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Abstract

This paper investigates how LLMs encode in-001
puts with typos. We hypothesize that specific002
neurons and attention heads recognize typos003
and fix them internally using local and global004
contexts. We introduce a method to identify005
typo neurons and typo heads that work ac-006
tively when inputs contain typos. Our experi-007
mental results suggest the following: 1) LLMs008
can fix typos with local contexts when the typo009
neurons in either the early or late layers are acti-010
vated, even if those in the other are not. 2) Typo011
neurons in the middle layers are the core of012
typo-fixing with global contexts. 3) Typo heads013
fix typos by widely considering the context not014
focusing on specific tokens. 4) Typo neurons015
and typo heads work not only for typo-fixing016
but also for understanding general contexts.1017

1 Introduction018

Inputs for large language models (LLMs) some-019

times contain typographical errors (typos) (Zheng020

and Saparov, 2023; Wang et al., 2024a; Zhu et al.,021

2023). LLMs often make correct answers on inputs022

with typos (Wang et al., 2024a), which implies that023

LLMs can “fix” typos to recover the intended mean-024

ing. However, LLMs sometimes imperfectly fix the025

meaning against typos, which might “damage” the026

performance of LLMs on downstream tasks (Zhuo027

et al., 2023; Wang et al., 2023; Zhu et al., 2023;028

Edman et al., 2024). To reduce the impact of typos029

on LLMs, it is essential to understand both their030

robustness against typos and the reasons for perfor-031

mance degradation caused by typos more deeply.032

Existing studies have primarily focused on the033

surface-level exhibition of performance degra-034

dation due to typos (Wang et al., 2023; Zhu035

et al., 2023) and methods for improving robust-036

ness against typos (Zheng and Saparov, 2023; Zhuo037

et al., 2023; Almagro et al., 2023). Few studies038

1We upload our code including creating the dataset to the
supplementary material. We will release this after accepted.

have investigated how typos affect LLM’s inner 039

workings (Kaplan et al., 2024; García-Carrasco 040

et al., 2024b). However, previous work focused on 041

cases where the input contains only a few subwords 042

and a typo. Therefore, they examined typo-fixing 043

working with only local contexts. In contrast, the 044

performance of typo correction can be improved by 045

observing longer (global) contexts (Li et al., 2020; 046

Ji et al., 2021). This implies that LLMs might see 047

global contexts when handling typo inputs. 048

Based on these previous works, we hypothesize 049

that LLMs with the Transformer-based decoder 050

also fix typos along two axes: typo-fixing with lo- 051

cal contexts, which focuses on nearby subwords, 052

and typo-fixing with global contexts, which under- 053

stands longer contextual information. To verify 054

this hypothesis, we investigated neurons (typo neu- 055

rons) and attention heads (typo heads) in LLMs. 056

First, we investigated the inner workings against 057

typos in contextualized words using a word iden- 058

tification task (§3). Then, we propose a method 059

to identify typo neurons (§4) and typo heads (§5). 060

Subsequently, we analyze the differences in their 061

behavior between cases where the model is dam- 062

aged by typos and cases or not. 063

We conducted experiments using various LLMs 064

to investigate the inner workings when inputs con- 065

tain typos. Our findings suggest the following: 066

• LLMs can fix typos when the typo neurons in 067

either the early or late layers, both of which 068

focus on local contexts, are activated, even if 069

those in the other are not. 070

• Typo neurons in the middle layers are respon- 071

sible for typo-fixing considering global con- 072

texts, regardless of the models. 073

• Typo heads fix typos using the local and global 074

contexts, not focusing on specific tokens. 075

• Typo neurons and typo heads not only fix ty- 076

pos but also understand general grammatical 077

or morphological features. 078

1



Figure 1: The dataset overview (left), an overview of an input example to LLM (middle), and the visualization of
Mx for calculating neurons activation score sxn (right).

2 Related work079

2.1 Analysis of LLMs against Typos080

Typos are mistakes in writing or typing letters, cat-081

egorized into insertion, deletion, substitution, and082

reordering (Gao et al., 2018). Research on the ro-083

bustness of LLMs regards typos as a perturbation.084

Typos change the token sequence obtained through085

the tokenization process. Changing the token se-086

quence potentially leads to a different output, even087

if the sentence is the same (Tsuji et al., 2024). Most088

existing LLM studies about typos focus on measur-089

ing the robustness against perturbed inputs (Wang090

et al., 2021, 2023; Zhu et al., 2023; Edman et al.,091

2024) or modifying the architecture or prompts092

to improve robustness (Zhuo et al., 2023; Zheng093

and Saparov, 2023; Almagro et al., 2023). Chai094

et al. (2024) reported that the larger models are095

more robust to typos. Before the LLM era, re-096

searchers corrected typos using specific models for097

typo-correction (Li et al., 2020; Ji et al., 2021).098

2.2 LLM’s Interpretability099

The feed-forward network (FFN) layer in the Trans-100

former (Vaswani, 2017) has two linear layers sep-101

arated by an activation function. Recent studies102

regard the output of the activation function as “neu-103

rons” that store knowledge (Geva et al., 2021).104

It has been reported that some neurons promote105

specific tasks (Wang et al., 2022, 2024c), knowl-106

edge (Dai et al., 2022; Bau et al., 2019; Gurnee107

et al., 2024), and behaviors (Hiraoka and Inui,108

2024; Wang et al., 2024b; Chen et al., 2024).109

Some attention heads also respond to specific110

knowledge (Gould et al., 2024; Voita et al., 2019; 111

García-Carrasco et al., 2024b) or behaviors (Mc- 112

Dougall et al., 2024; Crosbie and Shutova, 2024). 113

Additionally, some heads are responsible for merg- 114

ing multiple subwords of a word (Correia et al., 115

2019; Ferrando and Voita, 2024). 116

There are various methods to investigate LLM’s 117

interpretability. Some measure contributions to 118

the residual stream (García-Carrasco et al., 2024a; 119

Hanna et al., 2024), while others observe intermedi- 120

ate predictions (nostalgebraist, 2020; Kaplan et al., 121

2024), graph the inference process (Ferrando and 122

Voita, 2024), or directly observe activations (Wang 123

et al., 2022; Hiraoka and Inui, 2024; Wang et al., 124

2024c). We hypothesize that typo neurons are a 125

type of skill neurons. Therefore we use the direct 126

activation observation method, following previous 127

studies on skill neurons (Wang et al., 2022; Hiraoka 128

and Inui, 2024). Mosbach et al. (2024) concludes 129

that understanding the inner workings is important 130

to improve the model performance. 131

Lad et al. (2024) divides LLMs into four stages. 132

The early layers convert token-level representations 133

into entity-level representations with local contexts 134

as Detokenization. The early middle layers build 135

representations with global contexts as Feature En- 136

gineering. The late middle layers, convert current 137

representations into next token representations as 138

Prediction Ensembling. Finally, the late layers re- 139

move the noise and refine the distribution of the 140

next token as Residual Sharpening. Elhage et al. 141

(2022) reports that the late layers perform the op- 142

posite function of the early layers’ Detokenization, 143
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converting entity-level representations into token-144

