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Abstract

Reinforcement Learning (RL) has emerged as a core algorithmic paradigm explicitly driving
innovation in a growing number of industrial applications, including large language models
and quantitative finance. Furthermore, computational neuroscience has long found evidence
of natural forms of RL in biological brains. Therefore, it is crucial for the study of social
dynamics to develop a scientific understanding of how RL shapes population behaviors. We
leverage the framework of Evolutionary Game Theory (EGT) to provide building blocks
and insights toward this objective. We propose a methodology that enables simulating large
populations of RL agents in simple game theoretic interaction models. More specifically,
we derive fast and parallelizable implementations of two fundamental revision protocols
from multi-agent RL - Policy Gradient (PG) and Opponent-Learning Awareness (LOLA) -
tailored for population simulations of random pairwise interactions in stateless normal-form
games. Our methodology enables us to simulate large populations of 200,000 heterogeneous
co-learning agents, yielding compelling insights into how non-stationarity-aware learners
affect social dynamics. In particular, we find that LOLA learners promote cooperation in
the Stag Hunt model, delay cooperative outcomes in the Hawk-Dove model, and reduce
strategy diversity in the Rock-Paper-Scissors model.

1 Introduction

Our universe is one of perpetual change, where countless agents co-exist and co-learn. From an individual
agent’s perspective, other learning agents are a fundamentally non-stationary part of the environment, es-
pecially when incentives are in conflict (Papoudakis et al., 2019). In the realm of Reinforcement Learning
(RL), the study of this type of possibly adversarial non-stationarity is a field known as Multi-Agent Rein-
forcement Learning (MARL) (Foerster, 2018; Zhang et al., 2021). Yet, MARL is largely constrained by the
high complexity of multi-agent training. In fact, its applications often resort to “self-play” (Silver et al.,
2016; Berner et al., 2019), i.e., training a single neural network against one or few copies of itself, or to “cen-
tralized training” (Lowe et al., 2020; Yu et al., 2022), i.e., circumventing non-stationarity by using privileged
global information. We are instead interested in decentralized, biologically plausible MARL processes, as our
ultimate objective is to model the macroscopic social dynamics that stem from individual agents pursuing
their own incentives in the real world. This paper is a step toward achieving this objective: we simulate large
populations of persistent RL agents pursuing individualistic incentives in classic stateless interaction models.
At each population step, agents are paired according to some assortment process (in our case, uniformly at
random), and interact according to their respective policies. After each such interaction, agents adapt their
policies according to their respective payoff and learning rule.

Our work brings advanced MARL to the scale of population game simulations. In particular, we study
the population-scale effects of Opponent-Learning Awareness, an advanced MARL paradigm able to take
advantage of non-stationary dynamics (Foerster et al., 2017). Our contribution is threefold:

• We propose a methodology for simulating RL-driven social dynamics in stateless interaction models,

• We derive tractable implementations of exact Policy Gradient (PG) and Learning with Opponent-
Learning Awareness (LOLA) tailored for pairwise stateless population games,

• We analyze how learning shapes collective behavior in simulated populations of 200,000 agents.
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2 Related work

Our paper constitutes a new step toward modeling the fast-paced macroscopic social dynamics that stem
from individuals actively optimizing their own payoffs in real-world economies. We trace our line of work back
to Macy & Flache (2002), who first substantiated the claim that the emphasis on the stochasticity-driven
model of genetic evolution long used by evolutionary biologists to explain the evolution of cooperation (Ax-
elrod & Hamilton, 1981) may need to shift to cognitive-driven dynamics. Concurrently, Sato & Crutchfield
(2003) derived coupled replicator equations to describe how naive RL shapes social dynamics in a 2-player re-
peated Rock-Paper-Scissors interaction model. However, later attempts have remained largely constrained to
imitation-driven dynamics (Sandholm, 2010; Xia et al., 2011). Presumably, this restriction can be explained
by the high complexity of learning-driven population dynamics and by the strong heritage of replication-
driven evolutionary genetics. The mathematical framework typically used to model population dynamics
is Evolutionary Game Theory (EGT) (Smith & Price, 1973), which comes with a large body of imitation-
based literature. Mertikopoulos & Sandholm (2018) have recently extended this framework by formalizing
population dynamics (such as the Replicator Dynamic) under the more general class of Riemannian game
dynamics. Finally, Yang et al. (2020) used mean-field theory in a massively multi-agent RL scenario to
reduce the environment dimensionality. In their proposed approach, naive learners approximate neighboring
agents as one single, "mean-field" opponent. This essentially transforms n-agent MARL into pairwise MARL,
thus reducing the environment complexity from the point of view of individual agents.

