ICE-Score: Instructing Large Language Models to Evaluate Code

Anonymous ACL submission

Abstract

Recent advancements in the field of natural
language generation have facilitated the use
of large language models to assess the qual-
ity of generated text. Although these models
have shown promising results in tasks such as
machine translation and summarization, their
applicability in code intelligence tasks remains
limited without human involvement. The com-
plexity of programming concepts required for
such tasks makes it difficult to develop eval-
uation metrics that align with human judg-
ment. Token-matching-based metrics, such
as BLEU, have demonstrated weak correla-
tions with human practitioners in code intelli-
gence tasks. Moreover, utilizing human-written
test suites to evaluate functional correctness
can be challenging in domains with low re-
sources. To overcome these obstacles, we pro-
pose ICE-Score, a new evaluation metric via
instructing large language models (LLMs) for
code assessments. Our metric addresses the
limitations of existing approaches by achiev-
ing superior correlations with functional cor-
rectness and human preferences, without the
need for test oracles or references. We evaluate
the efficacy of our metric on two different as-
pects (human preference and execution success)
and four programming languages. Our results
demonstrate that our metric surpasses state-of-
the-art metrics for code generation, delivering
high levels of accuracy and consistency across
various programming languages and tasks. We
also make our evaluation metric and datasets
available to the public!, encouraging further
research in evaluating code intelligence tasks.

1 Introduction

Natural language generation (NLG) systems have
seen significant progress in developing large lan-
guage models (LLMs). These models have shown
great promise in generating high-quality and di-
verse texts that can be difficult to distinguish from

"https://anonymous.4open.science/r/
ICE-Score

human-written texts (Ouyang et al., 2022). How-
ever, evaluating the quality of NLG systems re-
mains a challenging task, primarily due to the lim-
itations of traditional evaluation metrics. Token-
matching-based metrics, such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004), have been
widely used to evaluate NLG systems but have
demonstrated poor correlation with human judg-
ment and a lack of ability to capture semantic
meanings (Kocmi et al., 2021). Furthermore, these
metrics require reference output, which can be chal-
lenging to obtain for new tasks and low-resource
domains (Liu et al., 2023).

In recent years, the use of LLMs as reference-
free evaluators for Natural Language Genera-
tion (NLG) tasks has gained attention among re-
searchers. This approach is strongly aligned with
human preferences, even when reference texts are
unavailable (Liu et al., 2023; Fu et al., 2023). The
underlying assumption behind this approach is that
LLMs possess a profound understanding of human-
generated text and task instructions, enabling them
to evaluate various NLG tasks through prompts.
The exceptional performance of LLMs in contex-
tual understanding and natural language generation,
as evidenced by studies (Brown et al., 2020), fur-
ther supports this assumption. Moreover, LLMs
trained on both textual and code-based data have
showcased remarkable capabilities in diverse down-
stream tasks related to source code, including code
generation (OpenAl, 2023; Allal et al., 2023; Li
et al., 2023). While a performance gap still ex-
ists between LLMs and human developers in code-
related tasks, recent research has illustrated that
LLMs can be enhanced to handle various source
code tasks with appropriate guidance (Chen et al.,
2023; Madaan et al., 2023). This indicates the sig-
nificant potential of LLMs in comprehending and
working with source code.

Code evaluation presents unique challenges, re-
quiring a deeper understanding of programming

https://anonymous.4open.science/r/ICE-Score
https://anonymous.4open.science/r/ICE-Score

Problem 3
How to convert a string
from CP-1251 to UTF-8?

10) .encode ('utf8')

E [.join(chr (int (i)) i

[d.decode ('cpl251') .encode ('utf8’)

' Problem
| <import stataments>

iclass Problem {

\ // Create a function that takes a value (string) representing a number
:// and returns the closest integer to it. If the number is equidistant
\// from two integers, round it away from zero.
:<Omitted Code>

'
: [double num = .parseDouble (value) ;
: eturn (int) .round (num) ;

'

: G:eturn .valueOf (

: Double.parseDouble (value)) .setScale (0,
'S goundingMode.) .intValue() ;

Evaluate the
usefulness
of the
generated
code snippet

Evaluate the
functional

correctness

generated
code snippet

Nearly Useless]

Totally Useless]

ICE-Score

Functional Incorrect]

Functional Correct J

of the

Figure 1: An illustration of ICE-Score. On the left-hand side, we input the task problems and corresponding
generated code snippets. On the right-hand side, ICE-Score outputs the corresponding assessments.

concepts and more complex syntax than natural
language generation (Hindle et al., 2016). Tra-
ditional reference-based evaluation metrics for
code generation, such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), and chrF (Popovié,
2015), rely on token matching to assess perfor-
mance automatically. However, these metrics have
demonstrated poor correlation with human evalu-
ation (Evtikhiev et al., 2023) since they often un-
derestimate the variety of outputs with the same
semantic logic. While some studies have incor-
porated programming features to improve these
metrics, they have shown limited gains and poor
correlation with functional correctness (Eghbali
and Pradel, 2022; Tran et al., 2019). Alternatively,
researchers have proposed using well-designed test
suites to objectively evaluate code generation per-
formance at the function level (Chen et al., 2021;
Zheng et al., 2023; Cassano et al., 2023). However,
developing these test suites requires programming
expertise, which can be impractical and costly in
low-resource scenarios. Additionally, executing
model-generated code poses a security risk and
must be run in an isolated sandbox, which is tech-
nically cumbersome.