level representations as Retokenization.145

Kaplan et al. (2024) reveals which layers are146

responsible for typo-fixing. However, they only147

focused on isolated words as inputs by layer-level148

observation. We focus on neurons and heads and149

experiment with global contexts.150

3 Preliminary151

We created a dataset that LLMs can solve without152

typos (§3.2). Then, we applied typos to the dataset153

(§3.3) and conducted a preliminary experiment to154

observe accuracy when inputs include typos (§3.4).155

Next, we identify typo neurons and reveal their spe-156

cific roles (§4). Similarly, we conduct analogous157

experiments for attention heads (§4).158

3.1 Models159

We used Google’s Gemma 2 (Team et al., 2024)160

with 2B, 9B, and 27B parameters, Meta’s Llama161

3.2 (AI@Meta, 2024) with 1B and 3B parameters,162

Meta’s Llama 3.1 with 8B parameters, and Qwen’s163

Qwen 2.5 (Yang et al., 2024) with 3B, 7B, 14B,164

32B parameters; Gemma 2 27B and Qwen 2.5165

32B were loaded in bfloat16, while the others were166

loaded in float322. We conducted all experiments167

using greedy generation.168

3.2 Clean Datasets without Typos169

We used a word identification task in which LLMs170

infer a single word from a given definition. Since171

typo-fixing relies on vocabulary knowledge, it is172

crucial to use a task that directly reflects the LLMs’173

vocabulary knowledge, such as word identification.174

Moreover, we avoided tasks requiring complex rea-175

soning, such as NLI, as variations in sample dif-176

ficulty could hinder a clear observation of typo-177

related phenomena.178

For instance, we feed the definition of the word179

as input, like “a young swan”, to an LLM, and then180

the model is expected to output the corresponding181

word “cygnet”. Following Greco et al. (2024), we182

extracted 62,643 word-definition pairs from Word-183

Net (Fellbaum, 2005)3. We created the dataset with184

these pairs. We designed a prompt so that LLMs185

can solve this task by predicting tokens following186

outputs, as shown in the middle part of Figure 1.187

For our analysis, we need a dataset composed188

of samples that LLMs can correctly answer when189

2We described our computing environment in Appendix A.
3WordNet via NLTK (Bird and Loper, 2004) ver.3.9.1.

the samples do not include typos. Therefore, we 190

extracted the top 5,000 or 1,000 word-definition 191

pairs after sorting the samples by descending order 192

of likelihood for the correct words4. Note that we 193

created a unique dataset for each model. 194

3.3 Generating Inputs with Typos 195

3.3.1 Typo Dataset 196

To focus on text with typos, we generated inputs 197

with typos from the definition part of the clean 198

dataset created in §3.2. We selected the top t most 199

important tokens depending on their importance 200

scores on the word identification task. Then, we 201

injected a random single letter or digit into each 202

selected token as a typo. The importance scores 203

were calculated with the method used in Wang et al. 204

(2023); Li et al. (2019), with the smallest models 205

among ones that share the same tokenizer (e.g., 206

Gemma 2 2B for Gemma 2 or Llama 3.2 1B for 207

Llama 3 family). Specifically, we obtained the im- 208

portance scores by performing back-propagation 209

while predicting words from their definitions. This 210

process assigns higher gradients to tokens that are 211

important to predict the correct answer. For exam- 212

ple, consider the sentence “a young swan” with 213

t = 2 and the top two most important words are 214

“young” and “swan.” In this case, we inject random 215

letters such as “e” and “5” into random positions5 216

of each word, which results in “a youneg s5wan.” 217

3.3.2 Split Dataset 218

We often obtain a different number of subwords 219

when tokenizing typo inputs compared to clean 220

inputs. For instance, the tokenizer encodes the 221

word “young” into a single token, but it tokenizes 222

the typo version “youneg” into two tokens (e.g., 223

“you / neg”). When comparing the inner workings 224

when LLMs encode the clean inputs and the typo 225

inputs, the difference in the token length might 226

prevent appropriate analysis6. 227

To divide typo-related inner workings into the 228

factor corresponding to typos and the one to tok- 229

enization difference, we created the “split dataset” 230

in addition to the “typo dataset” mentioned in 231

4Due to Llama 3.2 1B’s worse performance, we could not
extract 5,000 pairs for the Llama 3 family. Therefore, we
extract 1,000 pairs for the Llama 3 family.

5We exclude the positions before the spaces to avoid the
situation where a typo would appear at the end of the previous
token rather than within the target token.

6Kaplan et al. (2024) reported that there are inner workings
to fix the original token from differently tokenized subwords.
We need to exclude the effect of this factor to deeply focus on
the typo-related inner workings.
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Figure 2: Accuracy on the word identification task with
different numbers of typos t.

