
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW MANY CODE AND TEST CASES ARE ENOUGH?
EVALUATING TEST CASES GENERATION FROM A
BINARY-MATRIX PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Code evaluation and reinforcement learning rely critically on test cases. How-
ever, collecting golden test cases is hard and expensive, motivating the use of
LLMs for automatic test case generation. This, in turn, raises a pivotal chal-
lenge: how can we rigorously evaluate the quality of the generated test cases?
Existing benchmarks often evaluate the exclusion ratio on large, unstructured col-
lections of wrong codes, leading to high computational costs and severe score
inflation. Furthermore, they inadvertently reward generators that detect common,
trivial bugs, while failing to penalize their inability to identify rare yet critical
faults. In this work, we connect two fundamental questions: (1) What is the min-
imal set of wrong codes sufficient to represent the entire error space? and (2)
What is the minimal set of test cases needed to distinguish them? We introduce
a novel framework that formalizes benchmark construction as finding an optimal
diagnostic basis in a binary code-test matrix, where rows represent wrong codes
and columns represent test case results. The rank of this matrix plays a dual role.
It specifies the minimal number of independent error patterns, which determines
the size of wrong codes. It also provides a tight upper bound on the number of
test cases required for complete fault coverage. Our objective is to identify a basis
of size equal to the matrix rank that maximizes internal diversity, which is de-
fined as the average pairwise Jaccard similarity of the codes’ failure signatures
(i.e., the matrix rows). To tackle this NP-hard problem, we propose WrongSelect,
an efficient approximation algorithm combining pre-filtering and random-restart
local search to select maximally diverse wrong codes. Applying this framework
to millions of competitive programming submissions, we construct TC-Bench, a
compact, diverse, and inflation-resistant benchmark. Extensive experiments show
that even the most advanced test case generation methods achieve only 60% ex-
clusion rates on TC-Bench, exposing a significant gap in their diagnostic power
and highlighting substantial room for future improvement.

1 INTRODUCTION

The capability of Large Language Models (LLMs) in solving algorithmic coding problems is a key
measurement of their intelligence (OpenAI et al., 2024; 2025; Jain et al., 2024). The evaluation of
code solutions relies heavily on test cases. Golden Test cases (GTs), created by problem authors and
continually refined and expanded by experts, are considered a boundary-condition set equivalent to
the correct solution. A solution is deemed correct only if it passes GTs. Current Code Reinforcement
Learning with Verifiable Rewards (RLVR) methods similarly rely on test cases to compute rewards,
placing substantial demands on the comprehensiveness of test cases (Le et al., 2022; Guo et al.,
2025; Team et al., 2025; Zeng et al., 2025a). As shown in Figure 1 (a), the GT of a graph theory
problem should encompass various graph sizes and structures, such as chain, tree, and star. Failure
to cover all scenarios will compromise the reliability and lead to the false positive problem.

GTs consist of a few simple public test cases intended to clarify the problem and a larger set of
private test cases used to assess correctness. However, these critical private test cases are scarce
and expensive to create. To address this challenge, existing methods either manually construct test
cases (Khan et al., 2023) or automatically augment test cases (ATs) using LLMs (Cao et al., 2025;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

T1 T2

Td

Overload

T3

95 92

Augment Test case

WC1~n

WC1~4

Rank=2

WC1

WC2

T1 T2 T1 T2

60
30

0 0 1
0 1 0
0 1 0
0 1 1

AC = 0
WA= 1

O(|2 ✖ 2|)

Efficient

Valid Score

T1 T2

TdT3

(a) Raw Data

Inflated
Score

WrongSelect

(b) ALL Wrong Codes (c) Ours

WC1

WC2

WC3

WCn

WA

Tree Star

AC

WA

WA

AC

WA

Golden Test case

AC

AC

WA

AC WA AC

WC4 AC WA WA

Easy

Wrong Code Result

…

Method 1 Method 2

Evaluation

Transformation

O(|n ✖ d|)

Basis

Diverse

Figure 1: A comparison of two evaluation frameworks for Augment Test cases (ATs). Both frame-
works start from the same raw data (a), which consists of many wrong codes (WCs) and their exe-
cution results on Golden Test cases (GTs). (b) The naive evaluation utilizes the full set of WCs and
an unprincipled number of ATs, suffers from prohibitive computational costs, and leads to inflated
scores. (c) In contrast, our proposed framework first processes this data with WrongSelect to select
a compact yet representative diagnostic basis (TC-Bench). Evaluation using this basis is not only
highly efficient but also yields more valid scores.

Ma et al., 2025b; Yang et al., 2025; Wang et al., 2025c). The emergent methods introduce the need
to evaluate their quality. The evaluation includes ensuring that their ATs are valid (passing correct
codes) and useful (excluding wrong codes (WCs)). Since many methods are seeded with correct
codes, their ATs are naturally valid. Thus, the core challenge shifts to assessing their usefulness.
The straightforward approach is to collect as many wrong codes as possible and evaluate all ATs
to determine how many WCs they can exclude. However, this incurs immense computational costs
and suffers from inflated scores as shown in Figure 1 (b). This cost, a product of the number of
ATs and WCs, can be prohibitively high. Furthermore, one WC doesn’t equal one kind of error.
Indeed, the population of WCs is dominated by numerous trivial or repetitive errors, with only a
few representing core, hard-to-detect faults (Figure 1 (a)). A mediocre method that only identifies
common errors can thus achieve a score similar to a superior method that finds rare corner cases, as
the small number of critical faults gets statistically overwhelmed. Consequently, this diminishes the
benchmark’s discriminative power. Conversely, some heuristic methods selecting a small subset of
hard-to-filter errors yield overly sparse evaluations (Cao et al., 2025), unable to continuously reflect
model capabilities.

These limitations raise fundamental questions: What constitutes an efficient and informative collec-
tion of WCs for evaluating ATs? What principles should govern its size and member selection? The
dual relationship between test cases and code also leads to another critical question: How many test
cases are necessary to comprehensively define the solution space for a given problem?

We propose that an ideal WCs set should neither be heuristically nor randomly selected, but should
be a compact and diverse set of WCs that acts as a diagnostic basis, effectively spanning all
unique error patterns of the problem. We propose to interpret the execution outcomes of WCs
across GTs as a mapping from abstract reasoning errors to observable behavioral patterns. In this
binary representation, the accepted (AC) is denoted as 0 and wrong answer (WA) as 1. Each WC is
thus represented as a binary vector, and the entire collection forms a Code-Test binary matrix. The
matrix rank quantifies the maximum number of distinct error patterns present among WCs. More-
over, it provides an upper bound on the minimal number of test cases required to distinguish these
error patterns. However, a matrix can produce multiple possible bases. An optimal diagnostic basis
should consist of WCs representing minimally overlapping error patterns to maximize diagnostic
breadth and information efficiency. Bases containing many similar WCs with highly overlapping

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

error patterns suffer from redundancy, thus reducing discriminative power. As finding the most di-
verse basis is NP-hard, we design WrongSelect, a greedy-based efficient approximation algorithm
that iteratively selects WCs that maximize diversity at each step, yielding the final basis.

To construct our high-quality benchmark, we collect numerous problems with their GTs and user
submissions from prestigious algorithm competitions like USACO, NOI, and ICPC. We rigorously
filter submissions, retaining only those with complete execution results on GTs. Next, we trans-
form the codes for each problem into a binary matrix and calculate its rank to characterize the error
pattern complexity. Then, we employ WrongSelect to efficiently select a maximally diverse set of
WCs, constructing a structured diagnostic basis (Figure 1 (c)). Last, we meticulously review, stan-
dardize, and translate all problem descriptions into English to ensure consistency and quality. The
resulting benchmark, named TC-Bench, contains 877 problems with a total of 9347 WCs. The final
set of WCs constitutes less than 2% of the original submissions. This reduction, combined with the
principled number of the necessary test cases, can lead to a near-quadratic decrease in evaluation
cost, dramatically improving efficiency. To validate TC-Bench, we reproduce and evaluate 5 com-
mon test-case generation methods (Jain et al., 2024; Zeng et al., 2025b; Zhang et al., 2023; He et al.,
2025; Gu et al., 2024) on 13 leading LLMs (DeepSeek-AI et al., 2024; Int; Hui et al., 2024). Experi-
mental results show that even the state-of-the-art method Claude4-Thinking with LCB achieve only
approximately 60% performance. By eliminating redundant error patterns and surfacing critical cor-
ner cases, TC-Bench ensures that a method’s ability to handle these challenges is directly reflected
in its score. This directly prevents the score inflation that plagues less-curated benchmarks.

Our contributions can be summarized as follows:

• We propose a novel framework based on matrix rank that, for the first time, unifies two
fundamental questions: the minimal number of wrong codes needed for evaluation and the
minimal number of test cases needed for coverage. This framework provides a principled
method for constructing a structured diagnostic basis.

• We construct and release TC-Bench, a compact and diverse benchmark built on our the-
ory. By design, TC-Bench has a high signal-to-noise ratio, enabling efficient, reliable, and
inflation-resistant evaluation of test case generation methods.

• Through extensive empirical experiments, we uncover significant deficiencies in current
mainstream test-case generation methods and LLMs when dealing with complex error pat-
terns, providing clear guidance for future research.

2 METHODOLOGY

This section details our principled approach to constructing TC-Bench. We first formalize the prob-
lem as finding a maximally diverse basis within a binary Code-Test matrix (Section 2.1). Recogniz-
ing this problem as NP-hard, we then propose WrongSelect, a greedy approximation algorithm for
this task (Section 2.2). Finally, we detail the data processing pipeline used to apply this framework
in practice to build TC-Bench (Section 2.3).

2.1 PROBLEM FORMULATION

Identifying diverse underlying errors in a vast collection of WCs would require immense manual
effort from algorithm experts, which is clearly infeasible. Therefore, the key challenge is to finding
a formal transformation that can equivalently represent the diversity of underlying errors.

Our inspiration comes from how codes are evaluated. A code is considered correct if and only if it
passes GTs, which are assumed to cover all problem requirements and boundary conditions, thereby
defining the solution space. For any code, we can get its result on GTs. For example, the result
[“AC”, “WA”, “WA”] represents a code that passes the first case but fails the other two. Such a result
sequence can be regarded as a behavioral mapping or a failure signature, translating the abstract
erroneous reasoning of a code into a concrete pattern within the solution space. Collecting all such
signatures across codes allows us to construct an empirical space of failure modes for a problem.

However, this raw space is highly redundant: it contains identical signatures, and some patterns may
simply be combinations of other ones. To extract a compact and informative benchmark from this
landscape, a structured analytical tool is required.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Binary Matrix Representation We formalize this space of failures as a binary matrix M of size
n× d, where n is the number of WCs and d is the number of GTs. Each entry Mij is defined as:

Mij =

{
1 if the i-th WC fails on the j-th test case,
0 if the i-th WC passes the j-th test case.

Each row vector ri of M thus represents the failure signature of the i-th WC. For instance, signature
[“AC”, “WA”, “WA”] becomes the binary vector [0, 1, 1].

Optimization Objective With this binary Code-Test matrix in place, our task reduces to a selec-
tion problem: how to choose from the m failure signatures a representative and compact subset I
to serve as our benchmark. An ideal subset I must satisfy the following two requirements. Com-
pleteness and Irredundancy. The selected set I should capture the full complexity of M without
redundancy. In linear algebra, this corresponds precisely to a basis. Concretely, I must be a row
basis, i.e., the row vectors in I are linearly independent and their number |I| equals the rank of M .
This constraint guarantees that the number of selected WCs is neither too many nor too few, but
exactly sufficient to span all distinct error modes. Notably, since the row rank equals the column
rank, this same value |I| also provides another important insight: it constitutes a theoretical upper
bound on the minimum number of test cases required to distinguish all independent error modes.
Diversity. Multiple bases may satisfy the rank condition. Ideally, a perfect basis would consist
of mutually orthogonal failure signatures, meaning each error mode is completely independent and
contributes a unique dimension. However, in real-world error data, this kind of orthogonal basis
rarely exists. Our practical goal is therefore to find a basis that approximates orthogonality by max-
imizing the diversity among its members (i.e., minimizing their overlap). To measure the overlap
between two signatures, we adopt the Jaccard similarity, which quantifies the ratio of jointly failed
test cases to the total failed cases across both signatures. A lower Jaccard score indicates lower
similarity. Formally:

J(ri, rj) =
ri · rj

∥ri∥1 + ∥rj∥1 − ri · rj
where ri · rj counts the jointly failed test cases (intersection) and ∥r∥1 is the total number of failed
tests for a signature (size of the set).