More recently, CodeBERTScore (Zhou et al.,
2023), a neural-model-based evaluation metric,
has been proposed, showing a higher correla-
tion with functional correctness and human pref-
erences by capturing the semantic information
of reference code and generated code. However,
CodeBERTScore still relies on high-quality refer-
ences that can be difficult and expensive to obtain.
Moreover, the limited performance of the Code-

BERT (Feng et al., 2020) backbone suggests that
it has not yet reached a human-level understand-
ing of source code, limiting the effectiveness of
CodeBERTScore. Therefore, more advanced evalu-
ation metrics are needed that can better capture the
complex syntax and semantics of code intelligence
tasks.

To address these challenges, we propose a novel
evaluation metric based on LLMs trained on both
text and code, shown in Figure 1. Specifically,
we Instruct LLMs to perform human-like multi-
dimensional Code Evaluation, where the metric
is denoted as ICE-Score. Our metric leverages
the recent NLG metric, G-EVAL (Liu et al., 2023),
but achieves superior correlations with subjective
human preferences and objective functional cor-
rectness, both at the example and corpus levels.
Different from G-EVAL, ICE-Score only relies
on assessment criteria and evaluation step template,
without the need for instruction generation and
weighted scoring function.

Based on our extensive evaluation, we have sum-
marized our contributions as follows:

* We designed the first multi-dimensional and
reference-free automatic evaluation metric for
code intelligence tasks via large language
models.

* We conducted extensive experiments to
demonstrate the efficacy of ICE-Score on
four programming languages (Java, Python,
C, C++, and JavaScript) from two aspects
(human-based usefulness and execution-based
functional correctness).

* We further discussed several aspects that can
improve the performance of ICE-Score, in-
cluding the backbone model performance and
reasoning capability.

2 Method

Our evaluation metric ICE-Score, inspired by
G-EVAL (Liu et al., 2023), consists of two main
components: 1) task definition, evaluation crite-
ria, and detailed evaluation steps, and 2) a given
problem and generated code snippet for evaluation.
Different from G-EVAL, we only require the input
of evaluation criteria and template-based evaluation
steps, without the need for generation from LLMs.
In addition, our metric does not need a weighted
scoring function after iterative score generation.
These two differences suggest that ICE—-Score is
more cost-friendly and efficient.

2.1 Instructions for Code Evaluation

The evaluation of code quality involves two main
aspects: 1) human judgment of code usefulness
and 2) execution-based functional correctness. To
provide a comprehensive evaluation, we adopt the
design of G-EVAL for the general task instruction,
as follows:

You will be given the code snippet for a
problem. Your task is to rate the code
snippet only on one metric. Please make
sure you read and understand these in-
structions carefully. Please keep this doc-
ument open while reviewing, and refer to
it as needed.

Regarding the task-agnostic prompt, we have
designed the evaluation criteria for assessing code
usefulness, as shown in Appendix A.1. These cri-
teria are aligned with previous human evaluations
of code quality (Evtikhiev et al., 2023). To evaluate
functional correctness, we emphasize the impor-
tance of considering unit tests during the evalua-
tion process. We present the following criteria for
evaluating functional correctness, as provided in
Appendix A.2.

For the instruction of evaluation steps, we pro-
vide a template-based prompt:

Evaluation Steps:

1. Read the problem carefully and
identify the required functionalities of
the implementation.

2. Read the code snippet and compare it

to the problem. Check if the code snippet
covers all required functionalities of
the problem, and if it aligns with the
Evaluation Criteria.

3. Assign a score for [Evaluation
Aspect] on a scale of 0 to 4, where 0 is
the lowest and 4 is the highest based on
the Evaluation Criteria.

Here, we define [Evaluation Aspect] as any
aspects that are emphasized during the evaluation.
In our paper, we consider code usefulness and
functional correctness.

2.2 Inputs of Code Evaluation

It is worth noting that most code generative models
do not take formatting into account, resulting in
unformatted code that requires post-processing of
code formatting to be understood, compiled, and
executed (Zheng et al., 2023). Additionally, auto-
matic evaluation metrics for code generation, such
as CodeBLEU (Ren et al., 2020) and RUBY (Tran
etal., 2019), still rely on language-specific program
parsers 2. However, based on prior findings that
LLMs can robustly understand input data (Huang
et al., 2022; Zhuo et al., 2023; Zhu et al., 2023),
we hypothesize that LLMs can also understand
programming context without proper formatting.
Therefore, for evaluation, we input the problems
and generated code (and reference code, if pro-
vided). When the reference code is provided, we
slightly modify the evaluation steps in the prompt
to incorporate it.

