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Abstract

Generative modelling has become the standard approach for synthesising tabular data. How-
ever, different use cases demand synthetic data to comply with different requirements to be
useful in practice. In this survey, we review deep generative modelling approaches for tab-
ular data from the perspective of four types of requirements: utility of the synthetic data,
alignment of the synthetic data with domain-specific knowledge, statistical fidelity of the
synthetic data distribution compared to the real data distribution, and privacy-preserving
capabilities. We group the approaches along two levels of granularity: (i) based on the
primary type of requirements they address and (ii) according to the underlying model they
utilise. Additionally, we summarise the appropriate evaluation methods for each require-
ment and the specific characteristics of each model type. Finally, we discuss future directions
for the field, along with opportunities to improve the current evaluation methods. Overall,
this survey can be seen as a user guide to tabular data generation: helping readers navigate
available models and evaluation methods to find those best suited to their needs.

1 Introduction

In recent years, the synthesis of realistic tabular data has emerged as a critical research area, driven by
the need for privacy-preserving machine learning, robust AI benchmarking, and data augmentation in high-
stakes applications such as finance and healthcare. These diverse needs led to not only a proliferation of
different generative models, but also to an explosion of diverse evaluation metrics whose aim is to evaluate
whether a model is able to address all the requirements of the given use case. However, the sheer diversity of
these metrics has made it increasingly difficult to assess and compare different synthesisers in a standardised
manner.

This survey takes a unique stance and analyses models and evaluations methods alike from the point of
view of the user, categorising them on the ground of the requirements they primarily address and measure:
utility, alignment, fidelity, and privacy. The analysis thus serves as a structured resource for both newcomers
and experienced practitioners seeking a formal evaluation framework for tabular data synthesis. To this
end, we first give an overview of the tabular data synthesis problem and its requirements (§2). Then,
we examine in detail existing methods along two dimensions, grouping them (i) by the requirement they
primarily focus on and (ii) by the model architecture type they are based on (§3-6). For each requirement,
we detail the relevant evaluation protocols and metrics. A summary of the approaches surveyed in these is
given in Table 2, which also gives an overview of the characteristics for each model, such as their ability to
handle high-dimensional and mixed data types, as well as their sample generation times. We lastly review
other deep generative models originally developed for other fields (such as natural language processing and
computer vision), which can be adapted to tabular data synthesis (§7). We conclude with a discussion on
related surveys and future directions and opportunities for improvement (§8).

2 Synthesising Tabular Data

Tabular Dataset. In the tabular data synthesis field, a tabular dataset D can be usually defined as a
triple D = (X , A, V) where: (i) X = {x1, . . . , xN } is a finite set of instances (or rows), with each xi (with
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i = 1, . . . , N) representing an individual data point, (ii) A = {A1, . . . , AK} is a finite set of attributes (or
columns), each representing a feature of the data points, and (iii) V : X × A → D is a value assignment
function, which maps every data-point-feature pair (xi, Aj) into an element of the domain Dj , i.e., the set of
permissible values for the attribute Aj . One of the many challenges of this field is given by the fact that the
domain of each feature can be very different from one another. Common domains are: binary domains, i.e.,
D = {0, 1}, categorical domains, e.g., D = {Red, Yellow, Blue}, and numerical domains, i.e., D ⊆ R. Given a
dataset D with N > 1, it is always possible to partition its instances in order to obtain a training set used
to train a machine learning model, and a test set used to test a machine learning model.

Deep Generative Modelling for Tabular Data. To formulate the problem of tabular data generation,
the literature makes the assumptions that given a tabular dataset D, there exists an unknown distribution
pX over the random variables X ∈

⋃K
j=1 Dj from which D was created by drawing N i.i.d. samples. The

goal of standard generative modeling is to learn from D the parameters θ of a generative model such that the
model distribution pθ approximates pX . While synthesising tabular data is a long-standing problem [Reiter,
2005], in this survey, we focus on methods that use deep generative models, i.e., models based on deep neural
networks.

Requirements over Synthetic Data. While above we have the goal for standard generative modelling,
we know that different use cases can lead to additional requirements, which lead to different goals for the
generative task. In this survey, we review the following requirements:

1. Utility requirement: Synthetic data should yield similar predictive performance to real data when used
to train machine learning (ML) models for the same task, such as classification or regression. For instance,
given a healthcare dataset like WiDS [Matthys et al., 2021], which contains medical records of patients from
the first 24 hours of intensive care, and the target column specifies whether a patient has been diagnosed with
diabetes mellitus, training a classifier on synthetic data should yield comparable (or better) performance on
the real test set to that obtained by training the classifier on real data of the same size. Hence, given an ML
model m and a predictive performance metric r (e.g., accuracy), maximising utility entails learning from D
the parameters θ of a generative model such that training m on the dataset D′ sampled from pθ leads to the
best score according to r.