Beyond pairwise similarity, we must assess the diversity of the entire basis I. We therefore define
our global objective as minimizing the average pairwise Jaccard similarity among all members of I:

min
I

F (I) = 1(|I|
2

) ∑
ri,rj∈I,i<j

J(ri, rj)

In summary, our problem is formalized as follows: given a binary matrix M , find a row basis I
that minimizes the average pairwise Jaccard similarity F (I). This is a combinatorial optimization
problem known to be NP-hard. In the next section, we present a greedy algorithm, WrongSelect,
designed to efficiently approximate this solution.

2.2 WRONGSELECT

2.2.1 PRINCIPLED PRE-FILTERING

The quality of the final basis critically depends on the quality of the candidate pool. In practice, raw
data often contains noise, such as problems lacking sufficient WCs or WCs failing on all test cases.
To address this, pre-filtering is designed to systematically remove these noise at both the problem
level and the code level.

Problem-Level Filtering via Column Analysis In practice, we observe that some M contain
columns filled entirely with “1” as shown in Figure 2. This indicates that all WCs fail in one
case. The analysis on a subset shows that this phenomenon arises from three main causes: (1)
GT exhibits incremental difficulty (e.g., gradually stricter constraints on time or space complexity);
(2) the number of WCs for the problem is insufficient; or (3) the problem or GT is overly simple,
involving only a single extreme scenario. Although the first case is reasonable, it is relatively rare,
and manually distinguishing it is prohibitively costly. More importantly, all-ones columns open the
door to hack scores. Therefore, to ensure the diagnostic value of each problem, we exclude all
problems containing all-ones columns from our dataset. This excludes about 5% of raw problems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Web crawler

Correct CodeProblem Description

Time Top 20%

Clean & Format
Inappropriate
Question Translation

0 0 1
0 1 0
0 1 1
1 1 1

0 0 1
0 1 0
0 1 1

Row

1 1 0
0 1 0
0 1 1

0 0 1
0 1 0

0 0 1
0 1 1
0 1 0

0 0 1

0 1 0
0 1 1

Easy to Hack

Step2: RANDOM-RESTART LOCAL SEARCHStep1: PRE-FILTERING

Column

Meaningless Noise

Figure 2: An overview of the TC-Bench construction pipeline. It begins with raw data collection,
followed by a two-step WrongSelect working on the transformed binary matrix M . Step 1 pre-filters
the problems with an all- “1” column and removes codes whose rows have too many “1”s. Step 2
samples numerous initial bases Icurrent from the filtered M ′ and iteratively minimizes the diversity
score by swapping internal and external rows. The best local optimum is chosen to approximate the
global optimum. Concurrently, problem descriptions are standardized and correct codes are sampled
from the top 20% performers, ensuring the overall quality of TC-Bench.

Code-Level Filtering via Row Analysis Another observation is that some WCs fail on an exces-
sively high proportion of GTs. Such WCs typically pass only the public test cases while failing
almost all private ones. They act as strong background noise: any mediocre test set can easily elim-
inate them, leading to inflated evaluation scores and severely diminishing the discriminative power
of the benchmark. To mitigate this, we compute the failure rate of each row, which is defined as
the proportion of 1’s relative to d. Accordingly, we set the filtering threshold τ = 80%. A WC
exceeding τ is highly likely to fail all private test cases. Such WCs generally correspond to triv-
ial or common error patterns, and removing them helps benchmark to diagnose more nuanced and
complex failure modes. This removes 13% of raw WCs and M turns into M ′.

As the final quality control step, we exclude all M ′ with rank less than 5 (R′ < 5). A low rank
indicates insufficient diversity in error patterns and is not suitable to be used in a benchmark. Only
matrices M ′ that pass all these filtering stages are considered qualified candidates and proceed to
the subsequent basis selection process.

2.2.2 RANDOM-RESTART LOCAL SEARCH

On the filtered matrix M ′, our objective is to select a basis I that achieves the lowest possible F (I).
We adopt a local search optimization strategy to approximate the optimal basis.

Starting from a complete but randomly chosen initial basis, the algorithm iteratively improves the
basis by performing local modifications. Specifically, it explores the neighborhood of the current
basis, defined as all new bases that can be obtained by a single swap operation (exchanging one
member inside the basis with one outside). If there exists a neighbor that achieves better diversity
(lower F (I)), the basis is replaced by the best neighbor, and the process repeats. This iterative
improvement continues until no better neighbor exists, i.e., the current basis converges to a local
optimum. To mitigate the risk of being trapped in poor local optima due to initialization, we employ
a random-restart mechanism. The local search process is repeated multiple times from different
random starting points, and finally, the best solution among all local optima is selected as the output.

Take “Step2” in Figure 2 as an Example. M ′ has a rank of R′ = 2. Assume the initial random
basis is Icurrent = [[0, 0, 1], [0, 1, 1]]], with a diversity score of F (Icurrent) = 0.5. The only external
candidate is the vector M ′ − Icurrent = [0, 1, 0]. The algorithm then explores the neighborhood
of Icurrent. It first considers swapping the internal vector rout = [0, 0, 1] with the external vector
rin = [0, 1, 0]. The resulting set, [[0, 1, 0], [0, 1, 1]], is a valid basis, but its score F = 0.5 provides
no improvement. Next, consider swapping rout = [0, 1, 1] with rin = [0, 1, 0]. This produces a better

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

basis Itemp = [[0, 0, 1], [0, 1, 0]]. Its diversity score is F (Itemp) = 0. After evaluating all neighbors,
since a better neighbor is found, the algorithm updates its state: Icurrent ← [[0, 0, 1], [0, 1, 0]]. A new
search iteration begins from this basis. As this basis is now perfectly diverse (F = 0), no further
swaps can improve the score, so the algorithm has converged to a local optimum. This result is
saved, and the random-restart mechanism initiates a new search from another random starting point.
Algorithm 1 in Appendix A.2 illustrates the pseudo code with a detailed explanation.

Although the nested structure suggests high theoretical complexity, in practice the algorithm con-
verges rapidly in both the inner and outer loops. Moreover, several parts of the procedure can be
parallelized easily, making the overall runtime highly efficient.

2.3 BENCHMARK CONSTRUCTION

Evaluating test cases requires not only wrong code, but also first generating them from problem
descriptions and validating them against correct code. This section details the full pipeline of data
collection, filtering, and cleaning used to construct our benchmark.

Raw Data The raw data comes from top-tier programming contests and high-quality training sets,
including USACO, IOI, and ICPC. In total, it initially contains 3,321 problems and 2,230,009 sub-
missions. We retain only problems for which the full execution results of WCs on GTs are available.
After this step, we obtain 1,763 problems, containing 15,457 correct codes and 554,056 WCs.

Problem Description To ensure fair and consistent problem comprehensions, we apply rigorous
standardization to problem descriptions. We first remove problems that heavily rely on images,
cannot be automatically evaluated (e.g., interactive problems, multi-solution tasks), or require highly
constrained runtime environments. We then clean the statements by removing source tags, URLs,
and HTML, as well as rewriting non-standard mathematical formulas. Finally, we employ GPT-4o
to translate non-English problems and manually proofread to ensure semantic consistency.

Wrong Code To ensure consistency of the evaluation environment and avoid noise introduced by
environment-specific factors, we retain only C++ submissions labeled as WA, including 1,698 prob-
lems and 282,458 WCs. Next, our principled pre-filtering leaves 1,133 problems with 33,846 WCs.
For each problem, we perform random-restart local search with both outer and inner loops set to
1000 iterations. Figure 9 shows that loops converge rapidly, demonstrating the efficiency of our
method. Ultimately, 13,400 wrong codes constitute the maximally diverse basis for all problems.
Figure 10 illustrates the distribution of WCs per problem before and after WrongSelect.

Correct Code Since correct codes are consistent with GT, their primary differences lie in runtime
and memory consumption. In Section 4, we show that overly loose or overly strict sets of cor-
rect codes can bias evaluation results. Therefore, for each problem, we randomly select 8 correct
submissions from the top 20% after min–max normalization of runtime.

Through this principled pipeline, we ultimately construct TC-Bench, a high-quality diagnostic
benchmark with 877 standardized problems, 9347 core WCs, and 7016 correct submissions. More
details regarding the construction process are available in Appendix B.1. Furthermore, we present a
case study in Appendix C to empirically validate the practical effectiveness of WrongSelect.

3 EXPERIMENT

After constructing TC-Bench, this section presents the experimental design and evaluation results of
different test case generation methods.

3.1 EVALUATION SETUP

3.1.1 MODELS & METHODS

Models We evaluate SOTA LLMs via API, including GPT-4o, Claude-Sonnet-4, Claude-Sonnet-
4-Thinking, DeepSeek-V3, Qwen-Coder-Plus, and Qwen3-235B-A22B. We also evaluate Qwen-2.5
and Qwen-2.5-Coder families of varying sizes (7B, 14B, 32B). Due to space constraints, the results
for the 7B and 14B LLMs are presented in Appendix A.3. We note that DeepSeek-R1 struggles

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to reliably generate test cases. Therefore, its results are excluded from the main experiments but
discussed in Appendix A.5. In total, we evaluate 13 LLMs.

CRUX

input
1,1,2…

PSEUDO

ALGO Oracle
int main()

output
Yes

input

output

solutions
int main()

X 10

Input Generator
def generator():

output

LCB

HT

Random Input Generator
Edge-case Generator

input

input

input

Random Input Generator
Edge-case Generator

Degrade

input validator

Execute Generated by Model

Truedef isValid():
 return bool

Figure 3: CRUX, PRESUDO, and ALGO construct the out-
put, while LCB and HT depend on the correct code to gen-
erate the output.

Methods Based on whether correct
code is available during generation,
methods can be categorized into two
classes. The first class does not rely
on correct code. CRUX (Gu et al.,
2024) directly generates inputs and
outputs. PSEUDO (Jiao et al., 2024)
generates both inputs and candidate
solutions, then obtains outputs by ex-
ecuting the solutions and taking the
majority-voted output as the result.
Going further, ALGO (Zhang et al.,
2023) prompts the LLM to produce
input generators (execute to obtain
inputs) and a brute-force oracle solu-
tion (lower the difficulty).

When the correct code is available,
output correctness can be guaranteed
by executing the inputs on it. Live-
CodeBench (LCB) (Jain et al., 2024)
requires LLM to generate both multi-
ple random and edge-case input gen-
erators. It should be noted that we
select one representative implemen-
tation for each category, and the other variants are in Appendix A.1.

3.1.2 PIPELINE & METRICS

Test Case Generation For each problem in TC-Bench, ATs are first generated by the evaluated
methods. For methods that do not rely on correct code, only cases accepted by all correct code are
considered valid. We define PassRate as the proportion of valid cases among all generated cases.
Formally, for a set of problems Q: PassRate = 1

|Q|
∑

qi∈Q

(
1

|Tqi
|
∑

tj∈Tqi
IsValid(tj)

)
, where

Tqi is ATs for problem qi, and IsValid(tj) is 1 if test tj is valid, and 0 otherwise.

Wrong Code Execution To measure the effectiveness of the valid ATs, we define HackRate. A
WC from TC-Bench is considered excluded if it fails on at least one valid AT. All failure types
(e.g., WA, Time Limit Exceeded (TLE), RE (Runtime Error)) are counted as successful exclu-
sion. The HackRate represents the proportion of WCs that are successfully excluded. Formally:
HackRate = 1

|Q|
∑

qi∈Q

(
1

|Wqi
|
∑

w∈Wqi
IsExcluded(w)

)
, where Wqi is WCs for problem qi,

and IsExcluded(w) is 1 if WC w is eliminated, and 0 otherwise.

3.2 RESULTS

Table 1 presents the results for various model and method combinations on TC-Bench.

TC-Bench Reveals a Significant Performance Ceiling for Current Technologies. Even the best-
performing combination, Claude-4 + HT, achieves less than 63%. This result strongly validates
that WrongSelect indeed selects a diverse and challenging error basis, revealing a performance gap
that would otherwise be masked in unfiltered benchmarks. This suggests that there is substantial
room for improvement in handling complex and diverse errors, and TC-Bench serves as a reliable
yardstick to measure this progress.

A High PassRate does not Equate to a High Hackrate. A high PassRate score can be hacked
by generating a large number of easy test cases. For instance, on Qwen2.5-32B and Deepseek-V3,
CRUX’s PassRate is significantly higher than ALGO’s, yet its Hackrate score is substantially lower.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison for all evaluated model-method combinations. PR denotes Pass-
Rate and HR denotes HackRate. AC represents the percentage of non-excluded wrong codes. WA,
RE, and TLE are all considered exclusions and contribute to HR. PSEUDO of Qwen3 is anoma-
lous due to the API frequently returning empty or low-quality responses.

