Exploiting Activation Sparsity
with Dense to Dynamic-k Mixture-of-Experts Conversion

Filip Szatkowski* !> Bartosz Wéjcik “23 Mikolaj Piérczynski“! Simone Scardapane*

Abstract

Transformer models can face practical limitations
due to their high computational requirements. At
the same time, they exhibit high activation spar-
sity, which can be leveraged to reduce the infer-
ence cost by converting parts of the network into
equivalent Mixture-of-Experts (MoE) layers. De-
spite the crucial role played by activation sparsity,
its impact on this process remains unexplored. In
particular, we show that the efficiency of the con-
version can be significantly enhanced by a proper
regularization of the activation sparsity of the base
model. Moreover, motivated by the high variance
of the number of activated neurons for different
inputs, we introduce a more effective dynamic-k
expert selection rule that adjusts the number of ex-
ecuted experts on a per-token basis. The proposed
method, Dense to Dynamic-k Mixture-of-Experts
(D2DMOoE), outperforms existing approaches on
common NLP and vision tasks, allowing us to
save up to 60% of inference cost without signifi-
cantly affecting model performance.

1. Introduction

Transformers have become a predominant model architec-
ture in various domains of deep learning such as machine
translation (Vaswani et al., 2017), language modeling (De-
vlin et al., 2018; Radford et al., 2019), and computer vi-
sion (Dosovitskiy et al., 2020; Khan et al., 2022). The
effectiveness of Transformer models in various applications
is closely related to their ability to scale efficiently with the
number of model parameters (Kaplan et al., 2020), prompt-
ing researchers to train progressively larger and larger mod-
els (Touvron et al., 2023; Jiang et al., 2023). However, the

“Equal contribution 'Warsaw University of Technology
IDEAS NCBR ‘Jagiellonian University *Sapienza Univer-
sity of Rome. Correspondence to: Filip Szatkowski
<filip.szatkowski.dokt@pw.edu.pl>.

Efficient Systems for Foundation Models Workshop at the 415t
International Conference on Machine Learning, Vienna, Austria.
Copyright 2024 by the author(s).

considerable computational demands of these models often
restrict their deployment in settings with limited resources.

At the same time, Transformer models exhibit consider-
able activation sparsity (Li et al., 2022), which suggests
that most of their computations are redundant. Conditional
computation methods can reduce these unnecessary costs
by using only a subset of the model parameters for any
given input (Han et al., 2021). In particular, Mixture-of-
Experts (MoE) layers (Shazeer et al., 2016) consisting of
multiple sparsely executed experts are an effective way to
decouple the number of parameters of the model from its
computational cost (Clark et al., 2022). As shown by (Zhang
et al., 2022), many pre-trained dense Transformer models
can be made more efficient by converting their FFN blocks
into MoE layers, a process they call MoEfication.

Contributions of this paper: We consider the following
research question: what is the optimal way to convert a
generic Transformer model into an equivalent sparse vari-
ant? We propose to improve upon the MoEfication process
with Dense to Dynamic-k Mixture-of-Experts (D2DMoE)
and demonstrate it in Figure 1. Our findings can be summa-
rized as follows.

1. We analyze the relationship between the activation spar-
sity of the starting model and the efficiency of the
converted MoE model. We show that computational
savings are directly related to sparsity levels, and we
correspondingly enforce higher activation sparsity lev-
els before conversion through a lightweight fine-tuning
process, improving the cost-to-performance trade-off.

2. We identify the router training scheme in the original
MoEfication algorithm as a limitation of the conversion
process and propose to instead frame the router training
as a regression problem so that our routers directly pre-
dict the norm of the output of each expert.

3. We show that Transformer models exhibit significant
variance in the number of activated neurons, and stan-
dard top-k expert selection in the MoE layers is inef-
ficient. We propose an alternative dynamic-k expert
selection scheme that adjusts the number of activated
experts on a per-token basis, further increasing the

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

a) Sparsification

b) Dense to MoE conversion

¢) Dynamic-k expert selection

-) o
! Gat —>
i I||| o B ||

Figure 1: Key components of D2DMoE: (a) We enhance the activation sparsity in the base model. (b) We convert FFN
layers in the model to MoE layers with routers that predict the contribution of each expert. (c) We introduce dynamic-k
routing that selects the experts for execution based on their predicted contribution.

overall efficiency.

