to
the rewards feedback from the logic planner, which will be introduced in Section 3.2.2, s refers to
the state space, a refers to the action space, δ is the output of the logical planner as the decision to
choose the specific action policy, which is introduced in Equation 2).

We propose a hierarchical model for planning policies for MDPs. Roughly speaking, this model
makes the assumption that an integrated task can be divided into a number of natural and logically
interdependent sub-tasks. Based on this assumption, our model incorporates two levels: the high-
level logical model for sub-task identification and planning, and at the lower level, there is a pool
of the low-level action policies that are responsible for accomplishing a variety of sub-tasks. More
specifically, an input module is responsible for translating the MDP states into input predicates. The
input predicates are then fed into the upper-level model which is realized by a DLM. The DLM, at
its output layer, makes a decision on the choice of a low-level action policy. The chosen low-level
policy, taking the MDP states as input, makes a final decision on which MDP action to take. The
whole decision process is illustrated in Figure 1, and formally described as follows.

Input module and predicates. As mentioned above, the input module transforms the MDP ob-
servations st ∈ RK (at time t) into logical predicates that serve as the inputs of the high-level DLM.
In general, a b-ary logical predicate P is defined based on a b-ary real transformation function
f : Rb → R, a list of indices i1, i2, . . . , ib ∈ [K], and an activation interval (u, v). The predicate is
then generated by

P (st)← f((st)i1 , (st)i2 , . . . , (st)ib) ∈ (u, v).

The arity of a usual logical predicate used in our model is at most 3, which is enough for our
experiments. We adopt the transformation functions in the simple forms of addition/subtraction so
that they can be generally useful for most natural tasks. We list the adopted functions in the following
table and note that functions such as (x, y, z) 7→ x+y−z can be substituted by (x, y, z) 7→ x−y+z
via changing the argument order.

Arity Transformation functions
1 x 7→ x
2 (x, y) 7→ x+ y, (x, y) 7→ x− y
3 (x, y, z) 7→ x+ y + z, (x, y, z) 7→ x+ y − z

Going through the combinations of the transformation functions, the indices, and the activation
intervals, the input module obtains a sequence of predicates and forms the set of input predicates.

P0 = {P0,1, P0,2, P0,3, . . . , P0,m0
} (1)

Injecting expert knowledge via special predicates. In the input module, one may introduce pred-
icates with special transformation functions on particular indices of the MDP state vector, based on
the expert understanding of a specific task. This can help to substantially improve the planning
performance. Please refer to Section 4.4 for detailed demonstrations.

3

Under review as a conference paper at ICLR 2024

High-level decision and the choice of an action policy. Suppose there are n low-level action
policies. After the final layer (layer d) of the high-level DLM, we append a fully connected layer
(layer (d + 1)) so that there are n special target predicates, TP1,TP2, . . . ,TPn, each of which
corresponds to an action policy. An index δt is sampled via

δt ∼ softmax{TP1,TP2, . . . ,TPn}. (2)

Deciding the MDP action. Finally, we invoke the low-level action policy πδ and take the MDP
action.

at ← πδt(st) (3)

Focused predicate extraction. We adapt the output of DLM so that it can output critical predicate
after training. As is mentioned in Section 2.3, DLM do the logical computation in every depth
using the equation Pd = (

∑
wpd−1

Pd−1) ⊙ (
∑

wp′
d−1

P ′
d−1). ⊙ ∈ {∧,∨,∧¬,∨¬}. Since this is

a binary computation, we try to extract the predicate Pd−1 and P ′
d−1 with the largest wpd−1

and
wp′

d−1
. We perform this operation from the last layer d to the first layer, decomposing the predicate

with 2 predicates of the largest weight in the former layer. We define the extracted predicates in
the input layer as the focused input predicate P ∗. This new functionality greatly contributes to our
interpretability experiment in Section 4.3 regarding automaton representation.

3.2 TRAINING

The low-level action policies are expected to deal with relatively simple sub-tasks that commonly
arise in many planning and control problems. Following the previous works (Jothimurugan et al.,
2021; Yang et al., 2020), we assume access to a pool of pre-selected and pre-trained action policies.
On the other hand, we note that the conceptually “same” sub-task may have delicate differences, and
appropriately addressing these differences might be crucial to the performance of the entire hierar-
chical model. For example, in the gym fetch environment (Plappert et al., 2018), the PickAndPlace
tasks might involve a “same” sub-task named approach — where the robotic arm is maneuvered
closer to an object. This movement becomes particularly crucial when the size of the object under-
goes a change, affecting the arm’s subsequent ability to pick up the object. The nuances in these
main tasks mean the approach sub-task must be adjusted based on the object’s size. Consequently,
there’s an evident need to refine these pre-trained low-level action policies to ensure they’re opti-
mally attuned to the primary task.

In light of the above discussion, we assume the pre-trained low-level action policies πi(·) = πi(·|θi)
can be tuned further by optimizing their parameters θi via policy gradient methods. In the rest
of this section, we describe how to separately train the high-level DLM and the low-level action
policies while fixing the other part, as well as jointly train the two parts. A highlight of our training
algorithms is the design of the surrogate rewards and the training objectives, which crucially rely on
our model structure and help to achieve superior model performance.

3.2.1 TRAINING THE HIGH-LEVEL LOGICAL MODEL

Here we illustrate how to train the high-level logical model based on the environment rewards {rt}
while fixing the low-level action policies. It is well-known that the natural environment rewards in
control problems are usually sparse (e.g., there is only a positive reward when the task is successfully
done), and this is challenging for RL algorithms (Mnih et al., 2013). Our hierarchical model offers
a different approach to address this challenge – whenever the high-level logical model decides the
choice of a low-level action policy πδ , we invoke πδ for a number of consecutive time periods
(namely a volley) instead of only once, we aggregate the environmental rewards obtained in the
volley and train the high-level logical model using these volley rewards. In Algorithm 1, we roll-
out the trajectory based on volleys: {(s′v, δ′v, r′v)}v∈{0,1,2,... }. These volley-based trajectories are
shorter and the volley rewards become less sparse, which is helpful to the RL algorithms.