3 Experiment Setup

We evaluate the effectiveness of ICE-Score us-
ing GPT-3.5 (GPT-3.5-turbo’) as the back-
bone across multiple datasets and programming
languages. We conduct two experiments to inves-
tigate the correlation between ICE-Score and
human preference and functional correctness, re-
spectively. We compare the performance of LLM-
based evaluations against 7 predominant automatic
evaluation metrics, including the state-of-the-art
CodeBERTScore (Zhou et al., 2023). To measure
the correlation with human preference, we use the
CoNal a dataset (Yin et al., 2018) and correspond-
ing human annotation on the generated code from

https://tree-sitter.github.io/
*https://platform.openai.com/docs/
models/gpt-3-5

https://tree-sitter.github.io/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5

various models trained on the dataset (Evtikhiev
et al., 2023). To measure the correlation with
functional correctness, we use the HumanEval-X
dataset (Zheng et al., 2023). We do not consider
distinguishability as an evaluation option, as prior
work (Zhou et al., 2023) has shown it to be an
unreliable meta-metric that cannot substitute for
execution-based or human-based ratings.

3.1 Automatic Evaluation Metric Baselines

The baseline metrics we include can be classified
into two groups: string-based and neural-model-
based evaluation.

String-based Evaluation Most evaluation met-
rics in code generation have been adapted from
natural language generation (NLG) and rely on
comparing the generated code to reference code.
The most commonly used metric is BLEU (Pap-
ineni et al., 2002), which computes the overlaps
of n-grams in the generated output with those in
the reference, where the n-grams are tokenized
using a language-specific tokenizer (Post, 2018).
Other metrics include ROUGE-L (Lin, 2004), a
recall-oriented metric that looks for the longest
common subsequence between the reference and
the generated code, and METEOR (Banerjee and
Lavie, 2005), which is based on unigram match-
ing between the generated code and the reference.
However, studies have shown that BLEU may yield
similar results for models with different quality
levels from the perspective of human graders in
code generation (Evtikhiev et al., 2023), leading
to the proposal of new evaluation metrics such as
RUBY (Tran et al., 2019). RUBY takes the code
structure into account and compares the program
dependency graphs (PDG) of the reference and the
candidate. If the PDG is impossible to build, the
metric falls back to comparing the abstract syntax
tree (AST), and if the AST is also impossible to
build, it compares the weighted string edit distance
between the tokenized reference and candidate se-
quence. Another recent metric is CodeBLEU (Ren
et al., 2020), which is a composite metric that com-
putes a weighted average of four sub-metrics treat-
ing code differently: as a data-flow graph, as an
abstract syntax tree, and as text. CodeBLEU is
designed to evaluate the quality of generated code
for code generation, code translation, and code re-
finement tasks.

Neural-model-based Evaluation Neural-model-
based evaluation is becoming increasingly impor-

Metric Example Corpus
T Tp Ts T 7“p Ts

BLEU 439 522 488 423 572 542
CodeBLEU 292 363 331 259 397 .339
chrF 458 570 515 449 592 578
ROUGE-L 447 529 499 432 581 552
METEOR 410 507 462 415 557 .534
RUBY 331 397 371 339 493 439

CodeBERTScore-F1 .500 .609 .556 .464 .579 .595
CodeBERTScore-F3 .505 .609 .563 .437 .549 .564

ICE-Score 556 613 594 546 649 .635
Ref-ICE-Score .554 .617 .591 .539 .661 .630

Table 1: Example-level and corpus-level Kendall-
Tau (7), Pearson (r,) and Spearman (rs) corre-
lations with the human preferred usefulness on
CoNalLa. ICE-Score: without reference code in-
puts, or reference-free; Ref-ICE-Score: reference-
enhanced. The best performance is bold. The second-
best performance is underlined.

tant for evaluating the quality of code generated
by deep learning models. CodeBERTScore (Zhou
et al., 2023) is one of the latest approaches
that leverages pre-trained code models like Code-
BERT (Feng et al., 2020) and best practices from
natural language generation evaluation to assess
the quality of generated code. CodeBERTScore
encodes the generated code and reference code in-
dependently and considers the natural language
context, contextual information of each token, and
implementation diversity. It enables the compar-
ison of code pairs that are lexically different and
calculates precision and recall based on the best-
matching token vector pairs. This approach pro-
vides an effective way to evaluate the effectiveness
of deep learning models for code intelligence tasks.
Note that the authors of CodeBERTScore provided
both F1 and F3 scores, with the optional source in-
put. Therefore, we use these four language-specific
variants of CodeBERTScore in our experiments.

