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Abstract
Given the success of Graph Neural Networks
(GNNs) for structure-aware machine learning,
many studies have explored their use for text
classification, but mostly in specific domains
with limited data characteristics. Moreover,
some strategies prior to GNNs relied on graph
mining and classical machine learning, making
it difficult to assess their effectiveness in mod-
ern settings. This work extensively investigates
graph representation methods for text classifi-
cation, identifying practical implications and
open challenges. We compare different graph
construction schemes using a variety of GNN
architectures and setups across five datasets, en-
compassing short and long documents as well
as unbalanced scenarios in diverse domains.
Two Transformer-based large language mod-
els are also included to complement the study.
The results show that i) although the effective-
ness of graphs depends on the textual input
features and domain, simple graph construc-
tions perform better the longer the documents
are, ii) graph representations are especially ben-
eficial for longer documents, outperforming
Transformer-based models, iii) graph methods
are particularly efficient at solving the task.

1 Introduction

Document comprehension involves interpreting
words that can alter the meaning of the text based
on their placement. For example, in the sentence

“the movie was boring, but I was surprised by the
ending", the word but contrasts ideas. While tra-
ditional vector-based text representation methods
lack the ability to capture the structural informa-
tion of a text effectively, graph-based representa-
tion strategies explicitly seek to model relationships
among different text elements (nodes) through asso-
ciations between pairs of them (edges), capturing
dependencies between text units and leveraging
language structure.

While such ideas have a long history (Hassan
and Banea, 2006; Mihalcea and Tarau, 2004, inter

alia), the rise of Graph Neural Network (GNN)
models in recent years has made it particularly
appealing to convert even unstructured data into
graphs. The model can then capture relevant pat-
terns while accounting for dependencies between
graph nodes via message passing

For text classification, numerous graph-based
text representation schemes have been proposed
and demonstrated the efficacy of graphs. However,
most of them were designed for particular domain-
specific tasks and validated only on short docu-
ments using a restricted set of model architectures
(Yao et al., 2019; Huang et al., 2022; Wang et al.,
2023). Moreover, some of these proposals predate
the introduction of GNNs and were validated using
graph mining or classical machine learning models,
making it challenging to determine the applicabil-
ity and effectiveness of graphs in broader settings
(Castillo et al., 2015, 2017).

Text classification increasingly extends beyond
simple topic classification tasks, encompassing
real-world challenges such as noisy texts, imbal-
anced labels, and much longer documents consist-
ing of more than just a few paragraphs. Hence, a
comprehensive assessment of the merits and draw-
backs of different graph representations and meth-
ods in more diverse scenarios is needed.

This work presents a thorough empirical inves-
tigation of previously proposed graph-based text
representation methods, evaluating how graphs gen-
eralize across diverse text classification tasks. We
analyze their effectiveness with several GNN-based
architectures and setups across five prominent text
classification datasets from a broad range of do-
mains. Unlike previous work (Galke and Scherp,
2022), our study considers diverse datasets with
both short and longer documents, as well as un-
balanced classification scenarios. Additionally, we
evaluate the efficacy vs. efficiency of the proposals,
an aspect usually neglected in previous studies.

For each graph method, we conducted extensive



experiments using 3 types of convolutional layers
as different message-passing strategies for 12 GNN
architecture variants, each using one out of 4 pre-
trained word embedding techniques as node feature
vector initialization. This allows us to shed light
on what are the most successful choices of GNN
architectures for learning from them.

Our study finds that graph methods are a com-
petitive and particularly efficient choice for solving
classification tasks. This is because GNNs can cap-
ture both local and global dependencies between
structural components. Therefore, they can cap-
ture rich semantic relationships and dependencies
that are important for the task. Additionally, un-
like many sequence models, GNNs can naturally
handle variable-length inputs by operating on the
graph structure, without any need to map every data
sample to a fixed-sized vector or truncate them at a
fixed maximum sequence length. While longer doc-
uments can be particularly challenging, our study
finds that GNN methods hold particular promise
for longer documents, an aspect unexplored in prior
research. However, the graph’s effectiveness de-
pends on the textual input features and domain.
Based on our experimental results, we provide a
discussion regarding what graph construction and
GNN architecture choice is preferable depending
on the task to be solved. Surprisingly, although
Transformer-based Language Models (LMs) yield
outstanding results for the considered tasks, they of-
ten have difficulties converging when dealing with
short texts.

The study is structured around three research
questions, which are discussed in Section 4:

1. How does the choice of GNN architecture and
setup affect the classification effectiveness?

2. What graph construction method is most ef-
fective for text classification?

3. Can graphs compete with state-of-the-art se-
quence classification models?

2 Prior Work on Graphs in NLP

Previous graph-based text representation methods
can be categorized into three categories based
on the nature of the underlying graph structure.
Early graph constructions primarily relied on co-
occurrence and textual statistical patterns. Subse-
quently, more advanced representations integrated
linguistic features as graph components. Recently,
specialized graph constructions have evolved, en-
tailing intricate structures that encompass the uti-

lization of graph neural networks as essential com-
ponents within the learning framework.

2.1 Early Graph Constructions
For graph-based text representation, a simple ap-
proach is to consider word co-occurrence within a
fixed-size sliding window: Words are modeled as
nodes, and two nodes are connected if the respec-
tive words co-occur within a window of at most
N words. Mihalcea and Tarau (2004) used such
co-occurrence graphs for N ∈ {2, . . . , 10} as a
ranking model for keyword extraction. They found
smaller N to be preferable, as the connection be-
tween words further apart is often weaker. Hassan
and Banea (2006) used the same approach with
N = 2 along with TextRank to replace term fre-
quency weights, and then conducted text classifica-
tion with classic machine learning models. In most
of their experiments, this scheme outperformed us-
ing TF-IDF vectors. Rousseau et al. (2015) also
used a fixed-size sliding window graph (calling it
graph-of-words). They cast text classification as a
classification problem by applying graph mining to
obtain subgraph features to train a classifier.

Sequence graphs are another simple scheme with
edges reflecting the original order of words in the
text (Castillo et al., 2015). The authors used the
number of times the corresponding two words ap-
pear consecutively in the text as edge weights.

2.2 Linguistic Features as Graphs
Other graph construction methods have been pro-
posed. Mihalcea and Tarau (2004) highlighted that
multiple text units and characteristics can be con-
sidered as vertices depending on the application
at hand. They invoked application-specific criteria
to define edges, such as lexical or semantic rela-
tions. To this end, they also proposed a similarity-
weighted graph for sentence extraction. Every node
represents an entire sentence, while edges are de-
fined by measuring their content overlap as the
number of shared tokens. Although this scheme
can be applied in other tasks (text classification or
summarization), it tends to yield fairly densely con-
nected graphs, making it difficult to extract local
patterns and discern the content of the text.

Given that traditional work in linguistics and
computational linguistics often considers tree and
graph-structured formalisms as the principal way
of analyzing individual sentences, these may also
serve as building blocks for document-level repre-
sentations (Arora et al., 2009; Joshi and Rosé, 2009,



inter alia). For instance, a neural parsing model
(Dozat and Manning, 2016; Yuan et al., 2021) can
infer word dependencies to obtain syntactic depen-
dency trees. However, the overall graph represen-
tation becomes rather sparse, as nodes share edges
with only a limited number of other units.

2.3 Specialized Graph Constructions

Text Graph Convolutional Network (TextGCN; Yao
et al. 2019) was one of the first approaches to
include a Graph Convolutional Neural Network
(GCN) as a classification method. TextGCN pro-
poses a heterogeneous graph construction using
words and documents as nodes. However, this
means that new documents cannot be processed
without re-training. It employs Point-wise Mutual
Information (PMI) similarity as an edge weight-
ing function for word pairs and TF-IDF for word-
in-document edges. Other proposals also sug-
gested integrating heterogeneous contextual infor-
mation such as TensorGCN (Liu et al., 2020), Het-
eGCN (Ragesh et al., 2021), and HyperGAT (Ding
et al., 2020). However, such approaches are fairly
resource-intensive.