We apply the standard PPO algorithm (Schulman et al., 2017) to the volley-based trajectory
{(s′v, δ′v, r′v)}v∈{0,1,2,... } to optimize the high-level policy π(·|θDLM). In PPO, we also train a neural
network fed by the input predicates as the function approximated to the critic functions.

4

Under review as a conference paper at ICLR 2024

Algorithm 1: Volley-based Roll-out for
High-level Logical Model Training
Input: high-level DLM policy π(·|θDLM) as

described in Eq. (2), low-level action
policies {πi(·|θi)}, horizon T ,
volley size τvolley

1 Volley count v ← 0;
2 while v < T/τvolley do
3 observe the environment state sv·τvolley ,

let s′v ← sv·τvolley ;
4 calculate the input predicates P0 based

on s′v , sample an index
δ′v ∼ π(s′v|θDLM);

5 Volley reward r′v ← 0;
6 for j ← 0 to τvolley do
7 if j ̸= 0 then observe the

environment state sv·τvolley+j ;
8 execute the environment action

av·τvolley+j ←
πδ′v (sv·τvolley+j |θδ′v), receive the
environment reward rv·τvolley+j ;

9 r′v ← r′v + rv·τvolley+j ;
10 end
11 v ← v + 1;
12 end

Algorithm 2: DDPG-based Roll-out for Low-
level Action Policy Training
Input: high-level DLM policy π(·|θDLM) as

described in Eq. (2), low-level action policies
{πi(·|θi)}, low-level critic {Qi(·|θQi)},
horizon T , volley size τvolley, learning rate
for actor α, learning rate for critic β

1 t← 0, observe the environment state s0;
2 while task not completed and t < T do
3 calculate the input predicates P0 based on st;
4 sample an index δt ∼ π(st|θDLM);
5 for j ← 1 to τvolley do
6 obtain action at+j from πδt(st+j |θδt);
7 receive the environment reward rt+j ,

observe the new environment state st+j+1;
8 get the estimated value ωt+j from the critic

network of DLM;
9 θδt ←

∇(log πθδt
(a

′
v|s

′
v)Qδt(st+j−1, at+j−1))+

α · θδt ;
10 θQδt

← ∇(R+ γQδt(st+j , at+j)−
Qδt(st+j−1, at+j−1)) + β · θQδt

;
11 end
12 t← t+ τvolley;
13 end

3.2.2 TRAINING THE LOW-LEVEL ACTION POLICIES

Now we fix the high-level DLM and train the low-level action policies using the policy gradient RL
algorithm. In principle, one may use most off-the-shelf RL algorithms in this step, such as Deep
Deterministic Policy Gradient (DDPG) Lillicrap et al. (2015).

During training, we roll out the trajectory for the whole task, and the pieces of the trajectory are
sorted and collected according to the selected low-level action policy. Finally, we train each low-
level action policy separately by gradient descent using the collected data.

The (DDPG-based) roll-out algorithm is described in Algorithm 2. The key is at Line 8, where we
use a surrogate reward defined based on the following function (where α > 0 is a hyper-parameter):

R(r, δ, δ′, ω, ω′) = r + α× 1[δ ̸= δ′ ∧ ω > ω′]. (4)

The idea of Eq. (4) is that we combine the environment reward r, the instruction from the high-level
logical model, and the estimated value ω. ω is the value function in RL, which is the output of the
DLM critic network. When the current sub-task is completed, the high-level model would choose a
different action policy so that δ ̸= δ′ and the expectation of value also increases ω > ω′. Therefore,
adding the term α× 1[δ ̸= δ′ ∧ω > ω′] incentivizes the low-level action policy to learn to complete
the sub-task requested by the high-level model.

3.2.3 JOINT TRAINING

In our holistic training approach, we harmoniously employ both Algorithm 1 and Algorithm 2. For
each epoch, we gather trajectories for both the high-level logical planner and the low-level action
policies, encapsulating the transitions of these layered policies within a single roll-out. Crucially,
at every epoch, parameters for both the high-level and low-level models are diligently updated,
ensuring a dynamic and adaptive learning environment.

This integrated and consistent approach fosters a symbiotic relationship between high-level and
low-level policies. By training them in tandem, and ensuring both are iteratively refined at each
epoch, their collaborative efficiency is enhanced. Each layer informs and refines the other, driving
both towards more seamless cooperation and, consequently, a jointly optimal solution. Through this

5

Under review as a conference paper at ICLR 2024

method, our entire system benefits from the synergistic evolution of its components, achieving great
adaptability and performance.

4 EXPERIMENT

We evaluate our approach on two sparse reward scenarios, highway environment and fetch environ-
ment focusing on performance and functionality. This section is organized as follows: In Sections
4.1 and 4.2, we demonstrate the performance of our model. Sections 4.3 and 4.4 delve into the
main features of HiLoRL, emphasizing its interpretability and the integration of expert knowledge.
In Section 4.5, we display the fine-tuning of low-level action policies using Algorithm 2. Some
additional details of our experiment are shown in the Appendix E.

4.1 HIGHWAY ENVIRONMENT

The highway environment is an autonomous driving simulator based on the OpenAI Gym Library
(Leurent, 2018). The goal of the task is to control a car agent to maintain a high speed and avoid
crashing at the same time. The state space is R25, which describes the states of the ego agent and
the four closest vehicles to it. Each vehicle is described by 5 features: a binary existence flag, the
x-axis position, the y-axis position, the x-axis velocity, and the y-axis velocity. The action space is
R2, which describes the horizontal acceleration and angular acceleration of the ego agent.