We evaluate our method on image classification and lan-
guage modeling, and show that in all cases it achieves sig-
nificant improvements upon the baseline in terms of cost-vs-
performance trade-offs.

2. Motivation

MoE models have gained a lot of traction over the last years
as an effective architecture to decouple the parameter count
from the computational cost of the models (Zoph et al.,
2022). In a MoE layer, hard sparsity is usually enforced
explicitly by applying a top-k operation on the outputs of a
trainable gating layer. However, many recent works (Zhang
et al., 2023; Chen et al., 2023; Qiu et al., 2024) have shown
that most Transformers, when trained at scale, build intrin-
sically sparse and modular representations. Zhang et al.
(2022) proposed to leverage this naturally emerging mod-
ularity with MoEfication - a method that converts dense
transformer models into MoE models by grouping FFN
weights into experts and subsequently learning small routers
that determine which experts to activate. Models converted
with MoEfication are able to preserve the performance of
the original dense models while using only a fraction of
their computational cost. However, we believe that the
MoEfication procedure is not optimal, and therefore aim
to obtain dense-to-sparse conversion schemes that obtain a
better cost-performance trade-off.

Intuitively, a MoE converted from a sparser base model
would be able to perform the original function using a
smaller number of experts. To validate this hypothesis,
we perform MoEfication on different variants of GPT2-base
with varying activation sparsity levels and show the results
in Figure 2a. As expected, MoEfication performs better
with sparser models. We further investigate the per-token
mean and the variance of non-zero neurons in the base and
sparsified model. As visible in Figure 2b, different layers
use a different number of neurons on average. Moreover,
the variance of the number of activated neurons is quite high

and becomes even more significant in the sparsified model.
This means that static top-k gating as used in MoEfication is
not optimal for dense-to-MoE converted models, and a more
flexible expert assignment rule that would be able to handle
the high per-token and per-layer variance could be beneficial
to the efficiency of such models, as illustrated at Figure 2c.
Such dynamic-k gating requires routers that reliably predict
the contribution of each expert. We observe that routers
obtained through MoEfication do not accurately reflect this
contribution. Moreover, their router training procedure de-
pends on the strict sparsity of the model guaranteed by the
ReLU activation function. Therefore, we design a novel
router training scheme that directly predicts the contribu-
tion of each expert and generalizes to the broader family
of activation functions. We combine the proposed compo-
nents (sparsity enforcement, expert contribution routing, and
dynamic-k gating) into a single method that we call Dense
to Dynamic-k Mixture-of-Experts (D2DMoE), which we
describe in detail in the next Section.

3. Method

D2DMOoE reduces the computational cost of the model by
splitting every MLP module into a MoE layer. In this sec-
tion, we describe all of its components in detail. A high-level
overview of the entire procedure is presented in Figure 1.

3.1. Enforcing activation sparsity

We expect that enforcing higher levels of activation spar-
sity may allow for the execution of an even smaller number
of experts, resulting in overall computational savings. To
this end, we induce activation sparsity by fine-tuning the
model with an additional loss term that induces activation
sparsity (Georgiadis, 2019). We apply the square Hoyer
regularization (Kurtz et al., 2020; Hoyer, 2004) on the acti-
vations of the model:

L 2
_ 1 Z (> |a”lL:))

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

9 K400 = E, E, (B3 (B
a [sparsit @ = Base model I Ly
[P y] _5 30.0 Sparsified model < Gate
8 — 0.00 [79%] E 2
——— 0.05[83%] § 20.0 5 —
7 ---- 0.10 [86%] ° I % (B) BE» B lE‘;l_>
(9] o
w | NV e 0.30 [90%] y 100 I ILEEEEL I = e
g\ —— +—— —— 0.50 [94%] S R —
- 06
5 § B B E B3 B
204 & >
5 o0
4 goz _‘% Gate
3 < S —
3 E (B, (E,) (E5] [E4]
10 " 12 13 14 15 003 4 5 6 7 8 9 10 11 12 g —>
GFLOPs FFN layer index & Gate

(a) Impact of sparsity on MoE conversion

where a' is the activation vector from the middle layer of the
I-th MLP for input x, and L is the total number of MLPs in
the model. Overall, the model is trained with the following
cost function:

L(z) = Lce(,y) + aLls(z) @

where Lcg is cross-entropy loss, and « is the hyperparam-
eter that controls the strength of sparsity enforcement. We
find that the pre-trained models recover the original perfor-
mance with only a fraction of the original training budget.