§3.3.1. The split dataset contains samples tok-232

enized into the same number of tokens as the one233

with typos. For example, when the typo dataset234

has a sample whose tokenized sequence is “a / you235

/ neg / swan”, an example of counterparts in the236

split dataset is “a / y / oung / swan” whose length237

is equivalent to the one of the typo version. We can238

obtain the various tokenization candidates using239

the tokenizer and we randomly selected one candi-240

date with the same length as the typo input. This241

process is shown in Figure 1 (left).242

3.4 Preliminary Experiment243

To examine the impact of typos on the model perfor-244

mance, we applied typos to t tokens (1 ≤ t ≤ 16)245

and analyzed the change in accuracy7.246

Figure 2 shows the results. The accuracy of247

t = 0 indicates the performance of the clean data.248

Since the clean data consists of samples that each249

model can answer correctly, the accuracy for all250

models is 1.0. The larger models maintain higher251

accuracy than the smaller ones even with many ty-252

pos. This supports the existing work reporting that253

larger models have robustness against typos (Chai254

et al., 2024). This result also indicates that the255

robustness of larger models against typos is insuf-256

ficient, resulting in a performance drop. We con-257

clude that typos damage performance, but larger258

LLMs have some robustness against typos, which259

motivates us to investigate the typo-related inner260

workings. Furthermore, this leads us to a deep anal-261

ysis of the differences in robustness against typos262

among models for further improvement.263

4 Typo Neurons264

Some FFN layers have been found to combine mul-265

tiple tokens into a single representation vector (Ka-266

7We showed the examples damaged by a typo in Ap-
pendix C

plan et al., 2024; Elhage et al., 2022; Lad et al., 267

2024). Additionally, it has been reported that cer- 268

tain neurons within LLMs function as “skill neu- 269

rons” with specific roles (Wang et al., 2022). In 270

this section, we investigate the existence of typo 271

neurons, a particular type of skill neuron that is 272

responsible for recognizing and fixing typos. 273

4.1 Method to Identify Typo Neurons 274

Following the approach of Hiraoka and Inui (2024), 275

we compare the activation values of neurons be- 276

tween clean inputs and typo inputs to identify neu- 277

rons that specifically respond to typos. Let x ∈ X 278

be a sample of the dataset, where x is a sequence of 279

|x| tokens: x = w1, ..., wm, ..., w|x|. Each sample 280

comprises the prompt (e.g., “Q. What is ... A. This 281

is ”) and the answer (e.g., “cygnet”). 282

The activation value sXn of a neuron n when 283

feeding a dataset X is defined as the following: 284

sXn =
1

|X|
∑
x∈X

(
1

|Mx|
∑

m∈Mx

f(xm1 , n)

)
, (1) 285

where |X| is the number of samples in the dataset. 286

f(xm1 , n) is a function calculating the activation 287

value of the neuron n corresponding to wm when 288

the LLM reads the input xm1 = w1, ..., wm. Mx is 289

a set of indices that indicates the token positions, 290

and |Mx| is the number of indices. We define Mx 291

as the indices comprising the answer word tokens 292

and t important words. 293

For example, in Figure 1, Mx for the clean in- 294

put is composed of “young” and the apostrophe 295

before “cygnet”, while Mx for the typo input is 296

composed of “you”, “neg”, and the apostrophe and 297

for the split input is “y”, “oung”, and the apos- 298

trophe. In the figure, tokens comprising Mx are 299

indicated with an orange background. 300

We obtain the responsibility of neurons special- 301

ized to the typo inputs separated from clean and 302

split inputs with the following score ∆n: 303

∆n = s
Xtypo
n −max

(
sXclean
n , s

Xsplit
n

)
, (2) 304

where Xtypo, Xclean, and Xsplit are the typo, clean, 305

and the split datasets, respectively. 306

A larger ∆n indicates the neuron n that responds 307

specifically to typos but not clean inputs or split 308

inputs. Among the neurons, the top K neurons 309

based on ∆n scores are identified as typo neurons. 310
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Figure 3: Distribution of ∆n (upper) and percentage of typo neurons per layer (lower) with t = 1. The left figures
are for Gemma 2, the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

4.2 Experimental Results311

We investigate typo neurons with the method intro-312

duced in §4.1. We used the number of typos t = 1.313

Appendix D describes the results for t = 168.314

Figure 3 shows the distribution of ∆n and the315

distribution of the typo neurons in each layer. We316

extracted the top 0.5% of neurons with the highest317

∆n as the typo neurons. The average (Ave) and318

standard deviation (SD) in Figure 3 indicate that a319

few neurons have significantly larger scores than320

others, similar to knowledge and skill neurons (Dai321

et al., 2022; Wang et al., 2022).322

For the distribution of neurons, Llama 3 family323

and Qwen 2.5 have many typo neurons in the late324

layers(i.e., from 0.8 to 1.0). In contrast, Gemma 2325

models have many typo neurons in the early layers326

(i.e., from 0.0 to 0.2).327

According to Lad et al. (2024), the late layers per-328

form Residual Sharpening, which removes noise329

from representations. Considering typos as noise,330

it is natural that many typo neurons are in the late331

layers. Besides, Elhage et al. (2022) reports that332

the early layers are responsible for Detokenization333

that converts token representations into coherent334

entities (e.g., words), while the late layers perform335

Retokenization that converts them back into token336

representations. These suggest that Gemma 2 fixes337

typos as Detokenization, while LLaMA 3 family338

and Qwen 2.5 fix typos as Retokenization. Since339

both processes use local contexts, we can see the340

variety of the balance in responsibility between the341

early and late layers. As shown in Appendix D,342

8We investigated the consistency of typo neurons in the
Appendix F. We observed consistency in the result. Therefore,
we expect the same results for the intermediate number.

with many typos, typo neurons in the late layers 343

of Gemma 2 models also increased. This indicates 344

that the distribution of responsibility between the 345

early and late layers is adaptable. 346

In the middle layers (i.e., 0.2-0.8), all models 347

have many typo neurons. This suggests that these 348

layers play a common role in typo-fixing across 349

models. Since the early middle layers create rep- 350

resentations depending on global contexts with at- 351

tention heads as Feature Engineering and the late 352

middle layers convert current representations to 353

next token representations as Prediction Ensem- 354

bling (Lad et al., 2024), typo-fixing in these layers 355

seem to focus on recognition of global contexts in 356

contrast to the early and late layers. 357

4.3 Discussion 358

While the experimental results in §4.2 suggest the 359

existence of typo neurons, their impact has not been 360

clarified. Then, in this section, we investigate their 361

specific impact, focusing primarily on Gemma 2. 362

4.3.1 Neuron ablation 363

We expect typo neurons to work typo-fixing. There- 364

fore, ablating them should result in a remarkable 365

decrease in performance for typo inputs while not 366

affecting the performance for clean inputs. 367

We test this hypothesis by conducting ablation 368

experiments on typo neurons and randomly se- 369

lected neurons of Gemma 2 models. Appendix E 370

discusses the results of the ablation study for other 371

models. From a dataset of 5,000 samples, 100 ran- 372

domly selected samples were used to identify typo 373

neurons. Then, we evaluate the performance of the 374

word identification task using the remaining 4,900 375

samples by deactivating the identified neurons. 376
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Clean
Dataset

Typo
Dataset

Gemma 2 2B 1.00 0.86
⊖ Random Neurons 0.98 0.87
⊖ Typo Neurons 0.84 0.73

Gemma 2 9B 1.00 0.93
⊖ Random Neurons 0.99 0.96
⊖ Typo Neurons 0.93 0.90

Gemma 2 27B 1.00 0.95
⊖ Random Neurons 0.98 0.94
⊖ Typo Neurons 0.96 0.91

Table 1: Accuracy of the word identification task with
neuron ablation on clean and typo datasets. “⊖ Ran-
dom/Typo Neurons” indicates the performance by ablat-
ing random and typo neurons, respectively.