2. Alignment requirement: Synthetic data should align with any known (user-provided) domain-specific
knowledge. The knowledge can be expressed in multiple ways: simply as constraints on the range of values
that a single feature can assume, or as more complex constraints capturing relations between the features.
Continuing the example above, if the minimum and the maximum haemoglobin level are two of the features
recorded for each patient, then clearly the real data do not contain any records for which the value of the
minimum is higher than the value of the maximum level. This type of constraint is easily captured using a
linear inequality. Hence, given a set of constraints expressing some background knowledge about the sample
space of pX , i.e., stating which samples are admissible and which are not, the goal is to learn the parameters
θ of a generative model such that (i) the model distribution pθ approximates pX , and (ii) the sample space
of pθ is compliant with the constraints.

3. Fidelity requirement. Synthetic data should preserve the statistical properties of the real data.
Continuing with our example, if we are maximising fidelity on the WiDS dataset, then the distribution of
the synthetic values of the minimum haemoglobin level feature should resemble the real distribution of the
same feature. Hence, in this case, the goal is to learn parameters θ such that the marginals of pθ are as
similar as possible to the corresponding marginals of pX , and the joint distribution pθ should closely follow
pX .

4. Privacy requirement. Synthetic data should present minimal risk of disclosing sensitive attributes and
of re-identifying individuals from the real data. Continuing the earlier example, the WiDS dataset contains
sensitive features such as the patient’s age, whether the patient had an elective surgery, and whether the
patient received a leukemia diagnosis. If a rare combination of values for these features is retained in the
synthetic data, then a patient might be identified, hence failing to meet privacy requirements. Hence, in this
case, the goal is to learn the parameters θ such that it is impossible to sample a data point from pθ that
would allow for the re-identification (or for disclosing sensitive attributes) of a real data point.
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Figure 1: Visualisation of common model types used for synthesising tabular data. Here, x, z, and x̃ denote a
real sample, noise sample, and synthetic sample, respectively; x̃′ is a sample modified by layer-based models;
xi is the sample at step i of forward diffusion (for i in {1, . . . , T}, where T is the maximum number of
diffusion steps); and x̃i is the sample at step i of reverse diffusion.

For each of the four requirements above, Table 1 lists the metrics that are commonly used to evaluate the
generated data. In what follows, we group existing deep generative modelling methods for synthesising
tabular data by the requirement they primarily address.

3 Utility

Determining whether synthetic data can replace real training data in downstream tasks has been the most
common evaluation approach (e.g., [Choi et al., 2017; Park et al., 2018; Kotelnikov et al., 2023; Borisov et al.,
2023]). The main reason for this is that synthetic data are often generated to augment or create datasets for
real-world applications, including high-stakes fields like finance and healthcare. In these scenarios, generating
synthetic samples for rare events, e.g., fraudulent transactions and specific medical diagnoses [Matthys et al.,
2021], can help with class balancing and ultimately improve the quality of the predictions in downstream
tasks. Therefore, utility still remains a key requirement for synthetic data and benchmark for comparing
synthesisers.

3.1 Evaluation Protocol and Metrics

The most common protocol used to evaluate the utility of generative models is the Train on Synthetic, Test
on Real (TSTR) Protocol (see, e.g., [Esteban et al., 2017]). The procedure is to train a suite of ML models
(e.g., a support vector machine, XGBoost) on the synthetic data, and then test their performance on a real
test set, reporting the performance using different metrics on the ground of the task defined by the dataset
of interest: for classification (resp., regression) datasets, standard metrics include accuracy and F1 score
(resp., root mean square error and explained variance).
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3.2 Methods

