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Abstract
The core component of attention is the scoring
function, which transforms the inputs into low-
dimensional queries and keys and takes the dot
product of each pair. While the low-dimensional
projection improves efficiency, it causes infor-
mation loss for certain tasks that have intrinsi-
cally high-dimensional inputs. Additionally, at-
tention uses the same scoring function for all in-
put pairs, without imposing a distance-dependent
compute bias for neighboring tokens in the se-
quence. In this work, we address these shortcom-
ings by proposing new scoring functions based on
computationally efficient structured matrices with
high ranks, including Block Tensor-Train (BTT)
and Multi-Level Low Rank (MLR) matrices. On
in-context regression tasks with high-dimensional
inputs, our proposed scoring functions outperform
standard attention for any fixed compute budget.
On language modeling, a task that exhibits lo-
cality patterns, our MLR-based attention method
achieves improved scaling laws compared to both
standard attention and variants of sliding window
attention. Additionally, we show that both BTT
and MLR fall under a broader family of efficient
structured matrices capable of encoding either
full-rank or distance-dependent compute biases,
thereby addressing significant shortcomings of
standard attention.

1. Introduction
The attention mechanism (Bahdanau et al., 2016; Vaswani
et al., 2017) is crucial to much of contemporary deep learn-
ing, providing a powerful and flexible way to process se-
quences. Because of its widespread application to so many
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different architectures and domains, it is common to think
of attention as a general purpose tool (Bommasani et al.,
2022). However, attention endows models with a certain set
of inductive biases that suit some tasks better than others
(Lavie et al., 2024). Moreover, attention is computationally
expensive in both runtime and memory. A large ongoing
research effort aims to devise more efficient alternatives to
standard attention, especially for long sequences and big
models (Katharopoulos et al., 2020; Beltagy et al., 2020; Gu
& Dao, 2024; Dao & Gu, 2024; Yuan et al., 2025). Archi-
tectures like linear attention based Transformers come with
their own sets of inductive biases that can be too limiting
for real data and often reduce accuracy (Arora et al., 2024;
Jelassi et al., 2024). In this work, we show how structured
matrices can be used to customize attention, changing its in-
ductive biases to suit particular tasks and thereby improving
efficiency.

We focus on the attention scoring function, which deter-
mines how much each token attends to every other token by
taking a dot product of their corresponding query and key
vectors. We identify two properties of the scoring function
that are suboptimal in certain settings. First, it can suffer
from a low-rank bottleneck (Amsel et al., 2024). Since
the head dimension, which defines the size of queries and
keys, is significantly smaller than the embedding dimension,
transforming inputs into queries and keys can cause infor-
mation about each token to be lost. This bottleneck can limit
the power of the attention layer. In fact, there are simple
functions that are easy to express with attention if the head
dimension is large enough, but are provably hard to express
otherwise (Amsel et al., 2024).

Second, the form of the scoring function lacks an inductive
bias for encoding distance-dependent compute. In standard
attention, every pair of tokens is scored using the same
function and the same weights, and each token can atttend
to the entire context. This feature makes attention power-
ful, but for long contexts, it is also expensive. Real-world
datasets often exhibit some amount of locality, meaning that
the semantics of a token depends most strongly on nearby
tokens. Previous efforts have been made to make attention
more efficient by promoting locality while still preserving
some global communication. For instance, the Longformer
architecture combines sliding window attention with a few
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Figure 1. Overview of two ways to customize the inductive biases of softmax attention with structured matrices. (a) Standard
attention computes the dot product between a query and a key via a low-rank bilinear transformation. In this work, we replace the low rank
product with other structured matrices such as Multi-Level Low Rank (MLR) and Block Tensor Train (BTT) as introduced in Section 3.2.
(b) Standard attention captures pair-wise token interactions in the global context without imposing a distance-dependent compute bias.
We introduce an inductive bias for more flexible interactions between nearby tokens by changing the attention score matrix from low rank
to Multi-Level Low Rank (MLR), as in Section 3.4.

tokens of standard attention (Beltagy et al., 2020). However,
such constructions are often brittle and gain efficiency at the
expense of accuracy (Zhang et al., 2024).

To address these limitations, we introduce rich classes of
structured matrices into the attention scoring function. Se-
lecting an appropriate structure allows us to refine the in-
ductive bias introduced by attention, tailoring it to specific
tasks. Prior work has demonstrated the advantages of re-
placing dense linear layers with structured matrices (Dao
et al., 2022; Qiu et al., 2024; Potapczynski et al., 2024), but
these approaches treat each linear layer separately. Atten-
tion scores are built from a combination of multiple linear
and bilinear transformations. By replacing all of these trans-
formations with a single structured matrix, we expand the
design space for more efficient and expressive attention
mechanisms.

We explore two applications of this approach. To address
the low-rank bottleneck, we incorporate Block Tensor Train
(BTT) and Multi-Level Low Rank (MLR) matrices, struc-
tured families that have high rank while remaining efficient
in terms of parameters and computation. Using this tech-
nique, we demonstrate improvements for in-context linear
regression, a task where standard attention is constrained
by the low-rank bottleneck. To better allocate compute and
memory resources, we apply MLR matrices in a different

way that prioritizes local interactions over long-range de-
pendencies. This leads to mild improvements for language
modeling compared to standard and sliding window atten-
tion and for time series forecasting with long horizons.

Our contributions are:

• We introduce a conceptual framework for analyzing
and modifying the inductive biases of attention through
the structure of its underlying linear and (bi-)linear
transformations.

• In Section 3.2 and Section 4, we apply this framework
to eliminate the low-rank bottleneck of standard atten-
tion using high-rank BTT and MLR matrices, improv-
ing performance on an inherently high-dimensional
task from the literature (Garg et al., 2022).

• In Section 3.3, we show that both BTT and MLR
matrices—including Monarch (Dao et al., 2022), But-
terfly (Dao et al., 2020), Kronecker, and Low Rank
matrices—can be united under a broader structured
family which we call Multi-Level Block Tensor Con-
traction (MLBTC).

• In Sections 3.4 and 5, we use MLR matrices to in-
troduce a distance-dependent compute bias, which
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slightly outperforms previous methods in language
modeling and time series forecasting.

This work advances our understanding of attention’s induc-
tive biases, exploring its structural limitations and offering a
principled approach to design more efficient and expressive
architectures.

Our codes are available at the following github repository
https://github.com/YilunKuang/structured-attention.

2. Inductive Biases and Limitations of
Standard Attention

In the following section, we discuss how the built-in in-
ductive biases of attention can be inappropriate in certain
settings. In Section 2.1, we introduce our notations and
review standard multi-head attention (Vaswani et al., 2017).
We identify the scoring function for sequence mixing as a
bilinear transformation. In Section 2.2, we show that the
scoring function in multi-head attention relies on a low rank
matrix, which creates information bottleneck for tasks with
intrinsically high dimensional inputs. On in-context regres-
sion tasks, we show that multi-head attention requires a
large enough head dimension to achieve good regression
performance. In Section 2.3, we point out that standard
attention shares the same scoring function for all tokens
within the context without imposing a distance-dependent
compute bias. Real data often exhibits locality patterns,
and thus attention fails to exploit the structure of data for
improved efficiency.