Figure 4: Distribution of typo neurons per layer for
samples damaged or not. Values above the black line
indicate many typo neurons activated when the LLMs
predicted correct words.

Following §4.2, we identified the top 0.5% of377

neurons as typo neurons. We also randomly se-378

lected 0.5% of neurons as a baseline. Deactivation379

was performed by setting the output values of the380

neurons to zero. The experiments were conducted381

for the clean inputs and the typo inputs with t = 1.382

Table 1 shows the experimental results. For typo383

inputs, performance remained largely unchanged384

when random neurons were ablated, regardless385

of the model. However, performance decreased386

when typo neurons were ablated. This suggests387

that a small number of typo neurons play an impor-388

tant role in typo-fixing for typo inputs. For clean389

datasets, the ablation of typo neurons also resulted390

in a larger performance decrease than the random391

neuron ablation. This indicates that typo neurons392

may not exclusively act on typos but could also393

play a crucial role in processing general grammati-394

cal or morphological features. We can see similar395

results with the other models (Appendix E).396

4.3.2 Neurons for Typo-fixing397

The experiments in §4.2 sought typo neurons by398

comparing clean and typo inputs without consid-399

ering whether the LLMs could correctly solve the 400

task with typo inputs. This section focuses on the 401

difference in typo neurons between cases where the 402

LLMs answer with typos correctly and incorrectly. 403

From the dataset of 5,000 samples, we extracted 404

100 samples where typos did not damage the in- 405

ferences and the correct word was predicted. Sim- 406

ilarly, we extracted another 100 samples where 407

typos damaged the inferences and led to incorrect 408

word prediction. We compared differences in the 409

activation of typo neurons in these two groups. We 410

conducted this experiment with t = 1 and com- 411

pared the difference in the layer distribution of the 412

typo neurons that have the top 0.5% ∆n. 413

Figure 4 shows the result. In the 9B and 27B 414

models, the number of typo neurons in the early 415

layers increases when incorrect inferences are pre- 416

dicted. This suggests that some neurons in the early 417

layers might play other roles than typo-related phe- 418

nomena, and activation of those neurons prevents 419

correct recognition of typos. In the 2B model, when 420

the model fails to fix typos, typo neurons in the 421

middle-middle layers are activated. This suggests 422

that the strong activations observed in the middle- 423

middle layers of Gemma 2 2B in §4.2 are due to 424

neurons damaged by typos rather than contributing 425

to typo-fixing. Across all models, more typo neu- 426

rons in the early middle layer (e.g., 0.2-0.4) were 427

activated when typos did not damage inferences. 428

This indicates the importance of typo neurons in 429

the early middle layers. 430

5 Typo Heads 431

5.1 Method to Identify Typo Heads 432

Typo-fixing may not solely depend on neurons but 433

subword merging by attention heads (Correia et al., 434

2019; Ferrando and Voita, 2024) and is based on 435

understanding local and global contexts. We as- 436

sume two types of such heads for typo inputs: 1) 437

the one focusing on important tokens and 2) the 438

one widely attending contexts. 439

In this section, we investigate the attention heads 440

specialized to typo inputs. Herein, we calculated 441

the KL divergence between a uniform distribution 442

and the rows of attention maps by considering them 443

as a probability distribution. The KL divergence 444

increases monotonically with the number of tokens, 445

which can result in higher values for typo inputs 446

or split inputs, as they often have more tokens than 447

clean inputs. We alleviate this problem by normal- 448

izing the KL divergence with the maximum score 449
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Figure 5: Distribution of ∆h for each model with t = 1. The heat map colors are centered around 0, and the tick
mark closest to 0 on the positive side of the heat bar represents the maximum ∆h. The left figures are for Gemma 2,
the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

Average -0.0045 -0.0042 -0.0032 -0.0040 -0.0039 -0.0049 -0.0043 -0.0053 -0.0047 -0.0050
SD 0.0038 0.0041 0.0049 0.0045 0.0040 0.0044 0.0046 0.0056 0.0052 0.0057

Table 2: The average and standard deviation (SD) of ∆h.

log2m, defined as follows:450

sXh =
1

|X|
∑
x∈X

(∑
m

(
DKL(Px,m,h||Um)

log2m

))
,

(3)451

where DKL(·) is the function that returns the KL452

divergence, Um is a uniform distribution over m453

elements. Px,m,h is the m-th row of the attention454

map output by head h for the token sequence x. In455

decoder models, attention scores for the m-th token456

and each token from the first to the m-th token sum457

to 1. Unlike neurons, for the calculation of typo458

head identification, we did not narrow down the459

tokens to calculate and used all tokens in prompts.460

Similar to Eq. (2) in neurons, the responsibility461

score of the heads to the typos is defined as follows:462

∆h = s
Xtypo

h −max
(
sXclean
h , s

Xsplit

h

)
, (4)463

where Xtypo, Xclean, and Xsplit are the typo, clean, 464

and split datasets, respectively. A large absolute 465

value of ∆h indicates that the head behaves differ- 466

ently between typo and clean inputs. Specifically, 467

a large positive ∆h indicates the head that focuses 468

on specific tokens for typo-fixing, while a large 469

negative ∆h indicates the head that widely attends 470

contexts for it. We identified the top J heads with 471

the highest absolute value of ∆h as typo heads. 472

5.2 Experimental Results 473

We used the number of typos t = 1. Appendices G 474

and I discuss other settings9. As shown in Figure 5, 475

the differences between the maximum and absolute 476

minimum scores are approximately 10 times in 477

9We investigated the consistency of typo heads in Ap-
pendix H. We observed consistency in the result. Therefore,
we expect the same results for the intermediate number.
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Clean
Dataset