3.2. Expert clustering

We split the two-layer MLP modules into experts using
the parameter clustering method proposed by Zhang et al.
(2022). Assuming the MLP layers are composed of weights
W1, W5 and corresponding biases by, ba, we treat the
weights of each neuron from W as features and feed them
into the balanced k-means algorithm (Malinen and Frénti,
2014) that groups neurons with similar weights together.
Then, we use the resulting cluster indices to split the first
linear layer W7, the first bias vector by, and the second
linear layer W5, into n experts of the same size. The second
bias b, is not affected by this procedure.

MokEfication process was designed for standard two-layered
MLPs (Zhang et al., 2022). Recent LLMs (Touvron et al.,
2023; Team, 2024) have shifted towards gated FFNs, where
the activation is realized through a Gated Linear Unit
(GLU) (Shazeer, 2020), which contains an additional weight
matrix for the gate projections. To adapt the expert clus-
tering procedure described above to gated FFN layers, we
cluster the weights of the gating matrix W instead of W7,
and use the obtained indices to divide the weights of the two
other layers. We provide more intuition and details on our
method for gated FFNs in Appendix E.

3.3. Expert contribution routing

In a standard MoE-based model, the gating networks are
trained in an end-to-end manner. Contrary to this, we train

(b) Non-zero activations distribution

(c) Top-k vs dynamic-k gating

each gating network independently. We propose to frame
the problem of training the router as a regression task and
directly predict the £2-norm of the output of each expert with
the router. Formally, given an input token z, the D2DMoE
router R is trained to minimize the following loss:

c Ly R E 2 3
where F; is the i-th expert. We use a small two-layer neu-
ral network as the router R and apply an absolute value
activation function to ensure non-negative output. This
regression-based formulation is still compatible with the
commonly used top-k expert selection, but enables more
precise attribution of the contribution of each expert, as we
show later in the experimental section.

Note that Zhang et al. (2022) also trains each routing net-
work independently, but their method constructs artificial
labels for each input, and then subsequently trains the router
as a classifier. We discuss the differences in Appendix C.

3.4. Dynamic-k gating

Commonly used MoE layers always execute top-k experts
for each token, where k is a predefined hyperparameter.
This means that, regardless of the difficulty of the input,
the model spends the same amount of compute on each
batch (Zhou et al., 2022) or token (Shazeer et al., 2016).
While this may be appropriate if the model is trained with
the same restriction, it is suboptimal for a model that was
converted from a dense model, as we show in Section 2.

Since our router directly predicts the ¢2-norm of output
of each expert, we propose a dynamic-k expert selection
method that skips experts for whom the router predicts rel-
atively small output norms. Given a router output vector
R(z), we select a hyperparameter 7 € [0, 1] and define the
expert selection rule G for the i-th element as:

Gl2); = {é if R(z); > 7 - max R(z)

. “
if R(z); < 7-max R(z)

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

08 o= 8 MoEfication 10 MoEfication

07 —— D2DMoE 9 —— D2DMoE
>0-6 7 X Baseline 8 ® Baseline
gos 26 g 7
504 o S 6
§ 03 MoEfication - 5 |

) —_— 5

0.2 D2DMoE

o1 ZTW 4 4

' ® Baseline

0.0 3 x—— 3 —

0.25 0.50 0.75 1.00 1.25 1.50 1.75 10 11 12 13 14 15 100 125 150 175 200 225 250 275
GFLOPs GFLOPs GFLOPs

(a) ViT-B on ImageNet-1k.

(b) GPT-2-base on OpenWebText

(c) Gemma-2B on C4

Figure 3: FLOPs vs loss comparison for our method and MoEfication (Zhang et al., 2022) on vision and NLP benchmarks.
Our method outperforms the baselines at every computational budget.

Note that as 7 increases, the number of executed experts
decreases along with the overall computational cost. We
emphasize that after model deployment 7 can be adjusted
without the need for retraining.

4. Experiments

To analyze the impact of our method, we evaluate its per-
formance on image classification and language modeling.
We obtain performance versus computational cost charac-
teristics for each method by evaluating the methods with
different inference hyperparameters (either 7 described in
Section 3.4 for D2DMoE or number of experts &k for MoEfi-
cation). We report the computational cost of each method
in FLOPs, as it is a device-independent metric that has been
shown to correlate well with latency (Mirzadeh et al., 2023).