3 Background

This section briefly reviews the concepts from Evolutionary Game Theory (EGT) and Multi-Agent Rein-
forcement Learning (MARL) used in this paper. Throughout the paper, we interchangeably use vocabulary
from EGT and MARL, whose correspondence is provided in the Appendix (Table 2).

3.1 Evolutionary Game Theory (EGT)

EGT models evolution as a series of random pairwise interactions, where interactions are typically simple
bi-matrix games (i.e., 2-player multi-armed bandits). Agents are sampled from a large population to be
randomly paired and evaluated against their drawn opponent. The outcome of this interaction is a payoff
for each opponent, whose expectation is called the agent’s fitness against the current population. An agent’s
fitness depends on both its policy and the current configuration of the population. The agent’s policy is
called its type, which is one of n possible types. In gene-inspired revision protocols, agents with a greater
fitness replicate and thus tend to “invade” the population, whereas agents with a lower fitness tend to go
“extinct”. In particular, EGT is interested in evolutionarily stable equilibria, which are configurations of
the population where the different types are present in stable proportions under replication dynamics. In
evolutionarily stable equilibria, the population configuration is robust to rare mutations, where few agents
randomly switch from one type to another. In this paper, we study more complex population equilibria
generated by learning-based revision protocols (as opposed to revision protocols modeling genetic replication
or social imitation) in three classic symmetric interaction models from game theory: Stag Hunt, Hawk-Dove,
and Rock-Paper-Scissors. These interaction models are the following bi-matrices:

Stag Hare
Stag s, s 0, 1
Hare 1, 0 1, 1

(a) Stag Hunt

Hawk Dove
Hawk f, f 2, 0
Dove 0, 2 1, 1

(b) Hawk-Dove

Rock Paper Scissors
Rock 0, 0 −1, 1 1, −1

Paper 1, −1 0, 0 −1, 1
Scissors −1, 1 1, −1 0, 0

(c) Rock-Paper-Scissors

where rows represent the action chosen by the ego agent (bold) with corresponding payoffs in first position,
and columns represent the action chosen by the other agent with corresponding payoffs in second position.
s and f are cost parameters, whose influence is explored in Section 5. The significance of these interaction
models (or games) is further described in Appendix B for the reader unfamiliar with EGT.
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A population whose individuals are distributed amongst n types can be represented as a population vector
P ∈ Rn whose components 0 ≤ pi ≤ 1 sum to 1 and represent the proportion of type i. Under the “imitation
of the fittest” revision protocol (as well as several other revision protocols), large populations are known to
follow a famous population dynamic over time (t), called the Replicator Dynamic:

dpi

dt
= pi(vi(P ) − v̄(P )) (1)

where vi(P ) is the fitness of type i in the population, and v̄(P ) is the average fitness of all agents in the
population. Denoting the vector of vi’s as Q, the vector of all ones as 1 and the Hadamard product1 as ⊙,
Equation 1 can be written in matrix form:

d

dt
P = P ⊙ (Q − 1v̄), (2)

3.2 Multi-Agent Reinforcement Learning

We examine populations of persistent agents actively learning and optimizing their own policies in the pursuit
of their own individualistic incentives. Following classic modeling of large populations in EGT, we model
social dynamics as a series of random pairwise interactions. Therefore, we are principally interested in 2-agent
learning rules. In this paper, we will be specifically looking at two important such learning rules: policy
gradient (PG), also referred to as “naive learning” in the MARL literature, and learning with opponent-
learning awareness (LOLA) in its true form (i.e., using all terms from the first-order Taylor expansion).

Policy gradient (PG) is a fundamental learning rule from single-agent RL. It follows the first-order gradient
of the value function with respect to the ego agent’s policy parameters. Let us consider a pair of agents.
We denote the ego agent as agent 1, and the other agent as agent 2. Let us further denote their respective
policies as π1 and π2, parameterized by vectors θ1 and θ2, of current values v1 and v2. The naive policy
gradient is:

∇θ1v1(θ1, θ2) (3)
The reason why following this gradient is considered naive in MARL is that this does not take into account
the non-stationarity introduced by the learning process of agent 2.

Learning with opponent learning awareness (LOLA) is an improved version of PG that takes into
account the learning process of the other agent. More precisely, LOLA models the learning process of agent
2 as if agent 2 were a naive learner, and differentiates through its learning step:

∇θ1v1(θ1, θ2 + ∆θ2) (4)

where ∆θ2 = η∇θ2v2(θ1, θ2) is the naive learning step of agent 2, η being its learning rate. LOLA approxi-
mates this gradient by the following first-order Taylor expansion:

∇θ1v1(θ1, θ2 + ∆θ2) ≈ ∇θ1(v1 + (∆θ2)⊤∇θ2v1)
= ∇θ1v1︸ ︷︷ ︸

PG

+ η(∇θ1∇θ2v1)⊤∇θ2v2 + η(∇θ1∇θ2v2)⊤∇θ2v1︸ ︷︷ ︸
opponent-learning awareness

(5)

Differentiating through the learning step of the opponent has an important advantage in our discussion: it is
a naturally plausible way of predicting non-stationarity (assuming we maintain an internal model of others)
in order to adapt beforehand and actively steer this non-stationarity toward our own incentives.