Results: The agents are tested with a maximum of 100 time steps in each episode. The performance
comparison is shown in Table 1. The crash rate is the percentage of episodes that end with a crash.
The velocity is the average velocity of the agent. The length measures the average duration the agent
car remains active in the scenario. We evaluate the performance of some conventional continuous
RL algorithms (SAC, PPO). We find that they have a poor performance compared with HiLoRL.
In SAC and PPO, the agent takes a negative policy to decelerate from the very beginning to avoid
the collision. Notably, HiLoRL* represents our model without the benefits of joint training, and the
results show a significant increase in performance after joint training.

SAC PPO HiLoRL HiLoRL*

length 100 100 96.42 95.53
velocity 10.46 12.43 26.65 25.70
crash rate 0% 0% 4.9% 5.4%

Table 1: Performance comparison for highway
using continuous control. HiLoRL* refers to the
model without joint training.

PPO△ NLM△ DLM△ HiLoRL

length 93.43 95.8 96.77 96.42
velocity 22.22 25.20 26.36 26.65
crash rate 7.2% 5.4% 4.3% 4.9%

Table 2: Performance comparison with easier
discrete control mode (The model marked with
the superscript△ uses discrete control mode).

Since the performance of the past model on continuous control scenario is relatively poor, we also
compare HiLoRL with some simpler discrete control methods in Table 2. Remarkably, even when
operating in the more demanding continuous control environment, HiLoRL achieves performance
comparable to that of DLM and surpasses both PPO and NLM. It is noteworthy to mention that
while HiLoRL thrives in a continuous setting, which is inherently more complex, the original DLM
and NLM are not even designed to support continuous control scenarios. This reflects HiLoRL’s
superiority in managing more intricate control challenges.

4.2 FETCH ENVIRONMENT

The Fetch-Pick-And-Place environment in OpenAI Gym consists of a robotic arm and an object
(Plappert et al., 2018). The goal of the task is to pick the object and place it in a certain position.
The state space is R25, including the position of the gripper, the position of the object, and the
distance between gripper fingers. These three types of components are the main components we
focus on. The action space is R4. The first three components encode the target gripper position and
the last component represents the target gripper width. The initial position of the object on the table
is randomly generalized.

In our experiment, we design three complicated tasks for our model. Pick&Place: Let the robot arm
grab the object to a target position. Pick&PlaceCorner: Let the robot arm grab the object, then lift

6

Under review as a conference paper at ICLR 2024

it, and finally grab it to the top right corner. PickLiftPlace: Let the robot arm grab the object, then
lift it, and finally grab it to the target position.

Succ rate QRM SPECTRL DiRL HiLoRL HiLoRL*
Pick&Place 0.00 0.00 93.33 95.67 92.67
Pick&PlaceCorner 0.00 0.00 93.33 95.33 94.67
PickLiftPlace 0.00 0.00 92.00 95.00 91.67

Table 3: Performance comparison for fetch, HiLoRL* refers to the
model without joint training.

Results: The performance of different models in different fetch tasks is listed in Table 3. We use
some state-of-the-art logical specification models: DiRL (Jothimurugan et al., 2021), SPECTRL
(Kishor Jothimurugan & Bastani, 2019), and QRM (Rodrigo Toro Icarte & McIlraith., 2018) as
baseline. QRM algorithm performs poorly because it lacks the procedure of decomposing the prob-
lem into simpler sub-problems and they do not integrate model-based planning at the high level.

For baseline DiRL, we build in the sequential relation of sub-tasks using its specification. HiLoRL
and DiRL both adopt stateful policies that are effective for sparse reward tasks, so these two models
can achieve a success rate of over 90%. Compared with DiRL, in which the high-level logic of
the whole task is built in advance, our model generates the high-level logic during task execution.
HiLoRL is equipped with self-adaptive decision-making to handle unexpected situations, like when
a low-level action policy fails to grab an object. In such cases, the high-level planner can revert
to the initial policy and re-start the task from scratch. Such kind of feature is not found in task
decomposition with predefined logic specification decomposition(such as DiRL). This adaptiveness
ensures a superior performance over DiRL.

We also highlight the success rate of HiLoRL when executed without joint training. The substantial
enhancement in the success rate, when utilizing our joint training algorithm, underscores its effec-
tiveness. This improvement stems from the joint training algorithm’s ability to simultaneously refine
both the low-level action policies and the high-level logical planner, allowing for a more harmonious
cooperation between the two levels.

4.3 AUTOMATON REPRESENTATION

Different from the works that use formal language to define their high-level logic (Jothimurugan
et al., 2021), our high-level model can learn more complicated logical structures that can be summa-
rized as automaton representations. In this part, we show how to synthesize a Deterministic Finite
Automaton (DFA) from our high-level planner and evaluate the correctness of the DFA. The detailed
algorithm is depicted in Appendix A.

First of all, we extract the focused input predicate after training. This approach allows us to focus
on the input predicates that truly impact the decision-making process and groups the observations
from the environment into a limited number of automaton states. Secondly, we utilize the HiLoRL
to track changes in the high-level planner’s decision. We run the HiLoRL and record the true value
of the focused input predicate P ∗ and the new decision δ every time the high-level planner’s output
decision changes. The P ∗ and δ are defined as the state and transition edge of the DFA. With this
approach, each run yields a path in the automaton. Then we merge the nodes with the same P ∗ and
the edges with the same δ and prior node to get a complicated automaton. Finally, we apply the
Hopcroft Algorithm (Gries, 1973) to simplify the automaton.

