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ABSTRACT

Code evaluation and reinforcement learning rely critically on test cases. How-
ever, collecting golden test cases is hard and expensive, motivating the use of
LLMs for automatic test case generation. This, in turn, raises a pivotal chal-
lenge: how can we rigorously evaluate the quality of the generated test cases?
Existing benchmarks often evaluate the exclusion ratio on large, unstructured col-
lections of wrong codes, leading to high computational costs and severe score
inflation. Furthermore, they inadvertently reward generators that detect common,
trivial bugs, while failing to penalize their inability to identify rare yet critical
faults. In this work, we connect two fundamental questions: (1) What is the min-
imal set of wrong codes sufficient to represent the entire error space? and (2)
What is the minimal set of test cases needed to distinguish them? We introduce
a novel framework that formalizes benchmark construction as finding an optimal
diagnostic basis in a binary code-test matrix, where rows represent wrong codes
and columns represent test case results. The rank of this matrix plays a dual role.
It specifies the minimal number of independent error patterns, which determines
the size of wrong codes. It also provides a tight upper bound on the number of
test cases required for complete fault coverage. Our objective is to identify a basis
of size equal to the matrix rank that maximizes internal diversity, which is de-
fined as the average pairwise Jaccard similarity of the codes’ failure signatures
(i.e., the matrix rows). To tackle this NP-hard problem, we propose WrongSelect,
an efficient approximation algorithm combining pre-filtering and random-restart
local search to select maximally diverse wrong codes. Applying this framework
to millions of competitive programming submissions, we construct TC-Bench, a
compact, diverse, and inflation-resistant benchmark. Extensive experiments show
that even the most advanced test case generation methods achieve only 60% ex-
clusion rates on TC-Bench, exposing a significant gap in their diagnostic power
and highlighting substantial room for future improvement.

1 INTRODUCTION

The capability of Large Language Models (LLMs) in solving algorithmic coding problems is a key
measurement of their intelligence (OpenAI et al., 2024; 2025; Jain et al., 2024). The evaluation of
code solutions relies heavily on test cases. Golden Test cases (GTs), created by problem authors and
continually refined and expanded by experts, are considered a boundary-condition set equivalent to
the correct solution. A solution is deemed correct only if it passes GTs. Current Code Reinforcement
Learning with Verifiable Rewards (RLVR) methods similarly rely on test cases to compute rewards,
placing substantial demands on the comprehensiveness of test cases (Le et al., 2022; Guo et al.,
2025; Team et al., 2025; Zeng et al., 2025a). As shown in Figure 1 (a), the GT of a graph theory
problem should encompass various graph sizes and structures, such as chain, tree, and star. Failure
to cover all scenarios will compromise the reliability and lead to the false positive problem.

GTs consist of a few simple public test cases intended to clarify the problem and a larger set of
private test cases used to assess correctness. However, these critical private test cases are scarce
and expensive to create. To address this challenge, existing methods either manually construct test
cases (Khan et al., 2023) or automatically augment test cases (ATs) using LLMs (Cao et al., 2025;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

T1 T2

Td

Overload

T3

95 92

Augment Test case

WC1~n

WC1~4

Rank=2

WC1

WC2

T1 T2 T1 T2

60
30

0 0 1
0 1 0
0 1 0
0 1 1

AC = 0
WA= 1

O(|2 ✖ 2|)

Efficient

Valid Score

T1  T2

TdT3

(a) Raw Data

Inflated 
Score

WrongSelect

(b) ALL Wrong Codes (c) Ours

WC1

WC2

WC3

WCn

WA

Tree Star

AC

WA

WA

AC

WA

Golden Test case

AC

AC

WA

AC WA AC

WC4 AC WA WA

Easy

Wrong Code Result 

…

Method 1 Method 2

Evaluation

Transformation

O(|n ✖ d|)

Basis

Diverse 

Figure 1: A comparison of two evaluation frameworks for Augment Test cases (ATs). Both frame-
works start from the same raw data (a), which consists of many wrong codes (WCs) and their exe-
cution results on Golden Test cases (GTs). (b) The naive evaluation utilizes the full set of WCs and
an unprincipled number of ATs, suffers from prohibitive computational costs, and leads to inflated
scores. (c) In contrast, our proposed framework first processes this data with WrongSelect to select
a compact yet representative diagnostic basis (TC-Bench). Evaluation using this basis is not only
highly efficient but also yields more valid scores.

Ma et al., 2025b; Yang et al., 2025; Wang et al., 2025c). The emergent methods introduce the need
to evaluate their quality. The evaluation includes ensuring that their ATs are valid (passing correct
codes) and useful (excluding wrong codes (WCs) ). Since many methods are seeded with correct
codes, their ATs are naturally valid. Thus, the core challenge shifts to assessing their usefulness.
The straightforward approach is to collect as many wrong codes as possible and evaluate all ATs
to determine how many WCs they can exclude. However, this incurs immense computational costs
and suffers from inflated scores as shown in Figure 1 (b). This cost, a product of the number of
ATs and WCs, can be prohibitively high. Furthermore, one WC doesn’t equal one kind of error.
Indeed, the population of WCs is dominated by numerous trivial or repetitive errors, with only a
few representing core, hard-to-detect faults (Figure 1 (a) ). A mediocre method that only identifies
common errors can thus achieve a score similar to a superior method that finds rare corner cases, as
the small number of critical faults gets statistically overwhelmed. Consequently, this diminishes the
benchmark’s discriminative power. Conversely, some heuristic methods selecting a small subset of
hard-to-filter errors yield overly sparse evaluations (Cao et al., 2025), unable to continuously reflect
model capabilities.

These limitations raise fundamental questions: What constitutes an efficient and informative collec-
tion of WCs for evaluating ATs? What principles should govern its size and member selection? The
dual relationship between test cases and code also leads to another critical question: How many test
cases are necessary to comprehensively define the solution space for a given problem?

We propose that an ideal WCs set should neither be heuristically nor randomly selected, but should
be a compact and diverse set of WCs that acts as a diagnostic basis, effectively spanning all
unique error patterns of the problem. We propose to interpret the execution outcomes of WCs
across GTs as a mapping from abstract reasoning errors to observable behavioral patterns. In this
binary representation, the accepted (AC) is denoted as 0 and wrong answer (WA) as 1. Each WC is
thus represented as a binary vector, and the entire collection forms a Code-Test binary matrix. The
matrix rank quantifies the maximum number of distinct error patterns present among WCs. More-
over, it provides an upper bound on the minimal number of test cases required to distinguish these
error patterns. However, a matrix can produce multiple possible bases. An optimal diagnostic basis
should consist of WCs representing minimally overlapping error patterns to maximize diagnostic
breadth and information efficiency. Bases containing many similar WCs with highly overlapping
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error patterns suffer from redundancy, thus reducing discriminative power. As finding the most di-
verse basis is NP-hard, we design WrongSelect, a greedy-based efficient approximation algorithm
that iteratively selects WCs that maximize diversity at each step, yielding the final basis.

To construct our high-quality benchmark, we collect numerous problems with their GTs and user
submissions from prestigious algorithm competitions like USACO, NOI, and ICPC. We rigorously
filter submissions, retaining only those with complete execution results on GTs. Next, we trans-
form the codes for each problem into a binary matrix and calculate its rank to characterize the error
pattern complexity. Then, we employ WrongSelect to efficiently select a maximally diverse set of
WCs, constructing a structured diagnostic basis (Figure 1 (c) ). Last, we meticulously review, stan-
dardize, and translate all problem descriptions into English to ensure consistency and quality. The
resulting benchmark, named TC-Bench, contains 877 problems with a total of 9347 WCs. The final
set of WCs constitutes less than 2% of the original submissions. This reduction, combined with the
principled number of the necessary test cases, can lead to a near-quadratic decrease in evaluation
cost, dramatically improving efficiency. To validate TC-Bench, we reproduce and evaluate 5 com-
mon test-case generation methods (Jain et al., 2024; Zeng et al., 2025b; Zhang et al., 2023; He et al.,
2025; Gu et al., 2024) on 13 leading LLMs (DeepSeek-AI et al., 2024; Int; Hui et al., 2024). Experi-
mental results show that even the state-of-the-art method Claude4-Thinking with LCB achieve only
approximately 60% performance. By eliminating redundant error patterns and surfacing critical cor-
ner cases, TC-Bench ensures that a method’s ability to handle these challenges is directly reflected
in its score. This directly prevents the score inflation that plagues less-curated benchmarks.

Our contributions can be summarized as follows:

• We propose a novel framework based on matrix rank that, for the first time, unifies two
fundamental questions: the minimal number of wrong codes needed for evaluation and the
minimal number of test cases needed for coverage. This framework provides a principled
method for constructing a structured diagnostic basis.

• We construct and release TC-Bench, a compact and diverse benchmark built on our the-
ory. By design, TC-Bench has a high signal-to-noise ratio, enabling efficient, reliable, and
inflation-resistant evaluation of test case generation methods.

• Through extensive empirical experiments, we uncover significant deficiencies in current
mainstream test-case generation methods and LLMs when dealing with complex error pat-
terns, providing clear guidance for future research.

2 METHODOLOGY

This section details our principled approach to constructing TC-Bench. We first formalize the prob-
lem as finding a maximally diverse basis within a binary Code-Test matrix (Section 2.1). Recogniz-
ing this problem as NP-hard, we then propose WrongSelect, a greedy approximation algorithm for
this task (Section 2.2). Finally, we detail the data processing pipeline used to apply this framework
in practice to build TC-Bench (Section 2.3).

2.1 PROBLEM FORMULATION

Identifying diverse underlying errors in a vast collection of WCs would require immense manual
effort from algorithm experts, which is clearly infeasible. Therefore, the key challenge is to finding
a formal transformation that can equivalently represent the diversity of underlying errors.

Our inspiration comes from how codes are evaluated. A code is considered correct if and only if it
passes GTs, which are assumed to cover all problem requirements and boundary conditions, thereby
defining the solution space. For any code, we can get its result on GTs. For example, the result
[“AC”, “WA”, “WA”] represents a code that passes the first case but fails the other two. Such a result
sequence can be regarded as a behavioral mapping or a failure signature, translating the abstract
erroneous reasoning of a code into a concrete pattern within the solution space. Collecting all such
signatures across codes allows us to construct an empirical space of failure modes for a problem.

However, this raw space is highly redundant: it contains identical signatures, and some patterns may
simply be combinations of other ones. To extract a compact and informative benchmark from this
landscape, a structured analytical tool is required.

