
ICE-Score: Instructing Large Language Models to Evaluate Code

Anonymous ACL submission

Abstract
Recent advancements in the field of natural001
language generation have facilitated the use002
of large language models to assess the qual-003
ity of generated text. Although these models004
have shown promising results in tasks such as005
machine translation and summarization, their006
applicability in code intelligence tasks remains007
limited without human involvement. The com-008
plexity of programming concepts required for009
such tasks makes it difficult to develop eval-010
uation metrics that align with human judg-011
ment. Token-matching-based metrics, such012
as BLEU, have demonstrated weak correla-013
tions with human practitioners in code intelli-014
gence tasks. Moreover, utilizing human-written015
test suites to evaluate functional correctness016
can be challenging in domains with low re-017
sources. To overcome these obstacles, we pro-018
pose ICE-Score, a new evaluation metric via019
instructing large language models (LLMs) for020
code assessments. Our metric addresses the021
limitations of existing approaches by achiev-022
ing superior correlations with functional cor-023
rectness and human preferences, without the024
need for test oracles or references. We evaluate025
the efficacy of our metric on two different as-026
pects (human preference and execution success)027
and four programming languages. Our results028
demonstrate that our metric surpasses state-of-029
the-art metrics for code generation, delivering030
high levels of accuracy and consistency across031
various programming languages and tasks. We032
also make our evaluation metric and datasets033
available to the public1, encouraging further034
research in evaluating code intelligence tasks.035

1 Introduction036

Natural language generation (NLG) systems have037

seen significant progress in developing large lan-038

guage models (LLMs). These models have shown039

great promise in generating high-quality and di-040

verse texts that can be difficult to distinguish from041

1https://anonymous.4open.science/r/
ICE-Score

human-written texts (Ouyang et al., 2022). How- 042

ever, evaluating the quality of NLG systems re- 043

mains a challenging task, primarily due to the lim- 044

itations of traditional evaluation metrics. Token- 045

matching-based metrics, such as BLEU (Papineni 046

et al., 2002) and ROUGE (Lin, 2004), have been 047

widely used to evaluate NLG systems but have 048

demonstrated poor correlation with human judg- 049

ment and a lack of ability to capture semantic 050

meanings (Kocmi et al., 2021). Furthermore, these 051

metrics require reference output, which can be chal- 052

lenging to obtain for new tasks and low-resource 053

domains (Liu et al., 2023). 054

In recent years, the use of LLMs as reference- 055

free evaluators for Natural Language Genera- 056

tion (NLG) tasks has gained attention among re- 057

searchers. This approach is strongly aligned with 058

human preferences, even when reference texts are 059

unavailable (Liu et al., 2023; Fu et al., 2023). The 060

underlying assumption behind this approach is that 061

LLMs possess a profound understanding of human- 062

generated text and task instructions, enabling them 063

to evaluate various NLG tasks through prompts. 064

The exceptional performance of LLMs in contex- 065

tual understanding and natural language generation, 066

as evidenced by studies (Brown et al., 2020), fur- 067

ther supports this assumption. Moreover, LLMs 068

trained on both textual and code-based data have 069

showcased remarkable capabilities in diverse down- 070

stream tasks related to source code, including code 071

generation (OpenAI, 2023; Allal et al., 2023; Li 072

et al., 2023). While a performance gap still ex- 073

ists between LLMs and human developers in code- 074

related tasks, recent research has illustrated that 075

LLMs can be enhanced to handle various source 076

code tasks with appropriate guidance (Chen et al., 077

2023; Madaan et al., 2023). This indicates the sig- 078

nificant potential of LLMs in comprehending and 079

working with source code. 080

Code evaluation presents unique challenges, re- 081

quiring a deeper understanding of programming 082

1

https://anonymous.4open.science/r/ICE-Score
https://anonymous.4open.science/r/ICE-Score


Problem
<import stataments>
class Problem {
 // Create a function that takes a value (string) representing a number
// and returns the closest integer to it. If the number is equidistant 
// from two integers, round it away from zero.
<Omitted Code>

ICE-Score

Problem
How to convert a string
from CP-1251 to UTF-8?

''''''.join(chr(int(i)) for i in 10).encode('utf8')

d.decode('cp1251').encode('utf8')

double num = Double.parseDouble(value);
return (int) Math.round(num);

Nearly Useless

Totally Useless

Functional Incorrect

Functional Correct

return BigDecimal.valueOf(
Double.parseDouble(value)).setScale(0, 
RoundingMode.HALF_UP).intValue();

Evaluate the
usefulness

of the
generated

code snippet

Evaluate the
functional

correctness
of the

generated
code snippet

Figure 1: An illustration of ICE-Score. On the left-hand side, we input the task problems and corresponding
generated code snippets. On the right-hand side, ICE-Score outputs the corresponding assessments.