3.3 Population-policy equivalence

In a population of agents playing only pure strategies, uniformly sampling agents is equivalent to sampling
actions from the abstract stochastic policy defined by the probability vector P . Thus, Equation 2 can be
viewed as a learning process, albeit at the population level, where the evolving population of non-learning
agents P is itself a self-play learning agent (Bloembergen et al., 2015).

1The matrix product takes precedence over the Hadamard product in all our notations.
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4 Methods

To simulate how learning affects societies, we adopt the philosophy of EGT. Namely, we consider large
populations of independent learning agents, which are paired randomly at each evolution iteration and
interact in normal-form matrix games. Each agent has its own learning rule (i.e., either of the two presented
in Section 3.2) that it applies to its own policy after each pairwise interaction. Whereas MARL usually
thinks about these rules in the context of persistent interactions between fixed pairs of agents, in the context
of population games, they instead get applied after single interactions between random pairs of agents. In
other words, from the perspective of a learning agent, the opponent it samples at each step is a stochastic
sample of the population and, for LOLA, of the current direction of its non-stationary dynamics.

4.1 Policy architecture

From an RL perspective, the normal-form matrix games presented in Section 3.1 are 2-agent multi-armed
bandits. As this is a common assumption in multi-armed bandits (Sutton, 2018), we consider the policy
architecture parameterized by the preference vector θ ∈ Rn, where n is the number of actions, projected to
the probability simplex by a simple softmax function σ, which yields the probability vector P ∈ Rn of the
policy selecting each of the n available actions:

P = σ(θ) (6)

This policy architecture has a useful property for our derivations: its gradient has a symmetric analytical
form, which is

∇θP = (∇θP )⊤ = diag(P ) − PP ⊤ (7)

4.2 Analytical Policy Gradient

Let us consider a symmetric normal-form game with n actions, played by a pair of agents denoted as agents
1 and 2. Since the game is symmetric, we can represent its bi-matrix as a single matrix A ∈ Rn×n, valid from
the perspective of both agents2. Let us further assume that the policies of both agents are parameterized
by θ1,2 ∈ Rn, with the simple policy architecture described in Equation 6:

P1,2 = σ(θ1,2) (8)

The value functions of both agents are:

v1 = P ⊤
1 AP2 ; v2 = P ⊤

2 AP1 (9)

Thus, the “naive” Policy Gradient of agent 1’s value with respect to agent 1’s parameters is:

∇θ1v1 = P1 ⊙ (Q1 − 1v1)

where Q1 ∈ Rn is the vector of action-values of the n available actions (derivation in Appendix D).

As a side note, this draws an interesting parallel with Equation 2: the PG update on the parameter vector θ1
is the same as the Replicator update on the probability vector P1 = σ(θ1). In other words, each individual
PG agent can itself be seen as an evolving population of abstract non-learning agents playing pure strategies,
similarly to the equivalence noted in Bloembergen et al. (2015).

This formulation yields the following analytical PG formulation for symmetric normal-form games:

∇θ1v1 = P1 ⊙ (I − 1P ⊤
1 )AP2 (10)

∇θ2v2 = P2 ⊙ (I − 1P ⊤
2 )AP1 (11)

which only involves simple matrix operations, and therefore is a fast, easily parallelizable implementation.
2A is formed by the first entries of the corresponding bi-matrix in Section 3.1.
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4.3 Analytical LOLA

Similarly, we derive the following analytical formulation of the LOLA gradient in the symmetric normal-form
game defined by matrix A (the derivation is provided in Appendices E and F):

∇θ1v1(θ1, θ2 + ∆θ2) ≈ P1 ⊙ X1AP2

+ η(T ⊤ ⊙ X1AX⊤
2 )(P2 ⊙ X2AP1)

+ η(T ⊤ ⊙ X1A⊤X⊤
2 )(P2 ⊙ X2A⊤P1) (12)

where X1 := I − 1P ⊤
1 , X2 := I − 1P ⊤

2 , and T := P2P ⊤
1 . As for Policy Gradient, this formulation only

involves simple matrix operations and is thus straightforward to parallelize.