Typo
Dataset

Gemma 2 2B 1.00 0.86
⊖ Random Heads 0.87 0.80
⊖ Typo Heads 0.81 0.75

Gemma 2 9B 1.00 0.93
⊖ Random Heads 0.80 0.76
⊖ Typo Heads 0.89 0.81

Gemma 2 27B 1.00 0.95
⊖ Random Heads 0.35 0.33
⊖ Typo Heads 0.69 0.67

Table 3: Accuracy of the word identification task with
head ablation on clean and typo datasets. “⊖ Random
Heads” and “⊖ Typo Heads” indicate the performance
by ablating random and typo heads, respectively.

all models. The average and standard deviation478

in Table 2 also indicate that few heads near the479

minimum ∆h are distinctive. These results suggest480

that heads recognize and fix typos by observing the481

wider context, not by focusing on specific tokens.482

As the model size increases, the proportion of483

heads with ∆h close to zero increases. This con-484

trasts with the results in §4.2, where model dif-485

ferences contributed to the difference in the distri-486

bution of typo neurons. However, we can see a487

similar trend between the distributions of typo neu-488

rons and typo heads in very early layers (∼ 10%489

layers from the first layer). For instance, Gemma 2490

has some heads with large ∆h in these layers while491

the Llama3 family and Qwen 2.5 do not. This trend492

among models is similar to the one in the distribu-493

tion of typo neurons (see Figure 3).494

5.3 Discussion495

In this section, we investigate the specific impact496

and behavior of typo heads, focusing primarily on497

Gemma 2 similar to §4.3.498

5.3.1 Head Ablation499

Following the approach in §4.3.1, we identified500

typo heads in Gemma 2 using 100 randomly se-501

lected samples of the dataset. Then, we ablated502

these identified typo heads and measured the ac-503

curacy on the remaining 4,900 samples. Since the504

total number of heads is smaller than neurons, we505

identified the top 1.5% of heads as typo heads (e.g.,506

J = 3, 10, 22 for 2B, 9B, 27B, respectively). We507

also randomly selected 1.5% of heads as a base-508

line. We performed ablation by setting all attention509

scores of the selected heads to 0. The experiments510

were conducted for the clean inputs and the typo511

inputs with t = 1. We described the results of the512

ablation study for other models in Appendix J.513

Table 3 shows the experimental result. In the 514

9B and 27B models, the ablation of random heads 515

damages the performance in both clean and typo 516

datasets compared to the typo heads, while the ab- 517

lation of typo heads also degrades the performance 518

to some degree. This suggests that many heads, 519

including those not normally needed for solving 520

that task, cooperate to fix typos, and that no specific 521

few heads are responsible for fixing typos. This is a 522

different result from our hypothesis that only a few 523

heads are responsible for fixing typos. In contrast, 524

for the 2B model, which has fewer heads, the abla- 525

tion of typo heads resulted in a greater decrease in 526

accuracy than the ablation of random heads. This 527

suggests that when the number of heads and param- 528

eters is limited, a few specific heads fix typos, as 529

we hypothesized. 530

In summary, many heads fix typos in the larger 531

model, while a few specific heads fix the typos in 532

the smaller model. Additionally, since the abla- 533

tion of typo heads also reduces accuracy on clean 534

datasets, typo heads may play a role in processing 535

general contextual information like typo neurons. 536

6 Conclusion 537

This paper investigated how the neurons and heads 538

of Transformer-based LLMs respond to typo in- 539

puts. Experimental results show that LLMs can 540

fix typos with local contexts when the typo neu- 541

rons in either the early or late layers are activated 542

even if those in the other are not. While they fix 543

typos by recognizing local contexts, typo neurons 544

in the middle layer are responsible for the core of 545

typo-fixing with global contexts. Typo heads fix 546

typos using the context widely rather than focusing 547

on specific tokens because many heads have neg- 548

ative ∆h. Additionally, many heads fix typos in 549

the larger model, while a few specific heads fix the 550

typos in the smaller model. 551

Our findings indicate that Transformer-based 552

LLMs fix typos with not only local but also global 553

contexts, which suggests that improving typo ro- 554

bustness requires approaches that emphasize recog- 555

nition of both local and global contexts. The results 556

of the ablation study show that typo-fixing is related 557

to general grammatical or morphological recogni- 558

tion, suggesting that methods for improving typo 559

robustness may also enhance general contextual 560

recognition performance. These findings also sug- 561

gest that aiming at improving general contextual 562

recognition could contribute to typo robustness. 563
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Limitation564

This work focuses on the investigation of typo-565

related inner workings. We believe our findings566

will help develop applications to alleviate the per-567

formance decrease caused by typo inputs. How-568

ever, the discussion of a concrete method for this569

application is out of the scope of this paper. Our570

analysis was limited to Gemma 2, Llama 3 fam-571

ily, and Qwen 2.5 models and examined models572

with sizes up to 32B. Larger models or LLMs with573

different architectures may have different proper-574

ties. For hyperparameters, our experiments were575

performed only at t ∈ {1, 16}. Furthermore, our576

experiments focused on a specific task, and models577

may show different properties in a wider variety578

of tasks. We ran all experiments only once, al-579

though there was randomness in applying typos580

and conducting some experiments. For typo neu-581

rons, models were observed to have either more582

typo neurons in the early layers or more in the late583

layers. This may be due to differences in training584

methods or datasets. However, the true reason re-585

mains unclear. Additionally, our method mostly586

detected neurons and heads that respond to inputs587

with typos. However, it cannot distinguish between588

those that contribute to typo-fixing and those that589

are damaged by typos. Our head ablation method590

did not always work well for models other than591

Gemma 2. Therefore, it remains unclear whether592

the same trends can be reliably observed in other593

models. We do not use logit Lens (nostalgebraist,594

2020), because we may overlook some types of595

typo-fixing with it. Specifically, the model can596

solve the task by ignoring typos. This recovers the597

intended meaning without explicitly "reconstruct-598

ing" the original words. While investigating the599

difference between ignoring typos and restoring600

original words is important, we consider it next-601

stage research following the identification of typo602

neurons and heads.603
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A Computing Environment856