We present the reduced automaton for an ego agent to overtake and return to its original lane when
there is a car ahead and no other cars in the environment. As we depict in Figure 2, this case is
decomposed into 7 logical states. The final state is a terminate state, which means the overtaking
process is finished. Meanwhile, we also provide the focused predicate representation for each state,
which is shown on the right of Figure 2. The predicate representation of each state shows the
important information that our logical planner focuses on. For example, if we take the “accelerate”
action and there are no vehicles around us in our target lane to the right(i.e. the state q4), the model
will decide to “merge right” in the next step until it achieves the state q6. It is demonstrated that

7

Under review as a conference paper at ICLR 2024

HiLoRL can create easy-to-understand automata with logical explanations for each state, improving
interpretability. The complete version of the focused predicate representation for each state can be
found in Appendix B. The automaton before the reduction step is shown in the Appendix C.

q1 ←∃(car ahead)
q2 ←∃(car on the right)

q3 ←∃(car on the left)

q4 ←¬(car near by) ∧ (target lane on the right)

q5 ←¬(car near by) ∧ (target lane on the left)

q6 ←(¬(car near by) ∨ ∃(car behind))∧
(on the target lane)

q7 ←∃(car ahead) ∧ (the x− axis relative

distance of the car ahead > 5)

Figure 2: (Left) Automaton representation for overtaking task. The edge of the automaton represents
the low-level action policy. (Right) The description of each automaton state is summarized from the
focused input predicates.

4.4 EXPERT KNOWLEDGE INSTRUCTION

Compared with other traditional RL methods, the use of logical predicates as inputs in our high-
level planner makes it possible to inject expert knowledge into the model. We can leverage expert
knowledge to design specific functions based on human awareness and understanding of a certain
task. Utilizing these expert predicates as inputs to the high-level planner indeed enhances the training
effectiveness and efficiency of HiLoRL.

Here we conduct a comparative experiment. We compare the success rate of the tasks using
different input predicates. For the basic model, the transformation functions are in the simple
forms of addition and subtraction (listed in Section 3.1). Contrarily, we summarize some human-
defined predicates for input with expert knowledge, which is the norm 1 distance between the ob-
ject and the gripper. Namely speaking, we compose 4 predicates in the original input: P0,1 =
xobject − xgripper, P0,2 = yobject − ygripper, P0,3 = zobject − zgripper, P0,4 = gleft − gright − t
together to generate an expert predicate:

P0,new = |xobject−xgripper|+ |yobject−ygripper|+ |zobject−zgripper|+ |gleft+gright− t| ≤ err
(5)

t is a threshold for the distance between 2 grippers, gleft and gright is the displacement of left and
right gripper. With different t values, P0,new can judge whether the object is grabbed by the grippers
and whether the gripper is able to grab the object. err is a tolerable error range.

Succ rate HiLoRL HiLoRL(DK)

Pick&Place 95.67 97.33
Pick&PlaceCorner 95.33 99.33
PickLiftPlace 95.00 99.00
Epoch 149.00 60.00

Table 4: Performance comparison for do-
main knowledge instruction (DK means the
HiLoRL with domain knowledge instruction).

Succ rate Pre-Finetune Post-Finetune

Pick&Place 84.33 94.00
Pick&PlaceCorner 85.33 95.67
PickLiftPlace 84.00 93.00

Table 5: Performance comparison before
and after fine-tuning after changing the ob-
ject size.

Result: The performance comparison is listed in Table 4. The failure rate of HiLoRL is reduced
by more than 50% with expert knowledge. This is because we have more precise predicates for
the high-level planner. We reduce the complexity of the relation that needs to be learned by the
upper-level planner by building in a part of the relation. Additionally, we also compare the number
of epochs for convergence and find that HiLoRL needs fewer epochs with expert knowledge.

8

Under review as a conference paper at ICLR 2024

4.5 MODEL FINE-TUNING

To show the effectiveness of our fine-tuning algorithm in tasks that are conceptually analogous yet
distinct in their details, we make modifications to the environment, reducing the side length of the
cubic object from 0.25cm to 0.15cm. It is worth noting that we only fine-tune a certain set of lower-
level action policies using Algorithm 2 while keeping the high-level logical planner unchanged.

Result: The experiment results are depicted in Table 5. After adjusting the size of the object, the
success rate of the model decreases by approximately 10%. However, through solely fine-tuning
the lower-level action policies, we are able to effectively recover the success rate lost. Additionally,
since the lower-level action policy is relatively simple and has a low training cost, it signifies that
we can quickly fine-tune our model to adapt to changes in the environment and task requirements.

5 RELATED WORK

Recent advancements in Knowledge Representation and Reasoning (KRR) have seen models em-
ploying logical languages for efficient abstract representation within the RL framework. Notably,
Icarte et al. (2018) utilizes finite automata for high-level task decomposition, introducing reward
machines as a superior alternative to manual reward functions. Given the limitations of manually
designing rewards in non-Markovian scenarios, there’s been a significant shift toward using Tempo-
ral Logic (TL). For instance, Brafman et al. (2018) uses LDLf for specifying non-Markovian rewards
with corresponding automata constructions, while Jothimurugan et al. (2019) offers the SPECTRL
specification language for encoding complex task sequences. Despite their efficacy in challenging
domains, a common drawback is their reliance on explicit prior knowledge, restricting their use in
ambiguous tasks (Yu et al., 2023). Another promising approach integrates symbolic planning with
RL: Yang et al. (2018) presents the PEORL framework, blending symbolic planning with hierarchi-
cal RL, and Illanes et al. (2020) explores symbolic action models combined with model-free RL.
Closely aligned with our work, DiRL (Jothimurugan et al., 2021) introduces an algorithm splitting
policy synthesis into separate planning and control problems.