2.1. The Attention Scoring Function

Let H be the number of attention heads, D be the em-
bedding dimension, and r be the head dimension, where
D = Hr. The input to a multi-head self-attention layer is
a T × D matrix X, where T is the sequence length. The
output is a T ×D matrix given by

H∑
i=1

σ
(
XWQi

W⊤
Ki

X⊤)X (WVi
W⊤

Oi

)
(1)

where σ is the row-wise softmax function and WQi
,WKi

,
WVi

,WOi
∈ RD×r are weight matrices. Attention is usu-

ally described with reference to queries, keys and values
(given by XWQi , XWKi , and XWVi ) but in this paper we
take a different perspective. Consider any head and define
its attention scoring function s : RD ×RD → R as follows:

s(x,x′) = x⊤WQiW
⊤
Ki

x′ (2)

This is simply the bilinear form given by the matrix
WQiW

⊤
Ki

. We define the score matrix S ∈ RT×T by
Sj,j′ = s(xj ,xj′). Then the output of this head can be

rewritten as follows:

σ (S)X
(
WVi

W⊤
Oi

)
(3)

In this paper, we explore alternatives to the standard scoring
function given in Equation (2). We now describe two of its
drawbacks.

2.2. Low-Rank Bottleneck

Any D ×D matrix defines a bilinear form, so in principle
any D×D matrix could be used in Equation (2) to define an
attention scoring function. Some earlier forms of attention
used a single D × D weight matrix (Luong et al., 2015),
but Vaswani et al. (2017) chose to use the rank-r matrix
WQiW

⊤
Ki

instead. Since r ≪ D, this low-rank scoring
function is more efficient than a full-rank one, but it also has
weaker expressive power. For example, a natural scoring
function for many tasks is s(x,x′) = x⊤x′, but a low-rank
matrix is not capable of representing it. This phenomenon
is called the low-rank bottleneck of multi-head attention.

Recent work has shown that the low-rank bottleneck can
seriously weaken attention-based models in certain settings.
Amsel et al. (2024) demonstrated that for in-context lin-
ear regression, a task popularized by Garg et al. (2022),
one full-rank attention head can significantly outperform
low-rank multi-head attention after controlling for model
size. They also proved that an attention layer cannot
solve the nearest-neighbor problem for points on the dinput-
dimensional sphere, even approximately, unless r ≳ dinput.
In both cases, the inputs are intrinsically high-dimensional
and cannot be compressed without losing important infor-
mation. In such settings, the efficiency of low-rank attention
comes at the price of accuracy.

In Figure 2, we demonstrate this unfavorable trade-off for
in-context regression, replicating the setting from Garg et al.
(2022). Our results show that, across a range of model sizes,
transformers cannot solve this task unless the head dimen-
sion r is nearly as large as the input dimension. Once this
threshold is reached, transformers achieve high accuracy. In
Section 3.2, we explore alternatives to the low-rank scoring
function of Equation (2) that are both full-rank and efficient.

2.3. Distance-Dependent Compute Bias

An important feature of attention-based models is that they
allow any pair of tokens to exchange information. A stan-
dard attention layer is completely agnostic to the order of
its inputs. In particular, the same scoring function s(·, ·)
is used for every pair of tokens, regardless of where they
appear in the sequence.

Many real-world tasks exhibit locality patterns, meaning
that tokens appearing near each other in a sequence are more
likely to be connected. In natural language, for instance,
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Figure 2. Multi-head attention cannot solve in-context regres-
sion unless the head dimension r is close to the input dimension
dinput. We train 6-layer transformers with 8 heads and varying
embedding and head dimensions to perform in-context regres-
sion: given the prompt x1,w

⊤x1, . . . ,xN−1,w
⊤xN−1,xN for

xi ∈ Rdinput and unknown w, predict w⊤xN . Plot shows error at
N = 2dinput. For details see Section 4.

words appearing in the same sentence or paragraph must
be understood together, while words appearing hundreds
of pages apart usually do not influence each other directly.
There are exceptions, such as when a particular fact must
be recalled across a long context. Attention does not natu-
rally exploit the local patterns in the data, so it cannot take
advantage of this simplifying structure. For autoregressive
models, the global nature of attention also requires the keys
and values of all previous tokens to be saved in cache, which
is expensive.

Due to these drawbacks, previous work has altered attention
by imposing a sparsity pattern on the attention score matrix
S. For instance, sliding window attention (SWA) masks
pairs of tokens that are more than some fixed distance apart
(Child et al., 2019). In effect, this changes the score ma-
trix to use different scoring functions for different pairs of
tokens:

sj,j′(xj ,xj′) =

{
x⊤
j WQW

⊤
Kxj′ if |j − j′| ≤ T ′.

−∞ otherwise.

where T ′ is the window size and we drop the attention head
index i for ease of notation. Some models use a strided
version of SWA or give a global receptive field to a few
tokens (Beltagy et al., 2020). However, these sparse versions
of attention are brittle and underperform standard attention
(Arora et al., 2024), so they are commonly combined with
some form of non-sparse attention (Riviere et al., 2024;
Warner et al., 2024; Behrouz et al., 2024b). In Section 3.4,
we introduce a flexible and hierarchical distance-dependent
compute bias by making S a structured (but not sparse)
matrix.

3. Customizing the Scoring Function with
Structured Matrices

In this section, we show how to modify the scoring func-
tion so as to change its inductive biases and alleviate the
issues identified in the previous section. We first introduce
our main mathematical tool, structured matrix families, in
Section 3.1. We then show two ways to incorporate these
structured matrices into the scoring function, addressing
the issues identified in Sections 2.2 and 2.3. In addition,
in Section 3.3 we identify a generalization of the existing
structured matrix families. Finally, we cover practical con-
siderations regarding efficient implementations of structured
matrices and techniques for stable feature learning in Sec-
tion 3.5.

3.1. Structured Matrix Families

Consider D × D matrices. A structured matrix is one
that can be represented using fewer than D2 parameters.
Structured matrices often admit fast algorithms for matrix-
vector multiplication, making them both computationally-
and parameter-efficient. For instance, low rank matrices
have the form LR⊤, where L,R ∈ RD×r and r ≪ D.
They require only 2rD parameters to represent, and the
corresponding bilinear form (x,y) 7→ x⊤LR⊤y can be
computed with only O(rD) FLOPs. We consider several
other families of structured matrices in this paper. Key prop-
erties of each class are summarized in Table 1. We also
present the extension to structured matrices with rectangular
shapes in Appendix A.

Block diagonal matrices contain all zeros except for p
blocks along the diagonal, which are each dense. We notate
this as

⊕p
k=1 Wk, where each Wk is a D

p × D
p diagonal

block and
⊕

denotes the direct sum. In a low-rank block
diagonal matrix, each of these diagonal blocks is itself low
rank. They have the form

⊕p
k=1 LkR

⊤
k , where Lk and

Rk ∈ R
D
p ×r. Intuitively, this family interpolates between

low-rank matrices (p = 1) and diagonal matrices (p = D).

Multi-Level Low Rank (MLR) matrices (Parshakova et al.,
2023; 2024) are summations of several low-rank block di-
agonal matrices with different block sizes. Formally, an
L-level MLR matrix is given by

L∑
l=1

pl⊕
k=1

Ll,kR
⊤
l,k (4)

where Ll,k and Rl,k are D
pl

× rl low-rank factors. Each
level represents interactions at a particular scale. MLR
matrices with a range of block sizes inherit the abilities
of both low-rank (pl = 1) and block diagonal matrices
(pl ≫ 1), simultaneously capturing coarse-grained global
interactions and fine-grained local interactions. Thus, they

4



Customizing the Inductive Biases of Softmax Attention using Structured Matrices

Table 1. Properties of Structured Matrix Families. For all listed structures, the number of FLOPs needed to compute the bilinear form
x⊤My is O(#params). For BTT, we assume a = b = c = d =

√
D. MLR and BTT both attain high rank relative to their parameter

counts.