We used NVIDIA A100 40GB×2 for Gemma 2857

and Llama 3.1 8B, NVIDIA A100 80GB×1 for858

Qwen 2.5, and NVIDIA RTX 3060×1 for Llama859

3.1 1B and 3B.860

B Models Using the Same Tokenizer861

Since LLMs using the same tokenizer share their862

vocabulary, the impact of typos could be similar.863

To compare LLMs using the same tokenizer un-864

der similar settings, we constructed datasets for865

such models so that they contain as many identical866

samples as possible.867

C Example of Damaged Outputs868

We reported accuracy degradation in samples with869

typos. Here, we show specific examples where870

a single typo damaged Gemma 2 9B, leading to871

incorrect predictions.872

Table 4 shows that typos can lead to various873

types of errors. First, in some cases, the output874

itself contains a typo, as seen in “Palaemon” be-875

coming “Palaeomon.” Additionally, we observed876

cases such as “gruel” becoming “porridge,” where877

the model repeated a word that was originally in878

the input definition. We can also observe various879

other types of cases.880

D Typo Neurons for Many Typos881

In §4.2, we reported the results for t = 1. Here, we882

describe the behavior of typo neurons with t = 16,883

where many typos are introduced. Since we are884

comparing t = 1, which contains a minimal num-885

ber of typos, with t = 16, which has an unreal-886

istically high number of typos, it is expected that887

the behavior for real-world typos would fall some-888

where between them.889

Figure 6 (upper) shows that the maximum value890

of ∆n increases across all models. This indicates891

that typo neurons respond more strongly as the892

number of typos increases. Since the average and893

standard deviation remain close to zero, it suggests894

that even in such environments, most neurons acti-895

vate similarly to those with clean input.896

For the Llama 3 family and Qwen 2.5, the pro-897

portion of typo neurons in the late layers increases898

further, while there are few typo neurons in other899

layers. However, We extracted only the top 0.5%900

of neurons with the highest ∆n as the typo neu-901

rons. Therefore, even if neurons in other layers are902

activated similarly to those in t = 1, a significant 903

increase in typo neuron activation in the late layers 904

could cause a ranking inversion of ∆n. This leads 905

to the possibility that some activated neurons are 906

not extracted as the typo neurons. 907

To address this, we redefine typo neurons by 908

extracting neurons with ∆n values greater than the 909

minimum ∆n of the typo neurons in t = 1 for each 910

model. In other words, we extracted neurons that 911

activate equally to or greater than the typo neurons 912

in t = 1 as typo neurons. Figure 7 shows the 913

layer-wise distribution of typo neurons under this 914

new criterion. This shows that while typo neurons 915

increase in the late layers of Llama 3 family and 916

Qwen 2.5, they also increase significantly in the 917

middle layers. For Gemma 2, the typo neurons in 918

the early layers decrease, while those in the late 919

layers increase even in Figure 7. This suggests 920

that both the early and late layers are responsible 921

for recognizing local contexts and the balance of 922

responsibility between them can shift. 923

The number of typo neurons in Qwen 2.5 32B 924

and Gemma 2 27B does not increase compared to 925

the case of t = 1 in §4.2, while the number of 926

typo neurons in most other models significantly 927

increases in Figure 7. This suggests that typo neu- 928

rons in larger models can fix typos regardless of 929

the number of typos. 930

E Neuron Ablation for Other Models 931

In §4.3.1, we reported the results for Gemma 2. 932

Here, we examined the ablation study for typo neu- 933

rons in the Llama 3 family and Qwen 2.5. 934

Table 5 shows that the results of the ablation 935

study are consistent, while there were differences 936

in typo neuron distributions across models. In all 937

models, ablating random neurons did not reduce 938

accuracy on the typo dataset. In contrast, ablating 939

typo neurons led to a drop in accuracy on both 940

the clean and typo datasets. This indicates that 941

typo neurons may not exclusively act on typos but 942

could also play a crucial role in processing general 943

grammatical or morphological features, regardless 944

of the model. 945

F Consistency of Typo Neurons 946

In Appendix D, we showed that typo neurons ac- 947

tivate stronger in the case of t = 16 than t = 1. 948

We also noted that the behavior for real-world ty- 949

pos would fall somewhere between the results of 950

Appendix D and §4.2. However, we have not yet 951
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Definition Correct Word Generated Answer
type genus of the family Palaexmonidae; widely distributed genus Palaemon Palaeomon
a thin porzridge (usually oatmeal or cornmeal) gruel porridge
a native or inhabitant of Srind Sindhi Sringi
make f0lat or flatter flatten flatter
any plant of the genus Gazanjia valued for their showy daisy flowers Gazania gaillardia
type geqnus of the Papaveraceae; Papaver poppychiefly bristly hairy herbs with usually showy flowers

Table 4: Example outputs with a typo from Gemma 2 9B. Bold italic characters mean typos

Figure 6: Distribution of ∆n (upper) and percentage of typo neurons per layer (lower) with t = 16. The left figures
are for Gemma 2, the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

clarified the degree of consistency in neuron behav-952

ior between the t = 1 and t = 16 cases. Therefore,953

we computed NDCG (Normalized Discounted Cu-954

mulative Gain) by using the ranking of δn from the955

t = 1 case and the δn scores from the t = 16 case956

to show that consistency. NDCG is calculated as957

follows:958

NDCG@k =
DCG@k

maxπ(DCG@k)
, (5)959

Here,960

DCG@k =
∑

π(i)≤k

2li − 1

log2(π(i) + 1)
, (6)961

where π(i) is the rank of i, li is the score of i, and962

k is the rank cutoff used to calculate. In this experi-963

ment, we set k to 5% of the neurons in each model,964

consistent with Appendix D and Section 4.2.965

As shown in Table 6, all models exhibit very966

high NDCG scores, indicating that typo neurons967

remain highly consistent even when the number968

of typos changes. Therefore, it can be concluded969

that model behavior for real-world typos would fall970

somewhere between the results of Appendix D and971

Section 4.2.972

G Typo Heads for Many Typos 973

Similar to Appendix D, while §5.2 reported for 974

t = 1, here we describe the behavior of typo heads 975

under the t = 16 setting. 976

Table 7 shows that ∆h shifts significantly in the 977

negative direction at t = 16 compared to t = 1. the 978

minimum values in Figure 8 also shows this transi- 979

tion. Additionally, the increase in dark blue areas 980

in Figure 8 indicates that more heads respond rel- 981

atively strongly. However, the difference between 982

t = 1 and t = 16 for typo heads is smaller than for 983

typo neurons. 984

H Consistency of Typo Heads 985

Following Appendix F, we also evaluated the con- 986

sistency of typo heads between the t = 1 and 987

t = 16 cases by NDCG. Since our analysis of 988

typo heads focused on heads with lower negative 989

scores, we computed NDCG with scores multiplied 990

by −1 and reversed rankings. Following §5.3.1, we 991

set k to 1.5% of the total number of heads. 992

Table 8 indicates that consistent heads respond to 993

typos regardless of the number of typos. The num- 994

ber of typos affects the intensity of the response in 995

these heads. 996
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Figure 7: Percentage of typo neurons per layer with t = 16 when we extracted neurons that activate greater than the
typo neurons at t = 1 as typo neurons. The left figures are for Gemma 2, the center figures are for Llama 3 family
and the right figures are for Qwen 2.5.

