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ABSTRACT

This paper studies how to synthesize face images of non-existent persons, to create
a dataset that allows effective training of face recognition (FR) models. Besides
generating realistic face images, two other important goals are: 1) the ability to
generate a large number of distinct identities (inter-class separation), and 2) a
proper variation in appearance of the images for each identity (intra-class variation).
However, existing works 1) are typically limited in how many well-separated
identities can be generated and 2) either neglect or use an external model for
attribute augmentation. We propose Vec2Face, a holistic model that uses only
a sampled vector as input and can flexibly generate and control the identity of
face images and their attributes. Composed of a feature masked autoencoder
and an image decoder, Vec2Face is supervised by face image reconstruction and
can be conveniently used in inference. Using vectors with low similarity among
themselves as inputs, Vec2Face generates well-separated identities. Randomly
perturbing an input identity vector within a small range allows Vec2Face to generate
faces of the same identity with proper variation in face attributes. It is also possible
to generate images with designated attributes by adjusting vector values with a
gradient descent method. Vec2Face has efficiently synthesized as many as 300K
identities, whereas 60K is the largest number of identities created in the previous
works. As for performance, FR models trained with the generated HSFace datasets,
from 10k to 300k identities, achieve state-of-the-art accuracy, from 92% to 93.52%,
on five real-world test sets. For the first time, the FR model trained using our
synthetic training set achieves higher accuracy than that trained using a same-scale
training set of real face images (on the CALFW test set).

1 INTRODUCTION

We aim to synthesize face images in a way that enables large-scale training sets for FR models,
which have the potential to address privacy issues arising with web-scraped datasets of real face
images (DeAndres-Tame et al., 2024; Melzi et al., 2024; Shahreza et al., 2024). It is generally
recognized that a good training set for FR should have high inter-class separability (Kim et al., 2023;
Boutros et al., 2023a) and proper intra-class variation (Qiu et al., 2021; Boutros et al., 2022a; Kim
et al., 2023; Boutros et al., 2023a).

However, existing methods lack flexibility in controlling the generation process, leading to unsatis-
factory inter-class and intra-class results. On the one hand, (Boutros et al., 2023a) points out that
identities generated in (Qiu et al., 2021; Boutros et al., 2022b;a; 2024) have relatively low separability
because identity generation is controlled by either a single coefficient (Deng et al., 2020) or by hard
class labels. On the other hand, while it is useful to employ identity features as a condition to increase
inter-class separability (Boutros et al., 2023a; Papantoniou et al., 2024), it is non-trivial to increase
intra-class variation without the use of a separate model such as ControlNet (Zhang et al., 2023) or a
model for style transfer.

In light of the above, this paper proposes Vec2Face, a holistic model enabling the generation of
large-scale FR datasets. In inference, the workflow of Vec2Face is similar to (Papantoniou et al.,
2024; Boutros et al., 2023a), which uses a random vector as input and output a face image. But the
interesting property of Vec2Face is that a small perturbation of the input vector leads to a face image
of the same identity but with small changes in appearance, e.g., pose, age, and facial hair and that a
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Perturbation degree to ID vectorsID imagesID vectors

Figure 1: Example images generated by Vec2Face. From a random vector, we generate a face (ID
image). We then perturb this vector with random values to generate diverse face images. Larger
perturbation added to this vector results in larger dissimilarity to the ID images. The images in the
frame are likely of the same people as the ID image.

large perturbation of the input vector produces a face image of a different identity (Fig. 1). With this
property, and because of the high-dimensionality (i.e., 512-dim) of the input vectors, we can easily 1)
sample a large number of well-separated identity vectors by controlling their similarity with each
other to be under a certain threshold and 2) synthesize a large number of face images with various
attributes by perturbing the identity vectors within a small range. Additionally, we can guide the
image content at time of generation using a gradient descent method to efficiently generate faces with
designated attributes, such as extreme pose angles and image quality.

Using a proper cosine similarity threshold (i.e., 0.3) to constrain the identity vector sampling,
Vec2Face transfers the similarity between vectors to the similarity between generated images, resulting
in large inter-class separability; intra-class variation is also properly large because we control the
variance of the noise for perturbation, so the perturbed identity vectors have ≥0.5 similarity with
the identity vector, exhibiting various appearances while preserving the identity on the generated
images. Experimentally, we verify these inter-class and intra-class variations are beneficial to the
FR model performance (in Section 4.4). Because of this, FR models trained on the synthesized 10K
identities and 500K images demonstrate very competitive accuracy compared with the state-of-the-art
synthetic databases of the same scale (Kim et al., 2023; Papantoniou et al., 2024). Importantly, we
show that scaling up the synthetic training data to 15 million images and 300K identities leads to
further accuracy improvement. It is also worth noting that results on CALFW (Zheng et al., 2017)
represent the first instance where a model trained with synthetic data yields higher accuracy than that
trained with real data at the same scale. To our knowledge, this is the first time a synthetic dataset can
be this large and useful.