3
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Binary Matrix Representation We formalize this space of failures as a binary matrix M of size
n× d, where n is the number of WCs and d is the number of GTs. Each entry Mij is defined as:

Mij =

{
1 if the i-th WC fails on the j-th test case,
0 if the i-th WC passes the j-th test case.

Each row vector ri of M thus represents the failure signature of the i-th WC. For instance, signature
[“AC”, “WA”, “WA”] becomes the binary vector [0, 1, 1].

Optimization Objective With this binary Code-Test matrix in place, our task reduces to a selec-
tion problem: how to choose from the m failure signatures a representative and compact subset I
to serve as our benchmark. An ideal subset I must satisfy the following two requirements. Com-
pleteness and Irredundancy. The selected set I should capture the full complexity of M without
redundancy. In linear algebra, this corresponds precisely to a basis. Concretely, I must be a row
basis, i.e., the row vectors in I are linearly independent and their number |I| equals the rank of M .
This constraint guarantees that the number of selected WCs is neither too many nor too few, but
exactly sufficient to span all distinct error modes. Notably, since the row rank equals the column
rank, this same value |I| also provides another important insight: it constitutes a theoretical upper
bound on the minimum number of test cases required to distinguish all independent error modes.
Diversity. Multiple bases may satisfy the rank condition. Ideally, a perfect basis would consist
of mutually orthogonal failure signatures, meaning each error mode is completely independent and
contributes a unique dimension. However, in real-world error data, this kind of orthogonal basis
rarely exists. Our practical goal is therefore to find a basis that approximates orthogonality by max-
imizing the diversity among its members (i.e., minimizing their overlap). To measure the overlap
between two signatures, we adopt the Jaccard similarity, which quantifies the ratio of jointly failed
test cases to the total failed cases across both signatures. A lower Jaccard score indicates lower
similarity. Formally:

J(ri, rj) =
ri · rj

∥ri∥1 + ∥rj∥1 − ri · rj
where ri · rj counts the jointly failed test cases (intersection) and ∥r∥1 is the total number of failed
tests for a signature (size of the set).

Beyond pairwise similarity, we must assess the diversity of the entire basis I. We therefore define
our global objective as minimizing the average pairwise Jaccard similarity among all members of I:

min
I

F (I) = 1(|I|
2

) ∑
ri,rj∈I,i<j

J(ri, rj)

In summary, our problem is formalized as follows: given a binary matrix M , find a row basis I
that minimizes the average pairwise Jaccard similarity F (I). This is a combinatorial optimization
problem known to be NP-hard. In the next section, we present a greedy algorithm, WrongSelect,
designed to efficiently approximate this solution.

2.2 WRONGSELECT

2.2.1 PRINCIPLED PRE-FILTERING

The quality of the final basis critically depends on the quality of the candidate pool. In practice, raw
data often contains noise, such as problems lacking sufficient WCs or WCs failing on all test cases.
To address this, pre-filtering is designed to systematically remove these noise at both the problem
level and the code level.

Problem-Level Filtering via Column Analysis In practice, we observe that some M contain
columns filled entirely with “1” as shown in Figure 2. This indicates that all WCs fail in one
case. The analysis on a subset shows that this phenomenon arises from three main causes: (1)
GT exhibits incremental difficulty (e.g., gradually stricter constraints on time or space complexity);
(2) the number of WCs for the problem is insufficient; or (3) the problem or GT is overly simple,
involving only a single extreme scenario. Although the first case is reasonable, it is relatively rare,
and manually distinguishing it is prohibitively costly. More importantly, all-ones columns open the
door to hack scores. Therefore, to ensure the diagnostic value of each problem, we exclude all
problems containing all-ones columns from our dataset. This excludes about 5% of raw problems.
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Figure 2: An overview of the TC-Bench construction pipeline. It begins with raw data collection,
followed by a two-step WrongSelect working on the transformed binary matrix M . Step 1 pre-filters
the problems with an all- “1” column and removes codes whose rows have too many “1”s. Step 2
samples numerous initial bases Icurrent from the filtered M ′ and iteratively minimizes the diversity
score by swapping internal and external rows. The best local optimum is chosen to approximate the
global optimum. Concurrently, problem descriptions are standardized and correct codes are sampled
from the top 20% performers, ensuring the overall quality of TC-Bench.

Code-Level Filtering via Row Analysis Another observation is that some WCs fail on an exces-
sively high proportion of GTs. Such WCs typically pass only the public test cases while failing
almost all private ones. They act as strong background noise: any mediocre test set can easily elim-
inate them, leading to inflated evaluation scores and severely diminishing the discriminative power
of the benchmark. To mitigate this, we compute the failure rate of each row, which is defined as
the proportion of 1’s relative to d. Accordingly, we set the filtering threshold τ = 80%. A WC
exceeding τ is highly likely to fail all private test cases. Such WCs generally correspond to triv-
ial or common error patterns, and removing them helps benchmark to diagnose more nuanced and
complex failure modes. This removes 13% of raw WCs and M turns into M ′.

As the final quality control step, we exclude all M ′ with rank less than 5 (R′ < 5). A low rank
indicates insufficient diversity in error patterns and is not suitable to be used in a benchmark. Only
matrices M ′ that pass all these filtering stages are considered qualified candidates and proceed to
the subsequent basis selection process.

2.2.2 RANDOM-RESTART LOCAL SEARCH

On the filtered matrix M ′, our objective is to select a basis I that achieves the lowest possible F (I).
We adopt a local search optimization strategy to approximate the optimal basis.

Starting from a complete but randomly chosen initial basis, the algorithm iteratively improves the
basis by performing local modifications. Specifically, it explores the neighborhood of the current
basis, defined as all new bases that can be obtained by a single swap operation (exchanging one
member inside the basis with one outside). If there exists a neighbor that achieves better diversity
(lower F (I)), the basis is replaced by the best neighbor, and the process repeats. This iterative
improvement continues until no better neighbor exists, i.e., the current basis converges to a local
optimum. To mitigate the risk of being trapped in poor local optima due to initialization, we employ
a random-restart mechanism. The local search process is repeated multiple times from different
random starting points, and finally, the best solution among all local optima is selected as the output.

Take “Step2” in Figure 2 as an Example. M ′ has a rank of R′ = 2. Assume the initial random
basis is Icurrent = [[0, 0, 1], [0, 1, 1]]], with a diversity score of F (Icurrent) = 0.5. The only external
candidate is the vector M ′ − Icurrent = [0, 1, 0]. The algorithm then explores the neighborhood
of Icurrent. It first considers swapping the internal vector rout = [0, 0, 1] with the external vector
rin = [0, 1, 0]. The resulting set, [[0, 1, 0], [0, 1, 1]], is a valid basis, but its score F = 0.5 provides
no improvement. Next, consider swapping rout = [0, 1, 1] with rin = [0, 1, 0]. This produces a better
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basis Itemp = [[0, 0, 1], [0, 1, 0]]. Its diversity score is F (Itemp) = 0. After evaluating all neighbors,
since a better neighbor is found, the algorithm updates its state: Icurrent ← [[0, 0, 1], [0, 1, 0]]. A new
search iteration begins from this basis. As this basis is now perfectly diverse (F = 0), no further
swaps can improve the score, so the algorithm has converged to a local optimum. This result is
saved, and the random-restart mechanism initiates a new search from another random starting point.
Algorithm 1 in Appendix A.2 illustrates the pseudo code with a detailed explanation.

Although the nested structure suggests high theoretical complexity, in practice the algorithm con-
verges rapidly in both the inner and outer loops. Moreover, several parts of the procedure can be
parallelized easily, making the overall runtime highly efficient.

2.3 BENCHMARK CONSTRUCTION

Evaluating test cases requires not only wrong code, but also first generating them from problem
descriptions and validating them against correct code. This section details the full pipeline of data
collection, filtering, and cleaning used to construct our benchmark.

Raw Data The raw data comes from top-tier programming contests and high-quality training sets,
including USACO, IOI, and ICPC. In total, it initially contains 3,321 problems and 2,230,009 sub-
missions. We retain only problems for which the full execution results of WCs on GTs are available.
After this step, we obtain 1,763 problems, containing 15,457 correct codes and 554,056 WCs.

Problem Description To ensure fair and consistent problem comprehensions, we apply rigorous
standardization to problem descriptions. We first remove problems that heavily rely on images,
cannot be automatically evaluated (e.g., interactive problems, multi-solution tasks), or require highly
constrained runtime environments. We then clean the statements by removing source tags, URLs,
and HTML, as well as rewriting non-standard mathematical formulas. Finally, we employ GPT-4o
to translate non-English problems and manually proofread to ensure semantic consistency.

Wrong Code To ensure consistency of the evaluation environment and avoid noise introduced by
environment-specific factors, we retain only C++ submissions labeled as WA, including 1,698 prob-
lems and 282,458 WCs. Next, our principled pre-filtering leaves 1,133 problems with 33,846 WCs.
For each problem, we perform random-restart local search with both outer and inner loops set to
1000 iterations. Figure 9 shows that loops converge rapidly, demonstrating the efficiency of our
method. Ultimately, 13,400 wrong codes constitute the maximally diverse basis for all problems.
Figure 10 illustrates the distribution of WCs per problem before and after WrongSelect.

Correct Code Since correct codes are consistent with GT, their primary differences lie in runtime
and memory consumption. In Section 4, we show that overly loose or overly strict sets of cor-
rect codes can bias evaluation results. Therefore, for each problem, we randomly select 8 correct
submissions from the top 20% after min–max normalization of runtime.

Through this principled pipeline, we ultimately construct TC-Bench, a high-quality diagnostic
benchmark with 877 standardized problems, 9347 core WCs, and 7016 correct submissions. More
details regarding the construction process are available in Appendix B.1. Furthermore, we present a
case study in Appendix C to empirically validate the practical effectiveness of WrongSelect.

3 EXPERIMENT

After constructing TC-Bench, this section presents the experimental design and evaluation results of
different test case generation methods.

3.1 EVALUATION SETUP

3.1.1 MODELS & METHODS

Models We evaluate SOTA LLMs via API, including GPT-4o, Claude-Sonnet-4, Claude-Sonnet-
4-Thinking, DeepSeek-V3, Qwen-Coder-Plus, and Qwen3-235B-A22B. We also evaluate Qwen-2.5
and Qwen-2.5-Coder families of varying sizes (7B, 14B, 32B). Due to space constraints, the results
for the 7B and 14B LLMs are presented in Appendix A.3. We note that DeepSeek-R1 struggles
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to reliably generate test cases. Therefore, its results are excluded from the main experiments but
discussed in Appendix A.5. In total, we evaluate 13 LLMs.