TextLevelGCN (Huang et al., 2019a) creates one
graph per input text. The proposal defines every
word as a node, which can be duplicated if a word
appears more than once in a text. Edges are defined
for word nodes within a sliding window using PMI
edge weights. Despite promising results, the exper-
iments were limited to very short documents.

GraphIE (Qian et al., 2019) uses a homogeneous
scheme based on co-reference, integrating a GCN
with an RNN encoder–decoder architecture for tag-
ging and information extraction tasks. Nodes can
be defined as words or entire sentences, connected
via co-reference and identical mention edges, to
account for non-local and non-sequential ties. A
downside of this is that prior domain knowledge is
required to establish the edge types.

Some studies have brought back the classic co-
occurrence graph construction methods, but using a
different message passing function based on Gated
Recurrent Units (Li et al., 2015; Cho et al., 2014)
for updating node feature vectors (Zhang et al.,
2020).

MPAD (Nikolentzos et al., 2020) included an
extra master node connected to every other node in
the graph. Therefore, the network is densely con-
nected, and the structural information is vague dur-
ing message passing. Text-MGNN (Gu et al., 2023)

proposes a heterogeneous graph construction, in-
troducing topic nodes to enhance class-aware rep-
resentation learning. However, it has the same
limitations as TextGCN.

Alternatively, two inductive models have re-
ported good results on traditional text classifica-
tion benchmarks, but the improvement is mostly
due to the combination of GNN and BERT models
(Huang et al., 2022; Wang et al., 2023). Thus, these
strategies are resource-intensive, hard to apply to
long documents, and beyond the scope of our study.

Since Zhang et al. (2020) outperform Textlevel-
GCN despite using the same graph construction, it
is clear that the graph construction method and the
way patterns are extracted from it are closely re-
lated. Hence, an in-depth study analyzing multiple
factors in a controlled setting is necessary.

In terms of broader empirical comparisons, one
previous study also conducted a comparative analy-
sis of different approaches for text classification to
evaluate the necessity of text-graphs. The authors
compared multiple Bag of Words (BoW), sequence,
and graph models (Galke and Scherp, 2022), argu-
ing that a multi-layer perceptron enhanced with
BoW is a strong baseline for text classification.
Nevertheless, the authors limited their analysis to
standard data collections with only short texts. In
contrast, with the aim to study how graphs perform
in more challenging scenarios, our study considers
a broader range of domains including much longer
documents and unbalanced classification contexts.
In addition, we assess the balance between the ef-
fectiveness and efficiency of the proposals, a facet
typically overlooked in prior research.

3 Comparing Graph-Based Text
Representations

To study the merits of prominent graph-based text
representation strategies, we conducted comprehen-
sive experiments on five well-known text classifi-
cation datasets. For each task, we compare differ-
ent graph construction schemes using a variety of
GNN models to separate the effect of the graph con-
struction strategy from that of the message-passing
technique in the model.

3.1 Methods

3.1.1 Graph-Based Text Representation
Among the studied techniques, there are some
graph construction methods that follow an intuitive
construction process. They are based solely on sim-



ple relationships between pairs of nodes and only
consider basic co-occurrence statistics if needed.
Thus, they do not require a deep understanding of
the semantic structure. In the following, we re-
fer to these sorts of networks as Intuitive Graphs.
Figure 1 illustrates how they work.
Window-based: Following Hassan and Banea
(2006), given an input text, if a term has not been
previously seen, then a node is added to the graph,
and an undirected edge is induced between two
nodes if they are two consecutive terms in the text.
Window-based extended: As for the above con-
struction, but with a window size of three. With
this, each word will ultimately be tied to the two
previous terms and the two subsequent ones.
Sequence-weighted: This strategy (Castillo et al.,
2015) defines a directed graph with nodes for words
and edges that represent that the two corresponding
lexical units appear together in the text sequence
and follow the order in which they appear. Addi-
tional edge weights capture the number of times
that two words appear together, which is intended
to reflect the strength of their relationship.
Sequence simplified: Inspired by the above, a sim-
plified version omits the edge weights. Thus, the
effect of the edge importance function over the pure
graph structure can be studied in isolation.

A more sophisticated graph-based text represen-
tation strategy requiring a more elaborate graph
construction process is also considered.
TextLevelGCN: Every word appearing in a text is
treated as a node, and edges are defined between
adjacent words in a fixed-size window. Unlike
the above Intuitive Graphs, TextLevelGCN (Huang
et al., 2019b) considers each word token occurrence
as a separate node, i.e., it allows multiple nodes if
the corresponding term occurs more than once in
the text. Therefore, the specific in-context meaning
can be determined by the influence of weighted
information from its neighbors. The authors further
employed PMI as an edge weighting function for
the word associations, as in Yao et al. (2019).

3.1.2 Mainstream Text Representations

We further considered several mainstream repre-
sentation schemes, allowing us to better understand
how the graph approaches fare in comparison.
Bag of Words (BoW): Given a vocabulary of
known words, this strategy uses vectors of term
frequencies, discarding any information about the
order of words in the text.

Transformer-based LMs: We also include BERT
(Devlin et al., 2018) and Longformer (Beltagy et al.,
2020) Transformers as powerful masked language
model-based encoders. While BERT has a maxi-
mum input length of 512 tokens, the Longformer
extends this limit via a modified attention mech-
anism that scales linearly with sequence length.
The latter trait is desirable when comparing LMs
to graphs, which use the complete source text.
Please note that Transformer-based LMs are in-
cluded merely as an informative point of reference
for comparison.

3.2 Datasets

The literature review reveals that many graph-based
text representation methods have been evaluated on
different datasets. Most of the time, the proposals
were each introduced for a specific task domain
and validated on text with very restricted character-
istics, such as a limited vocabulary and an average
document length of up to 221 words (Hassan and
Banea, 2006; Yao et al., 2019). Hence, it is unclear
how well these approaches can generalize to other
kinds of data in different domains and be applied
to longer documents.

We assess the generalizability of graph strategies
in text classification, including sentiment analysis,
topic classification, and hyperpartisan news detec-
tion, across balanced and unbalanced scenarios,
including longer documents. We utilize five pub-
licly available datasets (see Table 1), with further
details provided in Appendix A.
App Reviews (Grano et al., 2017) – English user
reviews of Android applications for fine-grained
sentiment analysis in an imbalanced setting.
DBpedia (Zhang et al., 2015) – A dataset for topic
classification consisting of Wikipedia articles based
on DBpedia 2014 classes (Lehmann et al., 2015).
IMDB (Maas et al., 2011) – Movie reviews from
the Internet Movie Database for binary sentiment
classification.
BBC News (Greene and Cunningham, 2006) – A
topic classification dataset1 consisting of 2,225 En-
glish documents from the BBC News website.
Hyperpartisan News Detection (HND) (Kiesel
et al., 2018) – A collection of 645 news articles2

labeled according to whether it shows blind or un-
reasoned allegiance to one party or entity. The
dataset exhibits a minor class imbalance.

1http://derekgreene.com/bbc/
2https://zenodo.org/HNDrecord

http://derekgreene.com/bbc/
https://zenodo.org/record/5776081#.Y78GHdLMJH6
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Figure 1: Graph Construction Methods. Given the input text “Start working! The sooner you start working, the
sooner you will have money”, the five co-occurrence graph representations studied are shown. From left to right:
window-based graph, window-based graph extended (new edges are shown as dashed in blue), sequence-weighted,
sequence simplified omitting edge weights, and TextLevelGCN (edge weights shown for first and last node, in blue).