For MokEfication, we follow the procedure described
by Zhang et al. (2022) by converting the activation functions
of the pre-trained model to ReLU and then fine-tuning the
model. In the case of D2DMOoE, we also replace activation
functions with ReLLU. To provide a fair comparison, the
total training data budget is always for all methods. See
Appendix G for a detailed description of our setup.

Image classification Vision Transfomers (Dosovitskiy
et al., 2020) are becoming one of the most popular archi-
tectures in computer vision. Since our method applies to
any Transformer model, we evaluate D2DMOoE on the pop-
ular ImageNet-1k (Russakovsky et al., 2015) dataset. We
use a pre-trained ViT-B checkpoint as the base model and
compare D2DMOoE with MoEfication in terms of the compu-
tational cost versus accuracy trade-off. For broader compar-
ison, we also evaluate the state-of-the-art early-exit method
Zero-time Waste (ZTW) (Wéjcik et al., 2023). Our results,
presented in Figure 3a, demonstrate the significant gains
from applying our method over MoEfication.

Language modeling We evaluate our method on language
modeling and compare it with MoEfication using GPT-2-

base (Radford et al., 2019) and Gemma-2B (Team, 2024).
We initialize GPT-2 models from a publicly available Ope-
nAlI checkpoint pre-trained on a closed-source WebText
dataset, and use OpenWebText (Gokaslan and Cohen, 2019)
in all of our experiments. For Gemma-2B, we also start
from the publicly available pretrained model and evaluate
its language capabilities on the C4 dataset (Raffel et al.,
2020) after finetuning. For both models, we use around 1B
tokens for the finetuning phase (less than 1% of the cost of
original pretraining) and 8-16M tokens for router training.

We present test losses for D2DMoE and MoEfication at
different compute budgets for GPT-2-base and Gemma-2B
in Figures 3b and 3c respectively. Our method outperforms
the baseline at every computational budget. The loss of
D2DMOoE plateaus for higher budget levels, while the base-
line displays consistently worse results whenever we lower
the computational budget. Notably, for the larger Gemma-
2B model our method performs well for most compute bud-
gets, while the performance of MoEfication collapses (we
analyze this in more detail in Appendix D).

5. Conclusion

We introduce Dense to Dynamic-k Mixture-of-Experts
(D2DMOoE), a novel approach that induces activation spar-
sity to improve the efficiency of Transformer-based models
by converting their layers to Mixture-of-Experts (MoE).
We demonstrate the interplay between the activation spar-
sity of dense models and the efficiency of converted MoEs.
Moreover, we introduce regression-based router training and
dynamic-k routing, which enable our method to efficiently
utilize the induced sparsity. Our approach is compatible
with the existing Transformer architectures and significantly
improves upon existing MoE conversion schemes. Our find-
ings contribute to the ongoing efforts to make Transformer
models more efficient and accessible for a wider range of ap-
plications, especially in resource-constrained environments.

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

References

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Xuanyao Chen, Zhijian Liu, Haotian Tang, Li Yi, Hang
Zhao, and Song Han. Sparsevit: Revisiting activation
sparsity for efficient high-resolution vision transformer.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
2061-2070, June 2023.

Aidan Clark, Diego De Las Casas, Aurelia Guy, Arthur Men-
sch, Michela Paganini, Jordan Hoffmann, Bogdan Damoc,
Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al.
Unified scaling laws for routed language models. In

International Conference on Machine Learning, pages
4057-4086. PMLR, 2022.

Gongalo M Correia, Vlad Niculae, and André FT Mar-
tins. Adaptively sparse transformers. arXiv preprint
arXiv:1909.00015, 2019.

Erik Daxberger, Floris Weers, Bowen Zhang, Tom Gunter,
Ruoming Pang, Marcin Eichner, Michael Emmersberger,
Yinfei Yang, Alexander Toshev, and Xianzhi Du. Mobile
v-moes: Scaling down vision transformers via sparse
mixture-of-experts. arXiv preprint arXiv:2309.04354,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In Interna-
tional Conference on Learning Representations, 2020.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi
Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient
scaling of language models with mixture-of-experts. In
International Conference on Machine Learning, pages
5547-5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. The Journal of Machine
Learning Research, 23(1):5232-5270, 2022.

Georgios Georgiadis. Accelerating convolutional neural
networks via activation map compression. In Proceedings

of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7085-7095, 2019.