3.2 Datasets and Evaluation Aspects

Human-based Usefulness Experiments Similar
to (Zhou et al., 2023), we conduct an evaluation on
the CoNaLa benchmark (Yin et al., 2018), which is
a widely used dataset for natural language context
to Python code generation. To measure the corre-
lation between each evaluation metric and human
preference, we utilize the human annotations pro-
vided by (Evtikhiev et al., 2023). Specifically, for
each example in the dataset, experienced software
developers were asked to grade the generated code
snippets from five different models. The grading

Metric Java C++ Python JavaScript Average
T Ts T Ts T s T Ts T s
BLEU 337 401 146 174 251 297 168 .199 | .225 268
CodeBLEU 355 421 157 187 272 323 226 267 | .253 .299
chrF 346 413 166 .198 262 312 .186 .220 | .240 .286
ROUGE-L 327 389 143 171 240 284 151 .179 | 215 256
METEOR 358 425 174 208 276 .327 195 .231 | .251 .298
RUBY 340 401 139 .165 216 255 138 .163 | .208 .246
CodeBERTScore-F1 314 375 .148 .177 231 276 .145 .172 | .209 .250
CodeBERTScore-F3 .356 426 .166 .198 .262 312 .189 .226 | .243 .291
ICE-Score 427 442 320 326 279 282 316 .321 | .336 .343
Ref-ICE-Score .388 .404 274 1282 .318 .325 .340 .348 | .330 .340

Table 2: Example-level Kendall-Tau (7) and Spearman (75) correlations with the execution-based functional
correctness on HumanEval. ICE-Score: without reference code inputs, or reference-free; Ref-ICE-Score:
with reference code inputs, or reference-enhanced. The best performance is bold. The second-best performance is

underlined.

scale ranges from zero to four, with zero indicating
that the generated code is irrelevant and unhelpful,
and four indicating that the generated code solves
the problem accurately. The dataset comprises a to-
tal of 2,860 annotated code snippets (5 generations
x 472 examples) with each snippet being graded
by 4.5 annotators on average.

Execution-based Functional Correctness Ex-
periments We conduct an evaluation of func-
tional correctness using the HumanEval bench-
mark (Chen et al., 2021), which provides natu-
ral language goals, input-output test cases, and
reference solutions written by humans for each
example. The benchmark originally consists of
164 coding problems in Python, and has been ex-
tended by (Cassano et al., 2023) to 18 other pro-
gramming languages, including Java, C++, Python,
and JavaScript. We chose to evaluate our mod-
els on these languages, as they are among the
most popular programming languages. The trans-
lated examples also include the predictions of
code—davinci-002 and their corresponding
functional correctness scores. Inspired by (Zhou
et al., 2023), we obtain them from the HumanEval-
X dataset (Zheng et al., 2023). As each problem
has nearly 200 generated code samples on average,
it would be computationally expensive to evaluate
them all using LLMs. Therefore, we randomly
select 20 samples from each problem, and collect
all samples from problems where no more than 20
versions of code were generated.

Correlation Metrics To measure the correlation
between each metric’s scores and the references,
we follow best practices in natural language evalu-

ation and used Kendall-Tau (7), Pearson (r;), and
Spearman () coefficients.*. To systematically
study the efficacy of each automatic evaluation
metric, we compute both example-level and corpus-
level correlations. The example-level correlation is
the average correlation of each problem example,
while the corpus-level correlation is the correlation
of all aggregated examples in the task.

4 Results

Human-based Usefulness Table 1 shows the cor-
relation between different metrics with human pref-
erence. We compare two variants of our evaluation
approach, reference-free and reference-enhanced
evaluations, with 10 baseline metrics and their vari-
ants. We find that ICE-Score outperform these
metrics by a significant margin, regarding both
example- and corpus-level correlations. Our ob-
servation is consistent with the work of CodeBER-
Score, where the variants of CodeBERScore mostly
outperform the strong baselines like chrF and
ROUGE-L. For example, ICE-Score achieves
0.556 and 0.546 measured by Spearman correla-
tion on example level and corpus level, respec-
tively. In contrast, prior evaluation metrics barely
reach a score of 0.5. In addition, we find that
Ref-ICE-Score does not significantly improve
the performance, indicating the reference code may
not be optimized. Our further analysis of the hu-
man rating of CoNaLa reference code complies
with this implication, where the average score of
the reference code only achieves 3.4 out of 4, sug-
gesting that not all human practitioners consider

*We use the implementations from https://scipy.
org/

https://scipy.org/
https://scipy.org/

Metric Java C++ Python JavaScript Average
T Ts T Ts T s T Ts T s
BLEU 267 326 225 276 281 344 220 270 | .248 .304
CodeBLEU 293 359 212 260 .303 371 315 385 | .281 .343
chrF 290 355 266 .325 328 402 279 342 | 291 .356
ROUGE-L 280 342 234 286 296 .363 216 .264 | .256 .314
METEOR 318 389 260 319 .349 427 311 .380 | .309 .379
RUBY 276 337 219 268 279 341 219 .268 | 248 .303
CodeBERTScore-F1 244 298 219 .268 .264 .324 214 .262 | 235 .288
CodeBERTScore-F3 281 .344 243 297 313 384 .261 .320 | .275 .336
ICE-Score 330 345 313 321 294 298 315 323 | 313 .322
Ref-ICE-Score .412 .438 .367 .383 425 .446 .432 455 | .409 .431

Table 3: Corpus-level Kendall-Tau (7) and Spearman (7) correlations with the execution-based functional cor-
rectness on HumanEval. ICE-Score: without reference code inputs, or reference-free; Ref—~ICE-Score: with
reference code inputs, or reference-enhanced. The best performance is bold. The second-best performance is

underlined.

the reference fully useful.