Dataset ADL K IR >512 >1,024
App Reviews 14 5 1:8 0% 0%
DBpedia 51 14 1:1 0% 0%
IMDB 283 2 1:1 12% 1.4%
BBC News 438 5 4:5 28.5% 1.6%
HND 912 2 1:2 63.3% 29.8%

Table 1: Statistics of datasets. This includes the aver-
age document length (ADL), the number of classes (K),
the imbalance rate between the minority and majority
classes (IR), and the proportion of long documents.

3.3 Experimental Setup

3.3.1 Data Preparation
A fixed-size data partition was taken from each
dataset to conduct a fair comparative analysis
among the methods. Thus, a training and test split
was defined, consisting of 7,000 and 3,000 samples,
respectively. For those datasets that did not have
that many examples, i.e., BBC News and HND,
80% of the samples were used for training and
the remaining 20% for testing. For all datasets,
we randomly reserve 10% of the samples from the
training set for building the validation set.

Since each graph node represents a word of the
input text, a consistent text normalization scheme
is needed: We applied lowercase conversion, punc-
tuation mark and stop word removal, as well as
eliminating any other non-ASCII characters.

Note that our TextLevelGCN experiments are
conducted using the official implementation3,
which incorporates additional preprocessing. This
includes removing tokens with fewer than three
characters, limiting document lengths to 350 terms,
eliminating words with a frequency less than 5,
applying lemmatization, as well as applying expan-
sion rules to remove English contractions.

3https://github.com/mojave-pku/TextLevelGCN

3.3.2 Model Settings

Graph Neural Networks. For GNN experiments
on Intuitive Graphs, we vary the number of hidden
layers from 1 to 4 and vary the dimensionality of
node representations in {16, 32, 64}. We applied
Dropout after every convolutional layer with a re-
tention probability of 0.8 and used average pooling
for node-level aggregation. The final representation
is fed into a softmax classifier.

We compared three types of graph convolu-
tional neural layers: (i) the traditional one (GCN;
Kipf and Welling 2016), (ii) using a graph isomor-
phism operator (GIN; Xu et al. 2018), which has
shown improved structural discriminative power
compared to GCNs, and (iii) including a graph
attentional operator (GAT; Velickovic et al. 2017)
with 4 attention heads. Our experiments were based
on PyTorch Geometric (see Appendix E).

For TextLevelGCN, we used default parameter
settings as in the original implementation, varying
the window size (n-gram parameter) from 1 to 4.

Four different node vector initialization strate-
gies were also compared. We considered GloVe
Wiki-Gigaword 300-dim. embeddings (Pennington
et al., 2014), Word2Vec Google News 300-dim.
embeddings (Mikolov et al., 2013), static BERT
pre-trained embeddings (encoding each token in-
dependently and averaging for split terms), and
contextualized BERT embeddings. The latter in-
volves encoding the entire input text using BERT
and using token embeddings from the 12th layer.

Bag of Words Baseline. We employed a cut-off
for building the BoW vocabulary by eliminating
terms with a document frequency higher than 99%
or lower than 0.5%. Once the BoW representations
are obtained, a Multi-Layer Perceptron model with

https://github.com/mojave-pku/TextLevelGCN
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


one hidden layer is trained for text classification
(BoW MLP). We varied the number of hidden units
in {32, 64, 128, 256} and applied Dropout right be-
fore the final classification layer, as done for GNNs.

All GNNs and BoW MLP used a batch size
of 64 samples and were trained for a maximum
of 100 epochs using Adam optimization (Kingma
and Ba, 2014) with an initial learning rate of 10−4.
The training was stopped if the validation macro-
averaged F1 score did not improve for ten consecu-
tive epochs. Only for HND, the patience was 20.

Transformer-based Baselines. We fully fine-
tuned BERT-base uncased, including a Dropout
layer right after it with a retention probability of
80%, and a final dense layer for conducting the text
classification. During training, the batch size and
learning rate were set to 32 and 10−6, respectively.
The maximum number of epochs was 10, and the
patience was 5. The same procedure was followed
for Longformer-base4. However, given the com-
plexity of the model (148 M trainable parameters)
and computing resource constraints, the maximum
sequence length was set to 1,024 tokens, and the
batch size was set to 16.

General Setup. The objective function of each
model was to minimize the cross-entropy loss. Sup-
plementary experimental details are provided in
Appendix A, Appendix C, and Appendix E. For
reproducibility, we release our code on https:
//github.com/Buguemar/GRTC_GNNs.

4 Results and Analysis

Table 2 and Table 3 show the best architecture and
setup for each dataset employing Intuitive Graphs
and TextLevelGCN, respectively. The results cor-
respond to the average obtained from 10 indepen-
dent runs. As some datasets exhibit class imbal-
ance, each table reports the accuracy and the macro-
averaged F1-score. The best results are reported
in bold, while a star mark is used to indicate the
best architecture across the entire dataset. For a
full comparison, see Appendix B and Appendix C.

A comparison with baselines such as BERT is
given in Table 4.

4.1 How do GNN Architecture and Setup
Affect the Classification Effectiveness?

GNN Message Passing. Table 2 shows GAT as
the most effective strategy for DBpedia, IMDB,

4https://github.com/allenai/longformer

and BBC News, compared to other convolutional
layers. Due to its attention mechanism, GAT can
identify those nodes that are relevant for the final
prediction. GAT models also proved to be more ro-
bust to variations in parameters such as the number
of layers and the hidden units (Appendix B).

However, for imbalanced classification with very
short texts (as on App Reviews), GAT is not as ef-
fective. In such settings, the graphs have very few
nodes, and the attention heads appear to fail to
identify the most pertinent ones. Similarly, GAT
struggled on HND: Although HND contains ex-
tremely long documents and thus there are suffi-
cient elements to exploit, many of the tokens are
HTML and PHP markers, or similar source arti-
facts. Thus, much of the input is insignificant for
the task and the attention heads fail to identify rel-
evant nodes. GIN proves to be the best choice
for such cases, exploiting the graph structural in-
formation for superior discriminative power over
traditional GCNs (Xu et al., 2018). While GCNs
use simple averages of neighboring node represen-
tations, GIN defines a weighted average by learning
to determine the importance of a node compared
to its neighboring nodes (ϵ-value), which is then
fed into an MLP. Thus, GIN can distinguish node
neighborhoods, discerning structural information
among graph classes. Since our document graphs
are based on word co-occurrence, GIN can exploit
structural regularities and identify recurrent associ-
ations between specific words, which can be crucial
for predicting the correct graph-level label.

Node Feature Initialization. A noteworthy find-
ing is that the best results were mostly obtained
with non-BERT initializations. Well-known static
word embeddings with a much lower dimension-
ality appear to yield better results than BERT em-
beddings. This is the case for App Reviews and
IMDB using Word2Vec, and BBC News using
GloVe. Similarly, when using TextLevelGCN as an
elaborated graph construction, Word2Vec obtained
better results than BERT initialization for some
tasks. Moreover, a 1-gram graph construction is
sufficient for medium and long text classification
when using such an initialization strategy. How-
ever, denser graphs are required for short texts.