LLM Method PR AC WA RE TLE HR
Open Source

Qwen2.5-32B

CRUX 26.71 84.57 13.51 0.89 1.03 15.43
PSEUDO 35.04 79.52 18.59 1.02 0.78 20.38
ALGO 20.48 78.04 20.29 1.33 0.33 21.96
LCB 57.62 48.39 48.46 2.07 1.08 51.61
HT 65.46 69.27 29.17 1.22 0.34 30.73

Qwen2.5-Coder-32B

CRUX 22.68 81.27 16.31 0.91 1.51 18.73
PSEUDO 37.72 79.23 18.72 0.98 1.07 20.77
ALGO 21.33 81.41 17.27 0.85 0.46 18.59
LCB 59.65 41.90 54.90 2.21 0.98 58.10
HT 66.53 56.24 40.98 1.98 0.80 43.76

Deepseek-V3

CRUX 37.90 83.01 15.54 0.85 0.60 16.99
PSEUDO 19.58 88.32 10.97 0.37 0.34 11.68
ALGO 28.22 70.78 27.53 1.24 0.44 29.22
LCB 46.58 41.17 55.68 2.06 1.08 58.83
HT 63.51 50.58 46.34 2.05 1.03 49.42

Qwen3-235B-A22B

CRUX 26.30 69.10 27.14 1.76 2.00 30.90
PSEUDO 9.85 97.54 2.15 0.19 0.12 2.46
ALGO 25.90 70.23 27.84 1.28 0.65 29.77
LCB 70.40 54.03 41.25 2.40 2.32 45.97
HT 55.35 69.20 28.50 1.61 0.69 30.80

Qwen-Coder-Plus

CRUX 29.26 67.65 28.79 1.71 1.85 32.35
PSEUDO 40.15 67.11 29.57 1.45 1.87 32.89
ALGO 30.43 67.04 31.15 1.31 0.50 32.96
LCB 77.73 38.54 57.98 2.28 1.21 61.46
HT 67.28 46.93 50.06 2.09 0.92 53.07

Closed Source

GPT-4o

CRUX 42.43 70.77 26.25 1.46 1.52 29.23
PSEUDO 50.90 73.33 24.01 1.03 1.63 26.67
ALGO 24.43 75.51 22.87 0.97 0.65 24.49
LCB 68.51 42.45 52.68 2.66 2.21 57.55
HT 47.68 49.45 47.48 2.16 0.92 50.55

Claude4

CRUX 32.93 76.31 21.11 1.14 1.44 23.69
PSEUDO 64.72 63.97 32.35 1.23 2.45 36.03
ALGO 32.12 69.17 29.01 1.20 0.62 30.83
LCB 55.49 37.92 58.29 2.63 1.15 62.08
HT 71.56 37.04 58.58 2.86 1.53 62.96

Claude4-Thinking

CRUX 30.47 66.26 31.14 1.44 1.16 33.74
PSEUDO 23.56 85.98 12.84 0.51 0.67 14.02
ALGO 32.41 64.54 33.68 1.22 0.56 35.46
LCB 75.79 37.65 59.65 1.93 0.78 62.35
HT 71.24 39.69 57.26 2.08 0.97 60.31

The Impact of Methodology Far Outweighs That of the Base Model. The results consistently
show that the choice of method has a much greater impact on final performance than the scale or even
the source (open-source vs. closed-source) of the base model. For instance, while Qwen2.5-Coder-
32B has fewer parameters than the activated parameters of Deepseek-V3, their HackRate scores
with the LCB method differ by only 1%. In contrast, on Qwen2.5-Coder-32B, LCB’s HackRate is
nearly 40% higher than CRUX. Furthermore, we observe that top-performing open-source models
(e.g., Qwen-Coder-Plus) are competitive with leading closed-source models (e.g., the Claude4 se-
ries) across various methods. We hypothesize that this is because test case generation is a specialized
task that is underrepresented in existing large-scale code pre-training corpora, thus limiting the per-
formance gains through model scaling or a different training corpus. Further experimental analyses,
study on Test-Time Scaling, and a summary of common error patterns, are detailed in Appendix A.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Filter Top 20%

20

40

60

80

100

LCB HackRate

(c) Normalized Time Distribution (d) Top 20% Stability Test

CRUX HackRate

CRUX PassRate

LCB PassRate

0

20

40

60

80

100

CRUX PRESUDO ALGO LCB HT

TCG

Testcase-Eval TC-Bench(Ours)

ALL_WC

(a) Evaluation Performance (b) Rank Distribution

25

20

15

10

5

0

Pe
rc

en
ta

ge
(%

)

0 5 10 15 20 25 30
Rank

TCG
Testcase-Eval
TC-Bench(Ours)

Figure 4: (a) Rank distribution of filtered WCs across methods. (b) Comparison of evaluation
results against TC-BENCH (Ours). (c) Normalized execution times of correct solutions, primarily
distributed below 0.2. (d) Sensitivity analysis showing stable PassRate and HackRate when filtering
with random subsets of 8 correct solutions.

4 DISCUSSION

Unfiltered and Heuristic Code Sets Lead to Biased Evaluation. To validate the impact of code
selection strategies, we conduct a rigorous comparison on a subset of 100 problems on Claude-4-
Thinking. We compare TC-Bench against three baselines: TCGBench Ma et al. (2025b) (denoted as
All WC), which uses the full set of wrong codes; TestCase-Eval Cao et al. (2025), which randomly
samples 20 codes; and TCG Yang et al. (2025), which selects 5 wrong codes from those passing at
least 60% of test cases. Unfiltered sets lead to score inflation. As shown in Figure 4 (a), the full
set leads to severe score inflation. For instance, LCB exhibits near-perfect performance (≈100%) on
All WC, whereas its score on TC-Bench drops to just over 50%. This inflation masks the method’s
incompetence on core, difficult error patterns. Crucially, TestCase-Eval exhibits scores and trends
highly similar to All WC across all methods. This indicates that naive random sampling, while
potentially reducing dataset size, fails to exclude redundant error patterns and thus cannot resolve
the issue of score inflation. Heuristic Selection results in under-representation. Conversely,
TCG yields significantly lower scores. While this might seem rigorous, our rank analysis reveals it
stems from insufficient coverage. In Figure 4 (b), the rank of the error space varies significantly per
problem. While most are below 20, some approach 30. TCG’s rigid limit of 5 codes forces a drastic
under-representation for high-complexity problems. While this lowers the performance scores of
current methods, it makes future methods prone to score inflation: they would only need to cover
a maximum subset of five patterns rather than the complete error space to achieve perfect scores.
In summary, TC-Bench strikes the optimal balance. By selecting a basis defined by the problem’s
intrinsic rank, it avoids both the inflation of coverage-based methods and the under-representation
of heuristic constraint methods, serving as a stable and fair test suite.

Rank serves as the Upper Bound for the Necessary Number of Test Cases. The row rank,
which represents the number of independent error patterns, equals the column rank, which represents
the number of independent diagnostic dimensions. In an error space defined by rank R, there are
only R linearly independent diagnostic dimensions. Any additional test case is merely a linear
combination of these basis dimensions and does not provide new information for distinguishing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

existing error patterns. Therefore, R test cases are sufficient to distinguish all error patterns, serving
as a compact upper bound. Consider a concrete example matrix with R = 3:

t1 t2 t3 t4
w1 1 0 1 0
w2 0 1 1 0
w3 0 1 1 0
w4 0 0 0 1

Here, columns t1 and t2 are linearly independent, but t3 is a linear combination (t3 = t1 + t2).
Any wrong code failing on t1 or t2 implies a predictable behavior on t3. Thus, t3 offers no new
diagnostic dimension. The set {t1, t2, t4} is sufficient to distinguish all unique error patterns. This
framework addresses a critical flaw in previous evaluations where the number of test cases was arbi-
trary. Consequently, problems with small diagnostic dimensions were often “over-tested,” inflating
scores, while complex problems were “under-tested.” Using Rank as the budget ensures fairness:
it allows simple problems to reveal performance gaps while ensuring complex problems are tested
with sufficient depth.

Correct Code Selection Influence Results. Unlike WCs, which have failure signatures, correct
codes all behave identically on GT, differing only in runtime and memory usage. This makes their se-
lection more subtle. Using only a single correct solution as a validator is insufficient. Certain invalid
input may still have an output under a specific code. Our initial exploration shows that as the number
of correct codes increases (as shown in Figure 8, more ATs are filtered, leading to higher HackRates.
However, not all filtering is beneficial. Many complex but valid ATs are wrongly discarded due to
timeouts by slow correct codes. Worse, such low-performance correct codes show inconsistency
across environments (different OJ platforms). Performance profiling reveals a highly skewed distri-
bution: most correct codes cluster in the top 20% after applying min–max normalization to runtimes
(Figure 4 (c)). These high-performance codes are stable across platforms. Consequently, we adopt
a biased random sampling strategy: for each problem, we retain only correct codes within the top
20% normalized runtime and randomly sample 8 from this set. Repeated experiments confirm that
this strategy yields highly stable evaluation outcomes (Figure 4 (d)).

AT Uncover Latent Bugs Beyond GT. An interesting phenomenon emerged during evaluation:
some wrong codes labeled as Wrong Answer under GTs produce Runtime Error or Time Limit Error
when executed on ATs. To verify whether this is due to server overload, we conduct a controlled
experiment. We sample 350 WCs that exhibited RE/TLE and combined them with about 2.6k ran-
dom WCs. Running these on a 128-core machine, we gradually reduce concurrency from 128 to
88 tasks. The RE/TLE frequency remains nearly constant regardless of system load. This strongly
suggests that advanced methods are indeed capable of producing stricter and more challenging ATs
than official GTs, revealing hidden bugs related to performance and robustness.

5 CONCLUSION

Existing evaluation practices suffer from inflated scores and unclear principles regarding how many
codes and test cases are necessary. We addressed this gap by formalizing benchmark construction as
a binary-matrix rank problem, which jointly determines the minimal code basis and the upper bound
on test cases. To approximate its NP-hard solution, we introduced WrongSelect and applied it to
large-scale competitive programming data, resulting in TC-Bench, a compact and diverse diagnos-
tic benchmark. Experiments show that TC-Bench reveals substantial gaps in current methods and
provides a faithful foundation for advancing research on test case generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICAL STATEMENT

The data for the proposed methods is drawn solely from publicly accessible project resources on
reputable websites, ensuring that no sensitive information is included. Moreover, all datasets and
baseline models used in our experiments are also available to the public. We have taken care to
acknowledge the original authors by properly citing their work.

REPRODUCIBILITY STATEMENT

All code referenced in our paper is available at https://anonymous.4open.science/r/TestcaseBenchmark-
715C/ and https://anonymous.4open.science/r/TestcaseBench-2A75/. The data processing workflow
is described in detail in Section 2 and Appendix B.1.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Introducing Claude 4. https://www.anthropic.com/news/claude-4.

Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh Sinha. TDD-Bench
Verified: Can LLMs Generate Tests for Issues Before They Get Resolved?, 2024. URL https:
//arxiv.org/abs/2412.02883.

Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu,
Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning, 2025. URL
https://arxiv.org/abs/2505.24480.

Yuhan Cao, Zian Chen, Kun Quan, Ziliang Zhang, Yu Wang, Xiaoning Dong, Yeqi Feng, Guanzhong
He, Jingcheng Huang, Jianhao Li, Yixuan Tan, Jiafu Tang, Yilin Tang, Junlei Wu, Qianyu Xiao,
Can Zheng, Shouchen Zhou, Yuxiang Zhu, Yiming Huang, Tian Xie, and Tianxing He. Can
LLMs Generate Reliable Test Case Generators? A Study on Competition-Level Programming
Problems, 2025. URL https://arxiv.org/abs/2506.06821.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=ktrw68Cmu9c.

Mouxiang Chen, Zhongxin Liu, He Tao, Yusu Hong, David Lo, Xin Xia, and Jianling Sun. B4:
Towards optimal assessment of plausible code solutions with plausible tests. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering, pp. 1693–
1705, 2024.

Yongchao Chen, Yueying Liu, Junwei Zhou, Yilun Hao, Jingquan Wang, Yang Zhang, and Chuchu
Fan. R1-code-interpreter: Training llms to reason with code via supervised and reinforcement
learning, 2025. URL https://arxiv.org/abs/2505.21668.

Jonathan Cook, Silvia Sapora, Arash Ahmadian, Akbir Khan, Tim Rocktaschel, Jakob Foerster, and
Laura Ruis. Programming by backprop: Llms acquire reusable algorithmic abstractions during
code training, 2025. URL https://arxiv.org/abs/2506.18777.

Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil Barhate, and Sean Hendryx. Agent-
rlvr: Training software engineering agents via guidance and environment rewards, 2025. URL
https://arxiv.org/abs/2506.11425.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,

12

https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2505.24480
https://arxiv.org/abs/2506.06821
https://openreview.net/pdf?id=ktrw68Cmu9c
https://arxiv.org/abs/2505.21668
https://arxiv.org/abs/2506.18777
https://arxiv.org/abs/2506.11425

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. DeepSeek-V3 Technical Report, 2024. URL
https://arxiv.org/abs/2412.19437.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning, 2025. URL https://arxiv.org/abs/2504.05185.