The training of Vec2Face aims to let a vector generate a face and let its perturbation magnitudes reflect
face change magnitudes. To this end, in training we use vectors extracted from real face images by a
pre-trained FR model. These vectors are fed into a feature masked autoencoder architecture, after
which an image decoder produces images similar to the real ones at the pixel level. We summarize
the main points of this paper below.

• We propose Vec2Face, a face synthesis model that allows us to efficiently synthesize a large number
of face images and well-separated identities. Under an appropriate similarity threshold, Vec2Face
effectively increases inter-class separability and intra-class variation of synthesized face images.

• With a generated dataset of 10K identities and 500K images, we achieve state-of-the-art FR accuracy
measured as the average on five real-world test sets compared with existing synthetic datasets. Our
performance even surpasses the accuracy obtained by real training data on one of the five test sets.
We also report that scaling to larger synthetic training data leads to further improvement.

2 RELATED WORK

Discrete class label conditioned image generation. VQGAN (Esser et al., 2021), MAGE (Li et al.,
2023), DiT (Peebles & Xie, 2023), U-ViT (Bao et al., 2022), MDT (Gao et al., 2023), and VAR (Tian
et al., 2024) control the object classes of generated images using discrete class labels as condition.
Therefore, these methods do not support the new class generation and are not applicable to the context
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of scalable face identity generation. Differently, Vec2Face uses continuous face features as input and
thus technically can generate infinite new identities given appropriate feature sampling.

Identity feature conditioned image generation. Using a fixed feature as condition to guide the
model to generate images for one identity is another approach. (Xiao et al., 2023; Chen et al., 2023;
Li et al., 2024b) use CLIP (Radford et al., 2021) to encode the face embedding, but this representation
is limited by CLIP’s ability on facial encoding (Papantoniou et al., 2024). To improve the identity
fidelity on the generated images, (Wang et al., 2024; Valevski et al., 2023; Ye et al., 2023; Wood et al.,
2021; Papantoniou et al., 2024) use identity features extracted by a FR model as condition. However,
an external model (e.g., ControlNet (Zhang et al., 2023)) is needed to increase the attribute variation.
Different from them, Vec2Face generates images for one identity using unfixed perturbed identity
features that have high similarity value with their identity feature. This keeps a high identity fidelity
while providing a way to control the attribute variation without using any external models.

Synthetic face image datasets. Existing approaches are primarily either GAN-based or diffusion-
based. For the former, SynFace (Qiu et al., 2021), Usynthface (Boutros et al., 2022b), SFace (Boutros
et al., 2022a), SFace2 (Boutros et al., 2024), and ExfaceGAN (Boutros et al., 2023b) leverage pre-
trained GAN models to generate datasets. These methods are less effective because the pre-trained
GAN models were not trained in an identity-aware manner. Departing from them, our GAN-based
method explicitly uses face features in training, so the generated images are identity-aware.

For diffusion model-based methods, DCFace (Kim et al., 2023) uses a strong pre-trained diffusion
model (Choi et al., 2021) and an additional style-transfer model to increase the identity separability
and attribute variation. Again, this pre-trained model is not identity-aware. IDiff-Face (Boutros et al.,
2023a) combines the pre-trained encoder and decoder from VQGAN (Esser et al., 2021) with a latent
diffusion model conditioned by identity features to control the separability of the generated identities.
Although the latent diffusion model is identity-aware, the pre-trained VQGAN compromises such
effect. Arc2Face (Papantoniou et al., 2024) fine-tunes a pre-trained stable diffusion model (Rombach
et al., 2022) on the WebFace42M dataset to increase the generalizability on face. It combines the FR
feature and CLIP (Radford et al., 2021) feature to control the identity of output images. The pose
variation is increased by adding an additional ControlNet (Zhang et al., 2023). However, neither the
pre-trained stable diffusion model nor CLIP are optimized for face, and the slow processing speed
strongly limits large scale dataset generation. Conversely, our method is specifically designed for
face dataset generation and is efficient and identity-aware. This allows our method to easily scale the
dataset size to 15 million images and achieve state-of-the-art FR accuracy.

3 METHOD

3.1 VEC2FACE: ARCHITECTURE AND LOSS FUNCTION

As shown in Fig. 2, Vec2Face consists of a pretrained FR model, a feature masked autoencoder
(fMAE), an image decoder, and a patch-based discriminator (Isola et al., 2017; Yu et al., 2022).

Feature extraction and expansion. Given a real-world face image, following (Boutros et al., 2023a;
Papantoniou et al., 2024), we compute its feature using a FR model. To match the input shape of
MAEf , the extracted image feature is projected and expanded to a 2-D feature map.