Structure Definition Parameters Rank

Dense W D2 D
Low Rank LR⊤ 2Dr r

Multi-Level Low Rank (MLR)
∑L

l=1

⊕pl

k=1 Ll,kR
⊤
l,k 2D

∑
l rl

∑
l rlpl

Block Tensor Train (BTT) PL(
⊕b

k′=1 Lk′)PR(
⊕b

k=1 R
⊤
k ) 2D

3
2 s D

are a natural and efficient way to represent hierarchical
structure.

Block Tensor Train (BTT) matrices were introduced in
Qiu et al. (2024) as a generalization of Monarch (Dao et al.,
2022) and Butterfly (Dao et al., 2020) matrices. They are
designed to be efficient, expressive, and full-rank. Qiu
et al. (2024) and Potapczynski et al. (2024) found that they
outperform other structured matrix families as replacements
for linear layers in neural networks. Given hyperparameters
a, b, c, d and s, where ab = cd = D, a BTT matrix has the
form

PL

(
b⊕

k′=1

Lk′

)
PR

(
c⊕

k=1

R⊤
k

)
(5)

where Lk′ ∈ Ra×cs, Rk ∈ Rd×bs and PL ∈ RD×D,PR ∈
Rcbs×cbs are fixed permutation matrices. PL permutes the
rows by rearranging the dimension b · a into a · b. This
permutation is equivalent to reshaping a vector z ∈ Rba

into a matrix Z ∈ Rb×a, transposing it to Z⊤ ∈ Ra×b, and
vectorizing it to get z′ ∈ Rab. Likewise, PR reshapes a
vector of dimension c · b · s into a tensor with shape (c, b, s),
swaps the first two dimensions, then flattens it back into a
vector of dimension b · c · s. Qiu et al. (2024) proved that
when a = b = c = d = s =

√
D, BTT can express any

D ×D matrix. For efficiency, we set s = 1 or s = 2.

3.2. Resolving the Low-Rank Bottleneck with
Structured Bilinear Forms

As described in Section 2.2, parameterizing the attention
scoring function by a low-rank matrix WQW

⊤
K creates a

information bottleneck. However, using a dense D × D
matrix is prohibitively expensive; evaluating the scoring
function would require O(D2) operations per attention head.
Instead, we propose using a structured matrix that is both
high-rank and allows efficient evaluation of the scoring
function. In particular, we use MLR and BTT matrices as

visualized in Figure 1a:

sMLR(xj ,xj′) = x⊤
j

( L∑
l=1

2l−1⊕
k=1

Ll,kR
⊤
l,k

)
xj′ (6)

sBTT(xj ,xj′) = x⊤
j

(
PL

b⊕
k′=1

Lk′PR

c⊕
k=1

R⊤
k

)
xj′ (7)

As shown in Table 1, a BTT matrix with a = b = c = d =√
D requires only O(D3/2) parameters and FLOPs, but it

is full rank. For the MLR version, we set the numbers of
blocks to be powers of two: pl = 2l−1. Setting

∑
l rl to be

the “head dimension” r, we match the efficiency of standard
attention and achieve high or even full rank. In Section 4,
we train transformers with these structured scoring functions
on in-context regression.

It is also possible to interpret these scoring functions as con-
structing (higher-dimensional) queries and keys per atten-
tion head. See Appendix B for details. Thus our approach is
also fully compatible with grouped-query attention (GQA)
that shares the same KV transformations across multiple
query heads (Ainslie et al., 2023).

3.3. MLBTC: Multi-Level Block Tensor Contraction

In this section, we show that both MLR and BTT are spe-
cial cases of a novel family of structured matrices which
we call Multi-Level Block Tensor Contraction (MLBTC).
MLBTC naturally encodes either the full rank constraints
or the distance-dependent compute bias.
Definition 3.1. The Multi-Level Block Tensor Contraction
is defined as

MLBTC(L,R) =

L∑
l=1

αlPL

p′
l⊕

k′=1

Ll,k′PR

pl⊕
k=1

R⊤
l,k (8)

where αl ∈ R, PL and PR are fixed permutation matrices,
Ll,k′ ∈ Rml,k′×r′l , Rl,k ∈ Rnl,k×rl ,

∑p′
l

k′=1 ml,k′ = m,∑pl

k=1 nl,k = n, and r′lp
′
l = rlpl. For square matrices, we

assume m = n = D.

We show in Appendix C that both MLR and BTT are spe-
cial cases of the MLBTC matrices. Since BTT generalizes
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Monarch (Dao et al., 2020), Butterfly (Dao et al., 2020),
Kronecker and MLR generalizes Low Rank, MLBTC natu-
rally contains these matrices as special cases.

3.4. Encoding Distance-Dependent Compute Bias with
MLR Attention

As described in Section 2.3, standard attention lacks a
distance-dependent compute bias, and previous work has
sought to create one by imposing a sparse structure onto
the score matrix S. We impose an MLR structure instead.
MLR matrices inherit the advantages of both low rank and
block diagonal matrices. Likewise, our construction inherits
the advantages of both standard attention (global recep-
tive field) and sliding window attention (distance-dependent
compute bias) by organizing the score matrix into hierarchi-
cally nested levels.

We first describe our construction in terms of the scoring
function. Divide the sequence into blocks. Define d(j, j′)
to be 2 when tokens j and j′ belong to the same block and 1
otherwise. Then we can define a two-level low-rank scoring
function as follows:

sj,j′(xj ,xj′) =

{
x⊤
j (L1R

⊤
1 )xj′ d(j, j′) = 1

x⊤
j (L1R

⊤
1 + L2R

⊤
2 )xj′ d(j, j′) = 2

where L1,R1 ∈ RD×r1 and L2,R2 ∈ RD×r2 are low rank
factors. The term L2R

⊤
2 increases the rank and power of

the scoring function, but only for pairs of tokens in the same
block. To generalize this construction, we can further divide
each block into subblocks. For a pair of tokens in the same
subblock, let d(j, j′) = 3. Define

sj,j′(xj ,xj′) = x⊤
j

d(j,j′)∑
l=1

LlR
⊤
l

xj′ (9)

This definition extends to any number of subdivisions. The
expression in Equation (9) is also equivalent to the matrix
form presented in Equation (4). See Appendix D.

We can compute the corresponding score matrix efficiently
using batched matrix multiplications. As in standard at-
tention, we form query and key matrices Q = XWQ

and K = XWK . We divide Q into blocks to obtain
the left MLR factors and divide K to obtain the right
ones as shown in Figure 1b. Finally, we combine the fac-
tors Ql,k and Kl,k as in the definition of MLR matrices
(Equation (4)): S =

∑L
l=1

⊕pl

k=1 Ql,kK
⊤
l,k This is equiv-

alent to the score function defined in Equation (9) when
WQ =

[
L1| · · · |LL

]
and WK =

[
R1| · · · |RL

]
.