Convolutional layers. The results indicate that
the optimal number of convolutional layers is task-
dependent, with 1 or 2 layers favored for tasks
centered on local patterns and more layers nec-

https://github.com/Buguemar/GRTC_GNNs
https://github.com/Buguemar/GRTC_GNNs
https://github.com/allenai/longformer


Window Windowext Sequence Sequencesimp

Dataset Emb. L-Conv #U Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma

App
Reviews Word2Vec 3-GIN

16 64.7 31.0 63.6 33.9 63.3 26.4 65.3 29.1
32 62.0 34.9 63.2 35.0 62.0 31.0 ⋆63.7 ⋆35.7
64 61.1 35.1 62.4 35.4 60.0 33.0 62.5 34.8

DBpedia BERT-C 1-GAT
16 ⋆97.5 ⋆97.4 97.3 97.3 97.3 97.2 97.3 97.3
32 97.2 97.2 97.3 97.2 97.0 96.9 97.0 97.0
64 97.1 97.1 97.1 97.1 96.7 96.7 97.0 96.9

IMDB Word2Vec 1-GAT
16 87.3 87.3 87.3 87.3 87.7 87.7 ⋆87.9 ⋆87.9
32 87.3 87.3 86.9 86.9 87.5 87.5 87.5 87.5
64 87.4 87.3 86.7 86.6 87.2 87.2 87.4 87.4

BBC
News GloVe 4-GAT

16 97.8 97.7 ⋆98.0 ⋆98.0 97.8 97.8 97.4 97.3
32 97.8 97.7 97.6 97.6 97.8 97.7 97.4 97.3
64 97.8 97.7 ⋆98.0 ⋆98.0 97.6 97.5 97.2 97.1

HND BERT 2-GIN
16 77.6 76.8 75.2 73.9 56.6 36.1 77.4 76.5
32 75.3 73.6 77.4 76.8 56.6 36.1 78.3 77.6
64 77.1 76.5 76.9 75.8 56.6 36.1 ⋆79.1 ⋆78.5

Table 2: Best-performing GNN for Intuitive Graphs. The node feature initialization (Emb.) and architecture
details are reported. L-Conv and #U stand for the hidden convolutional layer and units, respectively. The results
report the average obtained from 10 independent runs. Full comparison in Appendix B.

1-gram 2-gram 3-gram 4-gram
Dataset Emb. Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma
App Reviews Word2Vec 66.6 34.7 64.7 35.2 ⋆64.5 ⋆35.8 64.3 35.5
DBpedia BERT 95.7 95.7 ⋆96.1 ⋆96.0 95.9 95.9 96.0 96.0
IMDB Word2Vec ⋆86.8 ⋆86.8 86.5 86.4 86.2 86.2 86.1 86.1
BBC News BERT 97.0 97.0 97.2 97.2 ⋆97.3 ⋆97.3 97.0 97.0
HND Word2Vec ⋆75.7 ⋆73.4 71.6 67.9 72.2 69.8 70.4 67.0

Table 3: Best-performing TextLevelGCN. Results for the best node feature initialization (Emb.). The results report
the average obtained from 10 independent runs. Full comparison in Appendix B.

essary for tasks requiring broader information.
The contextual understanding, whether local or
global, is also influenced by the document length.
For instance, to comprehensively grasp the docu-
ment’s sentiment, a sentence-level analysis is vital,
whereas if the document comprises only one or two
sentences, a wider document-level view is prefer-
able. This is shown in Table 2 and Table 5, where
using 3 layers produced the best App Reviews re-
sults.

4.2 What Graph Construction Method is
Most Effective for Text Classification?

Intuitive Graphs. The sequence construction in
general shows worse performance than its simpli-
fied version, which indicates that the use of discrete
weights in the edges does not provide relevant infor-
mation for datasets such as App Reviews, DBpedia,
and IMDB. BBC News appears to be an excep-
tion: Since news articles tend to reiterate key facts
in the news multiple times, exact co-occurrences
of word pairs appear to be frequent and might be
meaningful. Despite also consisting of news ar-
ticles, HND behaves similarly to other datasets
in that Sequencesimp significantly outperforms the

weighted version, which fails to learn the task. This
may be due to noisy tokens such as HTML tags
that may occur numerous times. When omitting
edge weights, the model may be less affected by
such noise.

Regarding the window-based graph construction,
the extended version does not show a significant
improvement over the base version with N = 2.
This is because a higher N increases the average
degree of the graph, making it difficult to extract
local patterns and discern the content of the text.
Hence, Window mostly outperformed Windowext.

Overall, the window-based construction is rec-
ommended when the classification task is as simple
as topic recognition. This allows a faster and more
direct identification of the input document’s vo-
cabulary, as each token accesses both its left and
right context immediately and can identify recur-
rent words. Moreover, a quick vocabulary explo-
ration is achieved as N grows.

In contrast, for tasks such as sentiment analysis
or identifying writing styles and biases in a given
article, a detailed analysis of the term order is nec-
essary. In this case, a sequence-based construction
seems preferable. Although directed graphs may be



Dataset Model Node Init. Acc F1-ma Exec. Time [s] #Params

App Reviews

BoW MLP - 64.7 ± 0.3 32.7 ± 0.7 104.4 10.3 K
BERT - 62.0 ± 1.2 † 36.9 ± 1.1 1,891.8 108 M
Longformer - 63.5 ± 0.9 37.6 ± 0.8 5,552.2 148 M
TextLevelGCN Word2Vec † 64.5 ± 1.2 35.8 ± 1.0 546.4 561 K
Sequencesimp Word2Vec 63.7 ± 0.7 35.7 ± 1.3 168.8 16.3 K

DBpedia

BoW MLP - 91.5 ± 0.2 91.5 ± 0.2 24.5 52.4 K
BERT - 98.3 ± 0.1 98.3 ± 0.1 2,201.2 108 M
Longformer - † 98.1 ± 0.2 † 98.1 ± 0.2 5,451.9 148 M
TextLevelGCN BERT 96.1 ± 0.1 96.0 ± 0.2 426.8 4.8 M
Window BERT-C 97.5 ± 0.1 97.4 ± 0.1 384.3 50.3 K

IMDB

BoW MLP - 83.7 ± 0.2 83.7 ± 0.2 40.8 192 K
BERT - † 88.4 ± 0.7 † 88.4 ± 0.8 1,640.1 108 M
Longformer - 90.5 ± 0.6 90.5 ± 0.6 4,645.4 148 M
TextLevelGCN Word2Vec 86.8 ± 0.2 86.8 ± 0.3 1,022.3 10.9 M
Sequencesimp Word2Vec 87.9 ± 0.1 87.9 ± 0.1 473.6 19.5 K

BBC News

BoW MLP - 97.9 ± 0.1 97.8 ± 0.1 8.4 329 K
BERT - 97.8 ± 0.3 97.7 ± 0.3 398.9 108 M
Longformer - 98.2 ± 0.3 98.2 ± 0.3 1,470.5 148 M
TextLevelGCN BERT 97.3 ± 0.4 97.3 ± 0.4 684.2 9.6 M
Windowext GloVe † 98.0 ± 0.3 † 98.0 ± 0.3 170.6 32.6 K

HND

BoW MLP - 75.6 ± 1.2 74.5 ± 1.4 5.4 444 K
BERT - 72.6 ± 2.9 70.6 ± 4.5 346.1 108 M
Longformer - † 77.2 ± 3.8 † 75.5 ± 6.1 475.1 148 M
TextLevelGCN Word2Vec 75.7 ± 2.6 73.4 ± 3.5 426.8 3.2 M
Sequencesimp BERT 79.1 ± 1.1 78.5 ± 1.1 116.3 66.1 K

Table 4: General performance. The average results over 10 runs for graph models and sequential baselines are
reported (see Appendix C). For each model, the average total execution time as well as the number of trainable
parameters (#Params) are specified. The best result is shown in bold, while the second best is marked with a †
symbol. Please note that the graph construction step is included in the execution time calculation (see Appendix D).

limited to a left-to-right construction, GNNs spread
the node information between neighbors and thus
exploit structural and linguistic textual features, as
local and global contexts of the document.