concepts and more complex syntax than natural083

language generation (Hindle et al., 2016). Tra-084

ditional reference-based evaluation metrics for085

code generation, such as BLEU (Papineni et al.,086

2002), ROUGE (Lin, 2004), and chrF (Popović,087

2015), rely on token matching to assess perfor-088

mance automatically. However, these metrics have089

demonstrated poor correlation with human evalu-090

ation (Evtikhiev et al., 2023) since they often un-091

derestimate the variety of outputs with the same092

semantic logic. While some studies have incor-093

porated programming features to improve these094

metrics, they have shown limited gains and poor095

correlation with functional correctness (Eghbali096

and Pradel, 2022; Tran et al., 2019). Alternatively,097

researchers have proposed using well-designed test098

suites to objectively evaluate code generation per-099

formance at the function level (Chen et al., 2021;100

Zheng et al., 2023; Cassano et al., 2023). However,101

developing these test suites requires programming102

expertise, which can be impractical and costly in103

low-resource scenarios. Additionally, executing104

model-generated code poses a security risk and105

must be run in an isolated sandbox, which is tech-106

nically cumbersome.107

More recently, CodeBERTScore (Zhou et al.,108

2023), a neural-model-based evaluation metric,109

has been proposed, showing a higher correla-110

tion with functional correctness and human pref-111

erences by capturing the semantic information112

of reference code and generated code. However,113

CodeBERTScore still relies on high-quality refer-114

ences that can be difficult and expensive to obtain.115

Moreover, the limited performance of the Code-116

BERT (Feng et al., 2020) backbone suggests that 117

it has not yet reached a human-level understand- 118

ing of source code, limiting the effectiveness of 119

CodeBERTScore. Therefore, more advanced evalu- 120

ation metrics are needed that can better capture the 121

complex syntax and semantics of code intelligence 122

tasks. 123

To address these challenges, we propose a novel 124

evaluation metric based on LLMs trained on both 125

text and code, shown in Figure 1. Specifically, 126

we Instruct LLMs to perform human-like multi- 127

dimensional Code Evaluation, where the metric 128

is denoted as ICE-Score. Our metric leverages 129

the recent NLG metric, G-EVAL (Liu et al., 2023), 130

but achieves superior correlations with subjective 131

human preferences and objective functional cor- 132

rectness, both at the example and corpus levels. 133

Different from G-EVAL, ICE-Score only relies 134

on assessment criteria and evaluation step template, 135

without the need for instruction generation and 136

weighted scoring function. 137

Based on our extensive evaluation, we have sum- 138

marized our contributions as follows: 139

• We designed the first multi-dimensional and 140

reference-free automatic evaluation metric for 141

code intelligence tasks via large language 142

models. 143

• We conducted extensive experiments to 144

demonstrate the efficacy of ICE-Score on 145

four programming languages (Java, Python, 146

C, C++, and JavaScript) from two aspects 147

(human-based usefulness and execution-based 148

functional correctness). 149

2



• We further discussed several aspects that can150

improve the performance of ICE-Score, in-151

cluding the backbone model performance and152

reasoning capability.153

2 Method154

Our evaluation metric ICE-Score, inspired by155

G-EVAL (Liu et al., 2023), consists of two main156

components: 1) task definition, evaluation crite-157

ria, and detailed evaluation steps, and 2) a given158

problem and generated code snippet for evaluation.159

Different from G-EVAL, we only require the input160

of evaluation criteria and template-based evaluation161

steps, without the need for generation from LLMs.162

In addition, our metric does not need a weighted163

scoring function after iterative score generation.164

These two differences suggest that ICE-Score is165

more cost-friendly and efficient.166

2.1 Instructions for Code Evaluation167

The evaluation of code quality involves two main168

aspects: 1) human judgment of code usefulness169

and 2) execution-based functional correctness. To170

provide a comprehensive evaluation, we adopt the171

design of G-EVAL for the general task instruction,172

as follows:173

You will be given the code snippet for a174

problem. Your task is to rate the code175

snippet only on one metric. Please make176

sure you read and understand these in-177

structions carefully. Please keep this doc-178

ument open while reviewing, and refer to179

it as needed.180

Regarding the task-agnostic prompt, we have181

designed the evaluation criteria for assessing code182

usefulness, as shown in Appendix A.1. These cri-183

teria are aligned with previous human evaluations184

of code quality (Evtikhiev et al., 2023). To evaluate185

functional correctness, we emphasize the impor-186

tance of considering unit tests during the evalua-187

tion process. We present the following criteria for188

evaluating functional correctness, as provided in189

Appendix A.2.190

For the instruction of evaluation steps, we pro-191

vide a template-based prompt:192

Evaluation Steps:193

1. Read the problem carefully and194

identify the required functionalities of195

the implementation.196

2. Read the code snippet and compare it197

to the problem. Check if the code snippet 198

covers all required functionalities of 199

the problem, and if it aligns with the 200

Evaluation Criteria. 201

3. Assign a score for [Evaluation 202

Aspect] on a scale of 0 to 4, where 0 is 203

the lowest and 4 is the highest based on 204

the Evaluation Criteria. 205

206

Here, we define [Evaluation Aspect] as any 207

aspects that are emphasized during the evaluation. 208

In our paper, we consider code usefulness and 209

functional correctness. 210

2.2 Inputs of Code Evaluation 211

It is worth noting that most code generative models 212

do not take formatting into account, resulting in 213

unformatted code that requires post-processing of 214

code formatting to be understood, compiled, and 215

executed (Zheng et al., 2023). Additionally, auto- 216

matic evaluation metrics for code generation, such 217

as CodeBLEU (Ren et al., 2020) and RUBY (Tran 218

et al., 2019), still rely on language-specific program 219

parsers 2. However, based on prior findings that 220

LLMs can robustly understand input data (Huang 221

et al., 2022; Zhuo et al., 2023; Zhu et al., 2023), 222

we hypothesize that LLMs can also understand 223

programming context without proper formatting. 224

Therefore, for evaluation, we input the problems 225

and generated code (and reference code, if pro- 226

vided). When the reference code is provided, we 227

slightly modify the evaluation steps in the prompt 228

to incorporate it. 229

3 Experiment Setup 230

We evaluate the effectiveness of ICE-Score us- 231

ing GPT-3.5 (GPT-3.5-turbo3) as the back- 232

bone across multiple datasets and programming 233

languages. We conduct two experiments to inves- 234

tigate the correlation between ICE-Score and 235

human preference and functional correctness, re- 236

spectively. We compare the performance of LLM- 237

based evaluations against 7 predominant automatic 238

evaluation metrics, including the state-of-the-art 239

CodeBERTScore (Zhou et al., 2023). To measure 240

the correlation with human preference, we use the 241

CoNaLa dataset (Yin et al., 2018) and correspond- 242

ing human annotation on the generated code from 243

2https://tree-sitter.github.io/
3https://platform.openai.com/docs/

models/gpt-3-5

3

https://tree-sitter.github.io/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5