Jia Fu, Xinyu Yang, Hongzhi Zhang, Yahui Liu, Jingyuan Zhang, Qi Wang, Fuzheng Zhang, and
Guorui Zhou. Klear-codetest: Scalable test case generation for code reinforcement learning,
2025a. URL https://arxiv.org/abs/2508.05710.

Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, and Yu Cheng. Scaling reasoning, losing control:
Evaluating instruction following in large reasoning models, 2025b. URL https://arxiv.
org/abs/2505.14810.

Alex Gu, Baptiste Rozière, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve,
and Sida Wang. Cruxeval: A benchmark for code reasoning, understanding and execution.
In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
Ffpg52swvg.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633–638, 2025.

Zhongmou He, Yee Man Choi, Kexun Zhang, Jiabao Ji, Junting Zhou, Dejia Xu, Ivan Bercovich,
Aidan Zhang, and Lei Li. HardTests: Synthesizing High-Quality Test Cases for LLM Coding,
2025. URL https://arxiv.org/abs/2505.24098.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.org/abs/2312.13010.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-Coder Technical Report, 2024. URL https://
arxiv.org/abs/2409.12186.

Kush Jain, Gabriel Synnaeve, and Baptiste Rozière. Testgeneval: A real world unit test generation
and test completion benchmark, 2025. URL https://arxiv.org/abs/2410.00752.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and Contamination Free
Evaluation of Large Language Models for Code, 2024. URL https://arxiv.org/abs/
2403.07974.

Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F. Chen, Shafiq Joty, and Furu Wei. Preference
Optimization for Reasoning with Pseudo Feedback. In The Thirteenth International Conference
on Learning Representations, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Mohammad Abdullah Matin Khan, M. Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code
Understanding, Generation, Translation and Retrieval, 2023. URL https://arxiv.org/
abs/2303.03004.

13

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2504.05185
https://arxiv.org/abs/2508.05710
https://arxiv.org/abs/2505.14810
https://arxiv.org/abs/2505.14810
https://openreview.net/forum?id=Ffpg52swvg
https://openreview.net/forum?id=Ffpg52swvg
https://arxiv.org/abs/2505.24098
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2410.00752
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2303.03004
https://arxiv.org/abs/2303.03004

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu-Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learning.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html.

Bin Lei, Yuchen Li, and Qiuwu Chen. Autocoder: Enhancing code large language model with
AIEV-INSTRUCT, 2024. URL https://arxiv.org/abs/2405.14906.

Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun,
Benyou Wang, Xiang Wang, Junyang Lin, and Dayiheng Liu. Cort: Code-integrated reasoning
within thinking, 2025. URL https://arxiv.org/abs/2506.09820.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023. URL https://arxiv.org/abs/2305.06161.

Zihan Ma, Taolin Zhang, Maosong Cao, Junnan Liu, Wenwei Zhang, Minnan Luo, Songyang Zhang,
and Kai Chen. Rethinking verification for llm code generation: From generation to testing, 2025a.
URL https://arxiv.org/abs/2507.06920.

Zihan Ma, Taolin Zhang, Maosong Cao, Junnan Liu, Wenwei Zhang, Minnan Luo, Songyang Zhang,
and Kai Chen. Rethinking Verification for LLM Code Generation: From Generation to Testing,
2025b. URL https://arxiv.org/abs/2507.06920.

Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
validating real-world bug-fixes with code agents, 2025. URL https://arxiv.org/abs/
2406.12952.

OpenAI, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan

14

http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2506.09820
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2507.06920
https://arxiv.org/abs/2507.06920
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
OpenAI o1 System Card, 2024. URL https://arxiv.org/abs/2412.16720.

OpenAI, Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David
Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, Jerry Tworek, Lorenz
Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese, o3 con-
tributors, Oleg Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and Wenda Zhou.
Competitive Programming with Large Reasoning Models, 2025. URL https://arxiv.org/
abs/2502.06807.

Patomporn Payoungkhamdee, Pume Tuchinda, Jinheon Baek, Samuel Cahyawijaya, Can Udom-
charoenchaikit, Potsawee Manakul, Peerat Limkonchotiwat, Ekapol Chuangsuwanich, and Sarana
Nutanong. Towards better understanding of program-of-thought reasoning in cross-lingual and
multilingual environments, 2025. URL https://arxiv.org/abs/2502.17956.

ByteDance Seed, :, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, Yufeng Yuan, Yu Yue, Lin Yan, Qiying Yu, Xi-
aochen Zuo, Chi Zhang, Ruofei Zhu, Zhecheng An, Zhihao Bai, Yu Bao, Xingyan Bin, Jiangjie
Chen, Feng Chen, Hongmin Chen, Riwei Chen, Liangqiang Chen, Zixin Chen, Jinsong Chen,
Siyan Chen, Kaiyuan Chen, Zhi Chen, Jin Chen, Jiecao Chen, Jinxin Chi, Weinan Dai, Ning Dai,
Jiahui Dai, Shihan Dou, Yantao Du, Zhengyin Du, Jianhui Duan, Chen Dun, Ting-Han Fan, Ji-
azhan Feng, Junda Feng, Ziyuan Feng, Yuwei Fu, Wenqi Fu, Hanjie Fu, Hao Ge, Hongyi Guo,
Mingji Han, Li Han, Wenhao Hao, Xintong Hao, Qianyu He, Jerry He, Feng He, Wen Heng,
Zehua Hong, Qi Hou, Liang Hu, Shengding Hu, Nan Hu, Kai Hua, Qi Huang, Ziyue Huang,
Hongzhi Huang, Zihao Huang, Ting Huang, Wenhao Huang, Wei Jia, Bin Jia, Xiaoying Jia,
Yuhua Jiang, Haobin Jiang, Ziheng Jiang, Kaihua Jiang, Chengquan Jiang, Jianpeng Jiao, Xiao-
ran Jin, Xing Jin, Xunhao Lai, Zheng Li, Xiang Li, Liyi Li, Hongkai Li, Zheng Li, Shengxian
Wan, Ya Wang, Yunshui Li, Chenggang Li, Niuniu Li, Siyu Li, Xi Li, Xiao Li, Aoyan Li, Yuntao
Li, Nianning Liang, Xinnian Liang, Haibin Lin, Weijian Lin, Ye Lin, Zhicheng Liu, Guanlin Liu,
Guanlin Liu, Chenxiao Liu, Yan Liu, Gaohong Liu, Juncai Liu, Chundian Liu, Deyi Liu, Kaibo
Liu, Siyao Liu, Qi Liu, Yongfei Liu, Kang Liu, Gan Liu, Boyi Liu, Rui Long, Weiqiang Lou,
Chenwei Lou, Xiang Luo, Yao Luo, Caiping Lv, Heyang Lv, Bole Ma, Qianli Ma, Hongzhi Ma,
Yiyuan Ma, Jin Ma, Wenchang Ma, Tingting Ma, Chen Mao, Qiyang Min, Zhe Nan, Guanghan
Ning, Jinxiang Ou, Haojie Pan, Renming Pang, Yanghua Peng, Tao Peng, Lihua Qian, Lihua
Qian, Mu Qiao, Meng Qu, Cheng Ren, Hongbin Ren, Yong Shan, Wei Shen, Ke Shen, Kai Shen,
Guangming Sheng, Jinlong Shi, Wenlei Shi, Guang Shi, Shuai Shuai Cao, Yuxin Song, Zuquan
Song, Jing Su, Yifan Sun, Tao Sun, Zewei Sun, Borui Wan, Zihan Wang, Xiaohui Wang, Xi Wang,
Shuguang Wang, Jun Wang, Qinlong Wang, Chenyuan Wang, Shuai Wang, Zihan Wang, Chang-
bao Wang, Jiaqiang Wang, Shihang Wang, Xuwu Wang, Zaiyuan Wang, Yuxuan Wang, Wenqi

15

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.17956

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Wang, Taiqing Wang, Chengzhi Wei, Houmin Wei, Ziyun Wei, Shufa Wei, Zheng Wu, Yonghui
Wu, Yangjun Wu, Bohong Wu, Shuang Wu, Jingqiao Wu, Ning Wu, Shuangzhi Wu, Jianmin Wu,
Chenguang Xi, Fan Xia, Yuqiao Xian, Liang Xiang, Boren Xiang, Bowen Xiao, Zhen Xiao, Xia
Xiao, Yongsheng Xiao, Chao Xin, Shulin Xin, Yuwen Xiong, Jingjing Xu, Ziwen Xu, Chenyin
Xu, Jiayi Xu, Yifan Xu, Wei Xu, Yufei Xu, Shikun Xu, Shipeng Yan, Shen Yan, Qingping
Yang, Xi Yang, Tianhao Yang, Yuehang Yang, Yuan Yang, Ximing Yang, Zeyu Yang, Guang
Yang, Yifan Yang, Xuesong Yao, Bairen Yi, Fan Yin, Jianian Yin, Ziqiang Ying, Xiangyu Yu,
Hongli Yu, Song Yu, Menghan Yu, Huan Yu, Siyu Yuan, Jun Yuan, Yutao Zeng, Tianyang Zhan,
Zheng Zhang, Yun Zhang, Mofan Zhang, Wang Zhang, Ru Zhang, Zhi Zhang, Tianqi Zhang,
Xinyi Zhang, Zhexi Zhang, Sijun Zhang, Wenqiang Zhang, Xiangxiang Zhang, Yongtao Zhang,
Yuyu Zhang, Ge Zhang, He Zhang, Yue Zhang, Renjie Zheng, Ningxin Zheng, Zhuolin Zheng,
Yaowei Zheng, Chen Zheng, Xiaoyun Zhi, Wanjun Zhong, Cheng Zhong, Zheng Zhong, Bao-
quan Zhong, Xun Zhou, Na Zhou, Huan Zhou, Hang Zhu, Defa Zhu, Wenjia Zhu, and Lei Zuo.
Seed1.5-thinking: Advancing superb reasoning models with reinforcement learning, 2025. URL
https://arxiv.org/abs/2504.13914.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement fine-
tuning via adaptive curriculum learning, 2025. URL https://arxiv.org/abs/2504.
05520.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit
tester via reinforcement learning, 2025a. URL https://arxiv.org/abs/2506.03136.

Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality test
case generation for competitive programming, 2025b. URL https://arxiv.org/abs/
2506.05817.

Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. CodeContests+: High-Quality Test
Case Generation for Competitive Programming, 2025c. URL https://arxiv.org/abs/
2506.05817.

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms,
2025. URL https://arxiv.org/abs/2504.14655.

Jiacheng Xu, Bo Pang, Jin Qu, Hiroaki Hayashi, Caiming Xiong, and Yingbo Zhou. Clover: A test
case generation benchmark with coverage, long-context, and verification, 2025a. URL https:
//arxiv.org/abs/2502.08806.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A di-
verse, challenging, and verifiable synthetic dataset for coding, 2025b. URL https://arxiv.
org/abs/2503.02951.

Zheyuan Yang, Zexi Kuang, Xue Xia, and Yilun Zhao. Can LLMs Generate High-Quality Test
Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and
Exposure, 2025. URL https://arxiv.org/abs/2506.12278.

Yufan Ye, Ting Zhang, Wenbin Jiang, and Hua Huang. Process-supervised reinforcement learning
for code generation, 2025. URL https://arxiv.org/abs/2502.01715.

Jiahao Yu, Zelei Cheng, Xian Wu, and Xinyu Xing. Building coding agents via entropy-enhanced
multi-turn preference optimization, 2025a. URL https://arxiv.org/abs/2509.12434.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang.
Dapo: An open-source llm reinforcement learning system at scale, 2025b. URL https:
//arxiv.org/abs/2503.14476.

16

https://arxiv.org/abs/2504.13914
https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2506.03136
https://arxiv.org/abs/2506.05817
https://arxiv.org/abs/2506.05817
https://arxiv.org/abs/2506.05817
https://arxiv.org/abs/2506.05817
https://arxiv.org/abs/2504.14655
https://arxiv.org/abs/2502.08806
https://arxiv.org/abs/2502.08806
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2506.12278
https://arxiv.org/abs/2502.01715
https://arxiv.org/abs/2509.12434
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Z1: Efficient test-time
scaling with code, 2025c. URL https://arxiv.org/abs/2504.00810.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025a.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. ACE-
CODER: Acing Coder RL via Automated Test-Case Synthesis, 2025b. URL https://arxiv.
org/abs/2502.01718.

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun Zhang, Jing Su, Yongfei Liu, and Zhi Jin.
Codedpo: Aligning code models with self generated and verified source code, 2025. URL
https://arxiv.org/abs/2410.05605.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. ALGO: syn-
thesizing algorithmic programs with generated oracle verifiers. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
abe1eb21ceb046209c96a0f5e7544ccc-Abstract-Conference.html.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
o1-coder: an o1 replication for coding, 2024. URL https://arxiv.org/abs/2412.
00154.