Feature masked auto-encoder (fMAE). Similar to MAE (He et al., 2022), the model is forced to
learn better representations by masking out the input. Different from the MAE that masks an input
image and introduce mask tokens to form the full-size image, the fMAE uses a 2D feature map as input
and masks this feature map. To provide more useful information, the projected image feature is used
to form the full-size feature map. Specifically, the rows in the feature map are randomly masked out
by x% before the encoding process, where x% ∈ Ntruncated(max = 1,min = 0.5,mean = 0.75),
and the projected image feature is filled in the masked out positions to form the full-size feature map
before being processed by the decoder. The structure is in the Appendix.

Image decoder and patch-based discriminator. Finally, the new feature map is passed through a
simple image decoder to generate/reconstruct the image. To improve image quality, a patch-based
discriminator is integrated to form a GAN-type training.
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Figure 2: Architecture of Vec2Face. Given a real face image, we compute its feature “IM feature”
using a face recognition model. This feature is projected and expanded into a feature map, and the
latter is processed by a feature masked autoencoder (fMAE). Inside the fMAE, the rows in the feature
map are randomly masked out before being processed by the encoder. The projected image feature
is then used to form the full-size feature map before being processed by the decoder. Finally, the
decoder outputs a feature map. Outside the fMAE, a small image decoder reconstructs the pixels in
the original image based on the output of fMAE. During inference, Vec2Face accepts a randomized
vector and generates a face image. This process has properties demonstrated in Fig. 1.

Original train Reconstructed Original unseen Reconstructed
Figure 3: Reconstruction results for training (left) and unseen (right) identities. Specifically, we
extract features of original images by using a FR model and feed them to Vec2Face for reconstruction.
We observe that the reconstructed images still maintain the same identity while removing some image
borders and backgrounds and transferring sketches into photo-realistic images.
Loss function. The training objective function includes an image reconstruction loss, an identity loss,
a perceptual loss and a GAN loss. The reconstruction loss can be written as,

Lrec = MSE(IMrec, IMgt), (1)

which compares the pixel-level difference between the reconstructed image IMrec and the ground
truth images IMgt. The identity loss is written as:

Lid = 1− CosineSimlarity(FR(IMrec), FR(IMgt)), (2)

meaning that the features of the reconstructed image and original image extracted using the FR model
should be close. In addition, the perceptual loss (Zhang et al., 2018) is used to ensure the correct face
structure at the early training stage and a patch-based discriminator (Isola et al., 2017; Yu et al., 2022)
is used to form the GAN loss to increase the sharpness of the generated images. The total loss is:

Ltotal = Lrec + Lid + Llpips + LGAN . (3)

Some findings of loss function’s effects are: 1) without Lid, Vec2Face has slightly degraded gener-
ation performance but still works reasonably well on identity preservation; 2) without Llpips, the
reconstructed images do not have clear face structures; 3) using LGAN at early training stage makes
the model convergence difficult, so it is used only after 1,000 epochs. Examples of loss effect on
image reconstruction are in Appendix A.2.

Image reconstruction results. Fig. 3 shows that, for both seen and unseen identities, the generated
images have very similar identities to the original images. Moreover, the reconstructed image
would remove image border artifacts and some complex backgrounds and translate sketches into
photo-realistic images.

3.2 INFERENCE: SAMPLING VECTORS TO GENERATE IDENTITIES AND THEIR FACE IMAGES

For Vec2Face, dissimilar input vectors will likely lead to images of different identities, allowing us to
generate different identity images; controlling the perturbed vectors in a proper similarity range with
their identity vector can generate face images with different attributes while preserving the identity.
Thus, controlling the sampled vectors is important for dataset generation.
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Sampling well-separated identity vectors. Suppose we want to generate n identity images from
n identity vectors v1, v2, ..., vn, where vi ∈ Rd, i = 1, 2, ..., n. We ask that the similarity between
any pair of identity vectors be less than a threshold τ : sim(vi, vj) ≤ τ, ∀ i 6= j. This ensures that
the generated images are of different identities. Following (Papantoniou et al., 2024), PCA is used
to sample vectors. Specifically, we first compute the mean and covariance of the PCA-transformed
face features, then use these statistics to sample vectors in the PCA space via multivariate normal
distribution, and finally inverse transform these vectors back to the original feature space to obtain
new identity vectors. Newly obtained identity vectors that have similarity ≤ τ = 0.3 with all existing
vectors are kept, otherwise they are dropped. Interestingly, we notice that, in the high-dimensional
(512 in this paper) feature space, most of the randomly sampled vectors fit the condition due to
sparsity. In fact, only 1.7% of the sampled 300k vectors are filtered out.

Perturbing identity vectors for image creation. After obtaining n identity vectors v1, v2, ..., vn ,
we sample m vectors for each identity vector by perturbation:

vimk
= vn +N (0, σ), k = 1, 2, ...,m, (4)

where vimk
is the kth perturbed vector for an identity vector vn. N (0, σ) is a Gaussian distribution

with 0 mean and σ variance. To ensure the identity-consistency after perturbation, the similarity
values between perturbed vectors and their identity vectors are ≥ 0.5.