CRUX

input
1,1,2…

PSEUDO

ALGO Oracle
int main()

output
Yes

input

output

solutions
int main()

X 10

Input Generator
def generator():

output

LCB

HT

Random Input Generator
Edge-case Generator

input

input

input

Random Input Generator
Edge-case Generator

Degrade

input validator

Execute Generated by Model

Truedef isValid():
    return bool

Figure 3: CRUX, PRESUDO, and ALGO construct the out-
put, while LCB and HT depend on the correct code to gen-
erate the output.

Methods Based on whether correct
code is available during generation,
methods can be categorized into two
classes. The first class does not rely
on correct code. CRUX (Gu et al.,
2024) directly generates inputs and
outputs. PSEUDO (Jiao et al., 2024)
generates both inputs and candidate
solutions, then obtains outputs by ex-
ecuting the solutions and taking the
majority-voted output as the result.
Going further, ALGO (Zhang et al.,
2023) prompts the LLM to produce
input generators (execute to obtain
inputs) and a brute-force oracle solu-
tion (lower the difficulty).

When the correct code is available,
output correctness can be guaranteed
by executing the inputs on it. Live-
CodeBench (LCB) (Jain et al., 2024)
requires LLM to generate both multi-
ple random and edge-case input gen-
erators. It should be noted that we
select one representative implemen-
tation for each category, and the other variants are in Appendix A.1.

3.1.2 PIPELINE & METRICS

Test Case Generation For each problem in TC-Bench, ATs are first generated by the evaluated
methods. For methods that do not rely on correct code, only cases accepted by all correct code are
considered valid. We define PassRate as the proportion of valid cases among all generated cases.
Formally, for a set of problems Q: PassRate = 1

|Q|
∑

qi∈Q

(
1

|Tqi
|
∑

tj∈Tqi
IsValid(tj)

)
, where

Tqi is ATs for problem qi, and IsValid(tj) is 1 if test tj is valid, and 0 otherwise.

Wrong Code Execution To measure the effectiveness of the valid ATs, we define HackRate. A
WC from TC-Bench is considered excluded if it fails on at least one valid AT. All failure types
(e.g., WA, Time Limit Exceeded (TLE), RE (Runtime Error)) are counted as successful exclu-
sion. The HackRate represents the proportion of WCs that are successfully excluded. Formally:
HackRate = 1

|Q|
∑

qi∈Q

(
1

|Wqi
|
∑

w∈Wqi
IsExcluded(w)

)
, where Wqi is WCs for problem qi,

and IsExcluded(w) is 1 if WC w is eliminated, and 0 otherwise.

3.2 RESULTS

Table 1 presents the results for various model and method combinations on TC-Bench.

TC-Bench Reveals a Significant Performance Ceiling for Current Technologies. Even the best-
performing combination, Claude-4 + HT, achieves less than 63%. This result strongly validates
that WrongSelect indeed selects a diverse and challenging error basis, revealing a performance gap
that would otherwise be masked in unfiltered benchmarks. This suggests that there is substantial
room for improvement in handling complex and diverse errors, and TC-Bench serves as a reliable
yardstick to measure this progress.

A High PassRate does not Equate to a High Hackrate. A high PassRate score can be hacked
by generating a large number of easy test cases. For instance, on Qwen2.5-32B and Deepseek-V3,
CRUX’s PassRate is significantly higher than ALGO’s, yet its Hackrate score is substantially lower.
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Table 1: Performance comparison for all evaluated model-method combinations. PR denotes Pass-
Rate and HR denotes HackRate. AC represents the percentage of non-excluded wrong codes. WA,
RE, and TLE are all considered exclusions and contribute to HR. PSEUDO of Qwen3 is anoma-
lous due to the API frequently returning empty or low-quality responses.

LLM Method PR AC WA RE TLE HR
Open Source

Qwen2.5-32B

CRUX 26.71 84.57 13.51 0.89 1.03 15.43
PSEUDO 35.04 79.52 18.59 1.02 0.78 20.38
ALGO 20.48 78.04 20.29 1.33 0.33 21.96
LCB 57.62 48.39 48.46 2.07 1.08 51.61
HT 65.46 69.27 29.17 1.22 0.34 30.73

Qwen2.5-Coder-32B

CRUX 22.68 81.27 16.31 0.91 1.51 18.73
PSEUDO 37.72 79.23 18.72 0.98 1.07 20.77
ALGO 21.33 81.41 17.27 0.85 0.46 18.59
LCB 59.65 41.90 54.90 2.21 0.98 58.10
HT 66.53 56.24 40.98 1.98 0.80 43.76

Deepseek-V3

CRUX 37.90 83.01 15.54 0.85 0.60 16.99
PSEUDO 19.58 88.32 10.97 0.37 0.34 11.68
ALGO 28.22 70.78 27.53 1.24 0.44 29.22
LCB 46.58 41.17 55.68 2.06 1.08 58.83
HT 63.51 50.58 46.34 2.05 1.03 49.42

Qwen3-235B-A22B

CRUX 26.30 69.10 27.14 1.76 2.00 30.90
PSEUDO 9.85 97.54 2.15 0.19 0.12 2.46
ALGO 25.90 70.23 27.84 1.28 0.65 29.77
LCB 70.40 54.03 41.25 2.40 2.32 45.97
HT 55.35 69.20 28.50 1.61 0.69 30.80

Qwen-Coder-Plus

CRUX 29.26 67.65 28.79 1.71 1.85 32.35
PSEUDO 40.15 67.11 29.57 1.45 1.87 32.89
ALGO 30.43 67.04 31.15 1.31 0.50 32.96
LCB 77.73 38.54 57.98 2.28 1.21 61.46
HT 67.28 46.93 50.06 2.09 0.92 53.07

Closed Source

GPT-4o

CRUX 42.43 70.77 26.25 1.46 1.52 29.23
PSEUDO 50.90 73.33 24.01 1.03 1.63 26.67
ALGO 24.43 75.51 22.87 0.97 0.65 24.49
LCB 68.51 42.45 52.68 2.66 2.21 57.55
HT 47.68 49.45 47.48 2.16 0.92 50.55

Claude4

CRUX 32.93 76.31 21.11 1.14 1.44 23.69
PSEUDO 64.72 63.97 32.35 1.23 2.45 36.03
ALGO 32.12 69.17 29.01 1.20 0.62 30.83
LCB 55.49 37.92 58.29 2.63 1.15 62.08
HT 71.56 37.04 58.58 2.86 1.53 62.96

Claude4-Thinking

CRUX 30.47 66.26 31.14 1.44 1.16 33.74
PSEUDO 23.56 85.98 12.84 0.51 0.67 14.02
ALGO 32.41 64.54 33.68 1.22 0.56 35.46
LCB 75.79 37.65 59.65 1.93 0.78 62.35
HT 71.24 39.69 57.26 2.08 0.97 60.31

The Impact of Methodology Far Outweighs That of the Base Model. The results consistently
show that the choice of method has a much greater impact on final performance than the scale or even
the source (open-source vs. closed-source) of the base model. For instance, while Qwen2.5-Coder-
32B has fewer parameters than the activated parameters of Deepseek-V3, their HackRate scores
with the LCB method differ by only 1%. In contrast, on Qwen2.5-Coder-32B, LCB’s HackRate is
nearly 40% higher than CRUX. Furthermore, we observe that top-performing open-source models
(e.g., Qwen-Coder-Plus) are competitive with leading closed-source models (e.g., the Claude4 se-
ries) across various methods. We hypothesize that this is because test case generation is a specialized
task that is underrepresented in existing large-scale code pre-training corpora, thus limiting the per-
formance gains through model scaling or a different training corpus. Further experimental analyses,
study on Test-Time Scaling, and a summary of common error patterns, are detailed in Appendix A.3.
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Figure 4: (a) Rank distribution of filtered WCs across methods. (b) Comparison of evaluation
results against TC-BENCH (Ours). (c) Normalized execution times of correct solutions, primarily
distributed below 0.2. (d) Sensitivity analysis showing stable PassRate and HackRate when filtering
with random subsets of 8 correct solutions.

4 DISCUSSION

Unfiltered and Heuristic Code Sets Lead to Biased Evaluation. To validate the impact of code
selection strategies, we conduct a rigorous comparison on a subset of 100 problems on Claude-4-
Thinking. We compare TC-Bench against three baselines: TCGBench Ma et al. (2025b) (denoted as
All WC), which uses the full set of wrong codes; TestCase-Eval Cao et al. (2025), which randomly
samples 20 codes; and TCG Yang et al. (2025), which selects 5 wrong codes from those passing at
least 60% of test cases. Unfiltered sets lead to score inflation. As shown in Figure 4 (a), the full
set leads to severe score inflation. For instance, LCB exhibits near-perfect performance (≈100%) on
All WC, whereas its score on TC-Bench drops to just over 50%. This inflation masks the method’s
incompetence on core, difficult error patterns. Crucially, TestCase-Eval exhibits scores and trends
highly similar to All WC across all methods. This indicates that naive random sampling, while
potentially reducing dataset size, fails to exclude redundant error patterns and thus cannot resolve
the issue of score inflation. Heuristic Selection results in under-representation. Conversely,
TCG yields significantly lower scores. While this might seem rigorous, our rank analysis reveals it
stems from insufficient coverage. In Figure 4 (b), the rank of the error space varies significantly per
problem. While most are below 20, some approach 30. TCG’s rigid limit of 5 codes forces a drastic
under-representation for high-complexity problems. While this lowers the performance scores of
current methods, it makes future methods prone to score inflation: they would only need to cover
a maximum subset of five patterns rather than the complete error space to achieve perfect scores.
In summary, TC-Bench strikes the optimal balance. By selecting a basis defined by the problem’s
intrinsic rank, it avoids both the inflation of coverage-based methods and the under-representation
of heuristic constraint methods, serving as a stable and fair test suite.