Aaron Gokaslan and Vanya Cohen. Openwebtext
corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):7436-7456, 2021.

Patrik O Hoyer. Non-negative matrix factorization with
sparseness constraints. Journal of machine learning re-
search, 5(9), 2004.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo-
hiuddin, Lukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. Sparse is enough in
scaling transformers. Advances in Neural Information
Processing Systems, 34:9895-9907, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM computing
surveys (CSUR), 54(10s):1-41, 2022.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander
Matveev, John Carr, Michael Goin, William Leiserson,
Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and
exploiting activation sparsity for fast inference on deep
neural networks. In International Conference on Machine
Learning, pages 5533-5543. PMLR, 2020.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. In International Conference on Learning Rep-
resentations, 2020.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li,
Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Felix Chern,
Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon:
On emergence of activation sparsity in transformers. In
The Eleventh International Conference on Learning Rep-
resentations, 2022.

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. Deja vu: Con-
textual sparsity for efficient llms at inference time. In

International Conference on Machine Learning, pages
22137-22176. PMLR, 2023.

Mikko I Malinen and Pasi Frinti. Balanced k-means for
clustering. In Structural, Syntactic, and Statistical Pat-
tern Recognition: Joint IAPR International Workshop,
S+ SSPR 2014, Joensuu, Finland, August 20-22, 2014.
Proceedings, pages 32—41. Springer, 2014.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C
Del Mundo, Oncel Tuzel, Golnoosh Samei, Mohammad
Rastegari, and Mehrdad Farajtabar. Relu strikes back:
Exploiting activation sparsity in large language models.
arXiv preprint arXiv:2310.04564, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-

brary. Advances in neural information processing systems,
32,2019.

Zihan Qiu, Zeyu Huang, and Jie Fu. Unlocking emergent
modularity in large language models. In 2024 Annual
Conference of the North American Chapter of the ACL,
2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsu-
pervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1-67, 2020.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim
Neumann, Rodolphe Jenatton, André Susano Pinto,
Daniel Keysers, and Neil Houlsby. Scaling vision with
sparse mixture of experts. Advances in Neural Informa-
tion Processing Systems, 34:8583-8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al.
Hash layers for large sparse models. Advances in Neural
Information Processing Systems, 34:17555-17566, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211-252, 2015. doi:
10.1007/s11263-015-0816-y.

Noam Shazeer. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy
Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Out-
rageously large neural networks: The sparsely-gated
mixture-of-experts layer. In International Conference
on Learning Representations, 2016.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu.
Massive activations in large language models. arXiv
preprint arXiv:2402.17762, 2024.

Gemma Team. Gemma: Open models based on gemini re-
search and technology. arXiv preprint arXiv:2403.08295,
2024.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii:
Revenge of the vit. In European Conference on Computer
Vision, pages 516-533. Springer, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almabhairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Shikhar Tuli and Niraj K Jha. Acceltran: A sparsity-
aware accelerator for dynamic inference with transform-
ers. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, f.ukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Bartosz Wojcik, Marcin PrzewiezZlikowski, Filip Sza-
tkowski, Maciej Wotczyk, Klaudia Batazy, Bartlomie;j
Krzepkowski, Igor Podolak, Jacek Tabor, Marek émieja,
and Tomasz Trzcifiski. Zero time waste in pre-trained
early exit neural networks. Neural Networks, 168:580—
601, 2023.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. Moefication: Transformer
feed-forward layers are mixtures of experts. In Findings
of the Association for Computational Linguistics: ACL
2022, pages 877-890, 2022.

Zhengyan Zhang, Zhiyuan Zeng, Yankai Lin, Chaojun Xiao,
Xiaozhi Wang, Xu Han, Zhiyuan Liu, Ruobing Xie,
Maosong Sun, and Jie Zhou. Emergent modularity in
pre-trained transformers. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki, editors, Findings of the
Association for Computational Linguistics: ACL 2023,
pages 4066—4083. Association for Computational Lin-
guistics, July 2023.

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

Yangi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang,
Vincent Zhao, Andrew M Dai, Quoc V Le, James Laudon,
et al. Mixture-of-experts with expert choice routing. Ad-

vances in Neural Information Processing Systems, 35:
7103-7114, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping
Huang, Jeff Dean, Noam Shazeer, and William Fedus.
St-moe: Designing stable and transferable sparse expert
models. arXiv preprint arXiv:2202.08906, 2022.

Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He,
Tuo Zhao, and Weizhu Chen. MoEBERT: from BERT
to mixture-of-experts via importance-guided adaptation.
In Marine Carpuat, Marie-Catherine de Marneffe, and
Ivan Vladimir Meza Ruiz, editors, Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1610-1623, Seat-
tle, United States, July 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.naacl-main.
116. URL https://aclanthology.org/2022.
naacl-main.116.

https://aclanthology.org/2022.naacl-main.116
https://aclanthology.org/2022.naacl-main.116

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

A. Limitations and Broader Impact

While D2DMOoE displays promising results in reducing the
computational cost of inference in Transformer models, a
few limitations should be acknowledged. Our proposed
sparsity enforcement and router training phases require ad-
ditional training time. This overhead, while small, must be
considered when evaluating the benefits of our approach.
Moreover, we demonstrate improved performance over ex-
isting approaches on common NLP and CV tasks, but the
scope of our experiments is restricted due to limited access
to computational resources. Further research is needed to
explore its applicability to extremely large models.

Our work focuses primarily on fundamental machine learn-
ing research and we do not see any specific risks or ethical
issues associated with our method. Nevertheless, we recog-
nize the potential for misuse of machine learning technology
and advocate for responsible Al practices to mitigate such
risks.

B. Related Work

Mixture-of-Experts. Sparse Mixture-of-Experts lay-
ers (MoE) consist of a predefined number of experts along
with a gating network that routes each input to a subset of
experts. MoE layers were introduced as an efficient way
to further increase the capacity of deep neural networks
applied for NLP tasks, initially in LSTM models (Shazeer
et al., 2016), and later in Transformers (Lepikhin et al.,
2020). Since then, they have also been applied to computer
vision (Riquelme et al., 2021; Daxberger et al., 2023). MoE
layers have gained significant popularity primarily due to
their excellent scaling properties (Du et al., 2022; Clark
et al., 2022). Nonetheless, training such models is challeng-
ing, primarily because gating decisions must be discrete to
ensure sparse expert selection. Various methods of train-
ing were proposed, some of which include reinforcement
learning (Bengio et al., 2013), weighting the expert output
by the probability to allow computation of the gradient of
the router (Shazeer et al., 2016), or using the Sinkhorn algo-
rithm (Clark et al., 2022). Some of those approaches also
suffer from the possibility of load imbalance and therefore
require auxiliary losses or alternative expert selection meth-
ods (Fedus et al., 2022; Zhou et al., 2022). Interestingly,
in many cases fixed routing functions perform similarly to
trainable routers (Roller et al., 2021), which suggests that
current solutions are largely suboptimal. MoE models can
also be derived from pre-trained dense models by splitting
the model weights into experts and independently training
the routers for each layer (Zhang et al., 2022; Zuo et al.,
2022), which avoids most of the problems present in end-to-
end training.

Activation sparsity in Transformers. Li et al. (2022)
show that ReLU-based Transformer models produce sparse
activations in their intermediate representations, an effect
that is prevalent across architectures, layers, and modali-
ties. They propose a simple rule for keeping only top-k
activations in each MLP layer, which results in a model
with comparable performance. Similarly, Mirzadeh et al.
(2023) demonstrate that ReLU activation function in LLMs
encourages ensuing activation sparsity that can be leveraged
to skip redundant computations. Tuli and Jha (2023) take a
step further and design a dedicated Transformer architecture
accelerator that also exploits activation sparsity, while Liu
et al. (2023) proposes to predict activation sparsity struc-
ture in LLMs and reduce the model latency by skipping
redundant computations. Jaszczur et al. (2021) demonstrate
that it is possible to train Transformer models from scratch
with a fixed level of activation sparsity and obtain similar
performance. Finally, a related line of works focuses on
sparsity in the attention distributions instead of intermediate
representations (Correia et al., 2019). None of the above-
mentioned methods explore induced activation sparsity as
a way to increase computational gains, nor do they address
variance of the number of sparse activations on a per-token
basis.