Technically, the above steps allow us to synthesize an unlimited number of identities and their images
using loosely constrained vectors via Vec2Face. Hyperparameter τ is selected such that identities are
well-separated, i.e., high inter-class variation, although it does not act as a strong filter in practice.
The selection of hyperparameter σ should enable the generated images for an identity to have large
enough variance while staying on the same identity, i.e., high intra-class variation.

3.3 INFERENCE: EXPLICIT FACE ATTRIBUTE CONTROL

By default, Vec2Face generates images without explicit attribute control. This might lead to some
attributes being under-represented, e.g., too few profile head poses. To address this, we introduce
attribute operation, or AttrOP, to guide vector perturbation so that additional images of desired
attributes can be generated. This work focuses on face pose and image quality.

Inspired by (Singh et al., 2023), AttrOP controls the attributes of the generated images by simply
adjusting the values in the feature vectors via gradient descent, a process shown in Algorithm 1.
Specifically, we first set a target image quality Q and pose angle P and prepare a pretrained pose
evaluation model Mpose, a pretrained quality evaluation model Mquality, and a FR model MFR.
Then, given an identity vector vid and a perturbed identity vector vim, we generate a face image from
an adjusted vector v′im and compute the following loss functions:

Lattrop = Lid + Lquality + Lpose where,
Lid = 1− CosSim(MFR(IM), vid),

Lquality = Q−Mquality(IM),

Lpose = abs(P − abs(Mpose(IM))),

(5)

Because both Mpose and Mquality are differentiable, gradient descent can be used to adjust v′im to
minimize Lattrop. We finally use the adjusted v′im to generate images that exhibit the desired pose
and image quality. Sample images optimized by AttrOP are shown in Fig. 4, where profile poses and
various image quality levels can be seen.

3.4 DISCUSSION

Novelty statement. Vec2Face is novel in three aspects. First, it is new to add small/large perturbations
to input vectors to generate images of the same/different IDs. In comparison, existing works
typically use fixed ID vectors without an explicit mechanism to separate different IDs. Second, as a
minor contribution, our GAN architecture realizes the above function, where the fMAE component
prevents overfitting during training, similar to VAE (Kingma & Welling, 2013). Third, Vec2Face can
seamlessly support attribute control during inference, while existing methods have to rely on external
models for this purpose.
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Algorithm 1: AttrOP

1 Function AttrOP(vid, vim, Mgen, T):
Input: a) vid: sampled ID vectors,

b) vim: initial perturbed ID vectors,
c) Mgen: Vec2Face model,
c) T : the number of iterations

Required: target quality Q, target pose P
Output: a) v′im: adjusted perturbed ID vectors

2 Condition models: Mpose, Mquality , MFR

3 Initialization v′im = vim
4 for t = T − 1, T − 2, ..., 0 do
5 IM = Mgen(v

′
im)

6 Calculate Lattrop in Eq. 5
7 v′im = v′im − λ∇v′

im
Lattrop

8 return v′im

Quality control Pose control
Figure 4: Sample generated images after
image quality control (left) and head pose
control (right). For each three-image group,
from left to right, image quality increases,
or head poses become more profile. This
improves diversity of the synthetic dataset.

Why can Vec2Face generate images like in Fig. 1? The FR model maps images to a hyperspherical
space, where features of the same identity are clustered, and those of different identities are farther
apart (Deng et al., 2019). Using such features as input and supervised by the original images,
Vec2Face learns how to generate face images based on characteristics of these vectors. As such,
increasing the degree of the perturbation added to the vector gradually changes the vector direction,
which results in faces of the same and then different identities.

How can Vec2Face increase inter-class separability and intra-class variations? A face feature
vector reflects both identity and attributes. Hence, controlling the cosine similarity between sampled
vectors can enforce separate identities, and adding small perturbations to sampled vectors could
change the attributes while maintaining the identity. Moreover, AttrOP allows us to easily obtain
useful vectors to generate images with desired attributes, further increasing intra-class variations.

Can other structures work? A diffusion model conditioned on image features may achieve similar
function. However, results in Appendix A.1 show that the initial noise image may exert a stronger
influence on the final output than the conditioned image/identity features. This compromises identity-
preserving capability. In comparison, the stochasticity of our method mainly comes from the image
feature. fMAE has some randomness in testing, but has very minor effect on generated images. That
said, it would be interesting to design more effective architectures in future.

What is an identity? An interesting philosophical question would be how to define an identity.
Our research suggests that generated identities can be continuous, where a threshold τ is used to
determine the boundary between different identities. We conducted a simple experiment for this in
Section 4.4. It will be interesting to deeply study how this computational definition of identities
connects with and differs from philosophical understanding in future.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOL

Vec2Face training set. The training data consists with 1M images and their features from 50K
randomly sampled identities in WebFace4M (Zhu et al., 2023) dataset, where the images features are
extracted by a ArcFace-R100 model pretrained on Glint360K (An et al., 2021). Unless otherwise
specified, this model is used for feature extraction throughout this paper.