Rank serves as the Upper Bound for the Necessary Number of Test Cases. The row rank,
which represents the number of independent error patterns, equals the column rank, which represents
the number of independent diagnostic dimensions. In an error space defined by rank R, there are
only R linearly independent diagnostic dimensions. Any additional test case is merely a linear
combination of these basis dimensions and does not provide new information for distinguishing
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existing error patterns. Therefore, R test cases are sufficient to distinguish all error patterns, serving
as a compact upper bound. Consider a concrete example matrix with R = 3:

t1 t2 t3 t4
w1 1 0 1 0
w2 0 1 1 0
w3 0 1 1 0
w4 0 0 0 1

Here, columns t1 and t2 are linearly independent, but t3 is a linear combination (t3 = t1 + t2).
Any wrong code failing on t1 or t2 implies a predictable behavior on t3. Thus, t3 offers no new
diagnostic dimension. The set {t1, t2, t4} is sufficient to distinguish all unique error patterns. This
framework addresses a critical flaw in previous evaluations where the number of test cases was arbi-
trary. Consequently, problems with small diagnostic dimensions were often “over-tested,” inflating
scores, while complex problems were “under-tested.” Using Rank as the budget ensures fairness:
it allows simple problems to reveal performance gaps while ensuring complex problems are tested
with sufficient depth.

Correct Code Selection Influence Results. Unlike WCs, which have failure signatures, correct
codes all behave identically on GT, differing only in runtime and memory usage. This makes their se-
lection more subtle. Using only a single correct solution as a validator is insufficient. Certain invalid
input may still have an output under a specific code. Our initial exploration shows that as the number
of correct codes increases (as shown in Figure 8, more ATs are filtered, leading to higher HackRates.
However, not all filtering is beneficial. Many complex but valid ATs are wrongly discarded due to
timeouts by slow correct codes. Worse, such low-performance correct codes show inconsistency
across environments (different OJ platforms). Performance profiling reveals a highly skewed distri-
bution: most correct codes cluster in the top 20% after applying min–max normalization to runtimes
(Figure 4 (c)). These high-performance codes are stable across platforms. Consequently, we adopt
a biased random sampling strategy: for each problem, we retain only correct codes within the top
20% normalized runtime and randomly sample 8 from this set. Repeated experiments confirm that
this strategy yields highly stable evaluation outcomes ( Figure 4 (d)).

AT Uncover Latent Bugs Beyond GT. An interesting phenomenon emerged during evaluation:
some wrong codes labeled as Wrong Answer under GTs produce Runtime Error or Time Limit Error
when executed on ATs. To verify whether this is due to server overload, we conduct a controlled
experiment. We sample 350 WCs that exhibited RE/TLE and combined them with about 2.6k ran-
dom WCs. Running these on a 128-core machine, we gradually reduce concurrency from 128 to
88 tasks. The RE/TLE frequency remains nearly constant regardless of system load. This strongly
suggests that advanced methods are indeed capable of producing stricter and more challenging ATs
than official GTs, revealing hidden bugs related to performance and robustness.

5 CONCLUSION

Existing evaluation practices suffer from inflated scores and unclear principles regarding how many
codes and test cases are necessary. We addressed this gap by formalizing benchmark construction as
a binary-matrix rank problem, which jointly determines the minimal code basis and the upper bound
on test cases. To approximate its NP-hard solution, we introduced WrongSelect and applied it to
large-scale competitive programming data, resulting in TC-Bench, a compact and diverse diagnos-
tic benchmark. Experiments show that TC-Bench reveals substantial gaps in current methods and
provides a faithful foundation for advancing research on test case generation.
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A APPENDIX

A.1 RELATED WORK

Test Case Generation As private ground-truth test cases are scarce, researchers have turned to
LLMs for automatic test case generation.(Cook et al., 2025; Chen et al., 2025; Shi et al., 2025; Seed
et al., 2025; Fatemi et al., 2025; Ahmed et al., 2024; Yu et al., 2025b; Zhoubian et al., 2025; Lei
et al., 2024) Early work had models directly produce complete test cases, i.e., input-output pairs.(Gu
et al., 2024; Chen et al., 2023; Zeng et al., 2025b; Xu et al., 2025b; Payoungkhamdee et al., 2025),
However, because such outputs are often unreliable, Jiao et al. (2024); Li et al. (2023) let the model
generate both an input and a candidate solution, then execute the solution to derive the output. Other
methods introduced input generators to replace raw inputs (Jain et al., 2024; Cao et al., 2025; Xia
et al., 2025), or validators to enforce format and range constraints before execution (He et al., 2025;
Fu et al., 2025a). Some methods enhance the model’s ability to generate test cases through training,
such as via SFT (Supervised Fine-Tuning), RL(Reinforcement Learning)and other techniques. (Li
et al., 2025; Bai et al., 2025; Zhang et al., 2024; Wang et al., 2025a) Most recently, multi-round
generation and execution feedback has led test case generation to agent workflows (Wang et al.,
2025c; Da et al., 2025; Ye et al., 2025; Zhang et al., 2025; Yu et al., 2025a; Huang et al., 2024).

Test Case Evaluation Evaluation originally followed traditional software testing, emphasizing
coverage and distinguishing between buggy and fixed code. (Xu et al., 2025a; Yu et al., 2025c)
SWT-Bench (Mündler et al., 2025) and TestGenEval (Jain et al., 2025) transform from SWE-
Bench (Jimenez et al., 2024), providing buggy implementations and their corresponding fixes. Oth-
ers extend beyond single languages or update to recent codebases. For algorithmic problems, TestE-
val collected 210 problems but still relied on coverage metrics. More recent works shifted toward
end-to-end evaluation with large collections of correct and wrong submissions, measuring how often
generated test cases exclude incorrect code. (Ma et al., 2025a; Yang et al., 2025; Wang et al., 2025b)
However, these approaches either rely on ad-hoc manual selection or expand code sets without se-
lection or analysis. TC-Bench is the first to study how many codes and test cases are sufficient, and
provides a principled, efficient evaluation framework.

Code-Test Matrix CodeT Chen et al. (2023) and B4 Chen et al. (2024) share the concept of using
execution results on test cases (the Code-Test Matrix) as behavioral signatures. CodeT assumes
correct code behaviors are consistent while incorrect results are diverse, utilizing signatures for
clustering to select a consensus set. B4 calculates the probability of observing the matrix to select the
most likely correct cluster. However, these methods aim for solution selection where the correctness
of code and tests is unknown, utilizing the matrix primarily for signature matching or probabilistic
modeling. In their context, the algebraic rank and basis are not the primary interpretative tools. In
contrast, TC-Bench operates on ground truth with guaranteed correct tests and wrong codes. We
view the matrix as a complete Error Space and apply linear algebra operations to calculate the Rank
and Basis, representing this error space most efficiently.
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A.2 WRONGSELECT

Algorithm 1 WrongSelect
1: Input: Raw matrix M, filter threshold τ , restart count E, local search step K
2: Output: The optimal basis I∗
3: ▷ Phase 1: Principled Pre-filtering
4: M′ ← Filter(M, τ)
5: R′ ← rank(M′)
6: I∗ ← ∅
7: Fmin ←∞
8: ▷ Phase 2: Random-Restart Local Search
9: for i = 1 to E do

10: Icurrent ← RandomBasis(M′, R′) ▷ Generate a random initial basis
11: Fcurrent ← F (Icurrent)
12: for j = 1 to K do
13: Ibest neighbor ← Icurrent
14: Fbest neighbor ← Fcurrent
15: for each rin ∈M′ \ Icurrent and each rout ∈ Icurrent do
16: Itemp ← (Icurrent \ {rout}) ∪ {rin} ▷ Traverse each neighbor
17: if rank(Itemp) = R′ then
18: if F (Itemp) < Fbest neighbor then
19: Ibest neighbor ← Itemp
20: Fbest neighbor ← F (Itemp)
21: end if
22: end if
23: end for
24: if Fbest neighbor < Fcurrent then ▷ Move to the best neighbor
25: Icurrent ← Ibest neighbor
26: Fcurrent ← Fbest neighbor
27: else
28: break ▷ Local optimum reached, exit inner loop
29: end if
30: end for
31: if Fcurrent < Fmin then
32: Fmin ← Fcurrent
33: I∗ ← Icurrent
34: end if
35: end for
36:
37: return I∗

Phase 2 in Algorithm 1 illustrates the pseudo code. The algorithm consists of two nested loops:
the outer loop explores multiple random starting points to ensure global search breadth, while the
inner loop refines each starting point to a local optimum, ensuring local search depth. Given the
pre-filtered matrix M′, each outer iteration begins by generating a random initial basis Icurrent.
The inner loop then iteratively improves this basis. In each iteration, the algorithm systematically
explores the neighborhood of the current basis: a neighbor basis is obtained by swapping one mem-
ber inside the basis with one outside, while maintaining the same rank. We compute the average
Jaccard similarity F (Itemp) for each neighbor. If the best neighbor Ibest neighbor is superior to the
current solution, Icurrent is updated accordingly, and the process continues. Otherwise, when no
better neighbor exists, the algorithm concludes that a local optimum has been reached and the inner
loop terminates. After each outer iteration, the current basis is compared with the best basis found
so far, and the best is updated if necessary. The outer loop repeats this procedure from multiple ran-
dom initializations, and finally, the best basis across all runs is returned as the approximate global
optimum.
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Table 2: Model Performance Comparison
LLM Method PR AC WA RE TLE HR

Qwen2.5-7B

Crux 26.86 81.44 16.14 0.89 1.53 18.56
PSEUDO 9.52 98.86 1.06 0.05 0.04 1.14
ALGO 12.37 89.61 9.25 0.67 0.46 10.39
LCB 42.38 52.46 43.69 2.29 1.56 47.54
HT 58.51 68.78 28.66 1.53 1.03 31.22

Qwen2.5-14B

Crux 29.12 81.22 16.36 1.00 1.42 18.78
PSEUDO 14.97 93.92 5.30 0.32 0.46 6.08
ALGO 19.82 86.91 11.82 0.71 0.56 13.09
LCB 49.71 49.65 46.63 2.17 1.55 50.35
HT 70.79 64.23 33.83 1.29 0.64 35.77

Qwen2.5-Coder-7B

Crux 33.13 80.53 17.15 1.15 1.18 19.47
PSEUDO 16.49 88.65 10.31 0.55 0.50 11.35
ALGO 14.27 92.80 6.62 0.40 0.17 7.20
LCB 41.94 57.83 39.02 1.92 1.23 42.17
HT 71.02 78.08 20.47 0.97 0.48 21.92

Qwen2.5-Coder-14B

Crux 26.18 81.27 16.44 1.05 1.24 18.73
PSEUDO 10.32 95.46 4.16 0.28 0.10 4.54
ALGO 27.92 95.45 4.20 0.22 0.13 4.55
LCB 51.87 46.05 49.95 2.34 1.66 53.95
HT 73.07 68.45 29.75 1.21 0.58 31.55

A.3 MAIN RESULTS

The Usage of Correct Code is a Performance Watershed. Across nearly all models, methods
that rely on correct code (LCB, HT) significantly outperform those that do not (CRUX, PSEUDO,
ALGO) on HackRate. Although methods like PSEUDO and ALGO attempt to ensure correctness
by having the LLM generate its own solution (or even a simpler brute-force one), the success of this
process is constrained by the LLMs’ own problem-solving capabilities. When the model generates
an incorrect solution, it not only fails to generate complex test cases, but even simple ones are filtered
out due to incorrect outputs. All this leads to a low PassRate, which in turn severely impacts the
Hackrate. Their performance is sometimes even worse than the simplest CRUX method.