Sining Zhoubian, Dan Zhang, and Jie Tang. Rest-rl: Achieving accurate code reasoning of llms
with optimized self-training and decoding, 2025. URL https://arxiv.org/abs/2508.
19576.

17

https://arxiv.org/abs/2504.00810
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2410.05605
http://papers.nips.cc/paper_files/paper/2023/hash/abe1eb21ceb046209c96a0f5e7544ccc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/abe1eb21ceb046209c96a0f5e7544ccc-Abstract-Conference.html
https://arxiv.org/abs/2412.00154
https://arxiv.org/abs/2412.00154
https://arxiv.org/abs/2508.19576
https://arxiv.org/abs/2508.19576

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RELATED WORK

Test Case Generation As private ground-truth test cases are scarce, researchers have turned to
LLMs for automatic test case generation.(Cook et al., 2025; Chen et al., 2025; Shi et al., 2025; Seed
et al., 2025; Fatemi et al., 2025; Ahmed et al., 2024; Yu et al., 2025b; Zhoubian et al., 2025; Lei
et al., 2024) Early work had models directly produce complete test cases, i.e., input-output pairs.(Gu
et al., 2024; Chen et al., 2023; Zeng et al., 2025b; Xu et al., 2025b; Payoungkhamdee et al., 2025),
However, because such outputs are often unreliable, Jiao et al. (2024); Li et al. (2023) let the model
generate both an input and a candidate solution, then execute the solution to derive the output. Other
methods introduced input generators to replace raw inputs (Jain et al., 2024; Cao et al., 2025; Xia
et al., 2025), or validators to enforce format and range constraints before execution (He et al., 2025;
Fu et al., 2025a). Some methods enhance the model’s ability to generate test cases through training,
such as via SFT (Supervised Fine-Tuning), RL(Reinforcement Learning)and other techniques. (Li
et al., 2025; Bai et al., 2025; Zhang et al., 2024; Wang et al., 2025a) Most recently, multi-round
generation and execution feedback has led test case generation to agent workflows (Wang et al.,
2025c; Da et al., 2025; Ye et al., 2025; Zhang et al., 2025; Yu et al., 2025a; Huang et al., 2024).

Test Case Evaluation Evaluation originally followed traditional software testing, emphasizing
coverage and distinguishing between buggy and fixed code. (Xu et al., 2025a; Yu et al., 2025c)
SWT-Bench (Mündler et al., 2025) and TestGenEval (Jain et al., 2025) transform from SWE-
Bench (Jimenez et al., 2024), providing buggy implementations and their corresponding fixes. Oth-
ers extend beyond single languages or update to recent codebases. For algorithmic problems, TestE-
val collected 210 problems but still relied on coverage metrics. More recent works shifted toward
end-to-end evaluation with large collections of correct and wrong submissions, measuring how often
generated test cases exclude incorrect code. (Ma et al., 2025a; Yang et al., 2025; Wang et al., 2025b)
However, these approaches either rely on ad-hoc manual selection or expand code sets without se-
lection or analysis. TC-Bench is the first to study how many codes and test cases are sufficient, and
provides a principled, efficient evaluation framework.

Code-Test Matrix CodeT Chen et al. (2023) and B4 Chen et al. (2024) share the concept of using
execution results on test cases (the Code-Test Matrix) as behavioral signatures. CodeT assumes
correct code behaviors are consistent while incorrect results are diverse, utilizing signatures for
clustering to select a consensus set. B4 calculates the probability of observing the matrix to select the
most likely correct cluster. However, these methods aim for solution selection where the correctness
of code and tests is unknown, utilizing the matrix primarily for signature matching or probabilistic
modeling. In their context, the algebraic rank and basis are not the primary interpretative tools. In
contrast, TC-Bench operates on ground truth with guaranteed correct tests and wrong codes. We
view the matrix as a complete Error Space and apply linear algebra operations to calculate the Rank
and Basis, representing this error space most efficiently.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.2 WRONGSELECT

Algorithm 1 WrongSelect
1: Input: Raw matrix M, filter threshold τ , restart count E, local search step K
2: Output: The optimal basis I∗
3: ▷ Phase 1: Principled Pre-filtering
4: M′ ← Filter(M, τ)
5: R′ ← rank(M′)
6: I∗ ← ∅
7: Fmin ←∞
8: ▷ Phase 2: Random-Restart Local Search
9: for i = 1 to E do

10: Icurrent ← RandomBasis(M′, R′) ▷ Generate a random initial basis
11: Fcurrent ← F (Icurrent)
12: for j = 1 to K do
13: Ibest neighbor ← Icurrent
14: Fbest neighbor ← Fcurrent
15: for each rin ∈M′ \ Icurrent and each rout ∈ Icurrent do
16: Itemp ← (Icurrent \ {rout}) ∪ {rin} ▷ Traverse each neighbor
17: if rank(Itemp) = R′ then
18: if F (Itemp) < Fbest neighbor then
19: Ibest neighbor ← Itemp
20: Fbest neighbor ← F (Itemp)
21: end if
22: end if
23: end for
24: if Fbest neighbor < Fcurrent then ▷ Move to the best neighbor
25: Icurrent ← Ibest neighbor
26: Fcurrent ← Fbest neighbor
27: else
28: break ▷ Local optimum reached, exit inner loop
29: end if
30: end for
31: if Fcurrent < Fmin then
32: Fmin ← Fcurrent
33: I∗ ← Icurrent
34: end if
35: end for
36:
37: return I∗

Phase 2 in Algorithm 1 illustrates the pseudo code. The algorithm consists of two nested loops:
the outer loop explores multiple random starting points to ensure global search breadth, while the
inner loop refines each starting point to a local optimum, ensuring local search depth. Given the
pre-filtered matrix M′, each outer iteration begins by generating a random initial basis Icurrent.
The inner loop then iteratively improves this basis. In each iteration, the algorithm systematically
explores the neighborhood of the current basis: a neighbor basis is obtained by swapping one mem-
ber inside the basis with one outside, while maintaining the same rank. We compute the average
Jaccard similarity F (Itemp) for each neighbor. If the best neighbor Ibest neighbor is superior to the
current solution, Icurrent is updated accordingly, and the process continues. Otherwise, when no
better neighbor exists, the algorithm concludes that a local optimum has been reached and the inner
loop terminates. After each outer iteration, the current basis is compared with the best basis found
so far, and the best is updated if necessary. The outer loop repeats this procedure from multiple ran-
dom initializations, and finally, the best basis across all runs is returned as the approximate global
optimum.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 2: Model Performance Comparison
LLM Method PR AC WA RE TLE HR

Qwen2.5-7B

Crux 26.86 81.44 16.14 0.89 1.53 18.56
PSEUDO 9.52 98.86 1.06 0.05 0.04 1.14
ALGO 12.37 89.61 9.25 0.67 0.46 10.39
LCB 42.38 52.46 43.69 2.29 1.56 47.54
HT 58.51 68.78 28.66 1.53 1.03 31.22

Qwen2.5-14B

Crux 29.12 81.22 16.36 1.00 1.42 18.78
PSEUDO 14.97 93.92 5.30 0.32 0.46 6.08
ALGO 19.82 86.91 11.82 0.71 0.56 13.09
LCB 49.71 49.65 46.63 2.17 1.55 50.35
HT 70.79 64.23 33.83 1.29 0.64 35.77

Qwen2.5-Coder-7B

Crux 33.13 80.53 17.15 1.15 1.18 19.47
PSEUDO 16.49 88.65 10.31 0.55 0.50 11.35
ALGO 14.27 92.80 6.62 0.40 0.17 7.20
LCB 41.94 57.83 39.02 1.92 1.23 42.17
HT 71.02 78.08 20.47 0.97 0.48 21.92

Qwen2.5-Coder-14B

Crux 26.18 81.27 16.44 1.05 1.24 18.73
PSEUDO 10.32 95.46 4.16 0.28 0.10 4.54
ALGO 27.92 95.45 4.20 0.22 0.13 4.55
LCB 51.87 46.05 49.95 2.34 1.66 53.95
HT 73.07 68.45 29.75 1.21 0.58 31.55

A.3 MAIN RESULTS

The Usage of Correct Code is a Performance Watershed. Across nearly all models, methods
that rely on correct code (LCB, HT) significantly outperform those that do not (CRUX, PSEUDO,
ALGO) on HackRate. Although methods like PSEUDO and ALGO attempt to ensure correctness
by having the LLM generate its own solution (or even a simpler brute-force one), the success of this
process is constrained by the LLMs’ own problem-solving capabilities. When the model generates
an incorrect solution, it not only fails to generate complex test cases, but even simple ones are filtered
out due to incorrect outputs. All this leads to a low PassRate, which in turn severely impacts the
Hackrate. Their performance is sometimes even worse than the simplest CRUX method.

Performance Gains Primarily Come From WA. Through a fine-grained analysis of exclusion
reasons, we find that the primary performance gain from advanced methods with specific edge case
generators, such as LCB and HT, comes from a significantly improved WA exclusion rate. For error
types like RE and TLE, scores do not show a significant gap compared to simpler methods like
CRUX. This suggests that the core advantage of current SOTA methods lies in generating ingenious
test cases that probe for algorithmic logic flaws. Crafting test cases that effectively trigger robustness
failures may be a different, and perhaps a more difficult challenge.

Implementation Details Significantly Impact Final Performance. Although the five methods
are conceptually progressive, specific implementation details, such as prompts and pipelines, can
cause substantial performance variations. The concepts of ALGO and PSEUDO are similar, but
ALGO simplifies the task by asking the model to generate a simpler brute-force solution. However,
PSEUDO often outperforms ALGO because it generates 10 solutions and uses a majority vote,
whereas ALGO generates only one. Similarly, although HT adds an input validator over LCB, it
underperforms on most models. We attribute this to implementation choices, such as allowing the
edge case generator to return empty and providing simpler few-shot examples, which may lead the
model to “get lazy” and produce less complex test cases.

A.4 TEST TIME SCALING

To investigate the quantitative impact of increasing the number of test cases, we conduct a scaling
experiment. For each problem, we used its rank R′ as the base number of test cases (1x) and
proportionally scaled this number up to 5x, observing the trend in HackRate.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

80%

60%

40%

20%

0%

1 2 3 4 5
Rank

1 2 3 4 5
Rank

1 2 3 4 5
Rank

1 2 3 4 5
Rank

H
ac

k
Ra

te

 H

ac
k

Ra
te

CRUX PSEUDO ALGO LCB HT

Qwen2.5-Coder-32B Qwen3-235B-A22B

Claude4-ThinkingQwen-Coder-Plus

DeepSeek-V3Qwen2.5-32B

Claude4GPT-4o

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

Figure 5: Results of test case scaling for each model and method. The x-axis represents the number
of test cases, scaled as multiples of the problem’s rank from 1x to 5x.

The addition of test cases exhibits significant diminishing returns. As shown in Figure 5, the
gain from scaling from 1x to 2x is the most significant across all combinations. As the number
increases from 3x to 5x, the performance curves generally begin to flatten, or even saturate. This
suggests that blindly and massively increasing the number of test cases is an inefficient strategy.
After covering the regular error patterns, additional test cases are likely just re-validating known
failures rather than uncovering new, deeper defects.

The relative performance ranking among methods remains highly stable across all scales.
Crucially, this experiment validates the effectiveness of setting the base number of test case as the
problem’s rank R′. While increasing the number of test cases does improve HackRate, the perfor-
mance curves for each method almost never intersect. For instance, for Deepseek-V3 and GPT-4o,
the five methods are well-separated. This stability demonstrates that TC-Bench, is already an ef-
ficient and reliable benchmark for differentiating the performance of various test case generation
methods. It successfully captures the core discriminative power of different methods without incur-
ring the high computational cost of scaling.

The core conclusions from our main experiments demonstrate good scale-invariance. Finally, this
scaling experiment further reinforces the core findings from our main experiments. For example, the
performance gap between methods that rely on correct code (LCB, HT) and those that do not remains
significant at all test case scales. Similarly, the impact of methodology continues to outweigh that
of the base model.

A.5 COMMON FAILURE

To better understand the causes behind low scores, we conducted a qualitative analysis of failed
generations and identified three major systematic shortcomings.