Execution-based Functional Correctness Ta-
ble 2 and Table 3 present the results of
example- and corpus-level functional correct-
ness, respectively. From Table 2, we observe
that both reference-free and reference-enhanced
Ref-ICE-Scoresconsistently outperform the
other baselines across all four programming lan-
guages on the example level. ICE-Score even
outperforms the reference-enhanced one, suggest-
ing potential bias in some reference code. Addi-
tionally, we find that METEOR and CodeBLEU
receive better correlations than all variants of
CodeBERTScore, indicating that they are still
strong baselines compared to the recent neural-
model-based evaluators in code generation. In
Table 3, we observe that our Ref-ICE-Score
achieves state-of-the-art performance among all
evaluation metrics. When compared to other base-
lines, ICE-Score still achieves comparable re-
sults to the source-free CodeBERTScore-F3.

5 Ablation Study

Does reasoning help the code evaluation? Prior
work (Wei et al.; Kojima et al.) has demon-
strated that the performance of LLMs can be sig-
nificantly improved via Chain-of-Thought (CoT)
and Zero-Shot-Chain-of-Thought (ZS-CoT), where
the prompts instruct LLMs to perform the task in
a step-by-step manner. Here, we explore the zero-
shot reasoning ability of LLMs in evaluating code
generation. Specifically, we instruct GPT-3.5 to
perform CoT-evaluation by adding "Step-by-step
Evaluation:" at the end of the prompt. An example
of the zero-shot-CoT prompt is shown in Figure 2.

Metric Example Corpus

T p rs T rp s
ICE-Score 556 613 .594 546 649 .635
CoT-ICE-Score 561 .628 .600 .579 .703 .665
Ref-ICE-Score 554 617 591 539 661 .630

CoT-Ref-ICE-Score .571 .639 .607 .583 .712 .667

Table 4: Example-level and corpus-level Kendall-
Tau (7), Pearson (r,) and Spearman (r,) correla-
tions with the human preferred usefulness on CoNaLa.
ICE-Score: without reference code inputs, or
reference-free; Ref—-ICE-Score: with reference
code inputs, or reference-enhanced. CoT- indicates
the use of ZS-CoT. The best performance is bold.

Instead of using LLMs to extract the evaluation
score from the reasoning steps, like the original
metric of zero-shot-CoT via multiple queries, we
design a rule-based parser to extract scores. Due
to limited resources, we only evaluate on CoNalLa
in Table 4. Our results show that ZS-CoT can
significantly improve the reliability of code evalua-
tion. Additionally, we find that Ref-ICE-Score
can achieve better results than reference-free ones
via ZS-CoT, even though their performances are
similar without CoT processing. This suggests that
LLMs can exploit the use of reference code through
reasoning.

Does more-capable backbone LLM yield better
performance on code evaluation? As shown
in previous studies (OpenAl, 2023; Bubeck et al.,
2023), GPT-4 significantly outperforms GPT-3.5
on various tasks. Therefore, we use GPT-4 as
the backbone model for ICE-Score and evalu-
ate its performance on CoNaLa. The results in
Table 5 indicate that GPT-4 consistently surpasses
GPT-3.5-turbo on evaluating code, suggesting

/ Problem \

How to convert a string
from CP-1251 to UTF-8?

Generation

[p—]

Usefulness (Score Only)
3 (out of 4)
K[(almost useful) x

(a) ICE-Score

Problem
How to convert a string
from CP-1251 to UTF-8?

Generation

[import]

Usefulness (Step-by-step Evaluation)
0 (out of 4)
(totally useless)

(. The problem requires a solution to
lconvert a string from CP-1251 to UTF-8.
2. The code snippet only imports the
lcodecs module, but does not provide any
limplementation for the required
functionality.
3. Based on step 2, the code snippet is

not helpful for solving the problem.
%efulness: 0

(b) CoT-ICE-Score

Figure 2: Example inputs and outputs with (a) ICE-Score, (b) ICE-Score with Zero-Shot Chain-of-Thought.
With the step-by-step evaluation, the output assessment is more aligned with human preference.

Metric Example Corpus

T I'p Ts T 'V‘p Ts
ICE-Score-3.5 556 613 594 546 649 635
ICE-Score—4 612 .658 .611 .592 .720 .688

Ref-ICE-Score-3.5 .554 .617 .591 .539 .661 .630
Ref-ICE-Score-4 592 .647 .634 .632 .744 .690

Table 5: Example-level and corpus-level Kendall-
Tau (7), Pearson (r,) and Spearman (rg) correla-
tions with the human preferred usefulness on CoNalLa.
ICE-Score: without reference code inputs, or
reference-free; Ref-ICE-Score: with reference
code inputs, or reference-enhanced. —3. 5 and -4 sug-
gest the different backbone models. The best perfor-
mance is bold.

it has the superior capability of code comprehen-
sion. We also note that using a more capable model
like GPT-4 can guarantee even better performance,
compared to using ZS-CoT techniques in Table 4.