4.4 Batched pairwise bandits

Figure 1: Pairing and batching

Equations 10 and 12 are fast, backprop-free implementations of exact PG and exact LOLA for symmetric
normal-form games. Still, it would be prohibitively slow to apply these updates iteratively on single agent
pairs in large-scale simulations. At each population step, all agents go through their revision protocol once.
To make this process scalable, we batch learning updates across the entire population. More precisely,
at each population step, we shuffle the entire population and randomly pair all agents two-by-two. Since
all interactions are pairwise, this enables batching updates across agent pairs. To optimize the process
even further, we mirror all pairs to perform the entire population update in one single batched operation.
This batching procedure is illustrated in Figure 1. We found batching populations in this manner to be
extremely efficient. Combining this procedure with the analytical PG and LOLA implementations described
in Section 4, we are able to simulate populations of 200,000 learning agents for thousands of population
steps in a matter of seconds on a consumer-grade GPU3. To ensure reproducibility and foster future work,
we open-source our our code at <URL hidden for blind peer review>.

5 Experiments

We use the normal-form matrices presented in Section 3.1 as our three explored interactions: Stag hunt (SH),
Hawk-Dove (HD) and Rock-Paper-Scissors (RPS). Each individual agent has its own persistent learning rule:
either PG (gradient descent on Equation 10) or LOLA (gradient descent on Equation 12). The learning rate
has no relevant impact on the dynamics presented in this paper other than varying their speed, thus we use
unit learning rates in all experiments.
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(a) CPU (b) GPU

Figure 2: Duration of a full population step (lower is better)

5.1 Scalability

Figure 2 reports the computational performance of our approach (“matrix batched LOLA”), compared to two
baselines. The “autograd iterative LOLA” baseline reproduces how LOLA updates are usually performed
in classical MARL scenarios: using PyTorch’s autograd to compute the LOLA gradient, and updating the
policies of all agents iteratively. This baseline is clearly not a viable implementation for large population
simulations and is only provided for illustration. On the other hand, our “autograd batched LOLA” baseline
is of more interest for future work. While the “matrix batched” approach is significantly faster, it is limited
to single-shot multi-armed bandits4. In particular, the “matrix batched” approach does not allow episodic
interactions. Therefore, we have implemented the batched approach described in Section 4.4 along with
autograd, which yields a potentially more general implementation. Since our matrix-based implementation
is the fastest for normal-form games, we use it in the remainder of the paper.

5.2 Empirical results

The methodology proposed in Section 4 is limited to simple, single-shot bandit interactions between random
pairs of learning agents. Remember how, under the population-policy equivalence described in Section 3.3, a
population of pure-strategy agents can equivalently be seen as a stochastic policy over types. In our setting,
agents have full stochastic policies assigning non-zero probabilities to all available actions, but they are still
simple stateless multi-armed bandits. Uniformly sampling a random pair of agents from such a population
and then sampling from their policies is equivalent in expectation to sampling two actions from the average
policy of the entire population. In other words, we expect our modeled population dynamics to show some
resemblance to self-play over the population’s average policy (represented in Figure 3). In Figure 4, we
report the results of our actual population experiments in Stag-Hunt, Hawk-Dove and Rock-Paper-Scissors.

Stag Hunt. Figures 3a and 3d show how a single self-play agent learns against itself in Stag Hunt, via
naive Policy Gradient and LOLA, respectively. The vertical axis represents the agent’s policy, being the
policy uniformly choosing between the two actions at random. and the horizontal axis represents time
expressed in learning steps. Policies are color-coded by their initial configuration, with yellow policies
starting close to the deterministic Stag policy and purple policies starting close to the deterministic Hare
policy. Notably, PG tends to converge to the individualistic Nash equilibrium (i.e., deterministic Hare)
for most initial configurations, whereas LOLA tends to converge to the pro-social Nash equilibrium (i.e.,
deterministic Stag). Notice that the forks are on either sides of the uniform random policy (middle tick),
which is important because we will initialize all our population experiments with a Gaussian distribution
around this neutral policy. We expect the final population dynamic to follow a similar pattern. Figures 4a
and 4d display the results of our first population game simulation, featuring 200,000 learning agents in the
Stag Hunt interaction model. Dark shades of blue represent high concentrations of agents. population step
corresponds to one learning step performed per agent in the population. In Figure 4a, the population is

3All experiments in this paper are conducted with an i7-12700H CPU, an RTX 3080 Ti GPU, and 64G of RAM.
4Section 4 is possible because the value function has a straightforward formulation in 2-agent multi-armed bandits.
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(a) PG in SH (s = 1.8) (b) PG in HD (f = −2) (c) PG in RPS

(d) LOLA in SH (s = 1.8) (e) LOLA in HD (f = −2) (f) LOLA in RPS

Figure 3: Self-play. In SH and HD, the color marks the initial policy.

exclusively formed of naive learners, and quickly converges to the individualistic policy, as predicted by
Figure 3a. In Figure 4d, the population is formed of only LOLA agents. Contrary to the naive population, a
population of non-stationarity aware learners such as LOLA evolves to unanimously adopt the superior pro-
social equilibrium (i.e., deterministic Stag). This effect is modulated by the payoff of the pro-social strategy,
as shown in Figure 5a. In Appendix G, we further show that, when enough opponent-learning aware learners
are present in a mixed population, they become able to pull naive learners toward the pro-social strategy.