In our construction, the number of levels L, the number
of blocks in each level p1, . . . , pL, and the rank of each
level r1, . . . , rL are hyperparameters chosen such that the
sequence length is always longer than maxl pl and the sum

of the ranks equals the head dimension:
∑

l rl = r. In
this paper, we use L ≤ 8, and we set pl = 2l−1 to create
hierarchically nesting levels.1 We notate the rank allocation
as follows: r1|r2| · · · |rL. When L = 1, MLR attention
reduces to standard attention. When L > 1, more FLOPs
are allocated to computing each local interaction than each
global one, which saves compute overall. Standard attention
needs T 2r FLOPs to form S, but MLR attention uses only
T 2
∑L

l=1
rl

2l−1 .

Another benefit of MLR attention is that it reduces the key
cache size during auto-regressive generation. Since K2,1

only pertains to pairs of tokens in the first half of the se-
quence, the final token will not attend to it; it only needs
K2,2 for level 2 attention. For level l, we must only retain
Kl,pl

. Thus, the total key cache size is
∑L

l=1 size(Kl,pl
) =

T
∑L

l=1
rl

2l−1 , which is smaller than the size(K) = O(Tr)
cache size needed for standard attention. For example, using
8-level MLR with rl = r/8 would yield a 4x savings. Our
proposed MLR attention is also compatible with grouped-
query attention (Ainslie et al., 2023) if we apply the above
transformations to different attention heads, which can lead
to further savings in the KV cache size.

In addition, our MLR attention is also compatible with rel-
ative positional embedding methods like RoPE (Su et al.,
2023). RoPE encodes positional information by rotating
query and key vectors by an angle proportional to the to-
ken’s index in the sequence. Thus RoPE imposes a form
of locality bias in the scoring function. In contrast, our
MLR attention is not trying to encode relative positional
information or boost the attention score between neighbor-
ing tokens. Instead, we change the computational cost of
the scoring function based on the tokens’ positions. Put
differently, standard attention (with or without RoPE) uses
the same query/key dimension for all pairs of tokens. We
effectively use a smaller query/key dimension for tokens
that are far apart. This saves FLOPs compared to standard
attention, while still allowing high quality attention scores
for neighboring tokens.

3.5. Practical Considerations

Our attention variants are implemented using batch ma-
trix multiplications. We present the most efficient tensor
contraction order in Appendix E. Maximum Update Param-
eterization (µP) is a recipe to set the learning rates and
initializations of each weight matrix in a neural network for
stable feature learning as the width of the network grows
(Yang et al., 2022). We describe how to adapt µP to our
structured attention variants, along with our use of normal-

1It is also possible to select the size of each block in a level
dynamically according to the input. For instance, one level could
divide the tokens into blocks corresponding to paragraphs, while
another could divide it into documents.
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Figure 3. Both Bilinear BTT and Bilinear MLR outperform standard attention for in-context regression tasks. (a) Bilinear BTT and
1-head attention are full rank, so they can learn the task using a smaller model width (x-axis) than 8-head attention. Here model width
refers to the embedding dimension D. All points on this figure correspond to models that was trained for the same number of steps. (b)
For a fixed model width (D = 256), both Bilinear MLR and Bilinear BTT have smaller regression error compared to attention with 1 or 8
heads when controlling for compute. Here our bilinear models use 8 heads.

ization layers, in Appendix F. We also include a figure
which shows stable learning rate transfer across width for
our MLR attention model in Figure 5 in Appendix G.

4. Experiments with the Low Rank Bottleneck
Since both Bilinear BTT and Bilinear MLR in Equations (6)
and (7) increase the rank with fewer FLOPs compared to a
dense matrix, we test if our new scoring functions based on
these structured matrices can resolve rank bottleneck on the
in-context regression task based on Garg et al. (2022).

Following Garg et al. (2022), we train transformers on
prompts of the form x1, f(x1),x2, f(x2), . . . ,xN to out-
put f(xN ), where xi ∈ Rdinput and f(xi) = w⊤xi. The
linear functional w ∼ N (0, Idinput) is freshly sampled for
each prompt, so the model must use in-context learning to
infer w and apply it to xN . We draw xi ∼ N (0, 1

dinput
Idinput)

and set N = 2dinput. We train the model causally on the
loss 1

N ·∑N
i=1(f̂(xi)− f(xi))

2 where f̂(xi) is the model
prediction given the first i− 1 pairs as context.

Unlike language models, which have token embedding and
unembedding layers, we have an input linear layer that maps
input points from Rdinput to embeddings in RD and an output
linear layer that maps embeddings to R. Following µP
(Yang et al., 2022), the last layer is zero-initialized so that
E[(f̂(xi)− f(xi))

2] = 1 at initialization.

In Figure 3, we show that the structured attention variants
introduced in Section 3.2 outperform standard attention on
this task. In Figure 3a we plot the error of Bilinear BTT
attention with 8 heads and standard attention with 1 and 8
heads across a range of model widths D. Standard 8-head

attention suffers from a low-rank bottleneck that prevents it
from learning this task even with D = 512. 1-head attention,
for which r = D, has a full-rank scoring function. It learns
the task at D = 512. Bilinear BTT is also full rank, even
with 8 heads, so it performs well too. In this case, it needs
only D = 256. We defer a full set of results across multiple
input dimensions dinput to Figure 11 in the appendix.

Figure 3b shows that both BilinearBTT and BilinearMLR
attention attain significantly higher accuracy when control-
ling for training compute. We measure compute in FLOPs,
excluding the input and output projection layers (which have
the same cost across all these models).2 We present the full
set of sweeps across different model widths D and input
dimensions dinput in Figures 7 to 10 in the appendix.

5. Experiments with Distance-Dependent
Compute Bias

5.1. Language Modeling

We train 6-layer transformers with both standard attention
and MLR attention on the OpenWebText dataset with a
batch size of 4, sequence length T = 1024, head dimension
r = 64, and model width D ∈ {256, 384, 512, 768}. The
model is trained with AdamW (Loshchilov & Hutter, 2019)
and we tune hyperparameters based on µP (Yang et al.,
2022). We use character-level tokenization, which improves

2We did not optimize the implementations of our methods,
so they are somewhat slower in wall-clock time than standard
attention. However Figure 12 shows that our methods are still
superior controlling for wall-clock time and hardware. Since they
use parallelizable tensor operations, we believe better speed is
attainable.
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Figure 4. MLR Attention achieves lower validation loss on OpenWebText compared to standard multi-head attention and variants
of sliding window attention when controlling for compute. (a) We plot the validation loss of both MLR attention with 8 levels and
standard attention against compute. We vary over 4 values of model width D ∈ {256, 384, 512, 768}. MLR attention outperforms
standard attention across model widths. (b) We compare MLR attention with variants of sliding window attention (SWA) that also encodes
distance-dependent compute bias. Given the training sequence length T = 1024 and a 6-layers transformer model, SWA refers to 6 layers
of sliding window attention with window size T ′ = 128. Global + SWA refers to a combination of standard attention and sliding window
attention with T ′ = 128. The first and fourth layers of the model are standard attention and the rest are sliding window attention. We
observe that across the model width D, MLR attention outperforms standard attention, SWA, and Global + SWA when controlling for
compute.

our ability to study scaling with model size with limited
compute budget (Potapczynski et al., 2024).

In Figure 4a, we compare the language modeling perfor-
mance of standard attention to 8-level MLR attention across
model widths D. The rank allocation is 32|8|6|4|4|4|4|2,
for a total of r = 64. MLR attention outperforms standard
attention across all model widths throughout training, and
thus exhibits a better scaling law.