various models trained on the dataset (Evtikhiev244

et al., 2023). To measure the correlation with245

functional correctness, we use the HumanEval-X246

dataset (Zheng et al., 2023). We do not consider247

distinguishability as an evaluation option, as prior248

work (Zhou et al., 2023) has shown it to be an249

unreliable meta-metric that cannot substitute for250

execution-based or human-based ratings.251

3.1 Automatic Evaluation Metric Baselines252

The baseline metrics we include can be classified253

into two groups: string-based and neural-model-254

based evaluation.255

String-based Evaluation Most evaluation met-256

rics in code generation have been adapted from257

natural language generation (NLG) and rely on258

comparing the generated code to reference code.259

The most commonly used metric is BLEU (Pap-260

ineni et al., 2002), which computes the overlaps261

of n-grams in the generated output with those in262

the reference, where the n-grams are tokenized263

using a language-specific tokenizer (Post, 2018).264

Other metrics include ROUGE-L (Lin, 2004), a265

recall-oriented metric that looks for the longest266

common subsequence between the reference and267

the generated code, and METEOR (Banerjee and268

Lavie, 2005), which is based on unigram match-269

ing between the generated code and the reference.270

However, studies have shown that BLEU may yield271

similar results for models with different quality272

levels from the perspective of human graders in273

code generation (Evtikhiev et al., 2023), leading274

to the proposal of new evaluation metrics such as275

RUBY (Tran et al., 2019). RUBY takes the code276

structure into account and compares the program277

dependency graphs (PDG) of the reference and the278

candidate. If the PDG is impossible to build, the279

metric falls back to comparing the abstract syntax280

tree (AST), and if the AST is also impossible to281

build, it compares the weighted string edit distance282

between the tokenized reference and candidate se-283

quence. Another recent metric is CodeBLEU (Ren284

et al., 2020), which is a composite metric that com-285

putes a weighted average of four sub-metrics treat-286

ing code differently: as a data-flow graph, as an287

abstract syntax tree, and as text. CodeBLEU is288

designed to evaluate the quality of generated code289

for code generation, code translation, and code re-290

finement tasks.291

Neural-model-based Evaluation Neural-model-292

based evaluation is becoming increasingly impor-293

Metric Example Corpus
τ rp rs τ rp rs

BLEU .439 .522 .488 .423 .572 .542
CodeBLEU .292 .363 .331 .259 .397 .339
chrF .458 .570 .515 .449 .592 .578
ROUGE-L .447 .529 .499 .432 .581 .552
METEOR .410 .507 .462 .415 .557 .534
RUBY .331 .397 .371 .339 .493 .439
CodeBERTScore-F1 .500 .609 .556 .464 .579 .595
CodeBERTScore-F3 .505 .609 .563 .437 .549 .564

ICE-Score .556 .613 .594 .546 .649 .635
Ref-ICE-Score .554 .617 .591 .539 .661 .630

Table 1: Example-level and corpus-level Kendall-
Tau (τ ), Pearson (rp) and Spearman (rs) corre-
lations with the human preferred usefulness on
CoNaLa. ICE-Score: without reference code in-
puts, or reference-free; Ref-ICE-Score: reference-
enhanced. The best performance is bold. The second-
best performance is underlined.

tant for evaluating the quality of code generated 294

by deep learning models. CodeBERTScore (Zhou 295

et al., 2023) is one of the latest approaches 296

that leverages pre-trained code models like Code- 297

BERT (Feng et al., 2020) and best practices from 298

natural language generation evaluation to assess 299

the quality of generated code. CodeBERTScore 300

encodes the generated code and reference code in- 301

dependently and considers the natural language 302

context, contextual information of each token, and 303

implementation diversity. It enables the compar- 304

ison of code pairs that are lexically different and 305

calculates precision and recall based on the best- 306

matching token vector pairs. This approach pro- 307

vides an effective way to evaluate the effectiveness 308

of deep learning models for code intelligence tasks. 309

Note that the authors of CodeBERTScore provided 310

both F1 and F3 scores, with the optional source in- 311

put. Therefore, we use these four language-specific 312

variants of CodeBERTScore in our experiments. 313

3.2 Datasets and Evaluation Aspects 314

Human-based Usefulness Experiments Similar 315

to (Zhou et al., 2023), we conduct an evaluation on 316

the CoNaLa benchmark (Yin et al., 2018), which is 317

a widely used dataset for natural language context 318

to Python code generation. To measure the corre- 319

lation between each evaluation metric and human 320

preference, we utilize the human annotations pro- 321

vided by (Evtikhiev et al., 2023). Specifically, for 322

each example in the dataset, experienced software 323

developers were asked to grade the generated code 324

snippets from five different models. The grading 325

4



Metric Java C++ Python JavaScript Average
τ rs τ rs τ rs τ rs τ rs

BLEU .337 .401 .146 .174 .251 .297 .168 .199 .225 .268
CodeBLEU .355 .421 .157 .187 .272 .323 .226 .267 .253 .299
chrF .346 .413 .166 .198 .262 .312 .186 .220 .240 .286
ROUGE-L .327 .389 .143 .171 .240 .284 .151 .179 .215 .256
METEOR .358 .425 .174 .208 .276 .327 .195 .231 .251 .298
RUBY .340 .401 .139 .165 .216 .255 .138 .163 .208 .246
CodeBERTScore-F1 .314 .375 .148 .177 .231 .276 .145 .172 .209 .250
CodeBERTScore-F3 .356 .426 .166 .198 .262 .312 .189 .226 .243 .291

ICE-Score .427 .442 .320 .326 .279 .282 .316 .321 .336 .343
Ref-ICE-Score .388 .404 .274 .282 .318 .325 .340 .348 .330 .340

Table 2: Example-level Kendall-Tau (τ ) and Spearman (rs) correlations with the execution-based functional
correctness on HumanEval. ICE-Score: without reference code inputs, or reference-free; Ref-ICE-Score:
with reference code inputs, or reference-enhanced. The best performance is bold. The second-best performance is
underlined.