GAN-based models. Many of the works surveyed here are based on the original Generative Adversarial
Network (GAN) [Goodfellow et al., 2014], which relies on two neural networks: (i) a generator, which
given a noise vector returns a synthetic datapoint and hence learns the real data distribution, and (ii) a
discriminator, which given a data point (either real or synthetic) classifies it as either real or synthetic and
hence learns to distinguish between synthetic and real data. The GAN jointly trains these two models in an
adversarial framework, where the generator’s objective is to produce samples that confuse the discriminator.
See the first schema from the left in Figure 1 for a simple abstraction of GAN-based models. CWGAN:
Building on the seminal Wasserstein GAN (WGAN) [Arjovsky et al., 2017], which used the Wasserstein
distance as a loss function for a GAN model, Engelmann & Lessmann [2022] proposed CWGAN as an
oversampling framework for class balancing. CWGAN generates synthetic samples for underrepresented
classes, augmenting the training set. Results indicate that oversampling is beneficial primarily for strongly
non-linear datasets. OCT-GAN: proposed by Kim et al. [2021], incorporates neural ordinary differential
equations (neural ODEs) in their GAN through the introduction of a new layer that allows for the extraction
of a sequence of hidden vector representations given an input sample, i.e., the hidden evolution trajectory
of the sample. The trajectory is used to help the discriminator decide whether a sample is real or synthetic.
While improving utility, the usage of ODEs makes OCT-GAN slower than most GAN-based models.

GAN and BN-based models. GANBLR: Zhang et al. (2021) construct the generator and discriminator as
Bayesian networks (BNs), which are able to encode known feature interactions. The background knowledge
inclusion leads to better utility than standard GANs.

Diffusion-based models. TabDDPM: Motivated by the their success in computer vision, Kotelnikov
et al. 2023 introduced TabDDPM: a diffusion-based model for synthesising tabular data. Popular for its
high utility results, TabDDPM is able to model both discrete and continuous features, but separately, by
using multinomial [Hoogeboom et al., 2021] and Gaussian diffusion models [Sohl-Dickstein et al., 2015],
respectively. For a simple abstraction on how a diffusion model can be used to generate data, see the central
schema in Figure 1. STaSy: Proposed by Kim et al. [2023], STaSy is based on a score-based generative
model (SGM), which was shown to be a competitive alternative to diffusion-based models in [Ho et al.,
2020]. Contrarily to TabDDPM, StaSy estimates the score function (gradient of log-probability) instead
of explicitly modelling the forward and reverse Markov processes. As the loss is difficult to train, STaSy
uses a self-paced learning strategy, which starts with a subset of training data—yielding a stable, low loss—
and gradually expands to the full dataset. Evaluated on 15 real-world datasets against 7 baselines (mostly
GAN-based models), STaSy achieves high utility. Due to the forward and backward passes, both StaSy and
TabDDPM suffer from slow sampling times. Moreover, the base SGM model is known to be unstable in
high-dimensional settings. CoDi: Motivated by the difficulty of modelling discrete features, Lee et al. [2023]
proposed CoDi, a framework comprising co-evolving diffusion models that separately handle continuous and
discrete features as in TabDDPM [Kotelnikov et al., 2023], with the difference that the two models condition
on each other during training. At each training step, the discrete (resp., continuous) diffusion model takes
the perturbed sample from the continuous (resp., discrete) one as input, and both models are conditioned
on both samples from the previous step during the denoising process. Slower than most GAN-based models
(excluding OCT-GAN), CoDi is faster than STaSy and TabDDPM, while also obtaining higher utility on
mixed types datasets.

LLM-based models. GReaT [Borisov et al., 2023] represents an answer to the abundance of works that
convert tabular data into numerical representations thus losing the contextual connections between the
features, which very often carry semantic meaning. Indeed, GReaT performs the following steps (also
illustrated in Figure 1): first, the tabular data undergoes a textual encoding process, converting it into text.
Next, a feature order permutation step is applied. The resulting sentences are then used to fine-tune the
large language models (LLMs) [Vaswani et al., 2017]. At sampling time, either a single feature name or
arbitrary feature-value pairs are given as input to the LLM, which then completes them (note that this
allows for arbitrary conditioning). Using this approach, GReaT outperforms most of the baselines w.r.t.
utility, but its data sampling time is notably high. To address this problem, TabuLa [Zhao et al., 2025]
introduces a method to reduce the length of the generated token sequences. Unlike GReaT, which relies
on large language models pre-trained on natural language processing tasks, TabuLa starts with a randomly
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initialised model and iteratively fine-tunes it on tabular data synthesis tasks. Another key distinction is that
TabuLa does not use GReaT’s feature permutation mechanism. Instead, it targets scenarios where arbitrary
feature conditioning is not needed and assumes that feature values appear in a consistent order across all
data points. To this end, the authors tokenise the dataset feature-wise, ensuring that each generated token
can be mapped to a specific feature based on its absolute position in the row. Specifically, for each feature,
they determine the longest token sequence across the dataset and pad all sequences (corresponding to that
feature) to this length during training, Using this approach, TabuLa manages to significantly reduce the
training time compared to GReaT. However, its sample generation time is still considerably higher than
GAN-based models such as CTGAN or TableGAN.