Hawk-Dove. Figures 3b and 3e show that, in Hawk-Dove, self-play converges to definite policies regardless of
where training starts from. Naive learning (Figure 3b) converges to the mixed Nash equilibrium. (Figure 3e)
converges to another, inferior policy, where it selects Hawk 70% of the time (which yields a smaller payoff
for both players, and is not a Nash equilibrium). A similar behavior has been described as “arrogance”
in Letcher et al. (2018), where both LOLA learners make wrong assumptions about the response of their
opponent and thus pull away from the equilibrium. From these observations, one could imagine that all
learning agents in the population would converge to these policies, similar to what we observed for SH, but
this is not at all what happens in practice. In HD, whether naive learning (Figure 4b) or LOLA (Figure 4e)
is used as the learning rule of the entire population, it evolves into a mix of Hawks and Doves, most of them
with close-to-deterministic policies, and in both cases with an average population policy that corresponds
to the mixed Nash equilibrium. the convergence to deterministic strategies is however much slower than
what we observed for SH, and it is in fact not clear whether this will eventually happen entirely, even after
10,000 steps (Appendix H). Nonetheless, what can be observed from Figures 4b and 7a is that LOLA learners
converge faster to deterministic policies during early steps (shades of blue) but the population takes longer to
stabilize (dotted black). In additional experiments, we mixed LOLA and PG learners to see whether LOLA
learners would be more inclined toward the Hawk strategy (as suggested by Figure 3e). However, these
experiments invalidated this hypothesis: half LOLA learners and half PG learners were present amongst
both final sub-populations of Hawk-inclined and Dove-inclined individuals.

Rock-Paper-Scissors. Our final population experiment explores the 3-action Rock-Paper-Scissors interac-
tion model, used in EGT to explain the coexistence of competitively unbalanced species (Allesina & Levine,
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(a) PG in SH (s = 1.8) (b) PG in HD (f = −2) (c) PG in RPS

(d) LOLA in SH (s = 1.8) (e) LOLA in HD (f = −2) (f) LOLA in RPS

Figure 4: Populations of 200,000 RL agents evolving in the classic games of Stag Hunt, Hawk-Dove and
Rock-Paper-Scissors (columns), via Policy Gradient and LOLA (rows). Each agent is a stochastic policy,
represented as linear coordinates between pure strategies. Dark shades of blue indicate high concentrations
of agents, and population steps correspond to one learning step performed per agent. In Hawk-Dove, black
dots indicate the average policy over the entire population.

(a) Stag Hunt (b) Hawk Dove

Figure 5: Final average policy over the population, depending on cost values.
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2011). We show that, while populations of naive learners agree with this explanation of sustainable diversity,
populations of opponent-learning aware learners yield the opposite result. Similarly to previous sections, Fig-
ures 3c and 3f report how 2-agent self-play behaves for both PG and LOLA. Only one policy is displayed for
readability (other initial conditions yield similar effects). The triangle on the bottom of each plot represents
the policy, and the vertical axis represents the number of learning steps. It can be seen that PG slowly
spirals outward from the mixed Nash equilibrium (due to performing straight policy updates with a non-zero
learning rate following a circular vector field), whereas LOLA quickly spirals inward until it reaches the
mixed Nash equilibrium. Figures 4c and 4f present the results of our population simulations in the RPS
interaction. Color-coding follows the same principle as our previous population plots, with the bottom tri-
angle being the policy, and population steps being the vertical dimension. Similarly to Figure 4b, Figure 4c
shows that populations of naive learners evolve into 3 equally distributed groups of close-to-deterministic
agents always playing Rock, Paper and Scissors respectively. The reason why this happens is of interest,
and is more clearly understood from Figure 9 in Appendix I. In short, this dynamic results from the loss
of plasticity introduced by the softmax function5. Initially, naive learners are erratically moving around as
they encounter all types of strategies. However, after some time, agents get “trapped” near the border of the
policy simplex, where gradients toward the opposite action are near-zero. After a long time, three groups
of near-deterministic agents emerge, and a small number of them continuously escape toward the strategy
that counters the majority group, which eventually creates a new majority, and so on, yielding a cyclic social
dynamic. In other words, diversity emerges from populations of naive learners in the RPS model. On the
other hand, Figure 4f tells the opposite story about populations of LOLA agents, which instead quickly and
unanimously converge to the mixed Nash equilibrium.