Real-world test sets. There are nine test set used to compare the synthetic and real datasets
on FR model training. LFW (Huang et al., 2008) tests the FR model in a general case. CFP-
FP (Sengupta et al., 2016) and CPLFW (Zheng & Deng, 2018) test the FR model on pose variation.
AgeDB (Moschoglou et al., 2017) and CALFW (Zheng et al., 2017) challenge the FR model with
large age gap. These five test sets are used for a general accuracy comparison across synthetic datasets
and a real dataset. Besides these five, Hadrian (Wu et al., 2024a) and Eclipse (Wu et al., 2024a)
are used for intra-class variation evaluation, where Hadrian pairs emphasize facial hair difference
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Training sets # images LFW CFP-FP CPLFW AgeDB CALFW Avg.
IDiff-Face (Boutros et al., 2023a)† 0.5M 98.00 85.47 80.45 86.43 90.65 88.20
DCFace (Kim et al., 2023)† 0.5M 98.55 85.33 82.62 89.70 91.60 89.56
ID3 (Li et al., 2024a)† 0.5M 97.68 86.84 82.77 91.00 90.73 89.80
Arc2Face (Papantoniou et al., 2024)† 0.5M 98.81 91.87 85.16 90.18 92.63 91.73
DigiFace (Bae et al., 2023)? 1M 95.40 87.40 78.87 76.97 78.62 83.45
SynFace (Qiu et al., 2021)� 0.5M 91.93 75.03 70.43 61.63 74.73 74.75
SFace (Boutros et al., 2022a)� 0.6M 91.87 73.86 73.20 71.68 77.93 77.71
IDnet (Kolf et al., 2023)� 0.5M 92.58 75.40 74.25 63.88 79.90 79.13
ExFaceGAN (Boutros et al., 2023b)� 0.5M 93.50 73.84 71.60 78.92 82.98 80.17
SFace2 (Boutros et al., 2024)� 0.6M 95.60 77.11 74.60 77.37 83.40 81.62
Langevin-Disco (Geissbühler et al., 2024)� 0.6M 96.60 73.89 74.77 80.70 87.77 82.75
HSFace10K (Ours)� 0.5M 98.87 88.97 85.47 93.12 93.57 92.00
CASIA-WebFace (Real) 0.49M 99.38 96.91 89.78 94.50 93.35 94.79

Table 1: Comparison of existing synthetic datasets on five real-world test sets. †, ?, and � represent
diffusion, 3D rendering, and GAN approaches, respectively, for constructing these datasets. We also
list the results of training on a real-world dataset CASIA-WebFace.

and Eclipse pairs differ on face exposure. The images in both datasets are indoor and high quality
originating from MORPH (Ricanek & Tesafaye, 2006). The last two test sets, SLLFW (Deng et al.,
2017) and DoppelVer (Thom et al., 2023), are used to evaluate the identity definition used in the
existing works (including ours). These two test sets have similar-looking pairs.

Evaluation protocol of test sets. The aforementioned test sets use the same evaluation protocol
suggested in (Huang et al., 2008). The image pairs in each test set are split into 10 folds and then the
average value of the 10-fold cross-validation is used to evaluate the model performance.

4.2 EXPERIMENT DETAILS

Vec2Face model training: We used the default ViT-Base as the backbone to form the fMAE. Since
the image size of the commonly used FR training sets is 112x112 and the image decoder is a
four-layer, double-sized architecture, the feature map size is set to 49x768, so that this feature map
can be reshaped to 7x7x768 for image decoder to decode a 112x112x3 image. The optimizer is
AdamW (Loshchilov & Hutter, 2017), with a learning rate of 4e-5 and a batch size of 32 per GPU.
We use approximately 10 RTX6000 GPUs for each training run. The patch-based discriminator is
enabled after 1000 epochs.

Synthetic dataset generation. We obtain well-separated identity vectors by PCA learned on face
feature vectors of MS1MV2 (Deng et al., 2019), details are in Section 3.2. To get vectors for image
generation, we perturb the identity vectors with the noise sampled from three Gaussian distributions.
Specifically, 50 perturbed vectors are sampled for each identity, where 40% from N (0, 0.3), 40%
from N (0, 0.5), and 20% from N (0, 0.7). But this resulting dataset suffers from the small pose
variation, which causes bad performance on CFP-FP and CPLFW. To increase the variation on pose,
we generate 30 images with large yaw angle via AttrOP for each identity and randomly replace the
existing ones. In detail, the target pose P of 20 images is 60 and 10 images is 85. Meanwhile, we
add the image quality control, Q = 27, to mitigate the quality degradation during pose adjustment.

AttrOP details. The MagFace-R100 (Meng et al., 2021), SixDRepNet (Hempel et al., 2024), and
ArcFace-R100 are used as Mquality , Mpose, and MFR in Algorithm 1. T is set to 5.