Energy-based models. TabPFGen [Ma et al., 2023] is a generative model that uses a pretrained network
as an energy-based model for data augmentation and class balancing. Although its capabilities are limited
to low-dimensional inputs (it was tested on datasets with maximum 10 features), TabPFGen demonstrates
good utility performance in the data augmentation task by simply using a pretrained model compared to
specialised GAN-, VAE-, and diffusion-based models.

Transformer and GAN-based models. TabTransGAN [Zhang et al., 2025] achieves a performance com-
parable to GReaT by combining the strengths of Transformer [Vaswani et al., 2017] and GAN-based models,
which allows it to model both contextual and structural relationships across all features. Specifically, Tab-
TransGAN adopts a GAN architecture in which the generator is based on CTGAN, while the discriminator
replaces the standard design with a Transformer architecture. This enables it to better capture both feature-
wise distributions and dependencies between the features, leading to more accurate discrimination between
synthetic and real data.

4 Alignment

Brought to the attention of the research community more recently [Chen et al., 2019] than the other re-
quirements, background knowledge alignment is an important condition for synthetic data when evaluating
its realism. This requirement is important in practice, as many real-world applications have domain-specific
knowledge that the synthetic data must satisfy. For example, synthetic patient data in healthcare must
adhere to physiological constraints, ensuring a recorded minimum value for an indicator (like blood pressure
or haemoglobin level) is not higher than the maximum value recorded. Similarly, in finance, it is important
for generated market data to comply with known economic constraints. In resource management, synthetic
inventory and demand data must not violate logistical constraints, such as production capacity limits or
non-negative stock levels.

4.1 Evaluation Protocol and Metrics

In [Stoian et al., 2024], three metrics have been proposed to evaluate alignment: (i) the Constraint Violation
Rate (CVR), which computes the percentage of samples that do not satisfy at least one of the constraints
in the available set of constraints, (ii) Constraint Violation Coverage (CVC), computing the percentage of
constraints that have been violated at least once by the sample set, and (iii) the sample-wise Constraint
Violation Coverage (sCVC) which determines the average percentage of samples violating each of the con-
straints. Out of these three metrics, CVR has also been used in [Jia et al., 2024], albeit called feasibility
rate there.

4.2 Methods

GAN and AE-based models. ITS-GAN: proposed for tabular data augmentation ITS-GAN [Chen et al.,
2019] is an early method advocating for the use of background knowledge. The knowledge it can express is
of two types: (i) rules stating that the value of one feature uniquely determines the value of another (e.g.,
the feature Position determines the feature Salary), and (ii) rules stating that a specific value for a set of
features determines the specific value for another (e.g., if Position = “CEO" then Salary = “2M"). To encode
the first types of rules, they train on the real data an autoencoder (AE) for each rule to output the value of
the dependent features given the values of the independent ones. Then, at training time, the GAN generator
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is trained to minimise the difference between its output and one of the AEs, while also being penalised if it
violates any rule of the second type. Additionally, the discriminator receives as input the difference between
the AE’s outputs and the synthetic samples, thus being able to use this information to assess the sample.

GAN and BN-based models. C3-TGAN: Similarly to GANBLR, C3-TGAN [Han et al., 2023] uses
Bayesian networks to capture background knowledge. However, while GANBLR models only discrete fea-
tures, C3-TGAN can handle both discrete and continuous features by following the CTGAN [Xu et al.,
2019] approach. To incorporate explicit attribute correlations and property constraints from background
knowledge, it represents constraints as control vectors (similar to the conditional vectors in CTGAN) and
uses them to guide training, ensuring better alignment.

VAE and GNN-based models. GOGGLE: [Liu et al., 2022] is a different approach which integrates
knowledge about pairwise feature dependencies by encoding them in a graph where each feature is a node
and an edge exists if a relation between the two features is known. New relations can be learnt using a
message passing mechanism from graph neural networks (GNNs), which is jointly trained with a VAE-based
architecture, where only relationships prioritised by the learned graph influence feature generation. Due to
its relational learning graph-based component, it might be difficult to scale GOGGLE to datasets of higher
dimensionality.