5.3 Limitations and future work

Random versus structured assortment. From our results, it looks like the mean policy averaged over
the entire population always converges near a Nash equilibrium of the game, even when the learning rule
itself does not converge to this equilibrium in the conventional 2-agent MARL setting (see Figures 3e and
3c). This property is however merely a consequence of the uniform random opponent matching scheme
that we chose to implement in this paper. For instance, let us consider an extreme opposite scheme, where
all pairs would instead interact persistently. All individual pairs would then converge to the pure Nash
equilibrium in the Hawk-Dove game (that is, exactly one deterministic Hawk and one deterministic Dove
per pair): this would average to a uniform random policy, as opposed to Figures 4b and 4e (dotted black
lines). In reality, partner selection is more structured (Anastassacos et al., 2020) and can lead to different
outcomes. Extending our study to structured assortment is an avenue for future work.
Stateless environments. Our proposed approach is limited to symmetric normal-form matrix games
(i.e., stateless multi-armed bandit interactions). Exploring stateful episodic interactions (like the Iterated
Prisoner’s Dilemma) through more compute-intensive approaches is another clear avenue for future work.

6 Conclusion

We have presented a methodology enabling large-scale population simulations of independent learning agents,
for both naive (Policy Gradient) and advanced non-stationarity-aware (LOLA) learning rules. We have
demonstrated the scalability of our approach by performing very-large-scale simulations of 200,000 indepen-
dent learning agents, interacting in the classic games of Stag Hunt, Hawk-Dove and Rock-Paper-Scissors. Our
work essentially explores the effect of Multi-Agent Reinforcement Learning on the usual evolutionary game
theoretical model of social dynamics, and demonstrates compelling dynamics originating from both naive and
non-stationarity-aware learners. For instance, depending on the nature of the interaction, opponent-aware
learners can foster cooperation, delay cooperative outcomes, or inhibit diversity in the population.

Broader Impact Statement

This work paves the way toward understanding and possibly exploiting the macroscopic effects of individual
learning in contexts such as biology, sociology, economy and finance.

5A model similar to the “cost of motion” described by Mertikopoulos & Sandholm (2018).
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A Vocabulary

RL EGT
return payoff
value fitness
policy type
action pure strategy

learning rule revision protocol

Table 2: Correspondence of the vocabulary from RL and EGT

B Games

Stag Hare
Stag s, s 0, 1
Hare 1, 0 1, 1

(a) Stag Hunt

Hawk Dove
Hawk f, f 2, 0
Dove 0, 2 1, 1

(b) Hawk-Dove

Rock Paper Scissors
Rock 0, 0 −1, 1 1, −1

Paper 1, −1 0, 0 −1, 1
Scissors −1, 1 1, −1 0, 0

(c) Rock-Paper-Scissors

Stag hunt (SH) is a 2-action game modeling a cooperative dilemma. In this game, agents need to hunt for
food and choose to either go for a Stag, or go for a Hare. Hunting a Hare is easy: any agent choosing this
option successfully receives a payoff of 1. Hunting a Stag is harder: both agents need to cooperate, otherwise
the agent choosing to go for a Stag fails to catch anything and receives a payoff of 0. However, if both agents
cooperate, they succeed and each receives a payoff of s > 1, which is better than going for Hares. The game
of Stag hunt has two distinct pure strategy Nash equilibria6: (1) both agents always playing Stag, and (2)
both agents always playing Hare.

Hawk-Dove (HD) is a 2-action game modeling conflict over shareable resources. Agents either choose to
act as a “Hawk” or as a “Dove”. When a Dove encounters another Dove, they share the available food (each
receives a payoff of 1). When a Dove encounters a Hawk, it yields and gets no food (payoff of 0) while
the Hawk gets all of it (payoff of 2). But when a Hawk encounters another Hawk, they fight and both get
injured (payoff of f < 0). The game of Hawk-Dove has two pure strategy Nash equilibria: (1) Hawk-Dove
and (2) Dove-Hawk. But note that in these equilibria, Doves have a smaller payoff than Hawks. In the
context of evolutionary genetics, this means that when Doves encounter almost only Hawks, they move
toward extinction as Hawks invade. However, when Hawks encounter almost always Hawks, their expected
payoff is even less than Doves encountering Hawks, and thus Hawks move toward extinction as Doves invade.
In other words, there are population configurations in which it is not more relevant to be a Hawk than a
Dove in terms of fitness, and replication dynamics naturally drive the population there.