C. Difference between router training in
D2DMoE and MoEfication

Our router training procedure is similar to the one proposed
in MoEfication (Zhang et al., 2022), but the source code of
the method provided by the authors' contains a different
routing objective than the one reported in the paper. While
the paper describes their router training objective as a pre-
diction of the sum of ReLU activation values in each expert,
the source code uses prediction labels created from the sum
of the activations in the intermediate layer divided by the
maximum value in the entire batch and minimize the binary
cross-entropy loss. Assuming that ay, ; is the activation vec-
tor in the hidden layer of expert j for sample &, the label
generation for their router can be expressed as:

D Ok ji

max; m Y _; Al,m,i

&)

Ykj =

In comparison to their approach, the router training proce-
dure in D2DMOoE differs in multiple aspects:

* Our router considers the output of each expert instead
of looking at the activations in the intermediate layers.

router train-
https://

"MoEfication source code for
ing is publicly available at:
github.com/thunlp/MoEfication/blob/
c50bb850307a36£8a0add6123f56ba309a156d13/
moefication/utils.py#L188-1260

https://github.com/thunlp/MoEfication/blob/c50bb850307a36f8a0add6123f56ba309a156d13/moefication/utils.py#L188-L260
https://github.com/thunlp/MoEfication/blob/c50bb850307a36f8a0add6123f56ba309a156d13/moefication/utils.py#L188-L260
https://github.com/thunlp/MoEfication/blob/c50bb850307a36f8a0add6123f56ba309a156d13/moefication/utils.py#L188-L260
https://github.com/thunlp/MoEfication/blob/c50bb850307a36f8a0add6123f56ba309a156d13/moefication/utils.py#L188-L260

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

10 MoEfication
9 —— MoEfication+RR
8 ¥ Baseline
w 7
N
9 6
5
4
3 \
== |

100 125 150 175 200 225 250 275
GFLOPs

Figure 4: Comparision of performance on Gemma-2B for
MokEfication with vanilla routing and with our regression
routing.

* Instead of using artificially created labels based on the
sums of activation values, we predict the 0%-norm of
the output. This has the additional benefit that our
router can work with alternative activation functions.

* Our router is trained with the mean-squared error in-
stead of the binary cross-entropy loss. The output of
our router is constrained to positive values, while the
MokEfication router is constrained to outputs in [0, 1].

D. Routing analysis for large models

As presented in Figure 3c, in comparison to other consid-
ered benchmarks MoEfication visibly underperforms on
language modeling with Gemma-2B. We attribute this to
the emergence of massive activations in LLMs that reach
a specific scale (Sun et al., 2024). Massive activations are
outliers along certain feature dimensions whose magnitudes
are thousands of times larger than the magnitudes of other
activations. The training objective of MoEfication described
in Equation (5) uses maximum activation over the entire
batch to normalize the target label for each expert. Upon
encountering large outlier values, those labels become ef-
fectively meaningless, as the values for most of the experts
become very close to zero. In this case, the router effectively
learns to output zero labels for most of the experts aside
from the ones corresponding to the outlier values.

In comparison to MoEfication, our router training scheme
does not make use of such normalization, and should there-
fore be robust to the emergence of massive activations. To
validate this, we apply MoEfication on Gemma-2B, but
with our regression routing instead of the original router
training strategy. We compare the resulting model with
vanilla MoEfication in Figure 4 and notice that replacing the

Standard FFN
W1

Wo
Gated FFN
Wi
T — X y
W, A
> >(A
Wo

Figure 5: D2DMOoE extension to Gated MLP.

routing scheme is enough for the model to learn effective
expert assignment, as even though the expert choice is static
and the base model is not sparsified, the cost-loss trade-off
has significantly improved. This simple experiment shows
that our regression routing objective is more robust than
MokEfication when scaling to larger models.

E. D2DMOoE extension to GLU-based layers

To provide better intuition behind the extension of our
method to GLU-based gated MLPs mentioned in Sec-
tion 3.2, we visualize the differences between standard FFN
and Gated FFN and the application of our method in Fig-
ure 5. Standard Transformer MLP realizes the following
function:

y(z) = W1 A(Waz), (6)

where W1, Wy, are the weights for the upscale and down-
scale projections® and A stands for the activation function.
In comparison, gated MLP can be written down as:

y(r) = Wi (A(Wyz) o Waz), @)

where W is the weight for the added gate projection.

The intuition behind MoEfication, which our method also
follows for standard FFNs, is that the sparsity of the in-
termediate, post-activation representations determines the
sparsity of the output representation. Therefore, the expert
split is performed based on the weights of the upscale pro-
jection, as zeroed neurons in the upscale activations will
also result in zeroed outputs of the downscale projection.
When extending D2DMoE to Gated MLPs, our intuition

*We omit biases for simplicity.

