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Evaluating graph fairness in transductive learning
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Abstract

Recent work on neuroimaging has demonstrated significant benefits of using population
graphs to capture non-imaging information in the prediction of neurodegenerative and
neurodevelopmental disorders. These non-imaging attributes may not only contain demo-
graphic information about the individuals, e.g. age or sex, but also the acquisition site, as
imaging protocols might significantly differ across sites in large-scale studies. In addition,
recent studies have highlighted the need to investigate potential biases in the classifiers
devised using large-scale datasets, which might be imbalanced in terms of one or more
sensitive attributes. This can be exacerbated when employing these attributes in a popula-
tion graph to explicitly introduce inductive biases to the machine learning model and lead
to disparate predictive performance across sub-populations. In this work, we explore the
impact of stratification strategies and graph structures on the fairness of a semi-supervised
classifier that relies on a population graph for the prediction of autism-spectrum disorder.
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1. Introduction

Issues related to fairness in healthcare decision-making have been the focus of intense schol-
arly debate (Seyyed-Kalantari et al., 2020; Wiens et al., 2019). Even though computer-aided
diagnosis systems have integrated significant advances to assist clinicians in various tasks,
these systems have rarely been scrutinised enough for their potential for discrimination
against certain population subgroups. Disparate treatment concerns can arise solely due
to the composition of the training data (Larrazabal et al., 2020), meaning that certain
population subgroups might be underrepresented or completely missing during training of
a machine learning system. In healthcare applications, the disease prevalence may vary
across population subgroups (Werling and Geschwind, 2013), e.g. autism spectrum disor-
ders (ASD) are more prevalent in males compared to females. Simultaneously, the clinical
presentation of a disease might be completely different across subgroups. In ASD, in par-
ticular, differences have been established between neurodiverse males and females in terms
of the interactions between key functional brain networks (Alaerts et al., 2016).
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Despite progress in other domains, fairness issues are still under-explored for approaches
that operate in irregular domains in a transductive setting. These have been shown to lead to
significant performance improvements in neuroimaging tasks, like ASD and Alzheimer’s dis-
ease prediction (Parisot et al., 2018), by employing semi-supervised learning on population
graphs that leverage demographic or other auxiliary information. Such studies only report
overall performance metrics, i.e. prediction accuracy and area under the receiver-operating
characteristic (AUC-ROC) curve. Therefore, there is a limited understanding of whether
these methods and training strategies inadvertently improve predictive performance in one
subgroup of the population at the expense of another.

2. Methods and Results

Several fairness metrics have been proposed in the recent literature, but given the growing
recognition that not all conditions can be simultaneously satisfied, we focus on the TPR
gap (or equality of odds) as, arguably, the most relevant to the application scenario. We
use the ABIDE database described in (Di Martino et al., 2014) – a consortium of several in-
ternational acquisition sites comprising functional neuroimaging and phenotypic data from
871 participants, 403 neurodiverse and 468 neurotypical. The number of individuals par-
ticipating in each acquisition site varies significantly. This database presents a particularly
challenging setting in which we can explore the propensity of GNN models to be biased
against underrepresented populations.

As defined in (Parisot et al., 2018), the phenotypic population graph is constructed
by weighting the connectome similarity matrix with a phenotypic graph that captures the
agreement of pairs of participants in terms of phenotypic features. We further adopt the
graph convolutional model used in this work to predict ASD diagnosis with transductive
learning. We consider four different graph structures to understand the impact of the
population graph on the fairness of the target predictions: (1) a weighted graph based on
the subjects’ sex alone, (2) the acquisition site alone, (3) both sex and acquisition site, and
(4) a complete graph that does not leverage phenotypic information.

In prior work, k-fold stratified cross-validation was used to evaluate the performance of
the proposed method. However, stratification based on diagnosis can lead to a significantly
imbalanced training set with respect to the sensitive attribute of interest, given that for cer-
tain sites no female participants were recruited. As previous studies have shown (Larrazabal
et al., 2020; Puyol-Antón et al., 2021), the composition of the training data can significantly
impact the bias of the devised classifier. Hence, the training data bias with respect to the
sensitive attribute can be further accentuated by a stratification based solely on diagnosis,
due to the demographic shift between acquisition sites. To test for the robustness of our
GNN model to distribution shifts, we consider four different stratification strategies: (1)
based on the target variable – diagnosis, (2) based on diagnosis and the sensitive attribute
(i.e., sex), (3) based on diagnosis and the acquisition site, and (4) based on the sensi-
tive attribute and the acquisition site. Figure 1 shows that stratification strategies did not
significantly impact TPR differences, but graph structures did.
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Figure 1: Absolute difference in true positive rates between males and females in the test
set across graph structures and stratification strategies for a fixed held-out set.
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