Rock-Paper-Scissors (RPS) is a 3-action zero-sum7 game. It illustrates more complex situations where
there are cycles in the preferences over actions. Scissors beats Paper, Paper beats Rock, and Rock beats
Scissors. RPS has a single mixed-Nash equilibrium, where both players choose their actions uniformly at
random. Similarly to the HD game, all populations whose average behavior is this equilibrium are neutrally
stable under replication dynamics and drifting due to random mutations.

62-player equilibria where each agent always selects the same action.
7The sum of the two agents’ payoffs is always 0.
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C Parallels between EGT and single-agent RL

The population-policy equivalence described by Bloembergen et al. (2015) yields interesting parallels between
single-agent Reinforcement Learning and the Replicator Dynamic. In particular, the resemblance of Policy
Gradient with the Replicator Dynamic noted in Section 4.2 was further studied by Hennes et al. (2020). From
this observation, they derived a single-agent algorithm that bypasses the loss of plasticity introduced by the
softmax architecture of Equation 6. However, beyond the fact that their line of work uses concepts from
RL and EGT, it is unrelated to ours and we cite it here to clear a confusion made by early reviewers of our
work: whereas Hennes et al. (2020) are interested in finding high-performance single-agent RL algorithms,
we are interested in characterizing the population dynamics that stem from aggregated MARL.

D Policy gradient

We derive an analytical formulation of the PG update in symmetric normal-form games:

∇θ1v1 = ∇θ1P ⊤
1 AP2

= (diag(P1) − P1P ⊤
1 )AP2

= diag(P1)AP2 − P1v1

= P1 ⊙ (AP2 − v11)
= P1 ⊙ (AP2 − 1P ⊤

1 AP2)
= P1 ⊙ (Q1 − 1v1)

E LOLA

We now derive an analytical formulation of the LOLA update in symmetric normal-form games, similar to
what we found for PG in Section 4.2. We are missing three terms from Equation 5:

• ∇θ2v1

• ∇θ1∇θ2v1

• ∇θ1∇θ2v2

To compute the first term, we note that v1 = P ⊤
1 AP2 is a scalar and thus can also be written v1 = P ⊤

2 A⊤P1.
We can then compute this term similarly to PG:

∇θ2v1 = ∇θ2P ⊤
2 A⊤P1

= (diag(P2) − P2P ⊤
2 )A⊤P1

= P2 ⊙ (A⊤P1 − v11)
= P2 ⊙ (A⊤P1 − 1P ⊤

2 A⊤P1)
= P2 ⊙ (I − 1P ⊤

2 )A⊤P1 (13)

Computing the two remaining terms is also possible.
Let us start with ∇θ1∇θ2v2:

∇θ1∇θ2v2 = ∇θ1∇θ2P ⊤
2 AP1 (14)

= ∇θ1(diag(P2) − P2P ⊤
2 )AP1

= (diag(P2) − P2P ⊤
2 )A(diag(P1) − P1P ⊤

1 ) (15)
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While it would already possible to implement this formulation, we further derive a more efficient implemen-
tation in Appendix F:

∇θ1∇θ2v2 = T ⊙ (I − 1P ⊤
2 )A(I − P11⊤) (16)

where T := P2P ⊤
1 .

Computing ∇θ1∇θ2v1 is fairly straightforward:

∇θ1∇θ2v1 = ∇θ1∇θ2P ⊤
2 A⊤P1

= ∇θ1∇θ2P ⊤
2 BP1 (B := A⊤)

= T ⊙ (I − 1P ⊤
2 )B(I − P11⊤) (c.f. 14,16) (17)

= T ⊙ (I − 1P ⊤
2 )A⊤(I − P11⊤) (18)

Substituting Equations 10, 11, 13, 16 and 18 in Equation 5 yields the following analytical formulation of the
LOLA gradient in the symmetric normal-form game defined by matrix A:

∇θ1v1(θ1, θ2 + ∆θ2) ≈ P1 ⊙ X1AP2

+ η(T ⊤ ⊙ X1AX⊤
2 )(P2 ⊙ X2AP1)

+ η(T ⊤ ⊙ X1A⊤X⊤
2 )(P2 ⊙ X2A⊤P1) (19)

where X1 := I − 1P ⊤
1 , X2 := I − 1P ⊤

2 , and T := P2P ⊤
1 .

F Second-order policy gradients

In this Section, we show that:

∇θ1∇θ2v2 = T ⊙ (I − 1P ⊤
2 )A(I − P11⊤)

where T := P2P ⊤
1 is agent 2’s transition matrix.

Proof.