Face synthesizing method comparison settings. The standard training dataset size is 0.5M images
from 10K identities. Unless otherwise specified, the backbone is SE-IR50 (He et al., 2016), the
recognition loss is ArcFace (Deng et al., 2019), other configuration details are in the Appendix.

4.3 MAIN EVALUATION

Comparison with state-of-the-art synthetic datasets at the scale of 0.5M-0.6M images. In Table
1, we compare FR accuracy of models trained with datasets synthesized by different methods, i.e.,
diffusion models, GANs, and 3D rendering. We have the following observations. First, HSFace10K
synthesized by Vec2Face yields very competitive accuracy: 98.87%, 88.97%, 85.47%, 93.12%,
93.57% on LFW, CFP-FP, CPLFW, AgeDB, and CALFW, respectively, and 92.00% on average.
Our method is only lower than Arc2Face on the CFP-FP dataset (88.97% vs. 91.87%) and is the
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Datasets # images LFW CFP-FP CPLFW AgeDB CALFW Avg.
HSFace10K 0.5M 98.87 88.97 85.47 93.12 93.57 92.00
HSFace20K 1M 98.87 89.87 86.13 93.85 93.65 92.47
HSFace100K 5M 99.25 90.36 86.75 94.38 94.12 92.97
HSFace200K 10M 99.23 90.81 87.30 94.22 94.52 93.22
HSFace300K 15M 99.30 91.54 87.70 94.45 94.58 93.52
HSFace400K 20M 99.37 90.53 87.35 94.33 94.60 93.24
CASIA-WebFace (Real) 0.49M 99.38 96.91 89.78 94.50 93.35 94.79
CASIA-WebFace + HSFace10K 0.99M 99.58 97.06 90.58 95.62 94.67 95.50

Table 2: Impact of scaling the proposed HSFace dataset to 1M images (20K IDs), 5M images (100K
IDs), 10M images (200K IDs), 15M images (300K IDs), 20M images (400K IDs). Continued
improvement is observed until 300K IDs. We also list the performance obtained by training on the
real-world dataset CASIA-WebFace and its combination with HSFace10K. The latter combination
yields even higher accuracy.

state of the art on all the other datasets and average. Second, on the CALFW dataset, the accuracy
of HSFace10K is higher than that of CASIA-WebFace (Yi et al., 2014) (93.57% vs. 93.32%). To
our knowledge, this is the first time that a model trained with synthetic data outperforms that trained
with same-size real data. Third, generally speaking, GAN-based methods, while being prevalent, are
not as competitive as diffusion-based and 3D rendering methods. Our method is GAN-based but
outperforms the other methods.

Effectiveness of scaling up the proposed HSFace dataset. Vec2Face can easily generate a large-
scale dataset by sampling more identity vectors which have a cosine similarity ≤ τ with any other
identity vectors. To test the efficacy of Vec2Face on data scaling, we generate six datasets with
increased identity numbers from 10K to 400K, where each identity has 50 images. Results of models
trained on these datasets are shown in Table 2.

It is clear that scaling up our synthetic dataset leads to consistent accuracy improvements until
300K IDs: from 92.00%, to 92.47%, 92.97%, 93.22%, 93.52%. Notably, our HSFace300K is 12.5
times larger than the largest synthetic dataset prior to this paper while still giving steady accuracy
improvement. These results clearly demonstrate the advantage of Vec2Face in data scaling. Also note
that Vec2Face is only trained with 50K real-world identities. We speculate that a Vec2Face model
trained with larger initial real data could bring further improvements.

Merging synthetic and real-world training sets. In Table 2, after merging HSFace10K and CASIA-
WebFace, we observe improvement over using either dataset alone for training. We obtain 95.50%
average accuracy, which is higher than 92.00% (HSFace10K alone) and 94.79% (CASIA-WebFace
alone). This indicates that HSFace10K has good quality and is complementary to real data.

Attr. control LFW CFP-FP CPLFW AgeDB CALFW Avg.
- 98.27 76.56 81.70 90.75 92.92 88.04

+ Quality 27 98.55 83.27 83.68 91.12 93.27 89.98
+ Angle 60◦ 98.62 86.46 85.75 92.85 93.80 91.50
+ Angle 85◦ 98.87 88.97 85.47 93.12 93.57 92.00

Table 3: Impact of face quality and pose control via AttrOP
in FR accuracy. Each of the training sets has 0.5M images.
The accuracy improvement is observed when more controls
are added for image quality and pose angles, especially on
pose-oriented test sets, CFP-FP and CPLFW.

Effectiveness of attribute control.
Images generated by Vec2Face are
mostly near-frontal, which can be at-
tributed to such images being most
frequent in the training set. Using At-
trOP, we synthesize faces with some
profile poses where we use target
Yaw angles 60◦ and 85◦. Results
are shown in Table 3. We observe
that adding faces with 60◦ poses leads
to 3.46% improvement, while adding
85◦ gives further 0.5% improvement. These results demonstrate the effectiveness of attribute control.
Unlike prior works (Kim et al., 2023; Papantoniou et al., 2024), this is achieved by a single model.