Inductive logic programming (ILP) (Lavrac & Dzeroski, 1994) refers to the problems of extracting
effective rules from a limited set of rule templates. Evans & Grefenstette (2018) introduces dif-
ferentiable operations into the training framework of ILP and develops a novel ILP model that can
be trained using gradient descent which achieves great success on various benchmarks. The ma-
jor challenge in the ILP field lies in its difficulty in scaling up to complex scenarios (Cropper et al.,
2022). As the complexity of the tasks increases, the search space of rules grows exponentially. Dong
et al. (2019) proposes a neural logic machine(NLM) that resembles a neural network, where param-
eters are differentiable. By introducing MLP into the model training process, the model’s capacity
is greatly enhanced. However, this enhancement comes at the cost of interpretability. Building
upon the foundation of NLM, Zimmer et al. (2021) proposes a more interpretable model DLM.
This model introduces fuzzy logic operations in the framework, replacing the computation process
of MLP. Jiang & Luo (2019) first introduces the application of ILP methods in the RL tasks. It
leverages the principles of δILP (Evans & Grefenstette, 2018) and combines them with the train-
ing framework of the PPO (Schulman et al., 2017) algorithm. This approach has achieved success
in various reinforcement learning scenarios such as Blocksworld and Cliff-Walking (Jiang & Luo,
2019).

6 CONCLUSION

We introduce HiLoRL, an adaptive hierarchical logical reinforcement learning model. It integrates
a logical planner for high-level decision-making and action policies designed for the precise exe-
cution of sub-tasks. Notably, HiLoRL excels in continuous control tasks and stands out due to its
interpretability and instructability. Moreover, it has demonstrated a swift adaptability to changes in
the environment. For future work, we aim to construct a hierarchical system with minimal domain
knowledge, which offers a promising avenue toward establishing a lifelong learning system.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Jon Barwise. An introduction to first-order logic. In Studies in Logic and the Foundations of
Mathematics, volume 90, pp. 5–46. Elsevier, 1977.

Ronen Brafman, Giuseppe De Giacomo, and Fabio Patrizi. Ltlf/ldlf non-markovian rewards. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Andrew Cropper, Sebastijan Dumančić, Richard Evans, and Stephen H Muggleton. Inductive logic
programming at 30. Machine Learning, pp. 1–26, 2022.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. arXiv preprint arXiv:1904.11694, 2019.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

David Gries. Describing an algorithm by hopcroft. Acta Informatica, 2:97–109, 1973.

Natasha Yogananda Jeppu Alessandro Abate Tom Melham Hasanbeig, Mohammadhosein and
Daniel Kroening. Deepsynth: Automata synthesis for automatic task segmentation in deep re-
inforcement learning. AAAI Conference on Artificial Intelligence, 35:7647–7656, 2021.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107–2116. PMLR, 2018.

León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A McIlraith. Symbolic plans as high-level
instructions for reinforcement learning. In Proceedings of the international conference on auto-
mated planning and scheduling, volume 30, pp. 540–550, 2020.

Zhengyao Jiang and Shan Luo. Neural logic reinforcement learning. In International conference on
machine learning, pp. 3110–3119. PMLR, 2019.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for
reinforcement learning tasks. Advances in Neural Information Processing Systems, 32, 2019.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems,
34:10026–10039, 2021.

Rajeev Alur Kishor Jothimurugan and Osbert Bastani. A composable specification language for
reinforcement learning tasks. Advances in Neural Information Processing Systems, 2019.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

Nada Lavrac and Saso Dzeroski. Inductive logic programming. In WLP, pp. 146–160. Springer,
1994.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

Alexander C Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy adaptation for
hierarchical reinforcement learning. arXiv preprint arXiv:1906.05862, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

10

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

Under review as a conference paper at ICLR 2024

Kavukcuoglu K. Silver D. Mnih, V. Human-level control through deep reinforcement learning.
Nature, 4:529–533, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Nalpantidis L. Polydoros, A.S. Survey of model-based reinforcement learning: Applications on
robotics. J Intell Robot Syst, 21:153–173, 2017.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Richard Valenzano Rodrigo Toro Icarte, Toryn Klassen and Sheila McIlraith. Using reward machines
for high-level task specification and decomposition in reinforcement learning. International Con-
ference on Machine Learning, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihao Song, Yunpeng Jiang, Jianyi Zhang, Paul Weng, Dong Li, Wulong Liu, and Jianye Hao. An
interpretable deep reinforcement learning approach to autonomous driving. In IJCAI Workshop
on Artificial Intelligence for Automous Driving, 2022.

Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-making. arXiv preprint
arXiv:1804.07779, 2018.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Chao Yu, Xuejing Zheng, Hankz Hankui Zhuo, Hai Wan, and Weilin Luo. Reinforcement learning
with knowledge representation and reasoning: A brief survey. arXiv preprint arXiv:2304.12090,
2023.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic
options. arXiv preprint arXiv:2101.06521, 2021.

Xuejing Zheng, Chao Yu, and Minjie Zhang. Lifelong reinforcement learning with temporal logic
formulas and reward machines. Knowledge-Based Systems, 257:109650, 2022.

Matthieu Zimmer, Xuening Feng, Claire Glanois, Zhaohui Jiang, Jianyi Zhang, Paul Weng, Li Dong,
Hao Jianye, and Liu Wulong. Differentiable logic machines. arXiv preprint arXiv:2102.11529,
2021.

11

Under review as a conference paper at ICLR 2024

A DFA SYNTHESIZE ALGORITHM

Here we provide a detailed description of our automaton synthesize program. The output of the high-
level logical model is a possibility distribution for each low-level action policy. We select the action
policy πδ based on this possibility distribution. We invoke the corresponding policy πδ also for a
number of consecutive periods. During this process, we track the value of the focused predicate. We
define all the observation s with the same focused predicate as a new state sauto for the automaton.
We group the state sautov with the same predecessor automaton state sautov−1

and transition δv−1

into a collection, which is represented by a new state Si in the automaton. This process is repeated
until the end of the episode.

In the experiment, we collect a large amount of traces (specifically 100,000) and group the observa-
tions into different automaton states. Additionally, we employ a predicate for judging whether the
task is accomplished, so that we can easily figure out the terminate state for the automaton. Finally
we apply the Hopcroft Algorithm to simplify the automaton.