Diffusion-based models. TDGGD: The first framework encoding background knowledge about feature
relations into diffusion-based models is TDGGD [Jia et al., 2024]. The relations can express lower and upper
bounds over single features or their sum. Rather than explicitly modelling the relations, TDGGD models
whether the features are part of such relations or not, which only gives an indication of hidden relations
between the columns to the model.

Neural network layer-based models. C-DGM: The first method to constrain deep generative models
and guarantee the constraints satisfaction was proposed in [Stoian et al., 2024]. The constraints can capture
any set of linear inequalities over the feature space. Differently from the methods surveyed above, this
approach relies on a layer to be added right before the sample output layer, which restricts the output space
of the model to coincide with the space defined by the constraints. The layer can be added on top of any deep
generative model (DGM), and the resulting models are called C-DGMs. For a visual representation on how
the layer-based methods can be added on a GAN model, see the right-most schema in Figure 1. As the layer
is differentiable and acyclic, it can be added both at inference and training time, while also improving the
utility of the model. DGM+DRL: The above layer was further extended in [Stoian & Giunchiglia, 2025], in
order to capture constraints as expressive as disjunctions over linear inequalities (which allow for expressing
relations like “if the sum of two features is greater than 10 then the difference of other two features should
be lower than 5”), thus modelling non-convex and even disconnected output spaces. The new layer is called
Disjunctive Refinement Layer (DRL), and a DGM constructed using DRL is called DGM+DRL. Just as
C-DGM, DGM+DRL is able to guarantee alignment with the background knowledge, while also improving
utility across all considered baselines.

5 Fidelity

While statistical fidelity is not a good predictor of downstream task performance [Hansen et al., 2023], it can
provide useful observations on how the synthetic data compares to the real data. Fidelity is indeed one of
the requirements often evaluated in early works on synthesising tabular data and it is crucial for applications
such as economic modelling and census data release. In these areas, preserving the statistical properties
of the real data distribution, like demographics, allows for accurate downstream sociological and economic
analyses. Similarly, generating data that captures the statistical complexity of real-world data is valuable in
other domains, such as the robust testing of data processing software.
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5.1 Evaluation Protocol and Metrics

Being the longest-standing requirements, a large number of methods were developed to evaluate the statistical
fidelity of synthetic data w.r.t. real data.1 These can be categorised into (i) feature-wise, (ii) pair-wise, and
(iii) joint evaluations.

Feature-wise evaluation: compares synthetic and real data feature by feature, using different metrics
based on feature type. For continuous features, Wasserstein distance and the Kolmogorov-Smirnov test
are common, while Jensen-Shannon divergence or total variation distance are common metrics for discrete
features. The difference in treatment is supported empirically in [Zhao et al., 2021], which found that
Jensen-Shannon divergence is unstable for measuring the statistical similarity between continuous features’
distributions, especially with no overlap between synthetic and real data.

Pair-wise evaluation: investigates how well relationships between pairs of features are preserved in the
synthetic w.r.t. the real data. Common metrics include: (i) RMSE (and MAE) differences in mutual
information between pairs of features, and (ii) correlation difference, using Pearson’s coefficient for continuous
pairs, Theil’s uncertainty coefficient for discrete pairs, and the correlation ratio between discrete-continuous
pairs of features.

Joint evaluation: compares the joint distribution of the synthetic samples against the real samples’ distri-
bution. It is more difficult to determine how similar are two (potentially high-dimensional) joint distributions.
Thus, such an analysis is often conducted in a controlled environment, e.g., on simulated data, rather than
real-world data. Relevant evaluation methods include measuring the likelihood fitness score, separately for
real and synthetic data (as in [Xu et al., 2019]).