Methods Computing cost FID
Model size FPS LFW Hadrian

Arc2Face 3.4GB 1.5 43.80 53.27
Vec2Face 0.68GB 467 35.75 51.93

Table 4: Computing cost and FID measure-
ment of Arc2Face and Vec2Face.

Image generation cost and quality of reconstruc-
tion. The resource requirement for image generation
is an important metric, especially in this large model
era. We compare our method with a state-of-the-art
face generation model. Experimental details: 1) both
models are tested on a single Titan-Xp, 2) the batch
size is 8, 3) a 4-step scheduler (Luo et al., 2023) is
used for Arc2Face. Table 4 shows that our method is 311x faster than Arc2Face. We also use FID to
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measure the distance between the original LFW and Hadrian images, and the reconstructed images
from Arc2Face and Vec2Face, where the images are measured at 112x112 resolution. Our model
slightly outperforms the Arc2Face results, in size of model, speed of generation, and fidelity to
original images , as shown in Table 4. More results are in Appendix A.1.

4.4 FURTHER ANALYSIS

Vec2Face generates datasets with large inter-class separability. Since only Arc2Face and Vec2Face
allow us to generate a large number of identities, we directly use the datasets (including a real dataset)
released in previous works to calculate the identity vectors for separability evaluation. For Arc2Face
and Vec2Face, we sample 200K well-separated vectors to generate identity images, where we report
the results of using LCM-lora (Luo et al., 2023) for Arc2Face. Fig. 5 presents the number of identities
whose cosine similarity against any other identity vector is less than 0.4, as more generated identities
are gradually added for each dataset. Note that, a reasonable threshold for separability evaluation
varies when using different FR models (Kim et al., 2023; Boutros et al., 2024). We select 0.4 is
because it gives us a reasonable number (183K out of 200K) on a real dataset. From the results, we
have three observations.
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Figure 5: Comparing existing synthetic FR dataset
generation methods on inter-class separability.

First, synthetic datasets such as SynFace and
SFace generally have lower inter-class separa-
bility than real-world datasets. This is because
their data synthesis methods do not utilize the
face feature characteristics for image genera-
tion, as Arc2Face and IDiff-Face do. Second,
Arc2Face has much larger identity separability
than existing methods, comparing with the num-
ber reported in the (Kim et al., 2023), but is still
inferior to Vec2Face. This is because the ini-
tial noise image sometimes exerts a stronger
influence on the final output than the condi-
tioned identity vector. Third, real-world datasets
have slightly lower identity separability than our
method, because they have a small number of
twins, close relatives, or even the same person
with different character names in TV shows (Wu
et al., 2024b). Note that 0.4 is not used to eval-
uate the number of actual identities in the
dataset, but rather to provide a consistent
measurement of identity separability across
datasets. Overall, the special design of Vec2Face help us to generate well-separated identities.

Impact of inter-class separability on FR accuracy. Table 7 summarizes how different average
identity similarity or different levels of identity separability affect FR accuracy. Results indicate
that high identity separability is beneficial, which is consistent with previous finding (Boutros et al.,
2023a). A unique finding is that too large separation does not further benefit the performance.

Vec2Face generates datasets with large intra-class variation. The accuracy values in Table 1
indicates the generated dataset has large variation on age and pose. To evaluate the intra-class
variation on other attributes, we test the models on Hadrian and Eclipse (Wu et al., 2024a), which
have 6K image pairs for each and respectively control the variation on facial hair and face exposure.
Table 6 shows that the datasets generated by Vec2Face has proper variation on these two attributes, as
when increasing the dataset size eventually surpasses the accuracy of the real dataset.

Impact of hyperparameter σ. In Vec2Face, σ directly controls intra-class variation, i.e., larger σ
means higher intra-class variation and vice versa. We test different configurations of σ values and
its sampling %. Table 5 shows that, when increasing σ, FR accuracy first increases and then drops.
Initially, increasing intra-class variation is beneficial because it creates some hard training samples.
But if σ is too large, the generated face may look like a different person, degrading the accuracy.
Similarly, increasing the sampling % of the large σ may hurt the identity consistency in a folder,
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σ Sampling % Simmin Avg.
{0.3} {100} 0.71 82.71
{0.3, 0.5} {60, 40} 0.62 86.25
{0.3, 0.5, 0.7} {40, 40, 20} 0.53 88.04
{0.3, 0.5, 0.7} {20, 40, 40} 0.51 87.26
{0.3, 0.5, 0.9} {40, 40, 20} 0.47 85.75
Table 5: Impact of σ values with corre-
sponding sampling % for each identity on
average FR accuracy (%). We use 0.5M
images from 10K identities for training.
AttrOP is not applied and Simmin is the
minimum cosine similarity between the
perturbed vectors and their ID vectors.