The pseudo-code for this algorithm is Algorithm 3.

B FOCUSED PREDICATES FOR AUTOMATON OF OVERTAKING TASK

In this section, we detail the predicate representation for states qi as illustrated in Equation 2. The
predicate representations of the automaton states can be seen in Equation 6. The agent is regarded
as in state qi when the logical expression for qi holds true.

q1 ←P0,1 ∧ ¬P0,2 ∧ ¬P0,3 ∧ ¬P0,4

q2 ←¬P0,1 ∧ ¬P0,2 ∧ ¬P0,3 ∧ P0,4

q3 ←¬P0,1,∧¬P0,2 ∧ P0,3 ∧ ¬P0,4

q4 ←¬P0,1 ∧ ¬P0,2 ∧ ¬P0,3 ∧ ¬P0,4 ∧ P0,85

q5 ←¬P0,1 ∧ ¬P0,2 ∧ ¬P0,3 ∧ ¬P0,4 ∧ P0,87

q6 ←¬P0,1 ∧ ¬P0,3 ∧ ¬P0,4 ∧ P0,86

q7 ←P0,1 ∧ ¬P0,2 ∧ ¬P0,3 ∧ ¬P0,4 ∧ (P0,8 ∨ P0,9)

(6)

Here we list the focused input predicates mentioned in Equation 6, and they are all contained in
Table 8.
P0,1: if there is a car ahead.
P0,2: if there is a car behind.
P0,3: if there is a car on the left.
P0,4: if there is a car on the right.
P0,85: if ego car is on the left of the target lane.
P0,86: if ego car is on the target lane.
P0,87: if ego car is on the right of the target lane.
P0,8: if the x-axis relative distance of the car ahead and ego car is between 5 and 10.
P0,9: if the x-axis relative distance of the car ahead and ego car is larger than 10.

From Figure 2 and Equation 6 we can give a description for each automaton state in the overtaking
task. We start from q1, where there is a car in front of the ego agent. Then the ego agent can take
three feasible actions: decelerate, merge left, merge right. If the ego agent chooses to decelerate, it
will reach q7. q7 and q1 are almost the same except the distances between two cars become larger. If
it takes left (right) lane change action, we can find the value-focused predicate P0,4(P0,3) changes.
Then the agent accelerates until focused input predicate P0,4, P0,3 all become false, which means it
is a proper time to get to the origin lane. Finally, it takes right (left) lane change to finish overtaking
(reach q6).

12

Under review as a conference paper at ICLR 2024

Algorithm 3: Synthesis Automaton Logic Representation for High-level Policy
Input: high-level DLM policy π(·|θDLM) as described in Eq. (2), low-level action policies

{πi(·|θi)}, horizon T , volley size τvolley, epoch N
1 epoch count n← 0;
2 automaton state node mapM, the key ofM is the state node of automaton, while the value is

another submap describing the decision and the corresponding next state;
3 while n < N do
4 Volley count v ← 0;
5 while task not completed and v < T/τvolley do
6 calculate the input predicates P0 based on sv;
7 sample an index δv ∼ π(sv|θDLM);
8 if δv ̸= δv−1 then
9 extract focused input predicates P∗ from π(·|θDLM) for the output δv;

10 calculate the true value of P∗ based on sv;
11 automaton state Sautov ← P∗;
12 if Sautov−1

inM then
13 if (δv−1 inM[Sautov−1

] then
14 Sexist ←M[Sautov−1

][δv−1];
15 merge Sexist and Sautov because they represent the same state in automaton;
16 end
17 else
18 add {δv−1 : Sautov} toM[Sautov−1];
19 end
20 end
21 else
22 add {Sautov−1

: {(δv−1 : Sautov)}} toM;
23 end
24 end

for j ← 0 to τvolley do
if j ̸= 0 then observe the environment state sv·τvolley+j ;
execute the environment action av·τvolley+j ← πδv (sv·τvolley+j |θδv);

end
25 end
26 v ← v + 1;
27 end
28 Split all nodes into Accept state A (Terminate State) and Non Accept state N ;
29 N ← {S\TerminateState} ;
30 while True do
31 for each state set T in N do
32 for each δ in option set do
33 if δ can split T then
34 split T into T1 ... Tk;
35 add T1 ... Tk to N;
36 end
37 end
38 end
39 if no split operation is done then
40 break;
41 end
42 end

13

Under review as a conference paper at ICLR 2024

C UNSIMPLIFIED AUTOMATON FOR HIGHWAY TASK

The automaton prior to simplification using the Hopcroft algorithm is presented in Figure 3. When
we compare this with the simplified version in Figure 2, several state reductions can be observed:

• The terminate states q6, q8, q14, q15 are grouped into q′6.

• q2 and q10 are grouped into q′2.

• q4 and q12 are grouped into q′4.

• q3 and q11 are grouped into q′3.

• q5 and q13 are grouped into q′5.

Notably, all states succeeding q7 have equivalent states in the simplified version, indicating that the
“decelerate” operation is non-essential for the agent’s overtaking task.

Figure 3: Automaton for highway task before reduction.