6 Discussion

Data Contamination Evaluations on recent
closed-source LLMs have been criticized for the
possibility of data contamination (Aiyappa et al.,
2023), where the model may have already seen
the evaluation datasets during training, due to the
opaque training details of these models. For in-
stance, Kocmi and Federmann (2023) conducted
an empirical study on a few closed-source LLMs,
including GPT-3.5, and suggested that LLMs are
the state-of-the-art evaluators of translation qual-
ity, based on the evaluation of the WMT22 Metric
Shared Task (Freitag et al., 2022). However, as
most of the evaluated models were trained on data

prior to 2022, it is highly likely that these models
have been trained with some human-rated trans-
lation quality data. Similarly, G-EVAL(Liu et al.,
2023) shows that GPT-3.5 and GPT-4 are the state-
of-the-art evaluators of natural language generation
(NLG) with the evaluation of three NLG datasets.
However, as these human-annotated datasets were
released before 2021, it is probable that they were
included in the training data of GPT-3.5 and GPT-4.
In contrast, our work is minimally impacted by data
contamination, as we report the data release year
in Table 6. Our analysis suggests that only CoNaL
and HumanEval (Python) datasets may have been
contaminated, and it is unlikely that GPT-3.5 has
seen any human annotation or generated code dur-
ing training.

Human-aligned Evaluation Beyond Code Gen-
eration While our study has shown that LLMs
can achieve state-of-the-art performance in eval-
uating the functional correctness and usefulness
of generated source code, the question remains as
to whether LLMs can be utilized to evaluate code
intelligence tasks beyond code generation. Allama-
nis et al. (2018) have identified several downstream
applications such as code translation, commit mes-
sage generation, and code summarization. While
some studies have investigated the human evalu-
ation of these tasks, none of them have released
the annotation data or fully described the human
evaluation criteria. This presents a challenge for
analyzing if ICE-Score can be adapted to these

Shttps://platform.openai.com/docs/
model-index-for-researchers

https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers

Dataset Release Year Likely to be contaminated?
CoNaLa 2018 v
human-annotated CoNaLa w/ generated code 2023 X
HumanEval (Python) 2021 v
HumanEval-X (w/o Python) 2023 X
human-annotated HumanEval-X w/ generated code 2023 X

Table 6: Dataset, Release Year and the likelihood of data contamination for each dataset used in our study.

tasks. For example, Hu et al. (2022) proposed
a human evaluation metric for code documenta-
tion generation quality, which is specifically de-
signed for code comment generation and commit
message generation. Their metric includes three
aspects: Language-related, Content-related, and
Effectiveness-related, with detailed task descrip-
tions and explanations of assigned scores. We pro-
pose that the information provided in their metric
can be used to create prompts for LLM-based evalu-
ation and enable human-aligned evaluation of code
documentation generation.

7 Related Work

Large Language Models for Code. LLMs pre-
trained on large-scale code data have demonstrated
strong capabilities in code intelligence tasks, such
as code completion (Li et al., 2023; Luo et al., 2023;
Roziere et al., 2023), code summarization (Ahmed
and Devanbu, 2022; Sun et al., 2023) and pro-
gram repair (Surameery and Shakor, 2023; Sobania
et al., 2023). However, they remain unreliable,
particularly in scenarios that require an understand-
ing of natural language. Recent studies (Muen-
nighoff et al., 2023b; Ma et al.) show that pre-
training on both text and code results in the opti-
mal model performance on natural language and
code understanding. Furthermore, in order to make
LLMs more human-aligned and more capable of
performing complex tasks, instruction tuning is
proposed to enhance the capability of following
natural language requirements. In this work, we
utilize such instruction-tuned LLMs to conduct
multi-dimensional code evaluation via various in-
structions.

Automatic Evaluation Metrics for Generation.
The quest for reliable and robust automatic eval-
uation metrics for generated content has been a
cornerstone in natural language processing. Tradi-
tionally, string-based metrics such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005) have dominated

the landscape, primarily when assessing machine
translation or text summarization outputs. While
these metrics provide a quick and cost-effective
means of evaluating the quality of the generated
text, they often fall short of capturing the nuanced
intricacies and semantic richness inherent in natu-
ral language. To mitigate such drawbacks, a few
neural-based multi-dimensional evaluation met-
rics have been proposed for text generation, such
as UniEval (Zhong et al., 2022), GPTScore (Fu
et al., 2023) and G-EVAL (Liu et al., 2023). How-
ever, when it comes to code generation, where
both syntactical correctness and semantic intent
are paramount, there are few attempts to address
these challenges. Instead, the most dominant met-
rics still compute the similarity between generated
code and reference code. In this work, we intro-
duce ICE-Score, a novel metric that not only
addresses the limitations of its predecessors but
also harnesses the capabilities of LL.Ms, setting a
new benchmark for the evaluation of code genera-
tion tasks.