Datasets Hadrian Eclipse SLLFW DoppelVer
HSFace10K 69.47 64.55 92.87 86.91
HSFace20K 75.22 67.55 94.37 88.90

HSFace100K 80.00 70.35 95.58 90.39
HSFace200K 79.85 71.12 95.70 89.86
HSFace300K 81.55 71.35 95.95 90.49

CASIA-WebFace 77.82 68.52 96.95 95.11
Table 6: Comparing a real dataset with HSFaces on
other tasks. Hadrian, Eclipse, SLLFW, and DoppelVer
emphasize facial hair variation, face exposure differ-
ence, similar-looking, and doppelganger, respectively.

τ Avg. ID sim. Avg.

0.3

0.88 64.62
0.70 77.65
0.56 78.67
0.01 88.04

0.2 0.003 86.60
Table 7: Impact of inter-class
separability. Larger average
identity similarity, or low separa-
bility reduces the accuracy. We
use 0.5M images from 10K iden-
tities for training.

# IDs × # IMs Avg.
10K×5 75.02
10K×10 83.09
10K×20 89.45
10K×50 92.00
10K×80 92.03

Table 8: Impact of number of
images per identity. Different
number of images are generated
by the best σ and their sampling
% setting. The average accuracy
(%) on five test sets is reported.

Architectures Avg.
SE-IResNet18 89.60
SE-IResNet50 92.00

SE-IResNet100 92.49
SE-IResNet200 92.49

ViT-S 88.54
ViT-B 90.15

Table 9: HSFace10K training on
ResNets and Vision Transform-
ers (ViT). The average accuracy
(%) on five test sets is reported.

which also degrades the accuracy. Thus, we choose σ = {0.3, 0.5, 0.7} to sample {40%, 40%, 20%}
images for each identity.

Does Vec2Face generate new identities compared with its training identities? We compute the
feature similarity between the 300K identities from the proposed synthetic data and the 50K training
identities selected from WebFace4M. We find that only 0.398%, or 1194 out of the 300K synthetic
identities are similar to the training identities, with a similarity score greater than 0.4. To completely
avoid using real identities for training FR models, we have replaced these 1194 identities with new
identities, and the performance change is negligible.

More images per identity is beneficial in FR accuracy. In Table 8, increasing the number of images
per identity from 5 to 80 increases the accuracy, but this improvement is saturated at 80.

Larger backbone helps the FR model performance. In Table 9, accuracy of six models trained
with HSFace10K and ArcFace loss increases from SE-IResNet18 to SE-IResNet100 and is sat-
urated at SE-IResNet200. The accuracy increasing is also observed when using a larger Vision
Transformer (Dosovitskiy, 2020) backbone.

Limitations. The proposed synthetic dataset is effective for general FR but would be less useful for
fine-grained tasks such as discriminating between doppelgangers, see Table 6. We believe a better
understanding of ‘identity’ and stronger generation models will help solve this issue and leave this to
future work.

5 CONCLUSIONS

This paper proposes Vec2Face, a face generation method which can elegantly create a large number
of identities and face images. This method conveniently converts vectors to face images and can
translate perturbations of the vectors into consistent perturbations of the resulting face images.
Because of its unique design, the inter-class and intra-class variations of generated face images
can be directly controlled by hyperparameters of vector sampling.. We show that the resulting
dataset, HSFace10k, has large intra- and inter-class variations and yields state-of-the-art FR accuracy.
Importantly, Vec2Face allows for scaling HSFace to 300K identities and 15M images while still
seeing accuracy improvement. In future work, we will study the definition of identity to solve more
challenging FR tasks, try other generation structures, and extend this method to generic objects.
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overlap between face recognition train/test data: Causing optimistic bias in accuracy measurement.
arXiv preprint arXiv:2405.09403, 2024b.

Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcom-
poser: Tuning-free multi-subject image generation with localized attention. arXiv preprint
arXiv:2305.10431, 2023.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch. arXiv
preprint arXiv:1411.7923, 2014.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, pp. 5, 2022.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, pp. 3836–3847, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, pp. 586–595, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Tianyue Zheng and Weihong Deng. Cross-pose lfw: A database for studying cross-pose face
recognition in unconstrained environments. Beijing University of Posts and Telecommunications,
Tech. Rep, 2018.

Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age lfw: A database for studying cross-age face
recognition in unconstrained environments. arXiv preprint arXiv:1708.08197, 2017.

Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie Huang, Xinze Chen, Jiagang Zhu, Tian
Yang, Dalong Du, Jiwen Lu, and Jie Zhou. Webface260m: A benchmark for million-scale deep
face recognition. TPAMI, pp. 2627–2644, 2023.

14


	Introduction
	Related Work
	Method
	Vec2Face: Architecture and Loss Function
	Inference: Sampling vectors to generate identities and their face images
	Inference: Explicit face attribute control
	Discussion

	Experiments
	Datasets and evaluation protocol
	Experiment details
	Main Evaluation
	Further analysis

	Conclusions