D AUTOMATON REPRESENTATION FOR FETCH TASK

We also apply the automaton synthesis algorithm for the Fetch environment. The reduced automaton
of PickLiftPlace task is presented in Figure 4. It is decomposed into 5 states. q5 is a terminate
state, which represents that the whole fetch task succeeds. The edges represent the low-level action
policies. These policies can be concluded as approach, grab, lift, and reach target position. At q3,
we have 2 paths which can lead to the terminate state. This is because when the target state is above
the horizon, the lift and reach action can be further combined into one policy, which is the shortcut
edge from q3 to q5. From this perspective, HiLoRL also has the ability to generate its own high-level
policy instead of executing low-level policy in a sequential arrangement.

q1 ← P0,55 ∧ P0,56 ∧ P0,57 ∧ P0,58 ∧ P0,59 ∧ P0,60 ∧ P0,62

q2 ← P0,20 ∧ P0,16 ∧ P0,17 ∧ P0,58 ∧ P0,59 ∧ P0,60 ∧ P0,62

q3 ← P0,20 ∧ P0,16 ∧ P0,17 ∧ P0,8 ∧ P0,9 ∧ P0,60 ∧ P0,62

q4 ← P0,20 ∧ P0,16 ∧ P0,17 ∧ P0,8 ∧ P0,9 ∧ P0,61 ∧ P0,62

q5 ← P0,20 ∧ P0,16 ∧ P0,17 ∧ P0,8 ∧ P0,9 ∧ P0,61 ∧ P0,63

(7)

Here we list the focused input predicates mentioned in Equation 7, and they are all contained in
Table 9.

14

Under review as a conference paper at ICLR 2024

Figure 4: Automaton for PickLiftPlace task in fetch environment.

P0,60: the height of the object is lower than the target height 0.45
P0,61: the height of the object is lower than the target height 0.45
P0,62: the object has not reached the target point
P0,63: the object has reached the target point
P0,55: the x-axis relative distance of the arm and the object is larger than 0.1
P0,20: the x-axis relative distance of the arm and the object is between 0.008 and 0.01
P0,56: the y-axis relative distance of the arm and the object is larger than 0.1
P0,16: the y-axis relative distance of the arm and the object is between 0.006 and 0.008
P0,57: the z-axis relative distance of the arm and the object is larger than 0.1
P0,17: the z-axis relative distance of the arm and the object is between 0.006 and 0.008
P0,58: the displacement of the left claw is larger than 0.1
P0,8: the displacement of the left claw is between 0.002 and 0.004
P0,59: the displacement of the right claw is larger than 0.1
P0,9: the displacement of the right claw is between 0.002 and 0.004

By abstracting our high-level policy into an automaton and extracting the corresponding predicates
for each key node, we show the capability of our logic planner to learn more complex logic beyond
sequential logic, and the effectiveness and uniqueness of our predicate descriptions of the states.

E INPLEMENTATION DETAILS

All the experiments are carried out on a machine with an Intel Xeon 2.5 GHz processor and 32 GB
of RAM, running Ubuntu 22.

E.1 HIGHWAY ENVIRONMENT

In the highway environment, we have 4 low-level action policies corresponding to accleration, de-
celeration, merge left, merge right. we choose the Deep Deterministic Policy Gradient (DDPG)
algorithm for the low-level action policies. We use Adam optimizer to update the parameters in the
DDPG model.

The Hyperparameters for the highway environment are shown in Table 6.

E.2 FETCH ENVIRONMENT

In the Fetch environment, we conduct threeexperimentst Pick&Place, Pick&PlaceCorner, and Pick-
LiftPlace. We have 4 low-level action policies corresponding to approach, grab, lift, reach. We also
choose the Deep Deterministic Policy Gradient (DDPG) algorithm for the low-level action policies.
We use Adam optimizer to update the parameters in the DDPG model.

The Hyperparameters for the Fetch environment are shown in Table 7.

15

Under review as a conference paper at ICLR 2024

Hyperparameter Value
Pre-training Epoch 500
Joint Training Epoch 500
DLM Depth 7
DLM Breadth 3
DLM Discount Factor 0.99
DLM Policy Number 4
DDPG Discount Factor 0.99
DDPG Learning Rate 0.0005
DDPG Replay Buffer Size 50000

Table 6: Hyperparameters in Highway
Environment.

Hyperparameter Value
Pre-training Epoch 300
Joint Training Epoch 500
DLM Depth 3
DLM Breadth 3
DLM Discount Factor 0.99
DLM Policy Number 4
DDPG Discount Factor 0.95
DDPG Learning Rate 0.0001
DDPG Replay Buffer Size 200000

Table 7: Hyperparameters in
Fetch-Pick-And-Place.

F PREDICATES SUMMARY

In this section, we provide the summary of all input predicates and their corresponding relationship
with the input states for our two experiments: Highway and Fetch-Pick-And-Place.

F.1 INPUT PREDICATES IN HIGHWAY ENVIRONMENT

Here we show the mathematical form of input predicates which is derived from input states in
Highway Environment. The specific input states and predicates are listed in Table 8.

The meanings of the variables in the input states are as follows:

dx0: the x-axis position of the ego agent. dx1: the x-axis position of the nearest car ahead.
dx2: the x-axis position of the nearest car behind. dx3: the x-axis position of the nearest car on the left.
dx4: the x-axis position of the nearest car on the right. dy0: the y-axis position of the ego agent.
dy1: the y-axis position of the nearest car ahead. dy2: the y-axis position of the nearest car behind.
dy2: the y-axis position of the nearest car behind. dy3: the y-axis position of the nearest car on the left.
dy4: the y-axis position of the nearest car on the right. vx0: the x-axis velocity of the ego agent.
vx1: the x-axis velocity of the car ahead. vx2: the x-axis velocity of the car behind.
vx3: the x-axis velocity of the car on the left. vx4: the x-axis velocity of the car on the right.
vy0: the y-axis velocity of the ego agent. vy1: the x-axis velocity of the car ahead.
vy2: the x-axis velocity of the car behind. vy3: the x-axis velocity of the car on the left.
vy4: the x-axis velocity of the car on the right. e0: if there exists a car ahead.
e1: if there exists a car behind. e2: if there exists a car on the left.
e3: if there exists a car on the right. l0: the lane in which the ego agent is located.
l1: the target lane.

F.2 INPUT PREDICATES IN FETCH-PICK-AND-PLACE ENVIRONMENT

Here we show the mathematical form of input predicates which is derived from input states in Fetch-
Pick-And-Place environment.