In Figure 4b, we compare MLR attention to standard
(global) attention, sliding window attention (SWA) (Child
et al., 2019; Beltagy et al., 2020), and an architecture with
alternating layers of global and sliding window attention.
Like MLR, these architectures aim to take advantage of
locality. Across model widths and training time, MLR at-
tention performs best when controlling for compute.

5.2. Time Series Forecasting

We also compare standard attention and MLR attention on
time series prediction. The Electricity Transformer Temper-
ature (ETT) dataset (Zhou et al., 2021) tracks fluctuations
of oil temperature along with six additional power load fea-
tures across time. As shown in Figure 14, MLR attention
gradually outperforms standard attention in oil temperature
prediction accuracy as the time horizon grows. We defer

additional details to Appendix J.

6. Related Work
Previous work has replaced dense neural network weight
matrices by structured matrices—including low displace-
ment rank (Thomas et al., 2018), low-rank plus sparse or
diagonal (Han et al., 2024; Wei et al., 2024), Monarch
(Dao et al., 2022), BTT (Qiu et al., 2024), and others
(Potapczynski et al., 2024)—for greater efficiency, as well
as for fine-tuning (Hu et al., 2021; Sehanobish et al., 2024)
and compression-based generalization bounds (Lotfi et al.,
2024a;b).

Structured matrices have also been used in place of the
attention matrix. Chen et al. (2021) approximates the atten-
tion matrix by a sparse plus low-rank matrix. Hwang et al.
(2024) proposes the matrix mixer framework that identifies
sequence mixers like Attention, S4 (Gu et al., 2022), H3
(Fu et al., 2023), Hyena (Poli et al., 2023), and Mamba (Gu
& Dao, 2024; Dao & Gu, 2024) with particular structured
families. As in our work, they show that structured matrices
offer a systematic and principled way to explore the design
space.

Following sliding window attention (Child et al., 2019; Belt-
agy et al., 2020), many methods have been proposed to
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combine local attention with some global component (Belt-
agy et al., 2020; Hatamizadeh et al., 2023; Arora et al., 2024;
Behrouz et al., 2024a; Huang et al., 2023, §3.1). Like our
MLR attention, other work has constructed hierarchically
nested levels of progressively longer-range attention (Ye
et al., 2019; Zhu & Soricut, 2021; Ren et al., 2021; Huang
et al., 2023, §3.2). Unlike us, their goal is to make attention
sublinear in the sequence length. Thus, they must aggregate
tokens in each block together (e.g. using max-pool), depart-
ing significantly from the form of standard attention. Our
study of the low rank bottleneck in attention follows that of
Bhojanapalli et al. (2020); Sanford et al. (2023) and Amsel
et al. (2024), though past work has not tried modifying atten-
tion to fix it. In addition, many works have tried to reduce
the quadratic dependence on the sequence length of stan-
dard attention by approximating the softmax computations
with random features (Choromanski et al., 2022), removing
softmax (Katharopoulos et al., 2020), or in general reducing
KV caches in the model architecture (Ainslie et al., 2023;
Yuan et al., 2025).

7. Discussion
In this paper, we use structured matrices to design vari-
ants of attention with inductive biases that are beneficial
for certain tasks. Bilinear BTT and Bilinear MLR attention
resolve the low-rank bottleneck for in-context regression.
Both bilinear structures allow the scoring function to be
more expressive compared to low rank matrices while being
efficient. While some tasks including language modeling do
not seem to suffer from the low rank bottleneck, we believe
our technique can improve transformers’ performance on a
variety of datasets that are intrinsically high-dimensional,
especially scientific and PDE data. In addition, we use MLR
attention to create a flexible distance-dependent compute
bias that improves performance on language modeling and
time series prediction with less FLOPs. Here too, we believe
our methods can have further impact on point cloud data and
tasks like code generation, which has not only a strong posi-
tional structure, but multiple levels of nested structures such
as functions, classes, files, and packages. Furthermore, we
define the Multi-Level Block Tensor Contraction (MLBTC)
class in Section 3.3 to generalize BTT and MLR. We hope
future work will explore the benefits and inductive biases of
MLBTC’s greater flexibility in attention and elsewhere.

In this work, we study the attention score matrix
XWQi

W⊤
Ki

X⊤ and the low-rank scoring function at its
center. Similar techniques could be applied to the other
part of each attention head, defined by the low-rank matrix
WVi

W⊤
Oi

. Rather than customizing each head in a trans-
former the same way, different structures could be used for
different heads, as in Xu et al. (2025), to promote a better di-
vision of labor. Finally, our techniques could be adopted for

fine-tuning or model compression rather than pre-training.
We defer further exploration of these aspects to future work.
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W., Wu, B., Wu, J., Wu, Y., Xie, S. M., Yasunaga, M.,
You, J., Zaharia, M., Zhang, M., Zhang, T., Zhang, X.,
Zhang, Y., Zheng, L., Zhou, K., and Liang, P. On the
opportunities and risks of foundation models, 2022. URL
https://arxiv.org/abs/2108.07258.

Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A.,
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Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces, 2022. URL
https://arxiv.org/abs/2111.00396.

Han, A., Li, J., Huang, W., Hong, M., Takeda, A., Jawan-
puria, P., and Mishra, B. SLTrain: a sparse plus low rank
approach for parameter and memory efficient pretrain-
ing. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=MXze4H7opg.

Hatamizadeh, A., Yin, H., Heinrich, G., Kautz, J., and
Molchanov, P. Global context vision transformers. In In-
ternational Conference on Machine Learning, pp. 12633–
12646. PMLR, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

10

https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/1903.05895
https://arxiv.org/abs/1903.05895
https://arxiv.org/abs/2204.00595
https://arxiv.org/abs/2204.00595
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://openreview.net/forum?id=MXze4H7opg
https://openreview.net/forum?id=MXze4H7opg


Customizing the Inductive Biases of Softmax Attention using Structured Matrices

Huang, Y., Xu, J., Lai, J., Jiang, Z., Chen, T., Li, Z., Yao, Y.,
Ma, X., Yang, L., Chen, H., et al. Advancing transformer
architecture in long-context large language models: A
comprehensive survey. arXiv preprint arXiv:2311.12351,
2023.

Hwang, S., Lahoti, A., Dao, T., and Gu, A. Hydra: Bidirec-
tional state space models through generalized matrix mix-
ers, 2024. URL https://arxiv.org/abs/2407.
09941.

Jelassi, S., Brandfonbrener, D., Kakade, S. M., and Malach,
E. Repeat after me: transformers are better than state
space models at copying. In Proceedings of the 41st In-
ternational Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention, 2020. URL https://arxiv.
org/abs/2006.16236.

Lavie, I., Gur-Ari, G., and Ringel, Z. Towards understanding
inductive bias in transformers: A view from infinity, 2024.
URL https://arxiv.org/abs/2402.05173.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez,
J. E., and Stoica, I. Tune: A research platform for
distributed model selection and training, 2018. URL
https://arxiv.org/abs/1807.05118.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019. URL https://arxiv.org/abs/
1711.05101.

Lotfi, S., Finzi, M., Kuang, Y., Rudner, T. G. J., Gold-
blum, M., and Wilson, A. G. Non-vacuous generaliza-
tion bounds for large language models, 2024a. URL
https://arxiv.org/abs/2312.17173.