5.2 Methods

GAN-based models. TGAN [Xu & Veeramachaneni, 2018] is an early GAN-based model that proposes
using long short-term memory networks with an attention mechanism to synthesise data sequentially, feature
by feature, in order to model tabular data of mixed types. Comparing with conventional statistical models
and showing better fidelity performance, TGAN contributed to the popularity of the GAN-based approaches
for tabular data. CTGAN: focused on better modelling the types of the variables in an effort to increase
fidelity. Indeed, the authors propose a new preprocessing method, which is column-type-specific and models
discrete features in the continuous space via Gumbel-Softmax transformations, while it employs mode-
specific normalisation via a variational Gaussian mixture model applied for each continuous features. Thanks
to these transformations, CTGAN is able to avoid mode collapse, which often burdens other GAN-based
models, like medGAN [Choi et al., 2017] and TableGAN [Park et al., 2018]. CTAB-GAN: Building upon
CTGAN, CTAB-GAN [Zhao et al., 2021] enhances statistical fidelity by addressing data imbalance and long-
tail issues. It introduces a conditional vector to handle mixed-type features and multi-modal continuous
variables, extending support beyond discrete and continuous features. Further, it supports mixed-type
features: which are features that might have highly-recurring discrete values, but also continuous values
across the data points (e.g., a feature Credit Card Transaction USD might often have value 0, but it can also
exceed 500). The benefit of providing support for mixed-type features is reflected in the fidelity performance,
with CTAB-GAN outperforming CTGAN. CTAB-GAN+ [Zhao et al., 2022] is an extension of CTAB-GAN,
which addresses privacy concerns by training a discriminator using differential private-SGD [Abadi et al.,
2016]. Importantly, CTAB-GAN+ demonstrates high fidelity performance.

VAE-based models. TVAE [Xu et al., 2019], proposed along with CTGAN, was designed to check whether
CTGAN’s generator’s lack of access to the real data during training makes it weaker compared to models
that do use these data for training their generator, such as models based on Variational Autoencoders
(VAEs) [Kingma & Welling, 2014]. Indeed, TVAE’s architecture showed an improvement over CTGAN in
terms of fidelity. However, like CTAB-GAN+, the authors also considered the impact of their proposed
models w.r.t. privacy and noted that TVAE’s access to the training data might make it unsuitable in
downstream tasks where sensitive data are present.

1In this survey, we focus only on quantitative evaluations.
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Normalising flows-based models. Neural Spline Flows: Rather than using the common transformations
found in normalising flows, Durkan et al. [2019] proposed using a fully-differentiable module based on
monotonic rational-quadratic piecewise functions. This adaptation, combined with the inherent properties
of normalising flows, which model the data as the output of an invertible differentiable transformation of a
noisy sample drawn from a known distribution, can help synthesise high-fidelity tabular data. The authors
note that such a result is conditional on having enough training data compared to the datasets dimensionality.

Diffusion-based models. FinDiff: Motivated by the need to preserve the statistical properties of real
data of mixed types in real-world financial contexts, Sattarov et al. [2023] proposes FinDiff, which is
capable of generating mixed-type tabular financial data using a diffusion model to capture high-dimensional
dependencies. Unlike another popular diffusion model, TabDDPM [Kotelnikov et al., 2023], which uses one-
hot encoding for categorical features, FinDiff employs an embedding encoding for better handling of mixed
data types. This leads to higher fidelity performance compared to the baselines, indicating that FinDiff
effectively captures both feature-wise and joint distributions of the data.

Diffusion and AE-based models. AutoDiff: Proposed in [Suh et al., 2023], AutoDiff is a diffusion-based
model designed to preserve statistical fidelity by modelling the joint distribution via an autoencoder, rather
than modelling the distributions of individual features separately, as seen in GAN- and diffusion-based models
like CTGAN and TabDDPM. More precisely, AutoDiff (i) uses the autoencoder to learn the distribution of
the features (which can be of mixed types) in a continuous space, and then (ii) passes these continuous
representations to the diffusion model, which generates latent representations that are then decoded back
into representations in the original feature space. Moreover, like CTAB-GAN, it introduces an approach
to handle mixed-type features by adding a new feature to the autoencoder that encodes the frequency of
recurring values in a mixed-type feature.

Diffusion and VAE-based models. TabSyn: Introduced by Zhang et al. [2024], TabSyn trains a score-
based diffusion model, like STaSy, but in a joint VAE-learned space of numerical and categorical features.
Notably, TabSyn significantly reduces the runtime of diffusion-based models while outperforming baselines
w.r.t. fidelity and utility.

6 Privacy

Synthetic data are particularly valuable in privacy-sensitive domains. Thus, there has been growing focus on
generating data without revealing sensitive information that could identify entities from the original dataset.
For example, sharing synthetic patient records for medical research allows for collaboration without risking
the re-identification of individuals or the disclosure of sensitive health information. Similarly, privacy is an
important requirement in education analytics, where synthetic educational data allows for studying student
performance trends without exposing individual student identities or sensitive background information. Fi-
nance is another key domain where privacy is a concern and synthesising transaction or credit data to be
released for academic or commercial research must be done in a way that protects customer confidentiality.