TextLevelGCN. Table 3 shows that TextLevel-
GCN is the best-performing graph-based model for
App Reviews, implying that the task benefits from
edge weights, but that they should be soft values for
a smoother learning curve. Otherwise, it is prefer-
able to omit them by employing a Sequencesimp

construction. Nonetheless, TextLevelGCN under-
performs Intuitive Graphs on all other datasets,
even when processing medium-length documents.

As in Table 2, for TextLevelGCN there is a con-
nection between the classification task and node
feature initialization. Topic classification tasks ob-
tained better results when employing BERT for
2-gram and 3-gram setups. Since vocabulary explo-
ration is relevant to solve the task, an extended
left–right context graph construction is benefi-
cial. Likewise, since BERT embeddings are high-
dimensional vectors, they are more valuable than
other strategies. In turn, the best results for senti-
ment analysis and detection of biased writing were
obtained by 1-gram graphs using Word2Vec. In
these cases, only 300 dimensions are sufficient to

get competitive results. Given that App Reviews
documents are extremely short, the local context
in the text is insignificant and exploring the global
context through denser 3-gram graphs is required.

4.3 Can Graphs Compete with
State-Of-The-Art Sequence Models?

Although graphs do not attain the results of
Transformer-based ones for short and medium-
length document classification, Intuitive Graphs
perform better the longer the documents are. Graph
representations are designed to harness the text’s
structure, and as such, their performance is ex-
pected to excel in longer documents as there is
more information and structural patterns to exploit.

For BBC News, Windowext has the second-
best accuracy at only 0.2 points behind the best-
performing model, Longformer. Intuitive Graphs
dominate as the best way to represent longer doc-
uments (HND). For this scenario, there is a no-
ticeable gap between the best and the second-best
model. Therefore, graph-based document rep-
resentations appear to provide clear advantages
when processing long texts. Note that in this task,
TextLevelGCN performs better than BERT but
worse than BoW MLP. This suggests that, despite
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Figure 2: Execution time. Average execution time and
shaded standard deviation. Time is shown in minutes.

its effectiveness, TextLevelGCN loses a significant
part of the input document by defining a much
smaller maximum length for text documents (350
tokens). BoW MLP represents each document by
considering the entire dataset’s vocabulary, grant-
ing access to terms beyond TextLevelGCN’s scope.

One of the strongest aspects of Intuitive Graphs
methods is that they require much less time and
compute resources than popular alternatives dur-
ing training. Although an extra step is required to
create document graph representations, the results
indicate that the total execution time, including
graph creation and model execution, is not an issue.
For short texts as in DBpedia, e.g., the window
graph is on par with the top-performing LLM, with
just a 0.8% accuracy difference and 5.7 times faster
speed. Likewise, BERT beats Sequence graphs on
IMDB by only 0.5% in accuracy, while being 3.5
times slower. Note that BoW MLP is not included
in Figure 2, since it did not obtain good results.

In contrast, since BERT and Longformer are
highly complex models in terms of the number of
learnable parameters, a higher execution time than
for graph-based models is expected. Interestingly,
shorter documents, such as those in App Reviews
and DBpedia, take even longer than medium-length
documents. This suggests that the models require
several iterations to converge on these particular
tasks. Beyond this, note the abrupt decrease in
the execution time for the BBC and HND datasets
is because they have a small number of samples.
Therefore, the total runtime is much shorter com-
pared to the others. See Appendix D for more
details on the runtime and resource utilization.

4.4 Discussion

The results show that graph-based document repre-
sentation holds promise as a way of providing struc-

tural information to deep neural networks. Graph-
based learning models are powerful and allow the
extraction of complex patterns from text. How-
ever, they are particularly task-sensitive and de-
pend on the lexical features of the documents to
be represented. Thus, special care must be taken
to properly define the components of the structure
(nodes, edges, and the similarity function as edge
label). Despite this, the most simplistic graph con-
structions can address text classification fairly well,
proving competitive even in challenging scenarios
such as with data imbalance and noisy documents.

An interesting finding is that when the focus of
the text classification task is on the vocabulary, the
global context is much more relevant than the local
context of the document. Thus, the best graph con-
struction strategies are those based on extended co-
occurrence windows, yielding denser graphs. On
the other hand, when the focus is on understanding
the document as a whole and how the various parts
of the text are connected, the local context becomes
much more valuable. Therefore, Window (N=2) or
Sequential graphs are recommended.

5 Conclusion

We present an empirical analysis of graph represen-
tations for text classification by comprehensively
analyzing their effectiveness across several GNN
architectures and setups. The experiments consider
a heterogeneous set of five datasets, encompassing
short and long documents. The results show that
the strength of graph-based models is closely tied
to the textual features and the source domain of
documents. Thus, the choice of nodes and edges is
found to be crucial. Despite this, Intuitive Graphs
are shown to be a strong option, reaching com-
petitive results across all considered tasks, espe-
cially for longer documents, exceeding those of
BERT and Longformer. Additionally, we observed
that pre-trained static word embeddings, instead of
BERT vectors, allow reaching outstanding results
on some tasks.

We are enthusiastic about extending our study
to further tasks in future work. To this end, we
are releasing our code on GitHub5 and hope that
it can grow to become a community resource. Ad-
ditionally, we will expand this study by exploring
approaches for learning the graph structure to elim-
inate the need for picking a design manually, being
less domain-dependent.

5https://github.com/Buguemar/GRTC_GNNs

https://github.com/Buguemar/GRTC_GNNs


Limitations

While this study successfully shows the impact and
potential of graphs for document representation,
there are some points to keep in mind.

First, despite all the judgments and conclusions
presented being supported by the results of the
experiments, they were based on graph neural net-
work models trained on particular sub-partitions,
as stated in Section 3.3.1, so as to allow a fairer
comparison between models. However, this means
that the results reported here are not directly com-
parable with those reported in the literature. To
assess how the models are positioned with regard
to the state-of-the-art in the different tasks, it is
advisable to train on the original training partitions
and thus learn from all the available data.

It is also important to note that our study ana-
lyzes multiple text representation strategies on text
classification only. Although this is one of the most
important classes of NLP tasks, we cannot ensure
that such graph approaches show the same behavior
in other tasks. Therefore, tackling other types of
problems that require a deep level of understand-
ing of the local and global context of the text is an
important direction for future work.

Finally, all the experiments were run on English
data. As English has comparatively simple gram-
mar and well-known rules for conjugations and
plurals, it is possible that graph-based models may
not be as effective in other languages. Analyzing
this aspect would be particularly interesting for
low-resource languages.

Ethics Statement

This work studies fundamental questions that can
be invoked in a multitude of different application
contexts. Different applications entail different eth-
ical considerations that need to be accounted for
before deploying graph-based representations. For
instance, applying a trained hyperpartisan news de-
tection model in an automated manner bears the
risk of false positives, where legitimate articles get
flagged merely for a choice of words that happens
to share some resemblance with words occurring
in hyperpartisan posts. For sentiment classification,
Mohammad (2022) provides an extensive discus-
sion of important concerns. Hence, ethical risks
need to be considered depending on the relevant
target use case.
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A Dataset Descriptions

We provide a detailed description of the datasets
used for our text classification experiments. All of
them were labeled by experts and validated by the
community.

App Reviews. The dataset is a collection of
288,065 English user reviews of Android applica-
tions from 23 different app categories (Grano et al.,
2017). The goal of the dataset is the fine-grained
sentiment analysis in an imbalanced setting, where
60.5% of the total samples correspond to 4-star
reviews. Each example includes the name of the
software application package, the comment, the
date when the user posted the evaluation, and the
rating provided.