scale ranges from zero to four, with zero indicating326

that the generated code is irrelevant and unhelpful,327

and four indicating that the generated code solves328

the problem accurately. The dataset comprises a to-329

tal of 2,860 annotated code snippets (5 generations330

× 472 examples) with each snippet being graded331

by 4.5 annotators on average.332

Execution-based Functional Correctness Ex-333

periments We conduct an evaluation of func-334

tional correctness using the HumanEval bench-335

mark (Chen et al., 2021), which provides natu-336

ral language goals, input-output test cases, and337

reference solutions written by humans for each338

example. The benchmark originally consists of339

164 coding problems in Python, and has been ex-340

tended by (Cassano et al., 2023) to 18 other pro-341

gramming languages, including Java, C++, Python,342

and JavaScript. We chose to evaluate our mod-343

els on these languages, as they are among the344

most popular programming languages. The trans-345

lated examples also include the predictions of346

code-davinci-002 and their corresponding347

functional correctness scores. Inspired by (Zhou348

et al., 2023), we obtain them from the HumanEval-349

X dataset (Zheng et al., 2023). As each problem350

has nearly 200 generated code samples on average,351

it would be computationally expensive to evaluate352

them all using LLMs. Therefore, we randomly353

select 20 samples from each problem, and collect354

all samples from problems where no more than 20355

versions of code were generated.356

Correlation Metrics To measure the correlation357

between each metric’s scores and the references,358

we follow best practices in natural language evalu-359

ation and used Kendall-Tau (τ ), Pearson (rp), and 360

Spearman (rs) coefficients.4. To systematically 361

study the efficacy of each automatic evaluation 362

metric, we compute both example-level and corpus- 363

level correlations. The example-level correlation is 364

the average correlation of each problem example, 365

while the corpus-level correlation is the correlation 366

of all aggregated examples in the task. 367

4 Results 368

Human-based Usefulness Table 1 shows the cor- 369

relation between different metrics with human pref- 370

erence. We compare two variants of our evaluation 371

approach, reference-free and reference-enhanced 372

evaluations, with 10 baseline metrics and their vari- 373

ants. We find that ICE-Score outperform these 374

metrics by a significant margin, regarding both 375

example- and corpus-level correlations. Our ob- 376

servation is consistent with the work of CodeBER- 377

Score, where the variants of CodeBERScore mostly 378

outperform the strong baselines like chrF and 379

ROUGE-L. For example, ICE-Score achieves 380

0.556 and 0.546 measured by Spearman correla- 381

tion on example level and corpus level, respec- 382

tively. In contrast, prior evaluation metrics barely 383

reach a score of 0.5. In addition, we find that 384

Ref-ICE-Score does not significantly improve 385

the performance, indicating the reference code may 386

not be optimized. Our further analysis of the hu- 387

man rating of CoNaLa reference code complies 388

with this implication, where the average score of 389

the reference code only achieves 3.4 out of 4, sug- 390

gesting that not all human practitioners consider 391

4We use the implementations from https://scipy.
org/

5

https://scipy.org/
https://scipy.org/


Metric Java C++ Python JavaScript Average
τ rs τ rs τ rs τ rs τ rs

BLEU .267 .326 .225 .276 .281 .344 .220 .270 .248 .304
CodeBLEU .293 .359 .212 .260 .303 .371 .315 .385 .281 .343
chrF .290 .355 .266 .325 .328 .402 .279 .342 .291 .356
ROUGE-L .280 .342 .234 .286 .296 .363 .216 .264 .256 .314
METEOR .318 .389 .260 .319 .349 .427 .311 .380 .309 .379
RUBY .276 .337 .219 .268 .279 .341 .219 .268 .248 .303
CodeBERTScore-F1 .244 .298 .219 .268 .264 .324 .214 .262 .235 .288
CodeBERTScore-F3 .281 .344 .243 .297 .313 .384 .261 .320 .275 .336

ICE-Score .330 .345 .313 .321 .294 .298 .315 .323 .313 .322
Ref-ICE-Score .412 .438 .367 .383 .425 .446 .432 .455 .409 .431

Table 3: Corpus-level Kendall-Tau (τ ) and Spearman (rs) correlations with the execution-based functional cor-
rectness on HumanEval. ICE-Score: without reference code inputs, or reference-free; Ref-ICE-Score: with
reference code inputs, or reference-enhanced. The best performance is bold. The second-best performance is
underlined.

the reference fully useful.392

Execution-based Functional Correctness Ta-393

ble 2 and Table 3 present the results of394

example- and corpus-level functional correct-395

ness, respectively. From Table 2, we observe396

that both reference-free and reference-enhanced397

Ref-ICE-Scoresconsistently outperform the398

other baselines across all four programming lan-399

guages on the example level. ICE-Score even400

outperforms the reference-enhanced one, suggest-401

ing potential bias in some reference code. Addi-402

tionally, we find that METEOR and CodeBLEU403

receive better correlations than all variants of404

CodeBERTScore, indicating that they are still405

strong baselines compared to the recent neural-406

model-based evaluators in code generation. In407

Table 3, we observe that our Ref-ICE-Score408

achieves state-of-the-art performance among all409

evaluation metrics. When compared to other base-410

lines, ICE-Score still achieves comparable re-411

sults to the source-free CodeBERTScore-F3.412

5 Ablation Study413

Does reasoning help the code evaluation? Prior414

work (Wei et al.; Kojima et al.) has demon-415

strated that the performance of LLMs can be sig-416

nificantly improved via Chain-of-Thought (CoT)417

and Zero-Shot-Chain-of-Thought (ZS-CoT), where418

the prompts instruct LLMs to perform the task in419

a step-by-step manner. Here, we explore the zero-420

shot reasoning ability of LLMs in evaluating code421

generation. Specifically, we instruct GPT-3.5 to422

perform CoT-evaluation by adding "Step-by-step423

Evaluation:" at the end of the prompt. An example424

of the zero-shot-CoT prompt is shown in Figure 2.425

Metric Example Corpus
τ rp rs τ rp rs

ICE-Score .556 .613 .594 .546 .649 .635
CoT-ICE-Score .561 .628 .600 .579 .703 .665
Ref-ICE-Score .554 .617 .591 .539 .661 .630
CoT-Ref-ICE-Score .571 .639 .607 .583 .712 .667

Table 4: Example-level and corpus-level Kendall-
Tau (τ ), Pearson (rp) and Spearman (rs) correla-
tions with the human preferred usefulness on CoNaLa.
ICE-Score: without reference code inputs, or
reference-free; Ref-ICE-Score: with reference
code inputs, or reference-enhanced. CoT- indicates
the use of ZS-CoT. The best performance is bold.