Lotfi, S., Kuang, Y., Amos, B., Goldblum, M., Finzi, M.,
and Wilson, A. G. Unlocking tokens as data points for
generalization bounds on larger language models, 2024b.
URL https://arxiv.org/abs/2407.18158.

Luong, T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation.
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A. Rectangular Structured Matrices
In this section, we discuss the extension of Multi-Level Low Rank (MLR) matrix and Block Tensor Train (BTT) matrix
to rectangular shape m× n. The remaining appendix sections also follow the notations defined for rectangular MLR and
rectangular BTT.

A.1. Rectangular MLR

A MLR matrix with shape m× n is given by

L∑
l=1

pl⊕
k=1

Ll,kR
⊤
l,k (10)

where
⊕pl

k=1 Ll,kR
⊤
l,k ∈ Rm×n is a block diagonal matrix with pl blocks at level l. Each block Ll,kR

⊤
l,k is a low rank

product for Ll,k ∈ Rml,k×rl and Rl,k ∈ Rnl,k×rl . By construction, we have
∑pl

k=1 ml,k = m and
∑pl

k=1 nl,k = n. The
MLR rank of the matrix W is defined as rMLR =

∑L
l=1 rl.

A.2. Rectangular BTT

A BTT matrix of shape m× n is given by

PL

b⊕
k′=1

Lk′PR

c⊕
k=1

R⊤
k (11)

where Rk ∈ Rd×bs,Lk′ ∈ Ra×cs, ab = m, cd = n. The extra dimension s is the BTT rank. PL permutes the rows by
rearranging dimension ba into ab. This permutation is equivalent to reshaping a vector z ∈ Rba into a matrix Z ∈ Rb×a,
tranposing to get Z⊤ ∈ Ra×b, and reshaping it back to a vector z′ ∈ Rab. PR permutes the rows by rearranging dimension
cbs into bcs.

B. Bilinear Attention Scoring Functions with Structured Matrices
In this section, we describe how the bilinear BTT and bilinear MLR attention scoring functions can be interpreted in terms
of queries and keys with projection matrices that are structured instead of dense.

B.1. Notations

The appendix section adopts the following notation. Let B be the batch size, T be the sequence length during training,
WQ,WK ,WV ∈ RD×r be projection matrices, and H be the number of heads such that D = Hr. For any xi ∈ RD×1,
we obtain qi,ki,vi ∈ Rr×1 by the projections qi = W⊤

Qxi,ki = W⊤
Kxi,vi = W⊤

V xi. Since matrices in attention usually
have square shapes, we assume m = n = D.

B.2. Bilinear MLR

Let XWQW
⊤
KX⊤ be the form of attention matrix per attention head. We can replace the low rank structure WQW

⊤
K with

MLR(WQ,WK) and obtain the Bilinear MLR projections:

QMLR
l = P1

(
X

pl⊕
k=1

WQl,k

)
(12)

KMLR
l = P2

( pl⊕
k=1

W⊤
Kl,k

X⊤
)

(13)

where WQl,k
∈ Rml,k×Hrl , WKl,k

∈ Rnl,k×Hrl , and thus
⊕pl

k=1 WQl,k
∈ Rm×plHrl ,

⊕pl

k=1 WKl,k
∈ Rn×plHrl . Thus

the shape of the product X
⊕pl

k=1 WQl,k
is (BT, plHrl) and the shape of the product

⊕pl

k=1 W
⊤
Kl,k

X⊤ is (plHrl, BT ).
The permutation matrix P1 rearranges the shape (BT, plHrl) into (B,H, T, rlpl). P2 rearranges the shape (plHrl, BT )
into (B,H, rlpl, T ).
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The final output of the BilinearMLR sequence mixing operation O ∈ RB×H×T×T is given by

Oαβ = σ(M ◦
L∑

l=1

QMLR
lαβ KMLR

lαβ ) (14)

where QMLR
lαβ ∈ RT×rlpl and KMLR

lαβ ∈ Rrlpl×T . In practice we assume pl = 2l−1, and ml,k = nl,k = D/2l−1.

B.3. Bilinear BTT

We can replace the low rank structure WQW
⊤
K with BTT(WQ,WK) and obtain the Bilinear BTT projections:

QBTT = P3

(
X

b⊕
k=1

WQk

)
(15)

KBTT = P4

( c⊕
k=1

W⊤
Kk

X⊤
)

(16)

where we assume X ∈ RBT×D, WQk
∈ Ra×Hcs,WKk

∈ Rd×Hbs and thus
⊕b

k=1 WQk
∈ Rba×bHcs,

⊕c
k=1 W

⊤
Kk

∈
RcHbs×cd. Here we assume D = ab = cd. Thus the shape of the product X

⊕b
k=1 WQk

is (BT, bHcs) and the shape of the
product

⊕c
k=1 W

⊤
Kk

X⊤ is (cHbs,BT ). The permutation matrix P3 rearrange the shape (BT, bHcs) into (B,H, T, sbc).
P4 rearrange the shape (cHbs,BT ) into (B,H, sbc, T ).

Let α denotes the batch index and β denotes the head index such that QBTT
αβ ∈ RT×sbc and KBTT

αβ ∈ Rsbc×T . The final
output of the bilinear BTT O ∈ RB×H×T×T is compute as

Oαβ = σ(M ◦QBTT
αβ KBTT

αβ ) (17)

where σ is the softmax function and M is the lower diagonal causal mask matrix. Both B and H are extra batch dimensions
that can be computed efficiently using the batch matrix multiplication primitives.

In practice, it’s always true that sbc ≫ r where r is the head dimension for standard multi-head attention.

C. Multi-Level Block Tensor Contraction
To see that MLBTC captures all MLR matrices (including low-rank matrices as a special case), set αl = 1, PL = PR = I,
k′ = k, p′l = pl, and r′l = rl in Equation (8). To see that it captures all BTT matrices (including Monarch, Butterfly, and
Kronecker), set αl = 0 for all but one l and select the dimensions to match Equation (5): p′l = b, pl = c, r′l = cs, rl = bs,
nl,k = d, and ml,k′ = a.

Now consider square matrices such that m = n = D. Since BTT can approximate arbitrary dense matrices of shape D ×D
based on Qiu et al. (2024), MLBTC can also express any D ×D matrices with large enough rl and r′l. Like MLR and BTT,
MLBTC matrices can be used to define an efficient full-rank scoring function. We leave this generalization to future work.

D. MLR Attention Derivation
In this section, we present Lemma D.1 that connects the matrix form of MLR and its scoring function formula.

Lemma D.1. The (j, j′) entry of the scoring matrix S =
∑L

l=1

⊕pl

k=1 Ql,kK
⊤
l,k has the form x⊤

j

(∑d(j,j′)
l=1 LlR

⊤
l

)
xj′ as

shown in the right hand side of Equation (9).