DBpedia. For topic classification, the DBpedia
ontology classification dataset (Zhang et al., 2015)
was constructed by picking 14 non-overlapping
classes from DBpedia 2014 (Lehmann et al., 2015).
For each category, the authors randomly chose
40,000 Wikipedia articles as training samples and
5,000 samples for testing. Every article contains
the title, content, and class label. Although the
original DBpedia is a multilingual knowledge base,
this dataset only contains English data.

IMDB. English language movie reviews from the
Internet Movie Database for binary sentiment clas-
sification (Maas et al., 2011). The dataset is com-
posed of 25,000 reviews for training and 25,000
for testing, with balanced numbers of positive and
negative reviews.

BBC News. This is a publicly available6 dataset
consisting of 2,225 English documents from the
BBC News website (Greene and Cunningham,
2006). The articles correspond to stories from
2004–2005 in the areas of business, entertainment,
politics, sport, and technology. The dataset exhibits
minor class imbalance, with sports being the ma-
jority class with 511 articles, while entertainment
is the smallest one with 386 samples.

Hyperpartisan News Detection (HND). A
dataset7 for binary news classification (Kiesel et al.,
2018). Although it comprises two parts, byarti-
cle and bypublisher, this study only uses the first
one. The dataset has 645 English samples labeled
through crowdsourcing, with 238 (37%) labeled as
hyperpartisan and 407 (63%) as not hyperpartisan.
The challenge of this task is to detect the hyper-
partisan language, which may be distinguishable
from regular news at the levels of style, syntax,
semantics, and pragmatics (Kiesel et al., 2019).

B Word Embeddings for Node
Initialization

In the following, we provide further more detailed
investigations pertaining to the choice of word em-
beddings to initialize node representations.

B.1 Intuitive Graphs

We include the results reported by the GNN
models trained on the different datasets using
four different node feature initialization strategies.

6BBC full text: http://derekgreene.com/bbc/
7https://zenodo.org/HNDrecord
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The results are shown from Table 5 to Table 9
and include BERT pre-trained word embeddings
(BERT), contextualized BERT (BERT-C), GloVe,
and Word2Vec.

Each table presents the accuracy and macro aver-
aged F1-score as averages over 10 runs. Note that
the underlined embedding strategy is the one that
attained the best performance, as shown in Table 2
and Table 3.

B.2 TextLevelGCN

As discussed in Section 3.1, one of the main con-
tributions of TextLevelGCN is that it allows du-
plicate nodes when a term occurs more than once
in the input text. Therefore, it takes care of poly-
semy. Hence, using the message-passing function,
the model can infer the proper meaning of the to-
ken given its local context. Given this peculiarity,
we exclude contextualized BERT (BERT-C) as a
node feature initialization strategy. Thus, the per-
formance of TextLevelGCN was analyzed using
BERT pre-trained word embeddings, GloVe, and
Word2Vec. Note that the underlined embedding
strategy is the one that attained the best perfor-
mance, as in Table 3. The results are presented
in Table 10 and correspond to the average over 10
independent trials.

C Transformer-based language models

In order to provide results on a broader spectrum
regarding the behavior of Transformer-based LMs,
we performed additional experiments using the pre-
trained BERT and Longformer models. The corre-
sponding results are shown in Table 11.

A pre-trained BERT-base uncased model was in-
cluded by freezing the encoder architecture and
stacking a final dense layer for conducting the
corresponding text classification, as done for the
fully fine-tuned version described in Section 3.3.2.
The same process was followed for the pre-trained
Longformer-base. In this case, we conducted exper-
iments setting a maximum sequence length of 512,
and 1,024. This was done to have a fair comparison
regarding BERT and thus separate the effect that
attention has on both approaches.

For training, we used Adam optimizer (Kingma
and Ba, 2014) with an initial learning rate of 10−4,
a batch size of 64 samples, 100 epochs as a max-
imum, and early stopping with patience 10. Only
for HND dataset, the patience was 20.

D Runtime & Resource Utilization

Table 12 presents additional information concern-
ing the execution time for graph models. The aver-
age total execution time is broken down into graph
representation generation time and GNN running
time.

All the experiments conducted in this study
were run on an NVIDIA RTX A6000 with 48GB
VRAM.

To complement the results reported in Table 4,
we measured the GPU utilization (%) and GPU
memory usage (%) for each of the models. We also
measured these metrics for each graph construction
when applied to each of the datasets to find out
how the strategies behave when scaling to longer
documents. We tracked model performance by
using Weights & Biases (W&B)8 platform. We
reran all the models using the same batch size for a
fair comparison.

Table 13 suggests: i) The increase in GPU utiliza-
tion is minimal as the document length increases.
Specifically, as the document length increases by
one order of magnitude, GPU utilization increases
by about 1.5% when employing Intuitive Graphs
and 8-10% for TLGCN. ii) The GPU memory allo-
cated for graph strategies is constrained to below
6%, representing a mere fifth of the memory con-
sumed by BERT and less than a tenth of the mem-
ory consumed by Longformer. This is a significant
consideration when computational resources are
restricted.

E Libraries Used

In order to provide the reader and practitioners
with the necessary details to regenerate the reported
results, Table 14 presents all the libraries used to
perform the experiments.

8https://docs.wandb.ai/guides/app/features/
system-metrics
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Window Windowext Sequence Sequencesimp

Emb. Layers Units Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma

BERT

2
16 63.4 32.4 59.8 32.4 59.9 23.4 63.2 32.4
32 61.6 34.0 58.0 31.9 57.9 26.5 60.3 33.2
64 60.3 32.0 57.9 31.9 57.1 26.6 59.3 33.4

3
16 63.9 29.6 60.2 31.0 59.6 23.4 64.0 27.5
32 62.1 34.8 59.1 32.7 59.0 22.6 61.3 33.2
64 60.0 33.9 57.8 32.6 57.3 25.1 60.5 33.2

BERT-C

2
16 62.2 30.2 62.4 29.8 60.2 26.6 62.6 31.3
32 61.1 32.0 60.0 32.5 57.1 31.3 59.5 32.1
64 58.5 31.8 58.7 31.1 56.7 30.3 58.7 31.5

3
16 62.5 29.6 62.5 28.3 60.8 24.9 63.0 26.6
32 60.4 32.4 60.1 32.2 57.8 31.0 60.6 32.2
64 59.7 31.7 60.8 32.5 56.7 31.0 58.9 32.1

GloVe

2
16 63.2 31.4 63.4 32.1 63.4 27.3 64.5 31.0
32 61.2 34.0 60.8 33.8 59.5 33.4 63.3 33.1
64 59.6 32.9 60.2 33.0 58.3 34.3 61.2 33.8

3
16 64.5 28.8 63.8 30.7 63.1 27.0 64.9 28.6
32 61.2 32.9 61.1 34.2 61.6 32.1 62.5 32.8
64 59.8 34.3 59.7 33.5 59.0 34.4 60.4 34.4
16 64.0 32.7 64.4 33.8 63.1 28.2 64.8 33.7
32 62.1 34.0 63.1 34.2 60.9 31.1 62.9 34.72
64 61.7 35.0 60.9 34.5 59.9 33.4 62.2 34.3
16 64.7 31.0 63.6 33.9 63.3 26.4 65.3 29.1
32 62.0 34.9 63.2 35.0 62.0 31.0 ⋆63.7 ⋆35.7

Word2Vec

3
64 61.1 35.1 62.4 35.4 60.0 33.0 62.5 34.8

Table 5: Word embedding (Emb.) effect on App Reviews. Accuracy and macro averaged F1-score for Intuitive
Graphs using a GIN convolutional neural network.