Clean
Dataset

Typo
Dataset

Llama 3.2 1B 1.00 0.69
⊖ Random Neurons 0.91 0.61
⊖ Typo Neurons 0.73 0.46

Llama 3.2 3B 1.00 0.90
⊖ Random Neurons 0.97 0.89
⊖ Typo Neurons 0.87 0.79

Llama 3.1 8B 1.00 0.94
⊖ Random Neurons 0.99 0.93
⊖ Typo Neurons 0.83 0.80

Qwen 2.5 3B 1.00 0.92
⊖ Random Neurons 0.99 0.91
⊖ Typo Neurons 0.84 0.71

Qwen 2.5 7B 1.00 0.92
⊖ Random Neurons 0.98 0.92
⊖ Typo Neurons 0.86 0.80

Qwen 2.5 14B 1.00 0.95
⊖ Random Heads 0.99 0.94
⊖ Typo Heads 0.92 0.82

Qwen 2.5 32B 1.00 0.96
⊖ Random Neurons 0.99 0.96
⊖ Typo Neurons 0.93 0.85

Table 5: Accuracy of the word identification task with
neuron ablation on clean and typo datasets. “⊖ Random
Neurons” and “⊖ Typo Neurons” indicate the perfor-
mance by ablating random and typo neurons, respec-
tively.

I Typo Heads for Qwen 2.5 14B997

Figure 9 shows the distribution of ∆h for Qwen998

2.5 14B, which was not included in §5.2 and Ap-999

pendix G due to space constraints. The results are1000

consistent with those of other models and model1001

sizes, as the initial layers contain fewer typo heads,1002

and the distribution of typo heads is sparser than in1003

smaller models.1004

J Head Ablation for Other Models1005

Similar to Appendix E, we examined the ablation1006

study for typo heads in the Llama 3 family and1007

Qwen 2.5.1008

In Table 9, both ablations significantly degraded1009

the model’s capability in the Llama 3 family, Qwen 1010

2.5 14B and Qwen 2.5 32B, making it difficult to 1011

determine the importance of typo heads. In con- 1012

trast, in Qwen 2.5 3B and Qwen 2.5 7B, the abla- 1013

tion of typo heads decreases accuracy more than 1014

the ablation of random heads. Compared to §5.3.1, 1015

where ablation of typo heads in the 9B model had 1016

little impact on accuracy, this suggests that typo 1017

heads remain important even in the middle model 1018

in Qwen 2.5, which has few typo neurons and typo 1019

heads in the early layers. 1020

K Examples of Typo Head Ablation 1021

When we ablated heads, we observed a significant 1022

drop in accuracy in the LLaMA 3 family and Qwen 1023

2.5 14B. This task is constructed using only ques- 1024

tions that the models originally solved correctly 1025

Therefore, such a drop suggests that the ablation 1026

may cause not only a reduced ability to handle 1027

typos but also serious damage to the overall per- 1028

formance of the models. To investigate this, we 1029

qualitatively examined the outputs of LLaMA 3.2 1030

3B ablating random 1.5% of its heads (10 of the 1031

672 heads). 1032

In Table 10, we observed several types of broken 1033

outputs contributing to the decline in performance. 1034

These broken outputs often appeared, despite the 1035

ablated 1.5% of heads being randomly selected 1036

each time. This suggests that the degradation is un- 1037

likely due to the accidental removal of particularly 1038

important heads. 1039

Additionally, we report several example outputs 1040

from Gemma 2 9B, for which ablation seems to 1041

work correctly, in Table 11. Unlike Table 10, we 1042

do not observe the collapsed examples. There are 1043

only errors similar to Table 4. 1044

A possible explanation for the serious dam- 1045

age in Table 10 is that since the model was not 1046

trained with dropout, ablating heads during infer- 1047
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Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

NDCG 0.9441 0.9156 0.9054 0.9477 0.9103 0.9565 0.9386 0.9374 0.9312 0.8771

Table 6: NDCG calculated between the typo neurons in the t = 1 and t = 16 cases.

Figure 8: Distribution of ∆h for each model with t = 16. The heat map colors are centered around 0, and the tick
mark closest to 0 on the positive side of the heat bar represents the maximum ∆h. The left figures are for Gemma 2,
the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

ence causes unstable behavior. This suggests that1048

these models rely on the simultaneous operation1049

of most heads, rather than assigning distinct or1050

isolated roles to each head. However, models in1051

which ablation studies functioned well were also1052

trained without dropout. Therefore, the reason for1053

this difference remains unclear. While identifying1054

the reason is important, since it is beyond the scope1055

of this paper, we do not investigate it more deeply1056

here.1057

L Visualization of Typo Heads.1058

Figure 10 shows the attention maps for each input,1059

using the top 1.5% of heads with the highest ab-1060

solute value of ∆h scores in Gemma 2 9B as typo1061

heads.1062

The typo head in Layer 2 Head 11 recognizes1063

sentence boundaries. There are two possible inter- 1064

pretations of this head. First, it normally detects 1065

sentence boundaries, but if there are typos, it simul- 1066

taneously has the role of detecting typos. Second, it 1067

is damaged by typos. Our method has a limitation 1068

in that it cannot distinguish between heads that con- 1069

tribute to typo-fixing and those that are damaged by 1070

typos. The typo head in Layer 5 Head 7 responds to 1071

semantic connections and fixes typos by leveraging 1072

synonyms. This is a typical typo-fixing mechanism 1073

of early middle layers described above, which is a 1074

recognition of global contexts. The typo head in 1075

Layer 30 Head 3 fixes typos by recognizing local 1076

contexts. Additionally, most typo heads strongly 1077

attend to ’<bos>’. 1078

When attention norms are considered, such 1079

heads may assign little or no weight to the 1080
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Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

Average -0.0295 -0.0276 -0.0221 -0.0330 -0.0295 -0.0368 -0.0347 -0.0401 -0.0343 -0.0369
Standard
Deviation 0.0317 0.0335 0.0394 0.0442 0.0383 0.0398 0.0557 0.0434 0.0420 0.0452

Table 7: The average and standard deviation of ∆h with t = 16.

Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

NDCG 0.9975 0.9923 0.9953 0.9905 0.9849 0.9854 0.9967 0.9932 0.9966 0.9944

Table 8: NDCG calculated between the typo heads in the t = 1 and t = 16 cases.

Figure 9: Distribution of ∆h for Qwen 2.5 14B. The
heat map colors are centered around 0, and the tick mark
closest to 0 on the positive side of the heat bar represents
the maximum ∆h.

’<bos>’ (Kobayashi et al., 2020). We did not in-1081

corporate it into the quantitative scoring because1082

this method does not rescale values to the [0, 1]1083

interval. However, it can provide an instructive1084

viewpoint for visualization. Therefore, we display1085

the norm-corrected attention maps in Figure 11.1086

For Layer 2 Head 11, it becomes more clear1087

that the head is looking at the sentence boundaries,1088

though attention to ’<bos>’ remains. For Layer 51089

Head 7, the focus on ’<bos>’ disappears, and the1090

responses to semantic connections become more1091

clear. For Layer 30 Head 3, this head recognizes1092

sentence-level relationships such as attention from1093

Clean
Dataset

Typo
Dataset

Llama 3.2 1B 1.00 0.69
⊖ Random Heads 0.07 0.04
⊖ Typo Heads 0.00 0.00

Llama 3.2 3B 1.00 0.90
⊖ Random Heads 0.10 0.10
⊖ Typo Heads 0.18 0.17

Llama 3.1 8B 1.00 0.94
⊖ Random Heads 0.09 0.08
⊖ Typo Heads 0.10 0.09

Qwen 2.5 3B 1.00 0.92
⊖ Random Heads 0.97 0.88
⊖ Typo Heads 0.46 0.41

Qwen 2.5 7B 1.00 0.92
⊖ Random Heads 0.55 0.53
⊖ Typo Heads 0.39 0.37

Qwen 2.5 14B 1.00 0.95
⊖ Random Heads 0.09 0.09
⊖ Typo Heads 0.13 0.12

Qwen 2.5 32B 1.00 0.96
⊖ Random Heads 0.18 0.16
⊖ Typo Heads 0.15 0.15

Table 9: Accuracy of the word identification task with
head ablation on clean and typo datasets. “⊖ Random
Heads” and “⊖ Typo Heads” indicate the performance
by ablating random and typo heads, respectively.

A to Q and strongly focuses on ’<bos>’, even when 1094

corrected with the norm. Additionally, the head 1095

pays attention to unusual splits in the typo and split 1096

inputs. 1097

M Future Work 1098

This paper focuses on the investigation of typo- 1099

related inner workings. Therefore, we do not pro- 1100

vide any methods to improve LLM’s robustness 1101

against typos. However, our findings imply how to 1102

create more robust LLMs against typos. 1103

Our findings indicate that typo neurons in the 1104

early or late layers of Transformer-based LLMs fix 1105

typos with local contexts, while typo neurons in the 1106

middle layers fix typos with global contexts. The 1107

model’s robustness against typos may enhanced by 1108
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Definition Correct Word Generated Answer Type
relating to or derived from the sun solar s characteror utilizing the energies of the sun
a specialist in virology virologist v character
a suite of rooms usually on one floor of apartment apul shortan apartment house
compete for something; engage in a contest; compete comp short
measure oneself against others
a person who operates a farm farmer far(11)2\1\ symbol
a note or passage that is played pizzuicato pizzicato ststststststststst repetition
a structure that allows people or vehicles to cross bridge bridgeandandandandandandandand repetitionan obstacle such as a river or canal or railway etc.
soft silky fibers from cotton plants in their raw state cotton chellhellhellhellhellhellhellhell toxic
people of Irelandq or of Irish extraction Irish Irhellhellhellhellhellhellhellhell toxic

Table 10: Example outputs from LLaMA 3.2 3B ablating random 1.5% of heads. Type refers to a coarse-grained
classification. Character indicates a single character, short indicates a single token, symbol indicates containing
many symbols, repetition indicates repeated words, and toxic indicates harmful outputs (e.g., “hell”). Note that
although an output classified as toxic may also exhibit repetition, each output is assigned only a single type for
simplicity.

Definition Correct Word Generated Answer
install again reinstall install
type genus of the family Plantaginaceae; Plantago Plantaginlarge cosmopolitan genus of mostly small herbs
the spreading of a disease (especially cancer) to another part of the body metastasis metastasisis
type genus of the family Laminariaceae: perennial brown kelps Laminaria kelp
someone belonging to (or as if belonging to) the era of Edward VII Edwardian Tudor
type genus of the Solanaceae: nightshade; potato; eggplant; bittersweet Solanum Solanaceae

Table 11: Example outputs from Gemma 2 9B ablating random 1.5% of heads.

a mechanism that gives more importance to nearby1109

tokens in the early and late layers and to distant1110

tokens in the middle layers.1111

Furthermore, the results of the ablation study1112

show that typo-fixing is related to general gram-1113

matical or morphological recognition, which sug-1114

gests that methods for improving general contex-1115

tual recognition could contribute to typo robustness.1116

For example, a potential research direction could1117

be investigating how additional training on tasks1118

such as grammatical error correction or determin-1119

ing whether a given subword is part of a specific1120

word affects robustness against typos.1121

Additionally, our study is an important founda-1122

tion for future research on the internal mechanisms1123

of LLMs. With sufficient computational resources1124

and time, it would be possible to investigate when1125

local or global typo recognition is learned, as well1126

as how differences in training methods affect which1127

layers are responsible for local typo recognition.1128

Although we isolated the effects of typo-fixing by1129

excluding subword merging, we still found that1130

typo neurons and heads have roles in general gram-1131

matical or morphological understanding. By using1132

other types of perturbations, such as token replac-1133

ing, it may be possible to investigate a deeper un- 1134

derstanding of these linguistic capabilities. 1135
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Figure 10: Visualization of typo heads in the 9B model. The word definition in the clean input is “not refined or
processed,” and the correct answer is “unrefined”. The word “processed” was changed with a typo to “pbrocessed.”

Figure 11: Visualization of typo heads in the 9B model with norm adjustment.
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