Performance Gains Primarily Come From WA. Through a fine-grained analysis of exclusion
reasons, we find that the primary performance gain from advanced methods with specific edge case
generators, such as LCB and HT, comes from a significantly improved WA exclusion rate. For error
types like RE and TLE, scores do not show a significant gap compared to simpler methods like
CRUX. This suggests that the core advantage of current SOTA methods lies in generating ingenious
test cases that probe for algorithmic logic flaws. Crafting test cases that effectively trigger robustness
failures may be a different, and perhaps a more difficult challenge.

Implementation Details Significantly Impact Final Performance. Although the five methods
are conceptually progressive, specific implementation details, such as prompts and pipelines, can
cause substantial performance variations. The concepts of ALGO and PSEUDO are similar, but
ALGO simplifies the task by asking the model to generate a simpler brute-force solution. However,
PSEUDO often outperforms ALGO because it generates 10 solutions and uses a majority vote,
whereas ALGO generates only one. Similarly, although HT adds an input validator over LCB, it
underperforms on most models. We attribute this to implementation choices, such as allowing the
edge case generator to return empty and providing simpler few-shot examples, which may lead the
model to “get lazy” and produce less complex test cases.

A.4 TEST TIME SCALING

To investigate the quantitative impact of increasing the number of test cases, we conduct a scaling
experiment. For each problem, we used its rank R′ as the base number of test cases (1x) and
proportionally scaled this number up to 5x, observing the trend in HackRate.
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Figure 5: Results of test case scaling for each model and method. The x-axis represents the number
of test cases, scaled as multiples of the problem’s rank from 1x to 5x.

The addition of test cases exhibits significant diminishing returns. As shown in Figure 5, the
gain from scaling from 1x to 2x is the most significant across all combinations. As the number
increases from 3x to 5x, the performance curves generally begin to flatten, or even saturate. This
suggests that blindly and massively increasing the number of test cases is an inefficient strategy.
After covering the regular error patterns, additional test cases are likely just re-validating known
failures rather than uncovering new, deeper defects.

The relative performance ranking among methods remains highly stable across all scales.
Crucially, this experiment validates the effectiveness of setting the base number of test case as the
problem’s rank R′. While increasing the number of test cases does improve HackRate, the perfor-
mance curves for each method almost never intersect. For instance, for Deepseek-V3 and GPT-4o,
the five methods are well-separated. This stability demonstrates that TC-Bench, is already an ef-
ficient and reliable benchmark for differentiating the performance of various test case generation
methods. It successfully captures the core discriminative power of different methods without incur-
ring the high computational cost of scaling.

The core conclusions from our main experiments demonstrate good scale-invariance. Finally, this
scaling experiment further reinforces the core findings from our main experiments. For example, the
performance gap between methods that rely on correct code (LCB, HT) and those that do not remains
significant at all test case scales. Similarly, the impact of methodology continues to outweigh that
of the base model.

A.5 COMMON FAILURE

To better understand the causes behind low scores, we conducted a qualitative analysis of failed
generations and identified three major systematic shortcomings.

Task Confusion and Instruction-Following Failures When prompted to generate test cases,
many LLMs instead output complete solutions to the problem. This issue is particularly common
when both test cases and solutions are requested together. We hypothesize that this stems from the
infrequency of test-case generation tasks in training data and weakened instruction-following abil-
ity after long-cot training (Fu et al., 2025b). DeepSeek-R1 exhibited this issue most severely. As
shown in Figure 6, within CRUX and PSEUDO, 74% and 60% of its outputs, respectively, are direct
solution code rather than valid test cases. Among the remaining outputs, many are unusable due
to formatting errors, such as embedding executable code inside JSON. Because the extractable test
cases are too few, R1 is excluded from the main experiments. This finding highlights that successful
test-case generation requires not only strong reasoning ability, but also precise task comprehension
and robust formatting control.
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To solve this problem, we need to determine the 
number of players observed by each observer placed at 
different nodes in a tree. Each player starts at their 
respective starting node and moves along the shortest 
path to their destination node at a speed of one edge 
per second. An observer at node \( j \) observes players 
who arrive exactly at \( W_j \) seconds. The solution 
involves efficiently counting the players who pass 
through each node \( j \) at exactly \( W_j \) seconds.
### Solution Code
```python
import sys
sys.setrecursionlimit(500000)

def main():
    data = sys.stdin.read().split()
    if not data: 
        return
……