Window Windowext Sequence Sequencesimp

Emb. Layers Units Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma

BERT

1
16 95.9 95.8 95.8 95.8 95.9 95.8 95.8 95.7
32 95.9 95.9 95.9 95.9 95.9 95.9 96.0 95.9
64 95.8 95.8 95.9 95.9 96.0 95.9 95.9 95.9

2
16 95.6 95.5 95.5 95.4 95.6 95.5 95.6 95.5
32 95.5 95.4 95.5 95.4 95.6 95.5 95.4 95.4
64 95.3 95.3 95.2 95.1 95.3 95.3 95.3 95.3
16 ⋆97.5 ⋆97.4 97.3 97.3 97.3 97.2 97.3 97.3
32 97.2 97.2 97.3 97.2 97.0 96.9 97.0 97.01
64 97.1 97.1 97.1 97.1 96.7 96.7 97.0 96.9
16 97.4 97.3 97.3 97.3 97.3 97.3 97.3 97.3
32 97.2 97.2 97.3 97.3 97.0 97.0 97.2 97.2

BERT-C

2
64 97.3 97.2 97.3 97.3 97.0 97.0 97.1 97.0

GloVe

1
16 95.9 95.9 95.9 95.8 95.8 95.7 96.0 96.0
32 95.9 95.9 96.1 96.0 96.0 95.9 96.0 96.0
64 95.9 95.8 96.0 95.9 95.9 95.8 96.0 96.0

2
16 95.9 95.8 95.8 95.8 95.9 95.9 96.0 95.9
32 95.9 95.8 95.7 95.6 95.9 95.9 96.1 96.0
64 95.7 95.7 95.8 95.8 95.9 95.8 95.9 95.9

Word2Vec

1
16 95.9 95.8 95.7 95.6 95.7 95.7 95.8 95.8
32 96.0 96.0 95.8 95.7 95.7 95.7 95.8 95.8
64 95.9 95.9 95.5 95.4 95.6 95.5 95.7 95.7

2
16 95.6 95.5 95.4 95.3 95.6 95.5 95.7 95.6
32 95.4 95.4 95.4 95.3 95.5 95.4 95.3 95.2
64 95.4 95.3 95.3 95.3 95.4 95.4 95.5 95.4

Table 6: Word embedding (Emb.) effect on DBpedia. Accuracy and macro averaged F1-score for Intuitive
Graphs using a GAT convolutional neural network.



Window Windowext Sequence Sequencesimp

Emb. Layers Units Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma

BERT

1
16 86.8 86.8 86.3 86.3 86.6 86.6 86.4 86.4
32 86.9 86.9 86.0 86.0 86.6 86.5 86.3 86.3
64 86.7 86.7 86.0 86.0 86.3 86.2 86.3 86.3

2
16 86.9 86.9 86.7 86.7 86.8 86.7 86.5 86.4
32 86.5 86.5 86.0 85.9 86.8 86.8 86.1 86.1
64 85.7 85.7 86.3 86.2 86.2 86.1 86.2 86.2

BERT-C

1
16 85.7 85.7 85.9 85.9 84.9 84.8 85.7 85.6
32 85.6 85.6 85.5 85.5 85.4 85.4 85.5 85.5
64 85.2 85.1 85.3 85.3 85.3 85.2 85.9 85.9

2
16 84.6 84.5 85.0 84.9 85.8 85.8 85.1 85.1
32 85.2 85.2 84.9 84.9 85.3 85.3 85.3 85.2
64 85.3 85.3 84.6 84.5 85.6 85.6 85.0 84.9

GloVe

1
16 85.9 85.9 85.7 85.7 86.1 86.1 85.5 85.5
32 85.3 85.3 85.2 85.2 85.8 85.8 85.5 85.5
64 85.1 85.1 84.7 84.7 85.6 85.6 85.4 85.4

2
16 85.1 85.1 84.6 84.5 86.1 86.1 86.0 86.0
32 84.9 84.9 83.7 83.7 85.5 85.5 85.3 85.3
64 84.7 84.7 83.7 83.6 85.2 85.1 84.7 84.6
16 87.3 87.3 87.3 87.3 87.7 87.7 ⋆87.9 ⋆87.9
32 87.3 87.3 86.9 86.9 87.5 87.5 87.5 87.51
64 87.4 87.3 86.7 86.6 87.2 87.2 87.4 87.4
16 87.5 87.4 87.3 87.3 87.6 87.6 87.8 87.8
32 86.9 86.9 87.1 87.0 87.0 87.0 87.3 87.3

Word2Vec

2
64 86.7 86.7 86.1 86.1 87.2 87.2 86.6 86.6

Table 7: Word embedding (Emb.) effect on IMDB. Accuracy and macro averaged F1-score for Intuitive Graphs
using a GAT convolutional neural network.

Window Windowext Sequence Sequencesimp

Emb. Layers Units Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma

BERT

3
16 96.9 96.7 97.1 97.1 97.0 96.9 96.7 96.5
32 96.5 96.3 96.9 96.8 96.4 96.3 96.7 96.5
64 96.5 96.3 97.0 96.9 97.0 96.8 96.7 96.5

4
16 96.5 96.4 96.7 96.6 96.7 96.5 96.9 96.7
32 96.4 96.4 96.3 96.3 96.0 95.8 96.0 95.8
64 96.5 96.4 96.7 96.7 95.8 95.6 96.4 96.2

BERT-C

3
16 96.2 96.1 96.7 96.6 96.4 96.3 96.1 96.0
32 96.1 96.0 96.8 96.7 96.5 96.3 96.8 96.7
64 97.0 96.9 96.0 96.0 96.7 96.5 96.0 95.8

4
16 96.2 96.1 96.8 96.7 96.6 96.5 96.5 96.4
32 96.4 96.3 96.8 96.7 96.5 96.4 96.4 96.3
64 96.6 96.5 96.7 96.6 96.6 96.5 96.2 96.1
16 97.6 97.5 98.0 97.9 97.9 97.8 97.3 97.2
32 97.5 97.4 97.9 97.8 97.8 97.7 97.6 97.53
64 97.7 97.6 97.6 97.6 97.7 97.6 97.3 97.2
16 97.8 97.7 ⋆98.0 ⋆98.0 97.8 97.8 97.4 97.3
32 97.8 97.7 97.6 97.6 97.8 97.7 97.4 97.3

GloVe

4
64 97.8 97.7 ⋆98.0 ⋆98.0 97.6 97.5 97.2 97.1

Word2Vec

3
16 96.9 96.8 97.5 97.4 97.3 97.2 97.1 96.9
32 97.1 97.0 97.1 96.9 97.1 96.9 97.5 97.3
64 97.3 97.2 96.8 96.6 97.6 97.4 97.7 97.5

4
16 96.9 96.8 97.5 97.3 97.3 97.2 97.2 97.0
32 97.1 97.0 97.5 97.3 97.6 97.4 97.4 97.3
64 96.9 96.8 97.6 97.4 97.4 97.2 97.3 97.0

Table 8: Word embedding (Emb.) effect on BBC News. Accuracy and macro averaged F1-score for Intuitive
Graphs using a GAT convolutional neural network.