Task Confusion and Instruction-Following Failures When prompted to generate test cases,
many LLMs instead output complete solutions to the problem. This issue is particularly common
when both test cases and solutions are requested together. We hypothesize that this stems from the
infrequency of test-case generation tasks in training data and weakened instruction-following abil-
ity after long-cot training (Fu et al., 2025b). DeepSeek-R1 exhibited this issue most severely. As
shown in Figure 6, within CRUX and PSEUDO, 74% and 60% of its outputs, respectively, are direct
solution code rather than valid test cases. Among the remaining outputs, many are unusable due
to formatting errors, such as embedding executable code inside JSON. Because the extractable test
cases are too few, R1 is excluded from the main experiments. This finding highlights that successful
test-case generation requires not only strong reasoning ability, but also precise task comprehension
and robust formatting control.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To solve this problem, we need to determine the
number of players observed by each observer placed at
different nodes in a tree. Each player starts at their
respective starting node and moves along the shortest
path to their destination node at a speed of one edge
per second. An observer at node \(j \) observes players
who arrive exactly at \(W_j \) seconds. The solution
involves efficiently counting the players who pass
through each node \(j \) at exactly \(W_j \) seconds.
Solution Code
```python
import sys
sys.setrecursionlimit(500000)

def main():
    data = sys.stdin.read().split()
    if not data: 
        return
……