```json
{
  "test_case_0": "7\n1 1 2 1 4 6\n5\n3 4 6\n1 
5 7\n1 2 4\n1 2 6\n1 3 5",
```

"test_case_9": "300000\n" + " 
".join(str(max(1, i-10)) for i in range(1, 
300000)) + "\n300000\n" + "\n".join(f"1 {i} 
{i+2}"for i in range(2, 300002))"

( c ) Direct Solution Code

( a ) Standard CRUX Response

( b ) Generate Testcase-Code

 Not TestCase but Solution Code

arr =[0] *n_val
arr_str =" ".join(map(str, arr))
op_lines =[]
forj inrange(n_val):
    op_lines.append(f"1 {n_val} {j}")
test_cases["test_case_5"] 
=f"{n_val}\n{arr_str}\n"+"\n".join(op_lines)

Figure 6: The figure shows the errors that occur in the direct generation of Testcases by models like
R1, using the CRUX and PRESUDO algorithms. Subfigure (a) shows the normal output, subfigure
(b) demonstrates the insertion of generated code or direct responses in the form of Testcase code
within a string, and subfigure (c) shows the model not following the Testcase generation instructions
and instead directly providing the solution.

Lack of Resource-Aware Generation Many problems require test cases at large boundary condi-
tions. As shown in Figure 7 a, we observe that numerous methods attempt to construct overly large
inputs (e.g., huge graph structures), leading to out-of-memory crashes or timeouts during execution.
This reveals a deeper limitation: while LLMs are proficient in generating algorithmic logic, they
lack awareness of physical execution constraints such as memory and runtime. A robust test-case
generation pipeline must therefore incorporate mechanisms like input partitioning or streaming to
adapt to limited system resources.

1

4

2

3

1

4

2

3

( b ) Valid Testcase ( c ) Invalid Generted by LLM( a ) Example of Memory Explosion

m_values =[1, 10, 100, 1000, 50000]
max_courses_values =[1, 5, 10, 100, 1000]
max_credits_values =[1, 2, 3]
max_effort_values =[1, 50, 100, 200]

for m in m_values:
    for max_courses in max_courses_values:
        for max_credits in max_credits_values:
            for max_effort in max_effort_values:
                construct_inputs()

Figure 7: Subfigure a shows that the memory explosion is caused by the model constructing an
excessively large number of functions during case generation. Subfigure b, c presents a failed case
where the model fails to construct a connected graph as required. The task specifies that all node 1
instances must be able to reach node n, but the constructed graph does not satisfy this connectivity
condition.
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Failure to Construct Required Complex Data Structures Some problems in our benchmark
admit only test cases with highly constrained structures. As shown in Figure 7 b, c, in one problem,
every valid input must be a specific type of connected graph. However, none of the tested methods
successfully produced even a single valid input. As a result, these problems ended up with zero
usable test cases. This underscores that generating high-difficulty test cases can be as challeng-
ing as solving an algorithmic problem, requiring a deep understanding of both data structures and
algorithms.

A.6 RESULTS OF SUPPLEMENTARY EXPERIMENTS
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Figure 8: The left subplot shows the interval count statistics and cumulative probability curve of the
time-normalized correct answers. In the right subplot, the Hackrate continuously increases as the
number of correct answers increases.
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Figure 9: The heuristic algorithm we designed converges at the eighth turn.
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Figure 10: Distribution of the number of WCs per problem before and after the WrongSelect. The
histogram (left) compares the initial count of WCs against the rank (i.e., the final count of WCs).
The cumulative distribution function (CDF) on the right further illustrates this shift. The results
demonstrate a dramatic reduction in the number of required codes, highlighting the compactness
and efficiency of our resulting benchmark.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

This article utilizes large language models (LLM) solely for writing refinement and graphic en-
hancement, with no other applications or purposes involved.
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B APPENDIX B

B.1 BENCHMARK CONSTRUCTION

This section will detail the process involved in constructing the dataset, including the repairing of
Wrong Codes, operations related to the clarity of problem statements, and statistical data.

B.1.1 WRONG CODE

Code Cleaning After processing the wrong codes in Section2.3, for all retained wrong codes, we
used public test cases for testing. For all execution results such as CE, TLE, MLE, EXE, as well as
codes that resulted in WA but with empty outputs, manual fixes and reviews were performed. As
shown in Figure 11, (a) illustrates a piece of unusable file operation code, in which the script does
not include the definitions of Fin and Fout. For this type of code, we removed the corresponding
file operations. The error in (b) arises because the unistd.h library already defines a function named
link array, which conflicts with the array link array defined in the code. (c) presents an example of
incomplete code that requires manual supplementation. To ensure consistency between the original
and the corrected code, after making modifications we tested the code using private test cases, with
the requirement that the test results remain consistent with the crawled results.

( a ) Unavailable file operation

( b )Standard library name conflict

( c ) Incomplete code

Undeclared function: Fin, Fout Manually complete the code

il void FILEIO(){

    #ifdef intLSY

        Fin("in.in");

    #endif

}

il void FILEIO( string pname ){

    #ifndef intLSY

            Fin((pname+".in").c_str());

            Fout((pname+".out").c_str());

    #endif

}

il void FILEIO_OICONTEST( string pname ){

    Fin((pname+".in").c_str());

    #ifndef intLSY

        Fout((pname+".out").c_str());

    #endif

}

# include<unistd.h>
 
int ch[maxn<<1][26], link_array[maxn<<1]
 
extern intlink_array(intoldfd, const char *oldpath,
    intnewfd, const char *newpath, intflags);

int main()

{

    n=qread(),m=qread();

    for(int i =1; i <=n; i++)

    {

        int cnt;

        cnt=qread();    

Figure 11: (a), (b), and (c) respectively present three examples that we encountered when repairing
Wrong Code.
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B.1.2 PROBLEM DESCRIPTION

Regarding the problem statement processing in Section2.3, this subsection provides detailed exam-
ples and explanations for problems that heavily rely on images and Special Judge problems.

For problem statements that rely on image-based understanding, such as Stars (see image in ref-
erence Figure12), the problem includes an image that is necessary for understanding in order to
generate test cases or solve the problem. We manually reviewed this type of problem statement, fil-
tered out the problems where images affected the understanding of the question, and deleted them.
In this step, we deleted a total of 71 problems.

Star
There are some stars in the sky, each with a different position, and each star has a 
coordinate. If a star has k stars in its lower-left (including directly left and directly below), 
we say that this star is of level k.

Given the positions of the stars, output the count of stars at each level.

For example, in the image below, star 5 is of level 3 
(because stars 1, 2, and 4 are in its lower-left), and stars 2 
and 4 are of level 1. In the example image, there is 1 star 
of level 0, 2 stars of level 1, 1 star of level 2, and 1 star of 
level 3.

Figure 12: This is an example of a problem that can only be solved with image understanding.

The problems with Special Judges involve multiple outputs, answer ranges, and interactive prob-
lems. In total, we removed 42 Special Judge problems. Ball Moving Game is an example with
multiple solutions, as shown clearly in Figure 13, which illustrates the existence of multiple an-
swers. Problems like Idea also explain that as long as the answer satisfies a certain range, it is
acceptable.

Ball Moving Game：

Little C is stuck, but he believes you can solve it. Please provide an operational plan to 
achieve Little C's goal. There may be multiple valid solutions, and you only need to 
provide one. The problem guarantees that there is always at least one valid solution.

Idea: 
For each output file, if more than 95% of the lines have an answer with an error of no more 
than 25% compared to the correct answer, you will receive a score. The error is considered 
to be within 25% if, for a correct answer X, your answer lies within the closed interval 
[0.8X, 1.25X] .

Figure 13: The image presents two examples of problems with multiple solutions. In the Ball
Moving Game, the same input can lead to various outputs, while in the Idea problem, the output
simply needs to fall within a given range.
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We also selected all interactive problems, such as the one shown in the reference, The Adventure
of Lord I, where the problem statement clearly states ”This is an interactive problem.” This type of
problem requires complex interactions and support, making it unfriendly for test case generation.

The Adventure of Lord I: 

This is an interactive problem.
During the evaluation, the interactive library will call the `explore` function exactly once.

It is guaranteed that the graph used in this problem is fully determined before the 
interaction begins and will not be dynamically constructed based on the interactions with 
your program. Therefore, the interactive operations in the problem are deterministic, and 
you do not need to worry about the specific implementation of these operations in the 
interactive library.
The data guarantees that the time required for the interactive library to run will not exceed 
1 second under the given call limits. The memory used by the interactive library is fixed 
and does not exceed 128MB.

Figure 14: The image illustrates an example of an interactive problem, which necessitates specific
and intricate interaction checks during evaluation. To streamline the evaluation process, we have
removed this part of the problem.
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Example of problem statement cleaning As shown in Figure15,the following is an example of
problem statement cleaning. For demonstration purposes, we have created a sample problem to
illustrate the main cleaning tasks. In this process, irrelevant background information is removed,
image links and other URLs are discarded, and the phrasing is made smoother. The data range is
kept to the most general case. These tasks typically do not follow a universal pattern and require
manual inspection. After cleaning the problem statement, we used GPT-4o for translation. In this
step, we organized each data entry and deleted 15 problems that were difficult to handle. Then
each translation was semantically proofread and certain inappropriate expressions were adjusted for
accuracy.The final processed problem statement can be found in next page

Tour de Byteotia

Background:
In the depths of a distant universe, there exists a kingdom surrounded by stars and 
brilliance—"The Kingdom of Stars." This kingdom is home to countless magical scholars 
who explore mysterious stellar trajectories and intertwined fates. One day, the scholars 
discovered an ancient prophecy foretelling that a broken constellation would bring about 
the end of the world. Only by gathering five lost stellar gems can this disaster be prevented. 
And you, the chosen hero, bear the  heavy responsibility of changing fate.
Problem Description:
Given an undirected graph with n vertices and m edges, determine the minimum number of 
edges to remove so that vertices numbered less than or equal to k do not appear on any 
simple cycle.
Input Format:
The first line contains three integers n , m , and k , representing n nodes, m edges, and k as 
described in the problem statement.
Output Format:
The first line contains one integer representing the minimum number of edges to be 