∇θ1∇θ2v2 = diag(P2) − P2P ⊤
2 )A(diag(P1) − P1P ⊤

1 )
= diag(P2)A diag(P1) − diag(P2)AP1P ⊤

1 − P2P ⊤
2 A diag(P1) + P2P ⊤

2 AP1P ⊤
1 (20)

Note that, for X, Y ∈ Rn:
XY ⊤ = X1⊤ ⊙ 1Y ⊤

since: 
x1y1 x1y2 . . . x1yn

x2y1 x2y2 . . . x2yn

...
...

...
xny1 xny2 . . . xnyn

 =


x1 x1 . . . x1
x2 x2 . . . x2
...

...
...

xn xn . . . xn

 ⊙


y1 y2 . . . yn

y1 y2 . . . yn

...
...

...
y1 y2 . . . yn


Also, for M ∈ Rn,n note that:

diag(X)M = X1⊤ ⊙ M

since: 
x1m1,1 x1m1,2 . . . x1m1,n

x2m2,1 x2m2,2 . . . x2m2,n

...
...

...
xnmn,1 xnmn,2 . . . xnmn,n

 =


x1 x1 . . . x1
x2 x2 . . . x2
...

...
...

xn xn . . . xn

 ⊙


m1,1 m1,2 . . . m1,n

m2,1 m2,2 . . . m2,n

...
...

...
mn,1 mn,2 . . . mn,n


13
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And similarly:

Mdiag(X) = (diag(X)M⊤)⊤ = (X1⊤ ⊙ M⊤)⊤ = M ⊙ 1X⊤

So, taking a closer look at each term in Equation 20:

diag(P2)A diag(P1) = T ⊙ A

diag(P2)AP1P ⊤
1 = P21⊤ ⊙ AP1P ⊤

1

= P21⊤ ⊙ AP11⊤ ⊙ 1P ⊤
1

= P21⊤ ⊙ 1P ⊤
1 ⊙ AP11⊤

= T ⊙ AP11⊤

P2P ⊤
2 A diag(P1) = P2P ⊤

2 A ⊙ 1P ⊤
1

= P21⊤ ⊙ 1P ⊤
2 A ⊙ 1P ⊤

1

= P21⊤ ⊙ 1P ⊤
1 ⊙ 1P ⊤

2 A

= T ⊙ 1P ⊤
2 A

P2P ⊤
2 AP1P ⊤

1 = P2v2P ⊤
1 = T ⊙ v211⊤

This enables writing the LOLA second-order gradient as:

∇θ1∇θ2v2 = T ⊙ (A − AP11⊤ − 1P ⊤
2 A + v211⊤)

The term between parentheses can be factorized:

A − AP11⊤ − 1P ⊤
2 A + v211⊤ = A − AP11⊤ − 1P ⊤

2 A + 1v21⊤

= A − AP11⊤ − 1P ⊤
2 A + 1P ⊤

2 AP11⊤

= (I − 1P ⊤
2 )A − (I − 1P ⊤

2 )AP11⊤

= (I − 1P ⊤
2 )(A − AP11⊤)

= (I − 1P ⊤
2 )A(I − P11⊤)

So:

∇θ1∇θ2v2 = T ⊙ (I − 1P ⊤
2 )A(I − P11⊤)
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G Stag Hunt

(a) 85% LOLA (b) 86% LOLA

Figure 6: Mixed PG and LOLA in Stag Hunt (s = 1.8). When more than 86% of the population is made
of LOLA agents, opponent-aware learners bring the entire population to the pro-social equilibrium (NB: the
higher s is, the lower this threshold becomes; it reaches 0% when s = 2).

H Hawk Dove

(a) PG late evolution (b) LOLA late evolution

Figure 7: Late evolution in Hawk-Dove (f = −2)
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I Rock-Paper-Scissors

(a) 20% LOLA (b) 30% LOLA

Figure 8: Mixed PG and LOLA in Rock-Paper-Scissors

(a) step 0 (b) step 50 (c) step 1000

(d) cycle, P attractor (e) cycle, S attractor (f) cycle, R attractor

Figure 9: Naive learning in RPS, late evolution. Shades of blue indicate the concentration of individuals,
while red arrows indicate their average measured movement. After about 4000 population steps, random
drift slightly unbalances the 3 groups of near-deterministic individuals, which generates a cyclic attractor
pattern in the population. In the RPS model, naive learning sustains diversity.
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(a) step 0 (b) step 10 (c) step 20

(d) step 30 (e) step 60 (f) step 100

Figure 10: LOLA in RPS. Opponent-learning-awareness quickly brings the entire population to unanimously
play the Nash equilibrium of this game (even when 70% of the population is naive, as shown in Figure 8b).
In the RPS model, LOLA hinders diversity.
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