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

(a) Computational load maps for ImageNet-1k sample images

Figure 6: Computational load maps of selected ImageNet-1k samples for our converted ViT-B model with 7 = 0.0025.
D2DMOoE allocates its computational budget to semantically important regions of the input.

is that the gating projections determine the sparsity of all
the later representations, as both upscale and downscale are
multiplied with the gating values. Therefore, we propose to
build the experts through clustering performed on the gating
weights W, and use the indices obtained through expert
split on gating weights to construct experts from W, and
‘W,. Following similar reasoning, for GLU-based models,
we also perform activation sparsity enforcement on the gat-
ing projections instead of upscale projections as described
originally in Section 3.1.

F. Expert selection patterns

D2DMOoE allows the model to allocate different computa-
tional resources to various layers. We expect the model
to allocate more compute to tokens containing information
relevant to the current task. Since each token position in a
ViT model corresponds to a separate and non-overlapping
part of the input image, we can easily plot a heatmap to
indicate the regions of the image where the model spends
its computational budget. In Figure 6a we present such an
analysis for our converted ViT-B model. As expected, the
dynamic-k routing enables the model to minimize the com-
putational effort spent on regions that contain insignificant
information.

G. Training and hardware details

In this Section, we describe the technical details used in the
D2DMOoE conversion procedure. For full reproducibility,
we share the source code that we used for conducting the
experiments. All experiments were performed using the
PyTorch library (Paszke et al., 2019) on the NVIDIA

10

A100 and V100 GPUs on internal clusters. We utilize the
fvcore library to count model FLOPs?.

G.1. Image classification

All methods start with the same pre-trained ViT-B from the
torchvision # library and are trained on ImageNet-1k
using the augmentation proposed by Touvron et al. (2022).
We use mixup (0.8), cutmix, label smoothing (0.1), gradient
clipping (1.0) and the Adam optimizer with a cosine learn-
ing rate schedule without warm-up. We finetune the model
for 90 epochs with sparsity enforcement weight o = 0.2,
initial learning rate 2 - 10~ and batch size 512. We then
convert the modules into MoE layers, and train the gating
networks for 7 epochs with the initial learning rate set to
0.001 and batch size 128. We train ZTW for 100 epochs
in total, allocating 5 epochs for ensemble training, while
keeping the rest of the original hyperparameters unchanged.
For MokEfication, we first convert the pre-trained model to
ReLU-based one and finetune for 90 epochs with an initial
learning rate of 0.0001 and batch size 256. We then split the
weights and train the routers for 10 epochs with the initial
learning rate 0.001 and batch size 256.

G.2. Language modeling

We base our code and hyperparameters for GPT2-
base on the nanoGPT repository provided at https:
//github.com/karpathy/nanoGPT. We initial-

*https://github.com/facebookresearch/
fvcore

*https://pytorch.org/vision/stable/models.
html

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html

Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion

ize the model from https://huggingface.co/
openai-community/gpt2. In all pretraining experi-
ments, we initialize models from a publicly available Ope-
nAl checkpoint pre-trained on a closed-source WebText
dataset and finetune for the fixed number of 1000 steps with
the effective batch size equal to the value in the repository
through gradient accumulation. We train the routers for
D2DMOoE and MokEfication for 2000 steps using one GPU
and tuning the learning rates for a given expert size from
the range between 0.002 — 0.005. For router training, we
use Adam optimizer and cosine warmup scheduler.

For Gemma-2B, we start from the checkpoint at https:
//huggingface.co/google/gemma—-2b. We also
finetune the model for 1k steps with an effective batch size
of 1024, sequence length of 1024 and Adam optimizer with
a learning rate of le-4. As Gemma’s hidden dimension is
much larger than the other considered models, we change
the hidden dimensionality of the routers to 512 for both
our method and MoEfication, but keep the other hyperpa-
rameters the same as in the rest of the experiments. For
MoEfication, Gemma, we use 512 experts to obtain an ex-
pert size comparable to the one in their paper. For our
method, we use 2048 experts. In D2DMOoE, we set sparsity
enforcement weight to 0.00003. We train the routers for
500 steps with Adam and effective batch size of 16 and use
a learning rate of 0.001.

11

https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2
https://huggingface.co/google/gemma-2b
https://huggingface.co/google/gemma-2b