removed;
The following lines each output two positive integers a,b , representing the removal of the 
edge between a and b . Output the vertex with the smaller number first, then the vertex 
with the larger number.
Sample:
Input:
Output:
![](https://szkopul.edu.pl/problemset/problem/mormqC6WwjeIiBpSNMhVbHni/site/image
s/OI19/touzad1.gif)
Constraints and Hints:

For 40% of the data, n≤1000,m≤5000 .
For all data, 1≤n≤1,000,000,0≤m≤2,000,000,1≤k≤n,1≤u<v≤n .

#  Tour de Byteotia
Markdown Format

Remove Irrelevant Message

ADD Sample

Remove Fig, URL , HTML

General Description

Figure 15: To facilitate demonstration, we constructed an example of problem-statement cleaning,
in which the common cleaning procedures are integrated.
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Final problem statement:
# Tour de Byteotia

## Problem Description

Given an undirected graph with $n$ vertices and $m$ edges,
↪→ determine the minimum number of edges that need to be removed
↪→ so that all vertices with indices less than or equal to $k$
↪→ are not part of any simple cycle.

## Input Format

The first line contains three integers $n$, $m$, and $k$,
↪→ representing the number of vertices, the number of edges, and
↪→ the significance of $k$ as described in the problem
↪→ statement.

The next $m$ lines each contain two integers $u$ and $v$,
↪→ indicating a bidirectional edge between $u$ and $v$. There is
↪→ at most one edge between any pair of vertices.

## Output Format

The first line contains an integer $k$, representing the minimum
↪→ number of edges to be removed.

The next $k$ lines each contain two positive integers $a$ and $b$,
↪→ indicating the removal of an edge between $a$ and $b$. Output
↪→ the vertex with the smaller index first, followed by the
↪→ vertex with the larger index.

## Examples

### Input:
11 13 5
1 2
1 3
1 5
3 5
2 8
4 11
7 11
6 10
6 9
2 3
8 9
5 9
9 10

### Output:
3
2 3
5 9
3 5

## Data Range and Hints
For all data, $1 \le n \le 1,000,000$, $0 \le m \le 2,000,000$, $1

↪→ \le k \le n$, $1 \le u < v \le n$.
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C CASE STUDY

To demonstrate the practical effectiveness of our method, we conduct a case study on “Sliding
Window”, a classic problem requiring the Monotonic Queue algorithm. The problem involves an
integer array of length N(≤ 106) and a window of size K(≤ 106). The window slides from the
leftmost to the rightmost of the array, moving one position at a time. The goal is to determine the
maximum and minimum values within the window at each step. The output requires two lines: the
sequence of minimums followed by the sequence of maximums.

The optimal solution employs a Monotonic Queue to achieve a time complexity of O(N). Specif-
ically, to calculate the maximums, we maintain a monotonically decreasing queue that stores array
indices. As we iterate through each element in the array, we first pop the elements at the back of
the queue if their corresponding values are less than or equal to the current element. This is because
these smaller and older elements can never serve as the maximum for future windows. Next, the
current index is pushed to the back. Then, the front of the queue is popped if its index is out of
the current window scope. Finally, the value corresponding to the index at the front of the queue
represents the maximum of the current window. The minimums are calculated analogously by main-
taining a monotonically increasing queue. The standard solution is shown below.

Standard Solution

#include<bits/stdc++.h>
using namespace std;
int n , a[1000005] , k ;
deque<int>q ;
int main() {
cin >> n >> k ;
for (int i = 1 ; i <= n ; i ++) {
cin >> a[i] ;

}
for (int i = 1 ; i <= n ; i ++) {
while(!q.empty() && a[i] < a[q.back()]) {
q.pop_back() ;

}
q.push_back(i) ;
if(q.front() < i - k + 1) {
q.pop_front() ;

}
if(i >= k) cout << a[q.front()] << " " ;

}
cout << endl ;
q.clear() ;
for (int i = 1 ; i <= n ; i ++) {
while(!q.empty() && a[i] > a[q.back()]) {
q.pop_back() ;

}
q.push_back(i) ;
if(q.front() < i - k + 1) {
q.pop_front() ;

}
if(i >= k) cout << a[q.front()] << " " ;

}
}
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Initially, this problem involves 96 Wrong Codes (WCs). After applying WrongSelect, only 8 basic
WCs are retained. Their failure signatures are presented below:

I∗ =



0 0 0 0 0 0 0 1 1 0
1 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 1
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0


C.1 BASIC WRONG CODES

We meticulously analyze the retained Basic WCs and characterize their underlying error patterns.

Basic WC1 fails due to insufficient memory allocation for the queue array, where the size is set to
510,000 instead of the required 1,000,010.

Basic WC1 (0000000110)

#include<cstdio>
#include<cstring>
using namespace std;
struct node {
int x,p;

}

list1[510000],list2[510000];// Should expand 510000 to 1010000

int a[510000],n,m;
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
int head=1,tail=1;
list1[1].x=a[1];
list1[1].p=1;
for (int i=2;i<=n;i++) {
while(head<=tail&&i-list1[head].p>=m)head++;
while(head<=tail&&list1[tail].x>=a[i])tail--;
list1[++tail].x=a[i],list1[tail].p=i;
if(i>=m)printf("%d ",list1[head].x);

}
printf("\n");
head=1,tail=1;
list2[1].x=a[1];
list2[1].p=1;
for (int i=2;i<=n;i++) {
while(head<=tail&&i-list2[head].p>=m)head++;
while(head<=tail&&list2[tail].x<a[i])tail--;
list2[++tail].x=a[i],list2[tail].p=i;
if(i>=m)printf("%d ",list2[head].x);

}
}
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Basic WC2 exhibits an incorrect order of operations where the answer is retrieved before updating
the tail with the current element, causing the current element to be ignored in every window.

Basic WC2 (1111001111)

#include<bits/stdc++.h>
#define ll long long
#define inf 2139062143
#define MAXN 1001000
using namespace std;
inline int read() {
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)) {
if(ch==’-’) f=-1;
ch=getchar();

}
while(isdigit(ch)) {
x=x*10+ch-’0’,ch=getchar();

}
return x*f;

}
int n,m,q[MAXN][2],hd[2],tl[2],a[MAXN],ans[MAXN][2];
int main() {
n=read(),m=read();
hd[0]=hd[1]=1;
for (int i=1;i<=n;i++) {
a[i]=read();

while(hd[0]<=tl[0]\&\&q[hd[0]][0]<=i-m) hd[0]++;
// Swap the order of yellow and red.

ans[i][0]=a[q[hd[0]][0]];

while(hd[0]<=tl[0]&&a[q[tl[0]][0]]>=a[i]) tl[0]--;

q[++tl[0]][0]=i;

while(hd[1]<=tl[1]&&q[hd[1]][1]<=i-m) hd[1]++;
// Swap the order of yellow and red.

ans[i][1]=a[q[hd[1]][1]];

while(hd[1]<=tl[1]&&a[q[tl[1]][1]]<=a[i]) tl[1]--;

q[++tl[1]][1]=i;

}
for (int i=m;i<n;i++) printf("%d ",ans[i][0]);
printf("%d\n",ans[n][0]);
for (int i=m;i<n;i++) printf("%d ",ans[i][1]);
printf("%d",ans[n][1]);

}
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Distinct from the queue error in Basic WC1, Basic WC3 allocates insufficient memory for the input
array using a size of 105 rather than the required 106.

Basic WC3 (0000001000)

#include<bits/stdc++.h>
using namespace std;
int n,k;
int tail,front;
struct node {
int pos,val;

}
q[100000010];

int a[100010]; // 100010 -> 1000010
int main() {
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++) {
scanf("%d",&a[i]);

}
front=1;
tail=1;
q[1].val=a[1];
q[1].pos=1;
for (int i=2;i<=n;i++) {
while (tail>=front && q[tail].val>=a[i]) tail--;
q[++tail].val=a[i];
q[tail].pos=i;
while (q[tail].pos-q[front].pos+1>k) front++;
if (i>=k) cout<<q[front].val<<" ";

}
cout<<endl;
front=1;
tail=1;
q[1].val=a[1];
q[1].pos=1;
for (int i=2;i<=n;i++) {
while (tail>=front && q[tail].val<=a[i]) tail--;
q[++tail].val=a[i];
q[tail].pos=i;
while (q[tail].pos-q[front].pos+1>k) front++;
if (i>=k) cout<<q[front].val<<" ";

}
}
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Basic WC4 contains a subtle logic error in queue maintenance by performing an unnecessary and
erroneous comparison with the head element while updating the tail. This additional operation pre-
vents current elements from entering the queue, causing the queue to potentially become empty
during the sliding process. In this state, accessing q1.top() triggers undefined behavior, retriev-
ing residual garbage data from the underlying memory address.

Basic WC4 (0001001011)

#include <bits/stdc++.h>
using namespace std;
struct node {
int x,bh;
friend bool operator < (node x,node y) {return x.x>y.x;}

} a[1000001];
struct node1 {
int x,bh;
friend bool operator < (node1 x,node1 y) {return x.x<y.x;}

} a2[1000001];
priority_queue<node> q1;
priority_queue<node1> q2;
int n,k;
inline int read() {...}
inline void write(int x) {...}
int main() {
int i;
n=read();
k=read();
int tail=2;
int head=k+1;
for (i=1;i<=n;i++) a[i].x=a2[i].x=read(),a[i].bh=a2[i].bh=

↪→ i;
for (i=1;i<=k;i++) q1.push(a[i]),q2.push(a2[i]);
write(q1.top().x);
printf(" ");
for (;head<=n;tail++,head++) {
while(q1.top().bh<tail && !q1.empty()) q1.pop();
// remove

if(q1.top().x>=a[head].x) q1.push(a[head]);

write(q1.top().x);
printf(" ");

}
printf("\n");

tail=2;
head=k+1;
write(q2.top().x);
printf(" ");
for (;head<=n;tail++,head++) {
while(q2.top().bh<tail && !q2.empty()) q2.pop();
// remove

if(q2.top().x<=a[head].x) q2.push(a2[head]);

write(q2.top().x);
printf(" ");

}
}

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Basic WC5 represents a scope error where the head and tail pointers of the queue are incorrectly
re-initialized inside the loop.

Basic WC5 (0001000010)

#include <stdio.h>
#include <stdlib.h>
#define Z 1000001
int main() {
int i,le=0,ri=1;
int m,n;
int *da=(int*)malloc(sizeof(int)*Z);
int *max=(int*)malloc(sizeof(int)*Z);
int *min=(int*)malloc(sizeof(int)*Z);
int *id=(int*)malloc(sizeof(int)*Z);
scanf("%d",&m);
scanf("%d",&n);
for (i=1;i<=m;i++) {
scanf("%d",&da[i]);

}
for (i=1;i<=m;i++) {
while(le<=ri&&da[i]<min[ri]) {
ri--;

}
ri++;
min[ri]=da[i];
id[ri]=i;
if(id[le]+n<=i) {
le++;

}
if(i>=n) {
printf("%d ",min[le]);

}
}
printf("\n");
for (i=1;i<=m;i++) {

le=0; // Move outside the loop

ri=1;
while(le<=ri&&da[i]>max[ri]) {
ri--;

}
ri++;
max[ri]=da[i];
id[ri]=i;
if(id[le]+n<=i) {
le++;

}
if(i>=n) {
printf("%d ",max[le]);

}
}
return 0;

}
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Basic WC6 attempts a Sparse Table (ST) optimization but fails due to an implementation error where
the allocated table size is too small for the problem constraints.

Basic WC6 (0000010101)

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6;

int st[N][18] ,a[N],p[N]; // 18 -> 20
int maxx[N],minn[N];
int n,k,le,ri;
void init() {
for (int j = 1; j< 18; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = max(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
void init1() {
for (int j = 1; j< 18; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = min(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
int rmq(int l,int r) {
int d = r - l + 1;
return max(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int rmq1(int l,int r) {
int d = r - l + 1;
return min(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int main() {
scanf("%d%d",&n,&k);
for (int i = 1; i<=n; i++) {
scanf("%d",&a[i]);
st[i][0] = a[i];

}
init1();
for (int i = 1; i<=n; i++) {
p[i] = p[i-1];
if(i == 1<<p[i] + 1)

++p[i];
}
for (int i = 1; i<=n - k+ 1; i++)

minn[i] = rmq1(i,i + k -1);
for (int i = 1; i<=n - k + 1; i++)

cout<<minn[i]<<" ";
printf("\n");

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Basic WC7 attempts to fix the boundary error seen in Basic WC6 by incrementing the Sparse Table
size by 1, yet it remains insufficient for the maximum constraint.

Basic WC7 (0000000100)

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6;

int st[N][19] ,a[N],p[N]; // 19 -> 20
int maxx[N],minn[N];
int n,k,le,ri;
void init() {
for (int j = 1; j< 19; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = max(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
void init1() {
for (int j = 1; j< 19; j++)

for (int i = 1; i<=n&& i + ( 1 << j) - 1<=n; ++i)
st[i][j] = min(st[i][j - 1],st[i + (1<<j - 1)][j -

↪→ 1]);
}
int rmq(int l,int r) {
int d = r - l + 1;
return max(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int rmq1(int l,int r) {
int d = r - l + 1;
return min(st[l][p[d]],st[r - (1<<p[d]) + 1][p[d]]);

}
int main() {
scanf("%d%d",&n,&k);