Instead of using LLMs to extract the evaluation 426

score from the reasoning steps, like the original 427

metric of zero-shot-CoT via multiple queries, we 428

design a rule-based parser to extract scores. Due 429

to limited resources, we only evaluate on CoNaLa 430

in Table 4. Our results show that ZS-CoT can 431

significantly improve the reliability of code evalua- 432

tion. Additionally, we find that Ref-ICE-Score 433

can achieve better results than reference-free ones 434

via ZS-CoT, even though their performances are 435

similar without CoT processing. This suggests that 436

LLMs can exploit the use of reference code through 437

reasoning. 438

Does more-capable backbone LLM yield better 439

performance on code evaluation? As shown 440

in previous studies (OpenAI, 2023; Bubeck et al., 441

2023), GPT-4 significantly outperforms GPT-3.5 442

on various tasks. Therefore, we use GPT-4 as 443

the backbone model for ICE-Score and evalu- 444

ate its performance on CoNaLa. The results in 445

Table 5 indicate that GPT-4 consistently surpasses 446

GPT-3.5-turbo on evaluating code, suggesting 447

6



Problem
How to convert a string
from CP-1251 to UTF-8?

Generation

Usefulness (Step-by-step Evaluation)

import codecs

0 (out of 4)
(totally useless)

1. The problem requires a solution to
convert a string from CP-1251 to UTF-8.
2. The code snippet only imports the
codecs module, but does not provide any
implementation for the required
functionality.
3. Based on step 2, the code snippet is
not helpful for solving the problem.
Usefulness: 0

Problem
How to convert a string
from CP-1251 to UTF-8?

Generation

Usefulness (Score Only)

import codecs

3 (out of 4)
(almost useful)

(a) ICE-Score

(b) CoT-ICE-Score

✅

❌

Figure 2: Example inputs and outputs with (a) ICE-Score, (b) ICE-Score with Zero-Shot Chain-of-Thought.
With the step-by-step evaluation, the output assessment is more aligned with human preference.

Metric Example Corpus
τ rp rs τ rp rs

ICE-Score-3.5 .556 .613 .594 .546 .649 .635
ICE-Score-4 .612 .658 .611 .592 .720 .688
Ref-ICE-Score-3.5 .554 .617 .591 .539 .661 .630
Ref-ICE-Score-4 .592 .647 .634 .632 .744 .690

Table 5: Example-level and corpus-level Kendall-
Tau (τ ), Pearson (rp) and Spearman (rs) correla-
tions with the human preferred usefulness on CoNaLa.
ICE-Score: without reference code inputs, or
reference-free; Ref-ICE-Score: with reference
code inputs, or reference-enhanced. -3.5 and -4 sug-
gest the different backbone models. The best perfor-
mance is bold.

it has the superior capability of code comprehen-448

sion. We also note that using a more capable model449

like GPT-4 can guarantee even better performance,450

compared to using ZS-CoT techniques in Table 4.451

6 Discussion452

Data Contamination Evaluations on recent453

closed-source LLMs have been criticized for the454

possibility of data contamination (Aiyappa et al.,455

2023), where the model may have already seen456

the evaluation datasets during training, due to the457

opaque training details of these models. For in-458

stance, Kocmi and Federmann (2023) conducted459

an empirical study on a few closed-source LLMs,460

including GPT-3.5, and suggested that LLMs are461

the state-of-the-art evaluators of translation qual-462

ity, based on the evaluation of the WMT22 Metric463

Shared Task (Freitag et al., 2022). However, as464

most of the evaluated models were trained on data465

prior to 20225, it is highly likely that these models 466

have been trained with some human-rated trans- 467

lation quality data. Similarly, G-EVAL(Liu et al., 468

2023) shows that GPT-3.5 and GPT-4 are the state- 469

of-the-art evaluators of natural language generation 470

(NLG) with the evaluation of three NLG datasets. 471

However, as these human-annotated datasets were 472

released before 2021, it is probable that they were 473

included in the training data of GPT-3.5 and GPT-4. 474

In contrast, our work is minimally impacted by data 475

contamination, as we report the data release year 476

in Table 6. Our analysis suggests that only CoNaL 477

and HumanEval (Python) datasets may have been 478

contaminated, and it is unlikely that GPT-3.5 has 479

seen any human annotation or generated code dur- 480

ing training. 481

Human-aligned Evaluation Beyond Code Gen- 482

eration While our study has shown that LLMs 483

can achieve state-of-the-art performance in eval- 484

uating the functional correctness and usefulness 485

of generated source code, the question remains as 486

to whether LLMs can be utilized to evaluate code 487

intelligence tasks beyond code generation. Allama- 488

nis et al. (2018) have identified several downstream 489

applications such as code translation, commit mes- 490

sage generation, and code summarization. While 491

some studies have investigated the human evalu- 492

ation of these tasks, none of them have released 493

the annotation data or fully described the human 494

evaluation criteria. This presents a challenge for 495

analyzing if ICE-Score can be adapted to these 496

5https://platform.openai.com/docs/
model-index-for-researchers

7

https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers


Dataset Release Year Likely to be contaminated?

CoNaLa 2018 ✓

human-annotated CoNaLa w/ generated code 2023 ✗

HumanEval (Python) 2021 ✓

HumanEval-X (w/o Python) 2023 ✗

human-annotated HumanEval-X w/ generated code 2023 ✗

Table 6: Dataset, Release Year and the likelihood of data contamination for each dataset used in our study.