Proof. For simplicity, assume there are just two levels. So Equation (9) reduces to the following expression:

sj,j′(xj ,xj′) = x⊤
j (L1R

⊤
1 + L2R

⊤
2 )xj′ (18)

Divide X =

[
X1

X2

]
into blocks. X1 is the first half of the sequence and X2 corresponds to the second half. Divide
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WQ =
[
L1 L2

]
. Thus

Q = XWQ =

[
X1L1 X1L2

X2L1 X2L2

]
(19)

Now divide Q into 3 named blocks according to Figure 1b:

Q11 = XL1 (20)
Q21 = X1L2 (21)
Q22 = X2L2 (22)

Analogously

K11 = XR1 (23)
K21 = X1R2 (24)
K22 = X2R2 (25)

Finally, plug the above into the definition of S:

S = Q11K
⊤
11 +

[
Q21K

⊤
21 0

0 Q22K
⊤
22

]
= XL1R

⊤
1 X

⊤ +

[
X1L2R

⊤
2 X

⊤
1 0

0 X2L2R
⊤
2 X

⊤
2

]
(26)

Consider the (j, j′) entry of S. If they’re in different blocks, then it’s x⊤
j L1R

⊤
1 xj . If they’re in the same block, it’s

x⊤
j L1R

⊤
1 xj + x⊤

j L2R
⊤
2 xj . The same reasoning applies when we have more than two levels.

E. Optimal Tensor Contraction Order
E.1. Bilinear MLR

In this section, we compute the costs to do Bilinear MLR per attention head assuming batch size equal to 1. We write
bilinear MLR as

XMLR(WQ,WK)X⊤ = X

( L∑
l=1

pl⊕
k=1

WQl,k
W⊤

Kl,k

)
X⊤ (27)

=

L∑
l=1

X

( pl⊕
k=1

WQl,k
W⊤

Kl,k

)
X⊤ (28)

=

L∑
l=1

(
X

pl⊕
k=1

WQl,k

)( pl⊕
k=1

W⊤
Kl,k

X⊤
)

(29)

=

L∑
l=1

X

( pl⊕
k=1

WQl,k

pl⊕
k=1

W⊤
Kl,k

X⊤
)

(30)

= X

L∑
l=1

( pl⊕
k=1

WQl,k

pl⊕
k=1

W⊤
Kl,k

X⊤
)

(31)

We summarize the FLOPs for each of these tensor contraction orders in Table 2. We find that

L∑
l=1

(
X

pl⊕
k=1

WQl,k

)( pl⊕
k=1

W⊤
Kl,k

X⊤
)

(32)

has minimal compute costs of 2TDr+T 2
∑L

l=1 2
l−1rl. This is the form of bilinear MLR we used in all of our experiments.
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Table 2. FLOPs for Bilinear MLR with Different Tensor Contraction Ordering

TENSOR CONTRACTION ORDER FLOPS

(LOW RANK) XWQW
⊤
KX⊤ T 2r + 2TDr

X

(∑L
l=1

⊕pl
k=1 WQl,kW

⊤
Kl,k

)
X⊤ T 2D + TD2+

D2(
∑L

l=1
rl

2l−1 +
∑L

l=1
1
2l

− 1
2
)∑L

l=1 X

(⊕pl
k=1 WQl,kW

⊤
Kl,k

)
X⊤ T 2LD +

∑L
l=1

D2rl
2l−1 + TD2

2l−1∑L
l=1

(
X

⊕pl
k=1 WQl,k

)(⊕pl
k=1 W

⊤
Kl,k

X⊤
)

2TDr + T 2 ∑L
l=1 2

l−1rl∑L
l=1 X

(⊕pl
k=1 WQl,k

⊕pl
k=1 W

⊤
Kl,k

X⊤
)

LT 2D + 2TDr

X
∑L

l=1

(⊕pl
k=1 WQl,k

⊕pl
k=1 W

⊤
Kl,k

X⊤
)

T 2D + 2TDr

E.2. Bilinear BTT

In this section, we analyze the FLOPs required for bilinear BTT assuming batch size equal to 1 and 1 attention head. We
write bilinear BTT as

XBTT(WQ,WK)X⊤ =

(
XPL

b⊕
k=1

WQk

)(
PR

c⊕
k=1

W⊤
Kk

X⊤
)

(33)

= X

(
PL

b⊕
k=1

WQk
PR

c⊕
k=1

W⊤
Kk

X⊤
)

(34)

where X ∈ RT×D, WQk
∈ Ra×cs,WKk

∈ Rd×bs with D = ab = cd. In Table 3, we list out the FLOP counts with the
simplifying assumption of a = b = c = d =

√
D. Thus we should be using the form

X

(
PL

b⊕
k=1

WQk
PR

c⊕
k=1

W⊤
Kk

X⊤
)

(35)

with FLOPs T 2D + 2sTD3/2.

Table 3. FLOPs for Bilinear BTT with Different Tensor Contraction Ordering

TENSOR CONTRACTION ORDER FLOPS(
XPL

⊕b
k=1 WQk

)(
PR

⊕c
k=1 W

⊤
Kk

X⊤
)

sT 2D + 2sTD3/2

X

(
PL

⊕b
k=1 WQkPR

⊕c
k=1 W

⊤
Kk

X⊤
)

T 2D + 2sTD3/2

F. Practical Considerations.
F.1. Maximal Update Parameterization (µP)

For a dense matrix W ∈ Rdout×din and an input vector x ∈ Rdin , the output hidden state h ∈ Rdout is computed as
h = Wx. µP requires both h and the gradient update ∆h to have norm ∥h∥2 = ∥∆h∥2 = Θ(

√
dout) for stable feature

learning under width scaling. This is equivalent to imposing the spectral norm constraints on the weight matrix such that
∥W∥∗ = ∥∆W∥∗ = Θ(

√
dout/din) (Yang et al., 2024). Thus the weight matrix W should be initialized from N (0, σ2

W)

for σW = Θ(1/
√
din ·min{1,

√
dout/din}) with learning rate ηW = Θ(dout/din). For AdamW (Loshchilov & Hutter, 2019),

the learning rate scales as ηW = Θ(1/din) (Yang et al., 2022). Qiu et al. (2024) develops µP for structured linear layers that
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are expressible as compositions of dense batched matrix multiplications and reshapes. Since our structured attention variants
fit this form, they are amenable to µP.

For bilinear MLR with the optimal tensor contraction order shown in Equation (32), we apply µP on the dense matrices
WQl,k

∈ Rml,k×Hrl and WKl,k
∈ Rnl,k×Hrl where we assume ml,k = nl,k = D/pl. Since the fan-in dimension for

both WQl,k
and WKl,k

are D/pl, we initialize them as WQl,k
,WKl,k

∼ N (0, pl

D I). For learning rate, we first select a
base value ηbase ∈ {0.001, 0.0005, 0.0001, 0.00005, 0.00001} at a certain model width D1. Here the model width is the
embedding dimension of the transformer model. Then for any model width D2 ≫ D1, we set the learning rate ηWQl,k

and
ηWKl,k

to be

ηWQl,k
= ηWKl,k

= ηbase
D1

D2/pl
(36)

for optimal learning rate transfer across width.

Bilinear BTT follows the optimal tensor contraction order in Equation (35) where WQk
∈ Ra×cs and WKk

∈ Rd×bs. Thus
we initialize them as WQk

∼ N (0, 1
csI) and WKk

∼ N (0, 1
dI). The optimal learning rates are given by

ηWQk
= ηbase

D1

cs
(37)

ηWKk
= ηbase

D1

a
(38)

Additionally, we apply RMS normalizations on the weight matrices WQk
and WKk

for training stability as shown in Qiu
et al. (2024). The rest of the parameters in the transformer models follow the recipe in Yang et al. (2022). For MLR attention,
we note that the fan-in dimensions are unchanged and thus it follows the µP recipe for a standard transformer architecture.