We set the activating intervals as follows: {0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016,
0.018, 0.02, 0.026, 1}. They are used to divide the input states into discrete predicates as the input of
the high-level logical planner. The specific input states and predicates are listed in Table 9. Except
for those predicates, P0,60 and P0,61 represent if the height of the object is higher than the target
height or not based on z1, while P0,62, P0,63 represent if the object has reached the target position
or not based on (x1, y1, z1).

The meanings of the variables in the Input States are as follows:

x0: The x-axis position of the arm. x1: The x-axis position of the object.
y0: The y-axis position of the arm. y1: The y-axis position of the object.
z0: The z-axis position of the arm. z1: The z-axis position of the object.
d0: The displacement of the left claw. d1: The displacement of the right claw.

16

Under review as a conference paper at ICLR 2024

Activating Intervals Input States Predicates Description

{0, 1, 2.5, 5, 10,∞} |dx0 − dx1| P0,5, P0,6, P0,7, P0,8, P0,9

The x-axis relative distance
between the ego agent and
the car ahead.

{0, 1, 2.5, 5, 10,∞} |dx0 − dx2| P0,10, P0,11, P0,12, P0,13, P0,14

The x-axis relative distance
between the ego agent and
the car behind.

{0, 1, 2.5, 5, 10,∞} |dx0 − dx3| P0,15, P0,16, P0,17, P0,18, P0,19

The x-axis relative distance
between the ego agent and
the car on the left.

{0, 1, 2.5, 5, 10,∞} |dx0 − dx4| P0,20, P0,21, P0,22, P0,23, P0,24

The x-axis relative distance
between the ego agent and
the car on the right.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy1| P0,25, P0,26, P0,27, P0,28, P0,29

The y-axis relative distance
between the ego agent and
the car ahead.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy2| P0,30, P0,31, P0,32, P0,33, P0,34

The y-axis relative distance
between the ego agent and
the car behind.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy3| P0,35, P0,36, P0,37, P0,38, P0,39

The y-axis relative distance
between the ego agent and
the car on the left.

{0, 1, 2.5, 5, 10,∞} |dy0 − dy4| P0,40, P0,41, P0,42, P0,43, P0,44

The y-axis relative distance
between the ego agent and
the car on the right.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx1| P0,45, P0,46, P0,47, P0,48, P0,49

The x-axis relative velocity
between the ego agent and
the car ahead.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx2| P0,50, P0,51, P0,52, P0,53, P0,54

The x-axis relative velocity
between the ego agent and
the car behind.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx3| P0,55, P0,56, P0,57, P0,58, P0,59

The x-axis relative velocity
between the ego agent and
the car on the left.

{0, 0.5, 1, 3, 6,∞} |vx0 − dx4| P0,60, P0,62, P0,62, P0,63, P0,64

The x-axis relative velocity
between the ego agent and
the car on the right.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy1| P0,65, P0,66, P0,67, P0,68, P0,69

The x-axis relative velocity
between the ego agent and
the car ahead.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy2| P0,70, P0,71, P0,72, P0,73, P0,74

The x-axis relative velocity
between the ego agent and
the car behind.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy3| P0,75, P0,76, P0,77, P0,78, P0,79

The x-axis relative velocity
between the ego agent and
the car on the left.

{0, 0.5, 1, 3, 6,∞} |vy0 − dy4| P0,80, P0,81, P0,82, P0,83, P0,84

The x-axis relative velocity
between the ego agent and
the car on the right.

{} ei == 1,i =
{0, 1, 2, 3} P0,1, P0,2, P0,3, P0,4

If there exists a car
ahead/behind/on the left/on
the right.

{-∞, -0.1, 0.1,∞} l0 − l1 P0,85, P0,86, P0,87

The relative direction be-
tween the lane in which the
ego agent is located and the
target lane.

Table 8: Input Predicates in Highway Environment.

17

Under review as a conference paper at ICLR 2024

Input States Predicates Description

|x0 − x1|
P0,0, P0,5, P0,10, P0,15, P0,20, P0,25, P0,30,
P0,35, P0,40, P0,45, P0,50, P0,55

The x-axis relative distance be-
tween the arm and the object.

|y0 − y1|
P0,1, P0,6, P0,11, P0,16, P0,21, P0,26, P0,31,
P0,36, P0,41, P0,46, P0,51, P0,56

The y-axis relative distance be-
tween the arm and the object.

|z0 − z1|
P0,2, P0,7, P0,12, P0,17, P0,22, P0,27, P0,32,
P0,37, P0,42, P0,47, P0,52, P0,57

The z-axis relative distance be-
tween the arm and the object.

|d0|
P0,3, P0,8, P0,13, P0,18, P0,23, P0,28, P0,33,
P0,38, P0,43, P0,48, P0,53, P0,58

The displacement of the left
claw.

|d1|
P0,4, P0,9, P0,14, P0,19, P0,24, P0,29, P0,34,
P0,39, P0,44, P0,49, P0,54, P0,59

The displacement of the right
claw.

Table 9: Input Predicates in Fetch-Pick-And-Place Environment.

18

	Introduction
	Preliminaries
	Markov Decision Process
	First Order Logic
	Differentiable Logic Machine

	Hierarchical Differentiable Logic Reinforcement Learning
	Model Framework
	Training
	Training the High-level Logical Model
	Training the Low-level Action Policies
	Joint Training

	Experiment
	Highway Environment
	Fetch Environment
	Automaton Representation
	Expert Knowledge Instruction
	Model Fine-tuning

	Related Work
	Conclusion
	DFA Synthesize Algorithm
	Focused Predicates for Automaton of Overtaking Task
	Unsimplified Automaton for Highway Task
	Automaton Representation for Fetch Task
	Inplementation Details
	Highway Environment
	Fetch Environment

	Predicates Summary
	Input Predicates in Highway Environment
	Input Predicates in Fetch-Pick-And-Place Environment