tasks. For example, Hu et al. (2022) proposed497

a human evaluation metric for code documenta-498

tion generation quality, which is specifically de-499

signed for code comment generation and commit500

message generation. Their metric includes three501

aspects: Language-related, Content-related, and502

Effectiveness-related, with detailed task descrip-503

tions and explanations of assigned scores. We pro-504

pose that the information provided in their metric505

can be used to create prompts for LLM-based evalu-506

ation and enable human-aligned evaluation of code507

documentation generation.508

7 Related Work509

Large Language Models for Code. LLMs pre-510

trained on large-scale code data have demonstrated511

strong capabilities in code intelligence tasks, such512

as code completion (Li et al., 2023; Luo et al., 2023;513

Rozière et al., 2023), code summarization (Ahmed514

and Devanbu, 2022; Sun et al., 2023) and pro-515

gram repair (Surameery and Shakor, 2023; Sobania516

et al., 2023). However, they remain unreliable,517

particularly in scenarios that require an understand-518

ing of natural language. Recent studies (Muen-519

nighoff et al., 2023b; Ma et al.) show that pre-520

training on both text and code results in the opti-521

mal model performance on natural language and522

code understanding. Furthermore, in order to make523

LLMs more human-aligned and more capable of524

performing complex tasks, instruction tuning is525

proposed to enhance the capability of following526

natural language requirements. In this work, we527

utilize such instruction-tuned LLMs to conduct528

multi-dimensional code evaluation via various in-529

structions.530

Automatic Evaluation Metrics for Generation.531

The quest for reliable and robust automatic eval-532

uation metrics for generated content has been a533

cornerstone in natural language processing. Tradi-534

tionally, string-based metrics such as BLEU (Pap-535

ineni et al., 2002), ROUGE (Lin, 2004), and ME-536

TEOR (Banerjee and Lavie, 2005) have dominated537

the landscape, primarily when assessing machine 538

translation or text summarization outputs. While 539

these metrics provide a quick and cost-effective 540

means of evaluating the quality of the generated 541

text, they often fall short of capturing the nuanced 542

intricacies and semantic richness inherent in natu- 543

ral language. To mitigate such drawbacks, a few 544

neural-based multi-dimensional evaluation met- 545

rics have been proposed for text generation, such 546

as UniEval (Zhong et al., 2022), GPTScore (Fu 547

et al., 2023) and G-EVAL (Liu et al., 2023). How- 548

ever, when it comes to code generation, where 549

both syntactical correctness and semantic intent 550

are paramount, there are few attempts to address 551

these challenges. Instead, the most dominant met- 552

rics still compute the similarity between generated 553

code and reference code. In this work, we intro- 554

duce ICE-Score, a novel metric that not only 555

addresses the limitations of its predecessors but 556

also harnesses the capabilities of LLMs, setting a 557

new benchmark for the evaluation of code genera- 558

tion tasks. 559

8 Conclusion 560

In this paper, we propose a novel evaluation met- 561

ric based on large language models trained on both 562

text and code, which can better capture the complex 563

syntax and semantics of code intelligence tasks. 564

Our metric achieves superior correlations with sub- 565

jective human preferences and objective functional 566

correctness, both at the example and corpus levels, 567

without reference and test suites. We conduct an ex- 568

tensive evaluation of four programming languages 569

(Java, Python, C, C++, and JavaScript) and demon- 570

strate the effectiveness of our proposed method 571

on human-based usefulness and execution-based 572

functional correctness. We have publicly released 573

our evaluation metric and datasets to encourage 574

the development of more accurate and effective 575

evaluation metrics for tasks involving source code. 576

8



Limitations577

Our proposed evaluation metric is based on the as-578

sumption that LLMs can follow the instructions to579

evaluate the code snippets. The backbone models580

we investigated are closed-source state-of-the-art581

LLMs from OepnAI. As we noticed that there is582

a huge performance gap between current closed-583

source and open-source LLMs, it is possible that584

ICE-Score can be adapted with an open-source585

LLM trained on code and text, such as Wizard-586

Coder (Luo et al., 2023) and OctoPack (Muen-587

nighoff et al., 2023a). Hence, we encourage fu-588

ture investigations on open-source LLMs for code589

evaluation. In addition, as discussed in Section 6,590

our experiments only focus on two code genera-591

tion tasks. There are other code intelligence tasks592

like program repair and code summarization. How-593

ever, due to the limited study on human evalua-594

tion of these tasks, no open-source dataset is pub-595

licly available or documented in detail. Finally,596

ICE-Score assumes that either model weights597

or model APIs are available, which is costly for598

some users. We, therefore, suggest future work on599

proposing low-cost evaluation metrics.600

References601

Toufique Ahmed and Premkumar Devanbu. 2022.602
Few-shot training llms for project-specific code-603
summarization. In Proceedings of the 37th604
IEEE/ACM International Conference on Automated605
Software Engineering, pages 1–5.606

Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-607
Yeol Ahn. 2023. Can we trust the evaluation on608
chatgpt? arXiv preprint arXiv:2303.12767.609

Loubna Ben Allal, Raymond Li, Denis Kocetkov,610
Chenghao Mou, Christopher Akiki, Carlos Munoz611
Ferrandis, Niklas Muennighoff, Mayank Mishra,612
Alex Gu, Manan Dey, et al. 2023. Santa-613
coder: don’t reach for the stars! arXiv preprint614
arXiv:2301.03988.615

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,616
and Charles Sutton. 2018. A survey of machine learn-617
ing for big code and naturalness. ACM Computing618
Surveys (CSUR), 51(4):1–37.619

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An620
automatic metric for mt evaluation with improved621
correlation with human judgments. In Proceedings622
of the acl workshop on intrinsic and extrinsic623
evaluation measures for machine translation and/or624
summarization, pages 65–72.625

Tom Brown, Benjamin Mann, Nick Ryder, Melanie626
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind627

Neelakantan, Pranav Shyam, Girish Sastry, Amanda 628
Askell, et al. 2020. Language models are few-shot 629
learners. Advances in neural information processing 630
systems, 33:1877–1901. 631

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 632
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, 633
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund- 634
berg, et al. 2023. Sparks of artificial general intelli- 635
gence: Early experiments with gpt-4. arXiv preprint 636
arXiv:2303.12712. 637

Federico Cassano, John Gouwar, Daniel Nguyen, Syd- 638
ney Nguyen, Luna Phipps-Costin, Donald Pinckney, 639
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Ander- 640
son, Molly Q Feldman, Arjun Guha, Michael Green- 641
berg, and Abhinav Jangda. 2023. MultiPL-E: A scal- 642
able and polyglot approach to benchmarking neu- 643
ral code generation. IEEE Transactions of Software 644
Engineering (TSE). 645