8 Conclusion

In this paper, we propose a novel evaluation met-
ric based on large language models trained on both
text and code, which can better capture the complex
syntax and semantics of code intelligence tasks.
Our metric achieves superior correlations with sub-
jective human preferences and objective functional
correctness, both at the example and corpus levels,
without reference and test suites. We conduct an ex-
tensive evaluation of four programming languages
(Java, Python, C, C++, and JavaScript) and demon-
strate the effectiveness of our proposed method
on human-based usefulness and execution-based
functional correctness. We have publicly released
our evaluation metric and datasets to encourage
the development of more accurate and effective
evaluation metrics for tasks involving source code.

Limitations

Our proposed evaluation metric is based on the as-
sumption that LLMs can follow the instructions to
evaluate the code snippets. The backbone models
we investigated are closed-source state-of-the-art
LLMs from OepnAl. As we noticed that there is
a huge performance gap between current closed-
source and open-source LLMs, it is possible that
ICE-Score can be adapted with an open-source
LLM trained on code and text, such as Wizard-
Coder (Luo et al., 2023) and OctoPack (Muen-
nighoff et al., 2023a). Hence, we encourage fu-
ture investigations on open-source LLMs for code
evaluation. In addition, as discussed in Section 6,
our experiments only focus on two code genera-
tion tasks. There are other code intelligence tasks
like program repair and code summarization. How-
ever, due to the limited study on human evalua-
tion of these tasks, no open-source dataset is pub-
licly available or documented in detail. Finally,
ICE-Score assumes that either model weights
or model APIs are available, which is costly for
some users. We, therefore, suggest future work on
proposing low-cost evaluation metrics.

References

Toufique Ahmed and Premkumar Devanbu. 2022.
Few-shot training 1lms for project-specific code-
summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, pages 1-5.

Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-
Yeol Ahn. 2023. Can we trust the evaluation on
chatgpt? arXiv preprint arXiv:2303.12767.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santa-
coder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine learn-
ing for big code and naturalness. ACM Computing

Surveys (CSUR), 51(4):1-37.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or
summarization, pages 65-72.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Ander-
son, Molly Q Feldman, Arjun Guha, Michael Green-
berg, and Abhinav Jangda. 2023. MultiPL-E: A scal-
able and polyglot approach to benchmarking neu-
ral code generation. IEEE Transactions of Software
Engineering (TSE).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Aryaz Eghbali and Michael Pradel. 2022. Crystalbleu:
precisely and efficiently measuring the similarity of
code. In 37th IEEE/ACM International Conference
on Automated Software Engineering, pages 1-12.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the bleu: how
should we assess quality of the code generation mod-
els? Journal of Systems and Software, 203:111741.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. 2020. Code-
bert: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,
Craig Stewart, Eleftherios Avramidis, Tom Kocmi,
George Foster, Alon Lavie, and André FT Martins.
2022. Results of wmt22 metrics shared task: Stop
using bleu—neural metrics are better and more ro-
bust. In Proceedings of the Seventh Conference on
Machine Translation (WMT), pages 46-68.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166.

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong
Su, and Premkumar Devanbu. 2016. On the natu-
ralness of software. Communications of the ACM,
59(5):122-131.

Xing Hu, Qiuyuan Chen, Haoye Wang, Xin Xia, David
Lo, and Thomas Zimmermann. 2022. Correlating
automated and human evaluation of code documen-
tation generation quality. ACM Transactions on
Software Engineering and Methodology (TOSEM),
31(4):1-28.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Tom Kocmi and Christian Federmann. 2023. Large
language models are state-of-the-art evaluators of
translation quality.

Tom Kocmi, Christian Federmann, Roman Grund-
kiewicz, Marcin Junczys-Dowmunt, Hitokazu Mat-
sushita, and Arul Menezes. 2021. To ship or not to
ship: An extensive evaluation of automatic metrics
for machine translation. In Proceedings of the Sixth
Conference on Machine Translation, pages 478-494,
Online. Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. Gpteval:
Nig evaluation using gpt-4 with better human align-
ment. arXiv preprint arXiv:2303.16634.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang,
Yu Jiang, Changjian Wang, and Shanshan Li. At
which training stage does code data help 1lms reason-
ing?

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023a. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

10

Niklas Muennighoff, Alexander M Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023b. Scaling data-constrained language models.
arXiv preprint arXiv:2305.16264.

OpenAl. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th annual meeting of the Association for
Computational Linguistics, pages 311-318.

Maja Popovié. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the tenth
workshop on statistical machine translation, pages
392-395.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Dominik Sobania, Martin Briesch, Carol Hanna, and
Justyna Petke. 2023. An analysis of the automatic
bug fixing performance of chatgpt. arXiv preprint
arXiv:2301.08653.

Weisong Sun, Chunrong Fang, Yudu You, Yun Miao,
Yi Liu, Yuekang Li, Gelei Deng, Shenghan Huang,
Yuchen Chen, Quanjun Zhang, et al. 2023. Auto-
matic code summarization via chatgpt: How far are
we? arXiv preprint arXiv:2305.12865.

Nigar M Shafiq Surameery and Mohammed Y Shakor.
2023. Use chat gpt to solve programming bugs.
International Journal of Information Technology &
Computer Engineering (IJITC) ISSN: 2455-5290,
3(01):17-22.