Window Windowext Sequence Sequencesimp

Emb. Layers Units Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma
16 77.6 76.8 75.2 73.9 56.6 36.1 77.4 76.5
32 75.3 73.6 77.4 76.8 56.6 36.1 78.3 77.62
64 77.1 76.5 76.9 75.8 56.6 36.1 ⋆79.1 ⋆78.5
16 76.7 75.8 74.9 73.9 56.6 36.1 73.5 70.9
32 75.7 73.9 75.2 73.5 56.6 36.1 77.9 77.1

BERT

3
64 77.2 76.6 75.6 74.6 56.6 36.1 77.3 76.1

BERT-C

2
16 73.6 73.0 71.6 70.8 72.8 72.5 66.4 65.6
32 74.0 73.6 73.1 71.4 70.2 69.3 67.7 66.4
64 74.0 73.2 71.8 70.6 70.5 69.1 67.8 66.7

3
16 72.8 72.0 70.8 69.9 72.2 71.8 68.0 66.8
32 74.3 73.6 71.9 70.8 70.5 69.4 67.1 65.4
64 72.7 72.0 71.5 70.1 70.0 69.6 66.8 65.4

GloVe

2
16 73.5 71.9 70.9 69.8 68.4 66.4 70.7 69.3
32 73.6 72.6 72.2 71.3 70.2 69.3 73.7 73.0
64 76.7 75.9 73.9 73.0 70.2 68.8 73.0 72.3

3
16 74.3 72.9 69.1 68.0 66.9 63.1 74.3 73.5
32 74.7 73.5 72.3 71.5 69.7 67.8 74.7 73.7
64 73.7 73.0 74.3 73.4 70.8 70.1 75.0 74.4

Word2Vec

2
16 73.3 73.2 74.0 73.4 59.1 42.7 72.3 71.7
32 75.0 74.7 73.0 72.0 71.0 69.4 72.6 72.0
64 73.1 72.7 75.6 74.9 66.0 57.8 73.5 73.2

3
16 73.3 72.7 74.2 73.7 59.8 43.1 72.5 71.4
32 74.5 73.9 74.5 74.1 68.4 62.6 73.2 72.8
64 74.0 73.5 75.0 74.5 61.4 47.6 75.3 75.0

Table 9: Word embedding (Emb.) effect on HND. Accuracy and macro averaged F1-score for Intuitive Graphs
using a GIN convolutional neural network.

1-gram 2-gram 3-gram 4-gram
Dataset Emb. Acc F1-ma Acc F1-ma Acc F1-ma Acc F1-ma

App Reviews

BERT 65.9 35.0 64.1 34.5 65.9 35.0 63.4 34.6
GloVe 65.7 34.4 65.9 34.2 65.5 34.1 64.2 33.9
Word2Vec 66.6 34.7 64.7 35.2 ⋆64.5 ⋆35.8 64.3 35.5

DBpedia

BERT 95.7 95.7 ⋆96.1 ⋆96.0 95.9 95.9 96.0 96.0
GloVe 95.7 95.6 95.8 95.8 95.6 95.6 95.6 95.6
Word2Vec 95.7 95.6 95.7 95.7 95.7 95.7 95.8 95.7

IMDB

BERT 86.7 86.7 85.9 85.9 85.7 85.7 85.7 85.7
GloVe 86.2 86.2 86.4 86.4 86.7 86.7 86.4 86.4
Word2Vec ⋆86.8 ⋆86.8 86.5 86.4 86.2 86.2 86.1 86.1

BBC News

BERT 97.0 97.0 97.2 97.2 ⋆97.3 ⋆97.3 97.0 97.0
GloVe 96.1 96.1 96.1 96.1 95.5 95.5 96.1 96.1
Word2Vec 96.4 96.4 96.6 96.5 96.8 96.8 96.5 96.5

HND

BERT 74.8 70.8 74.5 71.5 72.6 69.6 74.1 71.6
GloVe 73.8 71.0 69.8 67.2 72.1 70.2 73.8 72.0
Word2Vec ⋆75.7 ⋆73.4 71.6 67.9 72.2 69.8 70.4 67.0

Table 10: Word embeddings as TextLevelGCN node initialization. Accuracy and macro averaged F1-score are
reported.



Dataset Model Length FZ Acc F1-ma

App
Reviews

BERT 512 ✓ 61.3 18.4
- 62.0 36.9

Longformer
512 ✓ 60.4 15.1

- 64.0 36.8

1024 ✓ 60.4 15.1
- 63.5 37.6

DBpedia

BERT 512 ✓ 74.6 74.1
- 98.3 98.3

Longformer
512 ✓ 82.5 81.0

- 98.2 98.2

1024 ✓ 82.0 80.3
- 98.1 98.1

IMDB

BERT 512 ✓ 68.6 67.7
- 88.4 88.4

Longformer
512 ✓ 77.9 77.7

- 90.3 90.3

1024 ✓ 78.2 78.0
- 90.5 90.5

BBC
News

BERT 512 ✓ 52.5 49.3
- 97.8 97.7

Longformer
512 ✓ 84.1 83.2

- 98.2 98.1

1024 ✓ 85.0 84.5
- 98.2 98.2

HND

BERT 512 ✓ 52.2 34.5
- 72.6 70.6

Longformer
512 ✓ 56.6 36.1

- 79.0 78.1

1024 ✓ 56.6 36.1
- 77.2 75.5

Table 11: Maximum input length effect on perfor-
mance. Accuracy and macro averaged F1-score for
BERT and Longformer variants are reported as an av-
erage over 10 independent executions. A checkmark in
the FZ column indicates that the corresponding results
were obtained by freezing the model.

Execution Time [s]
Strategy Dataset Gen Run Total

Intuitive
Graph

App Reviews 29.1 139.7 168.8
DBpedia 92.7 291.6 384.3
IMDB 256.5 217.1 473.6
BBC News 101.6 69.1 170.6
HND 48.8 67.4 116.3

TextLevel
GCN

App Reviews 71.1 475.3 546.4
DBpedia 93.7 333.2 426.8
IMDB 487.4 534.8 1,022.3
BBC News 271.2 413.1 684.2
HND 193.5 233.3 426.8

Table 12: Graph execution time. Average execution
time for Intuitive Graph and TextLevelGCN approaches.
It includes graph generation time (Gen) and GNN run-
ning time (Run).



App Reviews DBpedia IMDB BBC News HND
Method Util. Mem. Util. Mem. Util. Mem. Util. Mem. Util. Mem.
Window 3.13 4.74 3.67 4.75 4.53 4.79 3.67 4.81 1.93 4.83
Windowext 3.07 4.74 3.60 4.75 4.73 4.83 4.33 4.84 2.53 4.89
Sequence 2.87 4.74 2.87 4.74 3.93 4.79 3.67 4.79 2.47 4.83
Sequencesimp 3.07 4.74 3.73 4.74 4.27 4.79 3.67 4.79 2.00 4.82
TextLevelGCN 1-g 4.07 5.00 6.73 5.12 12.33 5.56 9.07 5.41 6.13 5.21
TextLevelGCN 2-g 3.93 5.00 6.80 5.13 13.40 5.56 8.20 5.55 4.60 5.29
TextLevelGCN 3-g 3.67 5.00 6.53 5.13 10.40 5.71 6.80 5.58 3.93 5.37
TextLevelGCN 4-g 4.33 5.00 5.40 5.13 9.53 5.86 4.13 5.62 3.93 5.32
BERT 94.47 29.42 94.70 29.42 95.27 29.42 89.40 29.42 68.93 29.42
Longformer 99.27 67.86 99.27 67.86 99.60 67.86 99.80 67.86 99.40 67.86

Table 13: GPU statistics (%). GPU utilization (Util.) and GPU memory usage (Mem.) for each of the studied
models. The i-g notation accompanying TextLevelGCN stands for i-gram graph construction.

Library Version
datasets 2.4.0
gensim 4.2.0
nltk 3.7
numpy 1.23.1
pytorch-lightning 1.7.4
scikit-learn 1.1.2
torch 1.11.0
torch-cluster 1.6.0
torch-geometric 2.1.0
torch-scatter 2.0.9
torch-sparse 0.6.15
torch-spline-conv 1.2.1
torchmetrics 0.9.3
torchvision 0.12.0
transformers 4.21.2
word2vec 0.11.1

Table 14: Libraries. Versions of Python libraries used
for the experimental implementation.