```json
{
 "test_case_0": "7\n1 1 2 1 4 6\n5\n3 4 6\n1
5 7\n1 2 4\n1 2 6\n1 3 5",
```

"test_case_9": "300000\n" + " 
".join(str(max(1, i-10)) for i in range(1, 
300000)) + "\n300000\n" + "\n".join(f"1 {i} 
{i+2}"for i in range(2, 300002))"

( c ) Direct Solution Code

( a ) Standard CRUX Response

( b ) Generate Testcase-Code

 Not TestCase but Solution Code

arr =[0] *n_val
arr_str =" ".join(map(str, arr))
op_lines =[]
forj inrange(n_val):
    op_lines.append(f"1 {n_val} {j}")
test_cases["test_case_5"] 
=f"{n_val}\n{arr_str}\n"+"\n".join(op_lines)

Figure 6: The figure shows the errors that occur in the direct generation of Testcases by models like
R1, using the CRUX and PRESUDO algorithms. Subfigure (a) shows the normal output, subfigure
(b) demonstrates the insertion of generated code or direct responses in the form of Testcase code
within a string, and subfigure (c) shows the model not following the Testcase generation instructions
and instead directly providing the solution.

Lack of Resource-Aware Generation Many problems require test cases at large boundary condi-
tions. As shown in Figure 7 a, we observe that numerous methods attempt to construct overly large
inputs (e.g., huge graph structures), leading to out-of-memory crashes or timeouts during execution.
This reveals a deeper limitation: while LLMs are proficient in generating algorithmic logic, they
lack awareness of physical execution constraints such as memory and runtime. A robust test-case
generation pipeline must therefore incorporate mechanisms like input partitioning or streaming to
adapt to limited system resources.

1

4

2

3

1

4

2

3

( b ) Valid Testcase ( c ) Invalid Generted by LLM( a ) Example of Memory Explosion

m_values =[1, 10, 100, 1000, 50000]
max_courses_values =[1, 5, 10, 100, 1000]
max_credits_values =[1, 2, 3]
max_effort_values =[1, 50, 100, 200]

for m in m_values:
    for max_courses in max_courses_values:
        for max_credits in max_credits_values:
            for max_effort in max_effort_values:
                construct_inputs()

Figure 7: Subfigure a shows that the memory explosion is caused by the model constructing an
excessively large number of functions during case generation. Subfigure b, c presents a failed case
where the model fails to construct a connected graph as required. The task specifies that all node 1
instances must be able to reach node n, but the constructed graph does not satisfy this connectivity
condition.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Failure to Construct Required Complex Data Structures Some problems in our benchmark
admit only test cases with highly constrained structures. As shown in Figure 7 b, c, in one problem,
every valid input must be a specific type of connected graph. However, none of the tested methods
successfully produced even a single valid input. As a result, these problems ended up with zero
usable test cases. This underscores that generating high-difficulty test cases can be as challeng-
ing as solving an algorithmic problem, requiring a deep understanding of both data structures and
algorithms.

A.6 RESULTS OF SUPPLEMENTARY EXPERIMENTS

0.2

0.4

0.6

0.8

1

0

2000

4000

6000

30

45

60

75

1 9 17 25

Solutions: 8Filter Top 20%

Number of bins

Cumulative 
probability

Figure 8: The left subplot shows the interval count statistics and cumulative probability curve of the
time-normalized correct answers. In the right subplot, the Hackrate continuously increases as the
number of correct answers increases.

Problems Modified
Avg Improvement

1 3 5 7 11 19 25 40 61 176 364 1007

20

60

80

120

850

950

0.02

0.04

0.06

1

29

30

0.08

26

Co
nv

er
ge

nc
e 

Po
in

t

Figure 9: The heuristic algorithm we designed converges at the eighth turn.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0             10            20            30            40            50            60            70            80
Count/Rank

0             10            20            30            40            50            60            70            80
Count/Rank

350

300

250

200

150

100

50

0

1.0

0.8

0.6

0.4

0.2

0.0
Before optimization 

After optimization

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty

Fr
eq

ue
nc

y

Before optimization
After optimization

Figure 10: Distribution of the number of WCs per problem before and after the WrongSelect. The
histogram (left) compares the initial count of WCs against the rank (i.e., the final count of WCs).
The cumulative distribution function (CDF) on the right further illustrates this shift. The results
demonstrate a dramatic reduction in the number of required codes, highlighting the compactness
and efficiency of our resulting benchmark.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

This article utilizes large language models (LLM) solely for writing refinement and graphic en-
hancement, with no other applications or purposes involved.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B APPENDIX B

B.1 BENCHMARK CONSTRUCTION

This section will detail the process involved in constructing the dataset, including the repairing of
Wrong Codes, operations related to the clarity of problem statements, and statistical data.

B.1.1 WRONG CODE

Code Cleaning After processing the wrong codes in Section2.3, for all retained wrong codes, we
used public test cases for testing. For all execution results such as CE, TLE, MLE, EXE, as well as
codes that resulted in WA but with empty outputs, manual fixes and reviews were performed. As
shown in Figure 11, (a) illustrates a piece of unusable file operation code, in which the script does
not include the definitions of Fin and Fout. For this type of code, we removed the corresponding
file operations. The error in (b) arises because the unistd.h library already defines a function named
link array, which conflicts with the array link array defined in the code. (c) presents an example of
incomplete code that requires manual supplementation. To ensure consistency between the original
and the corrected code, after making modifications we tested the code using private test cases, with
the requirement that the test results remain consistent with the crawled results.

( a ) Unavailable file operation

( b )Standard library name conflict

( c ) Incomplete code

Undeclared function: Fin, Fout Manually complete the code

il void FILEIO(){

    #ifdef intLSY

        Fin("in.in");

    #endif

}

il void FILEIO( string pname ){

    #ifndef intLSY

            Fin((pname+".in").c_str());

            Fout((pname+".out").c_str());

    #endif

}

il void FILEIO_OICONTEST( string pname ){

    Fin((pname+".in").c_str());

    #ifndef intLSY

        Fout((pname+".out").c_str());

    #endif

}

# include<unistd.h>
 
int ch[maxn<<1][26], link_array[maxn<<1]
 
extern intlink_array(intoldfd, const char *oldpath,
    intnewfd, const char *newpath, intflags);

int main()

{

    n=qread(),m=qread();

    for(int i =1; i <=n; i++)

    {

        int cnt;

        cnt=qread();    

Figure 11: (a), (b), and (c) respectively present three examples that we encountered when repairing
Wrong Code.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B.1.2 PROBLEM DESCRIPTION

Regarding the problem statement processing in Section2.3, this subsection provides detailed exam-
ples and explanations for problems that heavily rely on images and Special Judge problems.

For problem statements that rely on image-based understanding, such as Stars (see image in ref-
erence Figure12), the problem includes an image that is necessary for understanding in order to
generate test cases or solve the problem. We manually reviewed this type of problem statement, fil-
tered out the problems where images affected the understanding of the question, and deleted them.
In this step, we deleted a total of 71 problems.

Star
There are some stars in the sky, each with a different position, and each star has a 
coordinate. If a star has k stars in its lower-left (including directly left and directly below), 
we say that this star is of level k.

Given the positions of the stars, output the count of stars at each level.

For example, in the image below, star 5 is of level 3 
(because stars 1, 2, and 4 are in its lower-left), and stars 2 
and 4 are of level 1. In the example image, there is 1 star 
of level 0, 2 stars of level 1, 1 star of level 2, and 1 star of 
level 3.

Figure 12: This is an example of a problem that can only be solved with image understanding.

The problems with Special Judges involve multiple outputs, answer ranges, and interactive prob-
lems. In total, we removed 42 Special Judge problems. Ball Moving Game is an example with
multiple solutions, as shown clearly in Figure 13, which illustrates the existence of multiple an-
swers. Problems like Idea also explain that as long as the answer satisfies a certain range, it is
acceptable.

Ball Moving Game：

Little C is stuck, but he believes you can solve it. Please provide an operational plan to 
achieve Little C's goal. There may be multiple valid solutions, and you only need to 
provide one. The problem guarantees that there is always at least one valid solution.

Idea: 
For each output file, if more than 95% of the lines have an answer with an error of no more 
than 25% compared to the correct answer, you will receive a score. The error is considered 
to be within 25% if, for a correct answer X, your answer lies within the closed interval 
[0.8X, 1.25X] .

Figure 13: The image presents two examples of problems with multiple solutions. In the Ball
Moving Game, the same input can lead to various outputs, while in the Idea problem, the output
simply needs to fall within a given range.

26

https://loj.ac/p/10114
https://loj.ac/p/3388
https://loj.ac/p/2229


1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

We also selected all interactive problems, such as the one shown in the reference, The Adventure
of Lord I, where the problem statement clearly states ”This is an interactive problem.” This type of
problem requires complex interactions and support, making it unfriendly for test case generation.

The Adventure of Lord I: 

This is an interactive problem.
During the evaluation, the interactive library will call the `explore` function exactly once.

It is guaranteed that the graph used in this problem is fully determined before the 
interaction begins and will not be dynamically constructed based on the interactions with 
your program. Therefore, the interactive operations in the problem are deterministic, and 
you do not need to worry about the specific implementation of these operations in the 
interactive library.
The data guarantees that the time required for the interactive library to run will not exceed 
1 second under the given call limits. The memory used by the interactive library is fixed 
and does not exceed 128MB.

Figure 14: The image illustrates an example of an interactive problem, which necessitates specific
and intricate interaction checks during evaluation. To streamline the evaluation process, we have
removed this part of the problem.

27

https://loj.ac/p/3161
https://loj.ac/p/3161


1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Example of problem statement cleaning As shown in Figure15,the following is an example of
problem statement cleaning. For demonstration purposes, we have created a sample problem to
illustrate the main cleaning tasks. In this process, irrelevant background information is removed,
image links and other URLs are discarded, and the phrasing is made smoother. The data range is
kept to the most general case. These tasks typically do not follow a universal pattern and require
manual inspection. After cleaning the problem statement, we used GPT-4o for translation. In this
step, we organized each data entry and deleted 15 problems that were difficult to handle. Then
each translation was semantically proofread and certain inappropriate expressions were adjusted for
accuracy.The final processed problem statement can be found in next page

Tour de Byteotia

Background:
In the depths of a distant universe, there exists a kingdom surrounded by stars and 
brilliance—"The Kingdom of Stars." This kingdom is home to countless magical scholars 
who explore mysterious stellar trajectories and intertwined fates. One day, the scholars 
discovered an ancient prophecy foretelling that a broken constellation would bring about 
the end of the world. Only by gathering five lost stellar gems can this disaster be prevented. 
And you, the chosen hero, bear the  heavy responsibility of changing fate.
Problem Description:
Given an undirected graph with n vertices and m edges, determine the minimum number of 
edges to remove so that vertices numbered less than or equal to k do not appear on any 
simple cycle.
Input Format:
The first line contains three integers n , m , and k , representing n nodes, m edges, and k as 
described in the problem statement.
Output Format:
The first line contains one integer representing the minimum number of edges to be 
removed;
The following lines each output two positive integers a,b , representing the removal of the 
edge between a and b . Output the vertex with the smaller number first, then the vertex 
with the larger number.
Sample:
Input:
Output:
![](https://szkopul.edu.pl/problemset/problem/mormqC6WwjeIiBpSNMhVbHni/site/image
s/OI19/touzad1.gif)
Constraints and Hints:

For 40% of the data, n≤1000,m≤5000 .
For all data, 1≤n≤1,000,000,0≤m≤2,000,000,1≤k≤n,1≤u<v≤n .

#  Tour de Byteotia
Markdown Format

Remove Irrelevant Message

ADD Sample

Remove Fig, URL , HTML

General Description

Figure 15: To facilitate demonstration, we constructed an example of problem-statement cleaning,
in which the common cleaning procedures are integrated.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Final problem statement:
# Tour de Byteotia

## Problem Description

Given an undirected graph with $n$ vertices and $m$ edges,
↪→ determine the minimum number of edges that need to be removed
↪→ so that all vertices with indices less than or equal to $k$
↪→ are not part of any simple cycle.

## Input Format

The first line contains three integers $n$, $m$, and $k$,
↪→ representing the number of vertices, the number of edges, and
↪→ the significance of $k$ as described in the problem
↪→ statement.

The next $m$ lines each contain two integers $u$ and $v$,
↪→ indicating a bidirectional edge between $u$ and $v$. There is
↪→ at most one edge between any pair of vertices.

## Output Format

The first line contains an integer $k$, representing the minimum
↪→ number of edges to be removed.

The next $k$ lines each contain two positive integers $a$ and $b$,
↪→ indicating the removal of an edge between $a$ and $b$. Output
↪→ the vertex with the smaller index first, followed by the
↪→ vertex with the larger index.

## Examples

### Input:
11 13 5
1 2
1 3
1 5
3 5
2 8
4 11
7 11
6 10
6 9
2 3
8 9
5 9
9 10

### Output:
3
2 3
5 9
3 5

## Data Range and Hints
For all data, $1 \le n \le 1,000,000$, $0 \le m \le 2,000,000$, $1

↪→ \le k \le n$, $1 \le u < v \le n$.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C CASE STUDY

To demonstrate the practical effectiveness of our method, we conduct a case study on “Sliding
Window”, a classic problem requiring the Monotonic Queue algorithm. The problem involves an
integer array of length N(≤ 106) and a window of size K(≤ 106). The window slides from the
leftmost to the rightmost of the array, moving one position at a time. The goal is to determine the
maximum and minimum values within the window at each step. The output requires two lines: the
sequence of minimums followed by the sequence of maximums.

The optimal solution employs a Monotonic Queue to achieve a time complexity of O(N). Specif-
ically, to calculate the maximums, we maintain a monotonically decreasing queue that stores array
indices. As we iterate through each element in the array, we first pop the elements at the back of
the queue if their corresponding values are less than or equal to the current element. This is because
these smaller and older elements can never serve as the maximum for future windows. Next, the
current index is pushed to the back. Then, the front of the queue is popped if its index is out of
the current window scope. Finally, the value corresponding to the index at the front of the queue
represents the maximum of the current window. The minimums are calculated analogously by main-
taining a monotonically increasing queue. The standard solution is shown below.

Standard Solution

#include<bits/stdc++.h>
using namespace std;
int n , a[1000005] , k ;
deque<int>q ;
int main() {
cin >> n >> k ;
for (int i = 1 ; i <= n ; i ++) {
cin >> a[i] ;

}
for (int i = 1 ; i <= n ; i ++) {
while(!q.empty() && a[i] < a[q.back()]) {
q.pop_back() ;

}
q.push_back(i) ;
if(q.front() < i - k + 1) {
q.pop_front() ;

}
if(i >= k) cout << a[q.front()] << " " ;

}
cout << endl ;
q.clear() ;
for (int i = 1 ; i <= n ; i ++) {
while(!q.empty() && a[i] > a[q.back()]) {
q.pop_back() ;

}
q.push_back(i) ;
if(q.front() < i - k + 1) {
q.pop_front() ;

}
if(i >= k) cout << a[q.front()] << " " ;

}
}

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Initially, this problem involves 96 Wrong Codes (WCs). After applying WrongSelect, only 8 basic
WCs are retained. Their failure signatures are presented below:

I∗ =



0 0 0 0 0 0 0 1 1 0
1 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 1
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0


C.1 BASIC WRONG CODES

We meticulously analyze the retained Basic WCs and characterize their underlying error patterns.

Basic WC1 fails due to insufficient memory allocation for the queue array, where the size is set to
510,000 instead of the required 1,000,010.

Basic WC1 (0000000110)

#include<cstdio>
#include<cstring>
using namespace std;
struct node {
int x,p;

}

list1[510000],list2[510000];// Should expand 510000 to 1010000

int a[510000],n,m;
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
int head=1,tail=1;
list1[1].x=a[1];
list1[1].p=1;
for (int i=2;i<=n;i++) {
while(head<=tail&&i-list1[head].p>=m)head++;
while(head<=tail&&list1[tail].x>=a[i])tail--;
list1[++tail].x=a[i],list1[tail].p=i;
if(i>=m)printf("%d ",list1[head].x);

}
printf("\n");
head=1,tail=1;
list2[1].x=a[1];
list2[1].p=1;
for (int i=2;i<=n;i++) {
while(head<=tail&&i-list2[head].p>=m)head++;
while(head<=tail&&list2[tail].x<a[i])tail--;
list2[++tail].x=a[i],list2[tail].p=i;
if(i>=m)printf("%d ",list2[head].x);

}
}

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Basic WC2 exhibits an incorrect order of operations where the answer is retrieved before updating
the tail with the current element, causing the current element to be ignored in every window.

Basic WC2 (1111001111)

#include<bits/stdc++.h>
#define ll long long
#define inf 2139062143
#define MAXN 1001000
using namespace std;
inline int read() {
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)) {
if(ch==’-’) f=-1;