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and
Tien Nguyen. 2019. Does bleu score work for code
migration? In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC),
pages 165-176. IEEE.

http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/2021.wmt-1.57
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning
in large language models. In Advances in Neural
Information Processing Systems.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning
to mine aligned code and natural language pairs
from stack overflow. In International Conference
on Mining Software Repositories, MSR, pages 476—
486. ACM.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu
Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and
Jiawei Han. 2022. Towards a unified multi-
dimensional evaluator for text generation. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
2023-2038.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Gra-
ham Neubig. 2023. Codebertscore: Evaluating
code generation with pretrained models of code. In
Association for Computational Linguistics: EMNLP
2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqgiang Gong, Yue Zhang, et al. 2023.
Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv
preprint arXiv:2306.04528.

Terry Yue Zhuo, Yujin Huang, Chunyang Chen, and
Zhenchang Xing. 2023. Red teaming chatgpt via jail-
breaking: Bias, robustness, reliability and toxicity.

A Prompts for Code Evaluation

A.1 Code Usefulness

Evaluation Criteria:

Usefulness (0-4) Usefulness of the code
snippet based on the problem descrip-
tion.

- A score of 0: Snippet is not at all helpful,
it is irrelevant to the problem.

- A score of 1: Snippet is slightly help-
ful, it contains information relevant to
the problem, but it is easier to write the
solution from scratch.

- A score of 2: Snippet is somewhat help-
ful, it requires significant changes (com-
pared to the size of the snippet), but is
still useful.

- A score of 3: Snippet is helpful, but
needs to be slightly changed to solve the
problem.

- A score of 4: Snippet is very helpful, it
solves the problem.

A.2 Functional Correctness

Evaluation Criteria:

Functional Correctness (0-4) -
Execution-based quality of the code
snippet combined with the problem. The
correctness is measured by all possible
unit tests and the comparison of the
reference code. The combination of the
code snippet and the problem should
pass all the possible tests based on your
understanding of the reference code.
The length of the code snippet can not
determine the correctness. You need to
assess the logic line by line.

- A score of O (failing all possible tests)
means that the code snippet is totally
incorrect and meaningless.

- A score of 4 (passing all possible tests)
means that the code snippet is totally
correct and can handle all cases.

B

Our implementations of
evaluation metric baselines except for
CodeBERTScore based on https:
//github.com/JetBrains—Research/
codegen-metrics. For CodeBERTScore, we
adopt the official release at https://github.
com/neulab/code-bert-score.

Automatic Evaluation Metric Baselines

the automatic

are

C Correlation Metrics

For all correlation metrics, we use the implemen-
tation from https://scipy.org/ and call
these APIs with the default settings.

D Rule-based Score Extraction from
Zero-shot Chain Of Thought
Evaluation

We demonstrate the general implementation of
score extraction:
import re

TASK_KEY_WORD
functional"

"usefulness" # or "

3 def get_gpt_answer (raw_content) :

11

try:

https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
http://arxiv.org/abs/2301.12867
http://arxiv.org/abs/2301.12867
http://arxiv.org/abs/2301.12867
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/JetBrains-Research/codegen-metrics
https://github.com/neulab/code-bert-score
https://github.com/neulab/code-bert-score
https://github.com/neulab/code-bert-score
https://scipy.org/

20

2

22

29

def

return int (raw_content)
except:
try:
return process_raw_content (
raw_content)
except:
return 0

process_raw_content (content) :

Clean up and split the content

splits = content.lower () .replace (" ("
"").replace(ﬂ)", "").Split("\l’l")

Extract relevant lines and clean
them up
ls = [1ll.strip(".")

.replace ("out of ", "/M)

.replace("/4", "u)

for 1 in splits

for 11 in 1.1strip("0123456789.
") .split(". M)

if TASK_KEY_WORD in 11 or "score
" in 11]

Extract the scores
ans = [11 for 1 in 1ls for 11 in 1.
split () if 1ll.isnumeric()]

If there are multiple scores, take
the most common one
if len(set(ans)) != 1 and len(ans) >
1:
return int (Counter (ans) .
most_common (1) [0] [0])

If there are no scores or
ambiguous scores, return 0 or 1
if len(set (ans)) != 1:
if "N/A" in content:
return 0
else:
return 1

Otherwise, return the single score
return int (ans[0])

Code Listing 1: Score Extractor Implementation

We note that our extraction process for the eval-
uation metrics is entirely rule-based and may not
be optimized for the best results.

12

	Introduction
	Method
	Instructions for Code Evaluation
	Inputs of Code Evaluation

	Experiment Setup
	Automatic Evaluation Metric Baselines
	Datasets and Evaluation Aspects

	Results
	Ablation Study
	Discussion
	Related Work
	Conclusion
	Prompts for Code Evaluation
	Code Usefulness
	Functional Correctness

	Automatic Evaluation Metric Baselines
	Correlation Metrics
	Rule-based Score Extraction from Zero-shot Chain Of Thought Evaluation