6.1 Evaluation Protocol and Metrics

Privacy is typically evaluated by assessing the risk of attacks succeeding in targeting sensitive information.
The most common attacks are: (i) membership attacks, which use ML classifiers or black-box attacks
(e.g., see [Chen et al., 2020]) to determine whether an entity was part of the set used to train a model, (ii)
attribute disclosure attacks, which try to gain access to sensitive attributes of an entity from the real
dataset, and (iii) re-identification attacks, which try to map a synthetic data point back to the original
dataset. To measure the risk of the attacks being successful, for (i), AUCROC is reported for the trained
attack models (typically one for each class of a feature of interest), for (ii), precision and sensitivity (i.e.,
recall) are measured while varying the number of attributes known to the attacker, and, for (iii), common
metrics include: the distance to the closest record (DCR) [Zhao et al., 2021] (computed as the minimum L2
distance from a synthetic data point to each real data point), the nearest neighbour distance ratio (computed
as the ratio between the distances to the closest and second-closest real neighbours for a synthetic record),
but also k-anonymisation, delta presence, and the identifiability score, as seen in [Jia et al., 2024].
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Finally, methods using differential privacy [Dwork, 2006] introduce noise during training to reduce retention
of original data features. Privacy is then evaluated using different privacy budget values, which determine
the amount of added noise and balance utility and privacy (e.g., see [Park et al., 2018]).

6.2 Methods

AE and GAN-based models. medGAN: Proposed by Choi et al. [2017] for synthesising healthcare
datasets, medGAN is one of the pioneering models for synthesising tabular data using deep generative models.
medGAN generates distributed representations of health records using the generator of a GAN-based model,
then decodes these representations using an autoencoder pretrained on the real data, and passes the decoded
representations to the discriminator component of the GAN, which is trained to distinguish the synthetic
from the real data. In terms of privacy, medGAN showed low attribute disclosure risks, except when an
attacker focused on a small number of data points. IT-GAN: Similar to OCT-GAN but designed to enhance
privacy robustness, IT-GAN [Lee et al., 2021] employs a generator based on neural ODEs to balance utility
and privacy protection. Instead of directly synthesising samples in the input space, the generator produces
hidden representations, as seen also in medGAN. Notably, it ensures that the hidden representation space
matches the input dimensionality, enabling the application of ODEs.

GAN-based models. TableGAN: Another model that marked an important milestone for deep generative
modelling of tabular data is TableGAN [Park et al., 2018], which, unlike medGAN, can model continuous
features. While it is based on a standard GAN model, consisting of a generator and a discriminator,
TableGAN has an additional component: a classifier that predicts the value of the target feature for synthetic
samples using semantic integrity constraints learned from the real data. As exemplified in the original paper,
a sample with values of 60 and 1 for features Cholesterol and Diabetes, respectively, does not align with
the background knowledge, as the cholesterol level is too low for the target feature to indicate a diabetes
diagnosis. Focusing on ensuring privacy, the authors argue for the use of synthesiser models, which do
not learn bijective relationships between real and fake data, making them less vulnerable to re-identification
attacks, unlike prior perturbation or anonymisation methods. Indeed, TableGAN shows that it can synthesise
tabular data with a low risk of re-identification, membership and attribute disclosure attacks to succeed.
PATE-GAN: Another model that is based on a GAN architecture, but alters it for preserving privacy, is
PATE-GAN [Yoon et al., 2019]. Rather than using the standard GAN discriminator, PATE-GAN relies on
a modified Private Aggregation of Teacher Ensemble (PATE) [Papernot et al., 2017] mechanism to ensure
that the discriminator is differentially private. More specifically, a number of teacher-discriminators are
created and trained to improve their loss w.r.t. the generator, which adjusts its loss according to the single
student-discriminator in the mechanism. In turn, the student-discriminator adjusts its loss according to the
teacher-discriminators and allows for backpropagation to the generator, closing the loop. Critically to the
privacy requirement, specialising each of the teacher-discriminators on small partitions of the training set
ensures that the effect of individual samples is small and, thus, higher differential privacy. CuTS: Vero
et al. [2024] proposed CuTS as a customisable framework, which can adapt to user-defined specifications,
such as background knowledge constraints, but also to differentially private training. In the private setting,
CuTS builds on the DP iterative framework from [McKenna et al., 2022], but uses its own GAN-based
generator, which is equipped with a mechanism that matches the generator’s output distribution to the
real data distribution by comparing marginals. Additionally, CuTS can incorporate background knowledge
in the form of propositional logical constraints that each data point must satisfy via a new loss term.
Further, rejection sampling is used to ensure that the model’s outputs satisfy the constraints. Although
the framework works only with discrete features, it takes a step towards synthesisers for tabular data that
account for multiple requirements, including alignment and privacy.