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 646
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 647
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 648
Greg Brockman, et al. 2021. Evaluating large 649
language models trained on code. arXiv preprint 650
arXiv:2107.03374. 651

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 652
Denny Zhou. 2023. Teaching large language models 653
to self-debug. arXiv preprint arXiv:2304.05128. 654

Aryaz Eghbali and Michael Pradel. 2022. Crystalbleu: 655
precisely and efficiently measuring the similarity of 656
code. In 37th IEEE/ACM International Conference 657
on Automated Software Engineering, pages 1–12. 658

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, 659
and Timofey Bryksin. 2023. Out of the bleu: how 660
should we assess quality of the code generation mod- 661
els? Journal of Systems and Software, 203:111741. 662

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, 663
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing 664
Qin, Ting Liu, Daxin Jiang, et al. 2020. Code- 665
bert: A pre-trained model for programming and 666
natural languages. In Findings of the Association 667
for Computational Linguistics: EMNLP 2020, pages 668
1536–1547. 669

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo, 670
Craig Stewart, Eleftherios Avramidis, Tom Kocmi, 671
George Foster, Alon Lavie, and André FT Martins. 672
2022. Results of wmt22 metrics shared task: Stop 673
using bleu–neural metrics are better and more ro- 674
bust. In Proceedings of the Seventh Conference on 675
Machine Translation (WMT), pages 46–68. 676

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei 677
Liu. 2023. Gptscore: Evaluate as you desire. arXiv 678
preprint arXiv:2302.04166. 679

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong 680
Su, and Premkumar Devanbu. 2016. On the natu- 681
ralness of software. Communications of the ACM, 682
59(5):122–131. 683

9



Xing Hu, Qiuyuan Chen, Haoye Wang, Xin Xia, David684
Lo, and Thomas Zimmermann. 2022. Correlating685
automated and human evaluation of code documen-686
tation generation quality. ACM Transactions on687
Software Engineering and Methodology (TOSEM),688
31(4):1–28.689

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,690
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.691
Large language models can self-improve. arXiv692
preprint arXiv:2210.11610.693

Tom Kocmi and Christian Federmann. 2023. Large694
language models are state-of-the-art evaluators of695
translation quality.696

Tom Kocmi, Christian Federmann, Roman Grund-697
kiewicz, Marcin Junczys-Dowmunt, Hitokazu Mat-698
sushita, and Arul Menezes. 2021. To ship or not to699
ship: An extensive evaluation of automatic metrics700
for machine translation. In Proceedings of the Sixth701
Conference on Machine Translation, pages 478–494,702
Online. Association for Computational Linguistics.703

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,704
Yutaka Matsuo, and Yusuke Iwasawa. Large lan-705
guage models are zero-shot reasoners. In Advances706
in Neural Information Processing Systems.707

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas708
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc709
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.710
2023. Starcoder: may the source be with you! arXiv711
preprint arXiv:2305.06161.712

Chin-Yew Lin. 2004. Rouge: A package for automatic713
evaluation of summaries. In Text summarization714
branches out, pages 74–81.715

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,716
Ruochen Xu, and Chenguang Zhu. 2023. Gpteval:717
Nlg evaluation using gpt-4 with better human align-718
ment. arXiv preprint arXiv:2303.16634.719

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-720
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,721
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:722
Empowering code large language models with evol-723
instruct. arXiv preprint arXiv:2306.08568.724

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang,725
Yu Jiang, Changjian Wang, and Shanshan Li. At726
which training stage does code data help llms reason-727
ing?728

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler729
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,730
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,731
et al. 2023. Self-refine: Iterative refinement with732
self-feedback. arXiv preprint arXiv:2303.17651.733

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai734
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam735
Singh, Xiangru Tang, Leandro von Werra, and736
Shayne Longpre. 2023a. Octopack: Instruction tun-737
ing code large language models. arXiv preprint738
arXiv:2308.07124.739

Niklas Muennighoff, Alexander M Rush, Boaz Barak, 740
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, 741
Sampo Pyysalo, Thomas Wolf, and Colin Raffel. 742
2023b. Scaling data-constrained language models. 743
arXiv preprint arXiv:2305.16264. 744

OpenAI. 2023. Gpt-4 technical report. 745

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 746
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 747
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 748
2022. Training language models to follow instruc- 749
tions with human feedback. Advances in Neural 750
Information Processing Systems, 35:27730–27744. 751

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 752
Jing Zhu. 2002. Bleu: a method for automatic 753
evaluation of machine translation. In Proceedings 754
of the 40th annual meeting of the Association for 755
Computational Linguistics, pages 311–318. 756

Maja Popović. 2015. chrf: character n-gram f-score for 757
automatic mt evaluation. In Proceedings of the tenth 758
workshop on statistical machine translation, pages 759
392–395. 760

Matt Post. 2018. A call for clarity in reporting BLEU 761
scores. In Proceedings of the Third Conference on 762
Machine Translation: Research Papers, pages 186– 763
191, Brussels, Belgium. Association for Computa- 764
tional Linguistics. 765

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, 766
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio 767
Blanco, and Shuai Ma. 2020. Codebleu: a method 768
for automatic evaluation of code synthesis. arXiv 769
preprint arXiv:2009.10297. 770

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 771
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 772
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 773
Code llama: Open foundation models for code. arXiv 774
preprint arXiv:2308.12950. 775

Dominik Sobania, Martin Briesch, Carol Hanna, and 776
Justyna Petke. 2023. An analysis of the automatic 777
bug fixing performance of chatgpt. arXiv preprint 778
arXiv:2301.08653. 779

Weisong Sun, Chunrong Fang, Yudu You, Yun Miao, 780
Yi Liu, Yuekang Li, Gelei Deng, Shenghan Huang, 781
Yuchen Chen, Quanjun Zhang, et al. 2023. Auto- 782
matic code summarization via chatgpt: How far are 783
we? arXiv preprint arXiv:2305.12865. 784

Nigar M Shafiq Surameery and Mohammed Y Shakor. 785
2023. Use chat gpt to solve programming bugs. 786
International Journal of Information Technology & 787
Computer Engineering (IJITC) ISSN: 2455-5290, 788
3(01):17–22. 789