F.2. QK LayerNorm

Let LN(·) denote layer normalization. We apply normalizations to bilinear MLR over our optimal tensor contraction order
to get

L∑
l=1

LN
(
X

pl⊕
k=1

WQl,k

)
LN
( pl⊕

k=1

W⊤
Kl,k

X⊤
)
∗ C

rlpl
(39)

for some tunable constant C. We also apply layer normalization to bilinear BTT and get

LN
(
X

)
LN
(
PL

b⊕
k=1

WQk
PR

c⊕
k=1

W⊤
Kk

X⊤
)
∗ C∗

ab
(40)

for some tunable constant C∗. In standard attention, the score matrix is normalized by 1/
√
r before applying softmax.

µP recommends normalizing by 1/r instead (Yang et al., 2022). We incorporate the µP version of normalization into our
architectures. That is, for Bilinear MLR and Bilinear BTT, we use C/rlpl and C∗/ab respectively instead of C/

√
rlpl and

C∗/
√
ab.

G. µP Additional Figures
In this section we show that under the maximum update parametrization (µP), both our MLR attention and standard attention
has stable learning rate across width as shown in Figure 5.

H. ICL Additional Figures
In this section we provide additional figures of in-context regression performance as a function of compute and training
steps across different input dimensions, model widths, and types of scoring functions shown in Figures 7 to 11. We also
provide error bars for Figure 2 as shown in Figure 6. Due to compute budget constraints, we only plotted the error bars
when the input dimension is 16.
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Figure 5. We show the validation loss of an 8-Level MLR attention and standard attention on OpenWebText across a variety
of learning rates. Here we sweep over model widths D ∈ {512, 768, 1024} with a reduced context length of 256 due to compute
constraints. As the figure shows, our MLR attention shares the same optimal learning rate across model width, and it’s also consistently
better than standard attention when both are properly tuned.

100

Rank Ratio r/dinput (Log Scale)

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d

E
rr

or

Input Dimensions
dinput = 16

Figure 6. The performance of standard multi-head attention as a function of the rank ratio. We take the runs from Figure 2 and plot
error bars when the input dimension is 16, i.e. dinput = 16.

I. Language Modeling Additional Figures
In this section we present additional figures for language modeling performances between MLR attention and variants of
sliding window attention across model widths shown in Figure 13.

J. Time Series Forecasting Additional Figures
We train a transformer model with 2 encoder layers, embedding dimension D = 512, and 8 attention heads on the ETTh1
subset of the ETT dataset. The ETTh1 dataset records the oil temperature and six power load features collected each hour
from different electric power transformer stations (Zhou et al., 2021). The dataset contains records with a variety of time
horizons. We select horizons of T ∈ {96, 192, 336} hours. Thus, the time series given to the transformer models has
sequence length T with feature dimension 7.
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The transformer model we used has an input linear projection layer that maps points in R7 to RD and an output linear
projection layer that maps points from RD to R7. Following Olivares et al. (2022), we use Ray Tune (Liaw et al., 2018) to
sweep over optimal learning rates in the range of {0.00001, 0.0002, 0.005} and SGD iterations in {200, 1000}. In Figure 14,
we plot the relative improvement of MLR attention over standard attention in terms of Mean Absolute Error (MAE) for
three different time horizons. The relative improvement is obtained by subtracting the final MAE value of MLR attention
with the final MAE value of standard attention normalized by the final MAE value of standard attention. We observe that as
the sequence length grows, MLR attention outperforms standard attention in oil temperature prediction accuracy.

Finally, we substitute the attention mechanism in the foundational model of Chronos Ansari et al. (2024). Similar to our text
experiments, MLR attention reduces the computational cost as seen in Figure 15. For this experiment, we train a Chronos
model on the data mixture from Ansari et al. (2024) using a combination of synthetic kernel data and real data. We use an
MLR rank split of 32|10|8|8|4|2.
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Figure 7. We show in-context regression performances as functions of training steps and training compute (excluding the input
and output linear projection layers) across model width D ∈ {16, 32, 64, 128, 256, 512} for dinput = 16. In general, Bilinear BTT
outperforms attention with varying number of heads.
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Figure 8. We show in-context regression performances as functions of training steps and training compute (excluding the input
and output linear projection layers) across model width D ∈ {16, 32, 64, 128, 256, 512} for dinput = 32. In general, Bilinear BTT
outperforms attention with varying number of heads.
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Figure 9. We show in-context regression performances as functions of training steps and training compute (excluding the input
and output linear projection layers) across model width D ∈ {16, 32, 64, 128, 256, 512} for dinput = 64. In general, Bilinear BTT
outperforms attention with varying number of heads. Bilinear MLR also outperforms Bilinear BTT when D = 256 or 512. The different
Bilinear MLR lines correspond to different 8 levels Bilinear MLR based on (r1, · · · , r8).
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Figure 10. We show in-context regression performances as functions of training steps and training compute (excluding the input
and output linear projection layers) across model width D ∈ {16, 32, 64, 128, 256, 512} for dinput = 128. In general, Bilinear BTT
outperforms attention with varying number of heads.
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(a) Input Dimension (dinput) = 16.
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(b) Input Dimension (dinput) = 32.
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(c) Input Dimension (dinput) = 64.
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(d) Input Dimension (dinput) = 128.

Figure 11. Bilinear BTT and 1-head attention are full rank structures and thus achieve lower regression errors (y-axis) compared
to 8-head attention at smaller model width (x-axis). Each one of the four figures correspond to one particular input dimension dinput.
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Figure 12. Wall time comparisons between bilinear BTT and standard attention for input dimension at dinput = 16 and model
width at D = 64 and number of attention heads H = 8. We omit the 1 head attention since it has wall time very close to 8 head
attention. (a) we show the squared regression error in log scale (y-axis) against the wall time between Bilinear BTT and standard attention.
We observe that Bilinear BTT still outperforms attention when controlling for wall time. (b) We plot the total wall time for Bilinear
BTT and standard attention for 500, 000 training steps. Although Bilinear BTT is 1.35x slower, it still has a much better performance
compared to standard attention.
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(a) MLR Attention vs. Global + SWA
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(b) MLR Attention vs. SWA

Figure 13. MLR attention outperforms both purely sliding window attention (SWA) and combinations of sliding window attention
and standard attention with global context across model widths. SWA refers to all layers being sliding window attention. Global +
SWA means sequentially stacking standard attention and SWA.
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(a) 2 Levels MLR Attention on ETTh1
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(b) 4 Levels MLR Attention on ETTh1

Figure 14. As the time horizon (i.e. sequence length) becomes larger, MLR attention outperforms standard attention in oil
temperature prediction accuracy by around 1%. (a) We show the relative improvement in Mean Absolute Error (MAE) of a 2-levels
MLR attention with rank distributions 48|16. For both horizons 96 and 336, MLR attention achieves better oil temperature forecasting
accuracy. (b) We show that a 4-levels MLR attention with rank distributions 40|16|4|4 outperforms standard attention in relative MAE as
the sequence length becomes larger. Across the horizon, we observe a positive correlation between relative MAE and the time horizon of
the oil temperature data in the ETTh1 datasets. See Appendix J for additional details.
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Figure 15. MLR attention reduces computational cost when compared to standard attention. We plot the validation loss of three
distinct model sizes when substituting the T5 attention mechanism in Chronos (Ansari et al., 2024) from standard attention to MLR
attention. As shown in the figure, MLR attention achieves the same validation loss compared to standard attention with smaller FLOPs.

25