7 Other models

In (§3-6), we compared deep generative models originally proposed for tabular data synthesis. Here, we
discuss seminal models first developed in other fields and later adapted for tabular data. WGAN: Orig-
inally designed for computer vision tasks, WGAN [Arjovsky et al., 2017] was introduced in a paper that
analyses ways to measure the distance between the real and model distributions, arguing that weaker loss
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Figure 2: Visualisation of the surveyed models based on the requirements they address.

functions induce weaker model topologies, thus weak models for the real distribution. The authors compare
the Wasserstein distance with traditional probability distance measures, including Kullback-Leibler (KL)
divergence, Jensen-Shannon divergence, and total variation distance, showing that the Wasserstein distance
has properties that would be better suited for learning distributions in low dimensional manifolds. They thus
propose GAN models that use the Wasserstein distance as loss function. WGAN-GP: A popular extension
of WGAN is WGAN-GP [Gulrajani et al., 2017], which added a new term in the loss that penalised the
gradient norm of the discriminator w.r.t. the discriminator’s input, providing an alternative to the weight
clipping that was leading to the generator retaining the real data points and adding Gaussian noise to fill
the gaps. VEEGAN: VEEGAN [Srivastava et al., 2017] jointly trains a generator and a novel reconstructor
network in order to avoid mode collapse. The reconstructor learns to map the real data distribution to
Gaussian random noise, approximating the inverse of the generator and encouraging the generator to map
the noise distribution back to the real data distribution.

8 Discussion and Future Directions

In this survey, we identified four key requirements for the effective deployment of synthetic data, along with
the relevant evaluation procedures and deep generative models, at the same time categorising the latter by
their model architecture.

Related work. Previous surveys generally compare methods by the architecture-specific properties of the
models. For example, both Borisov et al. (2024) and Davila R. et al. (2025) group methods mainly by
their architectures, while also describing the necessary data transformation and regularisation techniques.
[Lautrup et al., 2024] provide an overview of the models proposed in the field and the metrics used to
evaluate them, while not taking this requirement-centric perspective which helps both newcomers and sea-
soned practitioners and researchers in the field to find the perfect model and evaluation protocol for their
needs. Further, they exclude diffusion-based and LLM-based architectures. On the other hand, Wang et al.
[2025] narrow the scope of their survey and focus specifically on methods for social and government sector
applications, where balancing utility and privacy is the key concern.

Future Directions. Tabular data generation is a rapidly evolving field still in its early stages. As illustrated
in Figure 2, many early approaches have prioritised individual objectives—typically utility or privacy—
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leading to highly specialised models that lack broad applicability. This fragmentation highlights a key
challenge: the need for models that can balance multiple, often competing, requirements.

Notably, alignment has historically received limited attention but is now emerging as a crucial factor for
generating realistic data. With the increasing deployment of generative models in real-world applications
and the growing prominence of neurosymbolic AI and safe AI [d’Avila Garcez et al., 2019; Giunchiglia et al.,
2022], we anticipate that alignment will soon become a fundamental requirement in the field.

Moreover, Figure 2 reveals a striking gap: no existing model successfully integrates all the core require-
ments we consider. As the field matures, we expect new requirements will emerge, and the hybridisation
of techniques will drive the development of more versatile models. Bridging these gaps will be essential for
advancing the field and enabling broader, more reliable applications of tabular data generation.

Broader Impact Statement

This survey captures current trends in deep generative modelling for tabular data synthesis, offers a new
perspective on what makes synthetic data practically useful, and outlines key steps toward achieving such
a goal. We emphasise that, while existing methods address different requirements (e.g., alignment, utility,
privacy, and fidelity), further progress toward developing approaches that simultaneously meet multiple
requirements will increase their impact in real-world applications. In particular, we highlight the importance
of incorporating domain knowledge to enhance the quality of synthetic data and encourage its integration
in future deep generative modelling approaches for synthesising tabular data. It is important, however, to
ensure that such background knowledge does not embed user-specific biases or characteristics, as this could
raise privacy concerns. Provided this condition is met, injecting domain knowledge into generative models
does not pose any direct negative impact.
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