ch=getchar();

}
while(isdigit(ch)) {
x=x*10+ch-’0’,ch=getchar();

}
return x*f;

}
int n,m,q[MAXN][2],hd[2],tl[2],a[MAXN],ans[MAXN][2];
int main() {
n=read(),m=read();
hd[0]=hd[1]=1;
for (int i=1;i<=n;i++) {
a[i]=read();

while(hd[0]<=tl[0]\&\&q[hd[0]][0]<=i-m) hd[0]++;
// Swap the order of yellow and red.

ans[i][0]=a[q[hd[0]][0]];

while(hd[0]<=tl[0]&&a[q[tl[0]][0]]>=a[i]) tl[0]--;

q[++tl[0]][0]=i;

while(hd[1]<=tl[1]&&q[hd[1]][1]<=i-m) hd[1]++;
// Swap the order of yellow and red.

ans[i][1]=a[q[hd[1]][1]];

while(hd[1]<=tl[1]&&a[q[tl[1]][1]]<=a[i]) tl[1]--;

q[++tl[1]][1]=i;

}
for (int i=m;i<n;i++) printf("%d ",ans[i][0]);
printf("%d\n",ans[n][0]);
for (int i=m;i<n;i++) printf("%d ",ans[i][1]);
printf("%d",ans[n][1]);

}

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Distinct from the queue error in Basic WC1, Basic WC3 allocates insufficient memory for the input
array using a size of 105 rather than the required 106.

Basic WC3 (0000001000)

#include<bits/stdc++.h>
using namespace std;
int n,k;
int tail,front;
struct node {
int pos,val;

}
q[100000010];

int a[100010]; // 100010 -> 1000010
int main() {
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++) {
scanf("%d",&a[i]);

}
front=1;
tail=1;
q[1].val=a[1];
q[1].pos=1;
for (int i=2;i<=n;i++) {
while (tail>=front && q[tail].val>=a[i]) tail--;
q[++tail].val=a[i];
q[tail].pos=i;
while (q[tail].pos-q[front].pos+1>k) front++;
if (i>=k) cout<<q[front].val<<" ";

}
cout<<endl;
front=1;
tail=1;
q[1].val=a[1];
q[1].pos=1;
for (int i=2;i<=n;i++) {
while (tail>=front && q[tail].val<=a[i]) tail--;
q[++tail].val=a[i];
q[tail].pos=i;
while (q[tail].pos-q[front].pos+1>k) front++;
if (i>=k) cout<<q[front].val<<" ";

}
}

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Basic WC4 contains a subtle logic error in queue maintenance by performing an unnecessary and
erroneous comparison with the head element while updating the tail. This additional operation pre-
vents current elements from entering the queue, causing the queue to potentially become empty
during the sliding process. In this state, accessing q1.top() triggers undefined behavior, retriev-
ing residual garbage data from the underlying memory address.

Basic WC4 (0001001011)

#include <bits/stdc++.h>
using namespace std;
struct node {
int x,bh;
friend bool operator < (node x,node y) {return x.x>y.x;}

} a[1000001];
struct node1 {
int x,bh;
friend bool operator < (node1 x,node1 y) {return x.x<y.x;}

} a2[1000001];
priority_queue<node> q1;
priority_queue<node1> q2;
int n,k;
inline int read() {...}
inline void write(int x) {...}
int main() {
int i;
n=read();
k=read();
int tail=2;
int head=k+1;
for (i=1;i<=n;i++) a[i].x=a2[i].x=read(),a[i].bh=a2[i].bh=

↪→ i;
for (i=1;i<=k;i++) q1.push(a[i]),q2.push(a2[i]);
write(q1.top().x);
printf(" ");
for (;head<=n;tail++,head++) {
while(q1.top().bh<tail && !q1.empty()) q1.pop();
// remove

if(q1.top().x>=a[head].x) q1.push(a[head]);

write(q1.top().x);
printf(" ");

}
printf("\n");

tail=2;
head=k+1;
write(q2.top().x);
printf(" ");
for (;head<=n;tail++,head++) {
while(q2.top().bh<tail && !q2.empty()) q2.pop();
// remove

if(q2.top().x<=a[head].x) q2.push(a2[head]);

write(q2.top().x);
printf(" ");

}
}

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Basic WC5 represents a scope error where the head and tail pointers of the queue are incorrectly
re-initialized inside the loop.

Basic WC5 (0001000010)

#include <stdio.h>
#include <stdlib.h>
#define Z 1000001
int main() {
int i,le=0,ri=1;
int m,n;
int *da=(int*)malloc(sizeof(int)*Z);
int *max=(int*)malloc(sizeof(int)*Z);
int *min=(int*)malloc(sizeof(int)*Z);
int *id=(int*)malloc(sizeof(int)*Z);
scanf("%d",&m);
scanf("%d",&n);
for (i=1;i<=m;i++) {
scanf("%d",&da[i]);

}
for (i=1;i<=m;i++) {
while(le<=ri&&da[i]<min[ri]) {
ri--;

}
ri++;
min[ri]=da[i];
id[ri]=i;
if(id[le]+n<=i) {
le++;

}
if(i>=n) {
printf("%d ",min[le]);

}
}
printf("\n");
for (i=1;i<=m;i++) {

le=0; // Move outside the loop

ri=1;
while(le<=ri&&da[i]>max[ri]) {
ri--;

}
ri++;
max[ri]=da[i];
id[ri]=i;
if(id[le]+n<=i) {
le++;

}
if(i>=n) {
printf("%d ",max[le]);

}
}
return 0;

}

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Basic WC6 attempts a Sparse Table (ST) optimization but fails due to an implementation error where
the allocated table size is too small for the problem constraints.

Basic WC6 (0000010101)

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6;

int st[N][18] ,a[N],p[N]; // 18 -> 20
int maxx[N],minn[N];
int n,k,le,ri;
void init() {
for (int j = 1; j< 18; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = max(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
void init1() {
for (int j = 1; j< 18; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = min(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
int rmq(int l,int r) {
int d = r - l + 1;
return max(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int rmq1(int l,int r) {
int d = r - l + 1;
return min(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int main() {
scanf("%d%d",&n,&k);
for (int i = 1; i<=n; i++) {
scanf("%d",&a[i]);
st[i][0] = a[i];

}
init1();
for (int i = 1; i<=n; i++) {
p[i] = p[i-1];
if(i == 1<<p[i] + 1)

++p[i];
}
for (int i = 1; i<=n - k+ 1; i++)

minn[i] = rmq1(i,i + k -1);
for (int i = 1; i<=n - k + 1; i++)

cout<<minn[i]<<" ";
printf("\n");

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Basic WC7 attempts to fix the boundary error seen in Basic WC6 by incrementing the Sparse Table
size by 1, yet it remains insufficient for the maximum constraint.

Basic WC7 (0000000100)

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6;

int st[N][19] ,a[N],p[N]; // 19 -> 20
int maxx[N],minn[N];
int n,k,le,ri;
void init() {
for (int j = 1; j< 19; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = max(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
void init1() {
for (int j = 1; j< 19; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = min(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
int rmq(int l,int r) {
int d = r - l + 1;
return max(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int rmq1(int l,int r) {
int d = r - l + 1;
return min(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int main() {
scanf("%d%d",&n,&k);
for (int i = 1; i<=n; i++) {
scanf("%d",&a[i]);
st[i][0] = a[i];

}
init1();
for (int i = 1; i<=n; i++) {
p[i] = p[i-1];
if(i == 1<<p[i] + 1)

++p[i];
}
for (int i = 1; i<=n - k+ 1; i++)

minn[i] = rmq1(i,i + k -1);
for (int i = 1; i<=n - k + 1; i++)

cout<<minn[i]<<" ";
printf("\n");
init();
for (int i = 1; i<=n; i++)

st[i][0] = a[i];
for (int i = 1; i<=n - k + 1; i++)
maxx[i] = rmq(i,i + k - 1);
for (int i = 1; i<=n - k + 1; i++)

cout<<maxx[i]<<" ";
return 0;

}

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Basic WC8 incorrectly updates the head pointer instead of the tail pointer during the first element’s
insertion. Additionally, it omits the insertion of the first element when initializing the second queue.

Basic WC8 (1100000000)

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+3;
int n,k;
int a[N];
int h=0,t=-1;
int q[N];
int main() {
cin>>n>>k;
for (int i=1;i<=n;i++) {
cin>>a[i];

}

q[++h]=1; // q[++t]=1

for (int i=2;i<=n;i++) {
while(i-k+1>q[h]&&h<=t)h++;
while(h<=t&&a[i]<=a[q[t]])--t;
q[++t]=i;
if(i>=k)cout<<a[q[h]]<<" ";

}
cout<<endl;
h=0,t=-1;

// add q[++t]=1

for (int i=2;i<=n;i++) {
while(i-k+1>q[h]&&h<=t)h++;
while(h<=t&&a[i]>=a[q[t]])--t;
q[++t]=i;
if(i>=k)cout<<a[q[h]]<<" ";

}
return 0;

}

The eight Basic WCs effectively map to the specific requirements of data structures and algorithms
inherent to this problem. These error patterns include resource allocation for different variables, as
well as the position, order, and conditions for queue initialization and maintenance.

On one hand, Basic WCs cover boundary constraints across different variables and granularities. For
instance, Basic WC3 represents a resource error in the input array while Basic WC1, Basic WC6,
and Basic WC7 target the queue. Specifically, the internal hierarchy among Basic WC1, Basic
WC6, and Basic WC7 introduces a tiered validation mechanism. A less advanced test case gener-
ator, which could produce medium-scale inputs but struggles with maximum constraints, can still
identify Basic WC1 and receive partial credit. This effectively avoids the “all-or-nothing” scoring
trap, ensuring that the benchmark gives non-zero scores to generators that possess intermediate ca-
pabilities. Conversely, only top-tier generators that hit the absolute maximum boundary can exclude
all these Basic WCs to achieve a perfect score.

On the other hand, the basis preserves logic specificities. Basic WC5 incorrectly re-initializes queue
pointers inside the loop, causing the state of the sliding window to be lost at every iteration. To
expose this, the test case generator must produce inputs where the window’s extremum is deter-
mined by a historical element rather than the current one, verifying the persistence of the queue.
Basic WC8 exhibits dual failures, specifically on the first element’s insertion and the second queue’s
initialization. This forces the generator to produce edge cases where the first element is the strict
maximum or minimum for the initial windows. By retaining these basic error patterns, TC-Bench

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

ensures that the evaluation reflects a model’s ability to cover the entire spectrum of the solution
space.

C.2 EXCLUDED WRONG CODES

Following the analysis of the Basic WCs, we proceed to examine the Excluded WCs to verify
whether their error patterns are effectively encapsulated by the basis. We select Excluded WC1
as a representative example, whose failure signature is reconstructed by the combination of Basic
WC8 and Basic WC4. Excluded WC1 exhibits a classic Off-by-one boundary error. During the
sliding process, the code fails to timely pop the element exiting the window, causing the queue to
retain invalid, expired data throughout both the initialization and maintenance phases. Crucially, this
composite behavior is spanned by the basis. Basic WC8 precisely mirrors the initialization failure,
as it retains stale data from the first queue due to a missing head pointer update. Meanwhile, Basic
WC4 captures the maintenance failure, where additional comparison causes the queue to become
empty. In this state, accessing the queue retrieves residual garbage data from memory. Together,
these underlying mechanisms fully cover the error pattern of Excluded WC1.

Basic WC8 : 1 1 0 0 0 0 0 0 0 0

Basic WC4 : 0 0 0 1 0 0 1 0 1 1
Excluded WC1 : 1 1 0 1 0 0 1 0 1 1

Excluded WC1 (1101001011)

#include<bits/stdc++.h>
using namespace std;
const int N=1000005;
int a,b;
int g[N],num[N],q[N],f1[N],f2[N];
int main() {
scanf("%d%d",&a,&b);
for (int i=1;i<=a;i++) {
scanf("%d",&g[i]);

}
int head=1,tail=1;
for (int i=1;i<=a;i++) {

while(num[head]<i-b &&head<=tail) // i-b+1
head++;

while(g[i]<=q[tail]&&head<=tail) tail--;
num[++tail]=i;
q[tail]=g[i];
f1[i]=q[head];

}
head=1,tail=0;
for (int i=1;i<=a;i++) {
while(num[head]<i-b+1&&head<=tail) head++;
while(g[i]>=q[tail]&&head<=tail) tail--;
num[++tail]=i;
q[tail]=g[i];
f2[i]=q[head];

}
for (int i=b;i<=a;i++) cout<<f1[i]<<" ";
cout<<endl;
for (int i=b;i<=a;i++) cout<<f2[i]<<" ";
cout<<endl;
return 0;

}

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Similarly, we analyze Excluded WC2, whose failure signature corresponds to the combination of
Basic WC8 and Basic WC5. Excluded WC2 contains a boundary error in the monotonic queue
maintenance. By using the fixed condition t¿=1 instead of the dynamic h¡=t, the tail pointer can
incorrectly decrement past the head pointer, violating the valid window scope and accessing invalid
historical data. This error pattern is also effectively spanned by the basis. Basic WC8 captures the
initialization failure, where the pointers fail to correctly establish the queue’s start (updating head
instead of tail), reflecting the error’s mishandling of the absolute beginning. Basic WC5 captures the
scope maintenance failure, where the queue’s dynamic state is ignored (resetting pointers inside the
loop), mirroring how Excluded WC2 ignores the dynamic head boundary and corrupts the persistent
state.

Basic WC5 : 0 0 0 1 0 0 0 0 1 0

Basic WC8 : 1 1 0 0 0 0 0 0 0 0
Excluded WC2 : 1 1 0 1 0 0 0 0 1 0

Excluded WC2 (1101000010)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e6+5;
int n,k,a[N],q[N],p[N];
int main() {
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
int h=1,t=0;
for (int i=1;i<=n;i++) {

while(q[t]>a[i]&& t>=1 ) t--;// t>=1 -> h<=t
q[++t]=a[i],p[t]=i;
while(p[h]<i-k+1&&h<=t) h++;
if(i>=k) printf("%d ",q[h]);

}
memset(q,0,sizeof(q));
memset(p,0,sizeof(p));
cout<<endl;
h=1,t=0;
for (int i=1;i<=n;i++) {

while(q[t]<a[i]&& t>=1 ) t--;// t>=1 -> h<=t
q[++t]=a[i],p[t]=i;
while(p[h]<i-k+1&&h<=t) h++;
if(i>=k) printf("%d ",q[h]);

}
return 0;

}

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

C.3 REPEATED WRONG CODES

Finally, we verified whether identical failure signatures indeed correspond to semantically equivalent
error patterns. We selected a cluster of Repeated WCs sharing the binary signature 00010001110.

We specifically examine the representative example, Repeated WC1, shown below. This code ex-
hibits a logic flaw during the queue maintenance phase: when inserting the current integer, the code
compares it against the queue head rather than the queue tail. In a monotonic queue, the tail ele-
ments must be compared and popped to maintain monotonicity. Comparing against the head (which
typically holds the window’s extremum) creates an irrelevant condition. Consequently, elements
that should have been removed remain in the queue, corrupting the window’s state.

We thoroughly inspected other WCs within this same signature cluster. While they exhibit syntactic
variations in implementation, we confirm that they all share the exact same root cause: the failure to
correctly remove invalid elements due to flawed comparison logic. This confirms that our signature-
based grouping effectively captures semantically similar faults. Due to space constraints, only key
segments of these Repeated WCs are presented below.

Repeated WC1 (0001001110)

#include<bits/stdc++.h>
#define maxn 1000010
using namespace std;
int pos[maxn],que[maxn];
int n,k;
int a[maxn];
int fminn[maxn],fmaxx[maxn];
void dpmin() {
int h = 1, t = 0;
for (int i = 1; i <= n; i ++) {
while (pos[h] < i - k + 1 && h <= t) ++ h;
while (que[t] > a[i] && h <= t) -- t;
que[++ t] = a[i], pos[t] = i;
fminn[i] = que[h];

}
}
void dpmax() {
int h = 1, t =0;
for (int i = 1; i <= n; i++) {
while (pos[h] < i - k + 1 && h <= t) ++ h;

while ( que[h] < a[i] && h <= t) -- t;// q[h] -> q[t]

que[++ t] = a[i] , pos[t] = i;
fmaxx[i] = que[h];

}
}
int main() {
scanf("%d%d",&n,&k);
for (int i = 1; i <= n; i ++) scanf("%d",&a[i]);
dpmin();
dpmax();
for (int i = k; i <= n; i ++) printf("%d ",fminn[i]);
printf("\n");
for (int i = k; i <= n; i ++) printf("%d ",fmaxx[i]);
printf("\n");
return 0;

}

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Repeated WC 2

// Boundary offset error
head = 1; tail = 0;
for (int i = 1; i <= n; ++i) {

while (head <= tail && i-k-1 ) head++;// Should be: i-k+1
while (head <= tail && a[q[tail]] <= a[i]) tail--;
q[++tail] = i;
if (i >= k) cout << a[q[head]] << " ";

}

Repeated WC 3

// Incorrectly checks queue tail (r) for expiration
for (int i=k;i<=n;i++) {
while(l<=r&&a[maxn[r]]<a[i]) r--;
r++;
maxn[r]=i;
while(l<=r && maxn[ r ] < i-k+1) l++; // Should be: maxn[l]
cout<<a[maxn[l]]<<" ";

}

Repeated WC 4

// Incorrectly accesses value array ’a’ instead of index
↪→ array ’b’

for (int i=1;i<=n;i++) {

if(hh<=tt&& a[b[hh]] <=i-k) { // Should be: b[hh]
hh++;

}
while(hh<=tt&&a[b[tt]]<=a[i]) {
tt--;

}

Repeated WC 5

// Incorrectly compares with queue front while updating tail
for (int i = 1; i <= n; i++) {

while (!q.empty() && a[ q.front() ] < a[i]) { // Should be:

↪→ q.back()
q.pop_back();

}
q.push_back(i);
if (i - q.front() >= m) {
q.pop_front();
}
if (i >= m) cout << a[q.front()] << " ";

}

C.4 DIAGNOSING REALISTIC SCENARIOS

To further verify the diagnostic value of our benchmark in a realistic setting, we conducted an
evaluation using the SOTA combination: Claude-4-Thinking with the LCB. We generated 40 test
cases. The results showed that the generated test suite successfully excluded 6 out of the 8 Basic
WCs but failed to expose Basic WC6 and Basic WC7. They are resource allocation errors requiring
queue capacities of approximately 3×105 and 1×106, respectively. Triggering these specific faults
requires forcing the monotonic queue to fill up to these limits. Mathematically, this demands a worst-
case scenario where both the window size K and the array length N approach 106, and crucially,
the input array must follow a specific monotonic pattern (e.g., strictly increasing or decreasing) to

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

ensure enough elements are pushed into the queue. We manually inspected all 40 generated test
cases and confirmed that while the model generated large random arrays, it failed to construct this
specific, structurally extreme boundary case. This demonstrates that TC-Bench effectively points out
a specific weakness in current SOTA generation methods. Ultimately, this confirms that TC-Bench
significantly streamlines diagnostic analysis: by narrowing the analytical scope from the entire raw
dataset to a compact set of Basic WCs, it enables researchers to pinpoint model weaknesses through
just a few representative examples rather than sifting through massive redundancy.

This case study provides strong empirical evidence for the practical effectiveness of our method.
First, the retained Basic WCs are confirmed to be different error patterns. Second, the analysis
of Excluded WCs demonstrates that redundant codes are essentially composite errors. Third, the
inspection of Repeated WCs confirms that identical failure signatures reliably map to semantically
equivalent root causes, validating our signature-based grouping strategy. Fourth, the real-world
evaluation highlights the benchmark’s discriminative power. Collectively, these results affirm that
TC-Bench successfully constructs a compact, rigorous, and representative error space, capable of
delivering fine-grained and high-sensitivity evaluations for test case generation.

43


	Introduction
	Methodology
	Problem Formulation
	WrongSelect
	Principled Pre-filtering
	Random-Restart Local Search

	Benchmark Construction

	Experiment
	Evaluation Setup
	Models & Methods
	Pipeline & Metrics

	Results

	Discussion
	Conclusion
	Appendix
	Related Work
	WrongSelect
	Main Results
	Test Time Scaling
	Common Failure
	Results of Supplementary Experiments
	The Use of Large Language Models (LLMs)

	Appendix B
	Benchmark Construction
	Wrong code
	Problem Description


	Case Study
	Basic Wrong Codes
	Excluded Wrong Codes
	Repeated Wrong Codes
	Diagnosing Realistic Scenarios