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and 790
Tien Nguyen. 2019. Does bleu score work for code 791
migration? In 2019 IEEE/ACM 27th International 792
Conference on Program Comprehension (ICPC), 793
pages 165–176. IEEE. 794

10

http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319


Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten795
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,796
et al. Chain-of-thought prompting elicits reasoning797
in large language models. In Advances in Neural798
Information Processing Systems.799

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan800
Vasilescu, and Graham Neubig. 2018. Learning801
to mine aligned code and natural language pairs802
from stack overflow. In International Conference803
on Mining Software Repositories, MSR, pages 476–804
486. ACM.805

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan806
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,807
Yang Li, et al. 2023. Codegeex: A pre-trained model808
for code generation with multilingual evaluations on809
humaneval-x. arXiv preprint arXiv:2303.17568.810

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu811
Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and812
Jiawei Han. 2022. Towards a unified multi-813
dimensional evaluator for text generation. In814
Proceedings of the 2022 Conference on Empirical815
Methods in Natural Language Processing, pages816
2023–2038.817

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Gra-818
ham Neubig. 2023. Codebertscore: Evaluating819
code generation with pretrained models of code. In820
Association for Computational Linguistics: EMNLP821
2023.822

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen823
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei824
Ye, Neil Zhenqiang Gong, Yue Zhang, et al. 2023.825
Promptbench: Towards evaluating the robustness of826
large language models on adversarial prompts. arXiv827
preprint arXiv:2306.04528.828

Terry Yue Zhuo, Yujin Huang, Chunyang Chen, and829
Zhenchang Xing. 2023. Red teaming chatgpt via jail-830
breaking: Bias, robustness, reliability and toxicity.831

A Prompts for Code Evaluation832

A.1 Code Usefulness833

Evaluation Criteria:834

Usefulness (0-4) Usefulness of the code835

snippet based on the problem descrip-836

tion.837

- A score of 0: Snippet is not at all helpful,838

it is irrelevant to the problem.839

- A score of 1: Snippet is slightly help-840

ful, it contains information relevant to841

the problem, but it is easier to write the842

solution from scratch.843

- A score of 2: Snippet is somewhat help-844

ful, it requires significant changes (com-845

pared to the size of the snippet), but is846

still useful.847

- A score of 3: Snippet is helpful, but 848

needs to be slightly changed to solve the 849

problem. 850

- A score of 4: Snippet is very helpful, it 851

solves the problem. 852

A.2 Functional Correctness 853

Evaluation Criteria: 854

Functional Correctness (0-4) - 855

Execution-based quality of the code 856

snippet combined with the problem. The 857

correctness is measured by all possible 858

unit tests and the comparison of the 859

reference code. The combination of the 860

code snippet and the problem should 861

pass all the possible tests based on your 862

understanding of the reference code. 863

The length of the code snippet can not 864

determine the correctness. You need to 865

assess the logic line by line. 866

- A score of 0 (failing all possible tests) 867

means that the code snippet is totally 868

incorrect and meaningless. 869

- A score of 4 (passing all possible tests) 870

means that the code snippet is totally 871

correct and can handle all cases. 872

873

B Automatic Evaluation Metric Baselines 874

Our implementations of the automatic 875

evaluation metric baselines except for 876

CodeBERTScore are based on https: 877

//github.com/JetBrains-Research/ 878

codegen-metrics. For CodeBERTScore, we 879

adopt the official release at https://github. 880

com/neulab/code-bert-score. 881

C Correlation Metrics 882

For all correlation metrics, we use the implemen- 883

tation from https://scipy.org/ and call 884

these APIs with the default settings. 885

D Rule-based Score Extraction from 886

Zero-shot Chain Of Thought 887

Evaluation 888

We demonstrate the general implementation of 889

score extraction: 890

1 import re 891
2 TASK_KEY_WORD = "usefulness" # or " 892

functional" 893
3 def get_gpt_answer(raw_content): 894
4 try: 895

11

https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
http://arxiv.org/abs/2301.12867
http://arxiv.org/abs/2301.12867
http://arxiv.org/abs/2301.12867
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/neulab/code-bert-score
https://github.com/neulab/code-bert-score
https://github.com/neulab/code-bert-score
https://scipy.org/


5 return int(raw_content)896
6 except:897
7 try:898
8 return process_raw_content(899

raw_content)900
9 except:901

10 return 0902
11903
12 def process_raw_content(content):904
13 # Clean up and split the content905
14 splits = content.lower().replace("("906

, "").replace(")", "").split("\n")907
15908
16 # Extract relevant lines and clean909

them up910
17 ls = [ll.strip(".")911
18 .replace("out of ", "/")912
19 .replace("/4", "")913
20 for l in splits914
21 for ll in l.lstrip("0123456789.915

").split(". ")916
22 if TASK_KEY_WORD in ll or "score917

" in ll]918
23919
24 # Extract the scores920
25 ans = [ll for l in ls for ll in l.921

split() if ll.isnumeric()]922
26923
27 # If there are multiple scores, take924

the most common one925
28 if len(set(ans)) != 1 and len(ans) >926

1:927
29 return int(Counter(ans).928

most_common(1)[0][0])929
30930
31 # If there are no scores or931

ambiguous scores, return 0 or 1932
32 if len(set(ans)) != 1:933
33 if "N/A" in content:934
34 return 0935
35 else:936
36 return 1937
37938
38 # Otherwise, return the single score939
39 return int(ans[0])940

Code Listing 1: Score Extractor Implementation

We note that our extraction process for the eval-941

uation metrics is entirely rule-based and may not942

be optimized for the best results.943

12


	Introduction
	Method
	Instructions for Code Evaluation
	Inputs of Code Evaluation

	Experiment Setup
	Automatic Evaluation Metric Baselines
	Datasets and Evaluation Aspects

	Results
	Ablation Study
	Discussion
	Related Work
	Conclusion
	Prompts for Code Evaluation
	Code Usefulness
	Functional Correctness

	Automatic Evaluation Metric Baselines
	Correlation Metrics
	Rule-based Score Extraction from Zero-shot Chain Of Thought Evaluation