for (int i = 1; i<=n; i++) {
scanf("%d",&a[i]);
st[i][0] = a[i];

}
init1();
for (int i = 1; i<=n; i++) {
p[i] = p[i-1];
if(i == 1<<p[i] + 1)

++p[i];
}
for (int i = 1; i<=n - k+ 1; i++)

minn[i] = rmq1(i,i + k -1);
for (int i = 1; i<=n - k + 1; i++)

cout<<minn[i]<<" ";
printf("\n");
init();
for (int i = 1; i<=n; i++)

st[i][0] = a[i];
for (int i = 1; i<=n - k + 1; i++)
maxx[i] = rmq(i,i + k - 1);
for (int i = 1; i<=n - k + 1; i++)

cout<<maxx[i]<<" ";
return 0;

}
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Basic WC8 incorrectly updates the head pointer instead of the tail pointer during the first element’s
insertion. Additionally, it omits the insertion of the first element when initializing the second queue.

Basic WC8 (1100000000)

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+3;
int n,k;
int a[N];
int h=0,t=-1;
int q[N];
int main() {
cin>>n>>k;
for (int i=1;i<=n;i++) {
cin>>a[i];

}

q[++h]=1; // q[++t]=1

for (int i=2;i<=n;i++) {
while(i-k+1>q[h]&&h<=t)h++;
while(h<=t&&a[i]<=a[q[t]])--t;
q[++t]=i;
if(i>=k)cout<<a[q[h]]<<" ";

}
cout<<endl;
h=0,t=-1;

// add q[++t]=1

for (int i=2;i<=n;i++) {
while(i-k+1>q[h]&&h<=t)h++;
while(h<=t&&a[i]>=a[q[t]])--t;
q[++t]=i;
if(i>=k)cout<<a[q[h]]<<" ";

}
return 0;

}

The eight Basic WCs effectively map to the specific requirements of data structures and algorithms
inherent to this problem. These error patterns include resource allocation for different variables, as
well as the position, order, and conditions for queue initialization and maintenance.

On one hand, Basic WCs cover boundary constraints across different variables and granularities. For
instance, Basic WC3 represents a resource error in the input array while Basic WC1, Basic WC6,
and Basic WC7 target the queue. Specifically, the internal hierarchy among Basic WC1, Basic
WC6, and Basic WC7 introduces a tiered validation mechanism. A less advanced test case gener-
ator, which could produce medium-scale inputs but struggles with maximum constraints, can still
identify Basic WC1 and receive partial credit. This effectively avoids the “all-or-nothing” scoring
trap, ensuring that the benchmark gives non-zero scores to generators that possess intermediate ca-
pabilities. Conversely, only top-tier generators that hit the absolute maximum boundary can exclude
all these Basic WCs to achieve a perfect score.

On the other hand, the basis preserves logic specificities. Basic WC5 incorrectly re-initializes queue
pointers inside the loop, causing the state of the sliding window to be lost at every iteration. To
expose this, the test case generator must produce inputs where the window’s extremum is deter-
mined by a historical element rather than the current one, verifying the persistence of the queue.
Basic WC8 exhibits dual failures, specifically on the first element’s insertion and the second queue’s
initialization. This forces the generator to produce edge cases where the first element is the strict
maximum or minimum for the initial windows. By retaining these basic error patterns, TC-Bench
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ensures that the evaluation reflects a model’s ability to cover the entire spectrum of the solution
space.

C.2 EXCLUDED WRONG CODES

Following the analysis of the Basic WCs, we proceed to examine the Excluded WCs to verify
whether their error patterns are effectively encapsulated by the basis. We select Excluded WC1
as a representative example, whose failure signature is reconstructed by the combination of Basic
WC8 and Basic WC4. Excluded WC1 exhibits a classic Off-by-one boundary error. During the
sliding process, the code fails to timely pop the element exiting the window, causing the queue to
retain invalid, expired data throughout both the initialization and maintenance phases. Crucially, this
composite behavior is spanned by the basis. Basic WC8 precisely mirrors the initialization failure,
as it retains stale data from the first queue due to a missing head pointer update. Meanwhile, Basic
WC4 captures the maintenance failure, where additional comparison causes the queue to become
empty. In this state, accessing the queue retrieves residual garbage data from memory. Together,
these underlying mechanisms fully cover the error pattern of Excluded WC1.

Basic WC8 : 1 1 0 0 0 0 0 0 0 0

Basic WC4 : 0 0 0 1 0 0 1 0 1 1
Excluded WC1 : 1 1 0 1 0 0 1 0 1 1

Excluded WC1 (1101001011)

#include<bits/stdc++.h>
using namespace std;
const int N=1000005;
int a,b;
int g[N],num[N],q[N],f1[N],f2[N];
int main() {
scanf("%d%d",&a,&b);
for (int i=1;i<=a;i++) {
scanf("%d",&g[i]);

}
int head=1,tail=1;
for (int i=1;i<=a;i++) {

while(num[head]<i-b &&head<=tail) // i-b+1
head++;

while(g[i]<=q[tail]&&head<=tail) tail--;
num[++tail]=i;
q[tail]=g[i];
f1[i]=q[head];

}
head=1,tail=0;
for (int i=1;i<=a;i++) {
while(num[head]<i-b+1&&head<=tail) head++;
while(g[i]>=q[tail]&&head<=tail) tail--;
num[++tail]=i;
q[tail]=g[i];
f2[i]=q[head];

}
for (int i=b;i<=a;i++) cout<<f1[i]<<" ";
cout<<endl;
for (int i=b;i<=a;i++) cout<<f2[i]<<" ";
cout<<endl;
return 0;

}
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Similarly, we analyze Excluded WC2, whose failure signature corresponds to the combination of
Basic WC8 and Basic WC5. Excluded WC2 contains a boundary error in the monotonic queue
maintenance. By using the fixed condition t¿=1 instead of the dynamic h¡=t, the tail pointer can
incorrectly decrement past the head pointer, violating the valid window scope and accessing invalid
historical data. This error pattern is also effectively spanned by the basis. Basic WC8 captures the
initialization failure, where the pointers fail to correctly establish the queue’s start (updating head
instead of tail), reflecting the error’s mishandling of the absolute beginning. Basic WC5 captures the
scope maintenance failure, where the queue’s dynamic state is ignored (resetting pointers inside the
loop), mirroring how Excluded WC2 ignores the dynamic head boundary and corrupts the persistent
state.

Basic WC5 : 0 0 0 1 0 0 0 0 1 0

Basic WC8 : 1 1 0 0 0 0 0 0 0 0
Excluded WC2 : 1 1 0 1 0 0 0 0 1 0

Excluded WC2 (1101000010)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e6+5;
int n,k,a[N],q[N],p[N];
int main() {
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
int h=1,t=0;
for (int i=1;i<=n;i++) {

while(q[t]>a[i]&& t>=1 ) t--;// t>=1 -> h<=t
q[++t]=a[i],p[t]=i;
while(p[h]<i-k+1&&h<=t) h++;
if(i>=k) printf("%d ",q[h]);

}
memset(q,0,sizeof(q));
memset(p,0,sizeof(p));
cout<<endl;
h=1,t=0;
for (int i=1;i<=n;i++) {

while(q[t]<a[i]&& t>=1 ) t--;// t>=1 -> h<=t
q[++t]=a[i],p[t]=i;
while(p[h]<i-k+1&&h<=t) h++;
if(i>=k) printf("%d ",q[h]);

}
return 0;

}
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C.3 REPEATED WRONG CODES

Finally, we verified whether identical failure signatures indeed correspond to semantically equivalent
error patterns. We selected a cluster of Repeated WCs sharing the binary signature 00010001110.

We specifically examine the representative example, Repeated WC1, shown below. This code ex-
hibits a logic flaw during the queue maintenance phase: when inserting the current integer, the code
compares it against the queue head rather than the queue tail. In a monotonic queue, the tail ele-
ments must be compared and popped to maintain monotonicity. Comparing against the head (which
typically holds the window’s extremum) creates an irrelevant condition. Consequently, elements
that should have been removed remain in the queue, corrupting the window’s state.

We thoroughly inspected other WCs within this same signature cluster. While they exhibit syntactic
variations in implementation, we confirm that they all share the exact same root cause: the failure to
correctly remove invalid elements due to flawed comparison logic. This confirms that our signature-
based grouping effectively captures semantically similar faults. Due to space constraints, only key
segments of these Repeated WCs are presented below.

Repeated WC1 (0001001110)

#include<bits/stdc++.h>
#define maxn 1000010
using namespace std;
int pos[maxn],que[maxn];
int n,k;
int a[maxn];
int fminn[maxn],fmaxx[maxn];
void dpmin() {
int h = 1, t = 0;
for (int i = 1; i <= n; i ++) {
while (pos[h] < i - k + 1 && h <= t) ++ h;
while (que[t] > a[i] && h <= t) -- t;
que[++ t] = a[i], pos[t] = i;
fminn[i] = que[h];

}
}
void dpmax() {
int h = 1, t =0;
for (int i = 1; i <= n; i++) {
while (pos[h] < i - k + 1 && h <= t) ++ h;

while ( que[h] < a[i] && h <= t) -- t;// q[h] -> q[t]

que[++ t] = a[i] , pos[t] = i;
fmaxx[i] = que[h];

}
}
int main() {
scanf("%d%d",&n,&k);
for (int i = 1; i <= n; i ++) scanf("%d",&a[i]);
dpmin();
dpmax();
for (int i = k; i <= n; i ++) printf("%d ",fminn[i]);
printf("\n");
for (int i = k; i <= n; i ++) printf("%d ",fmaxx[i]);
printf("\n");
return 0;

}
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Repeated WC 2

// Boundary offset error
head = 1; tail = 0;
for (int i = 1; i <= n; ++i) {

while (head <= tail && i-k-1 ) head++;// Should be: i-k+1
while (head <= tail && a[q[tail]] <= a[i]) tail--;
q[++tail] = i;
if (i >= k) cout << a[q[head]] << " ";

}

Repeated WC 3

// Incorrectly checks queue tail (r) for expiration
for (int i=k;i<=n;i++) {
while(l<=r&&a[maxn[r]]<a[i]) r--;
r++;
maxn[r]=i;
while(l<=r && maxn[ r ] < i-k+1) l++; // Should be: maxn[l]
cout<<a[maxn[l]]<<" ";

}

Repeated WC 4

// Incorrectly accesses value array ’a’ instead of index
↪→ array ’b’

for (int i=1;i<=n;i++) {

if(hh<=tt&& a[b[hh]] <=i-k) { // Should be: b[hh]
hh++;

}
while(hh<=tt&&a[b[tt]]<=a[i]) {
tt--;

}

Repeated WC 5

// Incorrectly compares with queue front while updating tail
for (int i = 1; i <= n; i++) {

while (!q.empty() && a[ q.front() ] < a[i]) { // Should be:

↪→ q.back()
q.pop_back();

}
q.push_back(i);
if (i - q.front() >= m) {
q.pop_front();
}
if (i >= m) cout << a[q.front()] << " ";

}

C.4 DIAGNOSING REALISTIC SCENARIOS

To further verify the diagnostic value of our benchmark in a realistic setting, we conducted an
evaluation using the SOTA combination: Claude-4-Thinking with the LCB. We generated 40 test
cases. The results showed that the generated test suite successfully excluded 6 out of the 8 Basic
WCs but failed to expose Basic WC6 and Basic WC7. They are resource allocation errors requiring
queue capacities of approximately 3×105 and 1×106, respectively. Triggering these specific faults
requires forcing the monotonic queue to fill up to these limits. Mathematically, this demands a worst-
case scenario where both the window size K and the array length N approach 106, and crucially,
the input array must follow a specific monotonic pattern (e.g., strictly increasing or decreasing) to
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ensure enough elements are pushed into the queue. We manually inspected all 40 generated test
cases and confirmed that while the model generated large random arrays, it failed to construct this
specific, structurally extreme boundary case. This demonstrates that TC-Bench effectively points out
a specific weakness in current SOTA generation methods. Ultimately, this confirms that TC-Bench
significantly streamlines diagnostic analysis: by narrowing the analytical scope from the entire raw
dataset to a compact set of Basic WCs, it enables researchers to pinpoint model weaknesses through
just a few representative examples rather than sifting through massive redundancy.

This case study provides strong empirical evidence for the practical effectiveness of our method.
First, the retained Basic WCs are confirmed to be different error patterns. Second, the analysis
of Excluded WCs demonstrates that redundant codes are essentially composite errors. Third, the
inspection of Repeated WCs confirms that identical failure signatures reliably map to semantically
equivalent root causes, validating our signature-based grouping strategy. Fourth, the real-world
evaluation highlights the benchmark’s discriminative power. Collectively, these results affirm that
TC-Bench successfully constructs a compact, rigorous, and representative error space, capable of
delivering fine-grained and high-sensitivity evaluations for test case generation.
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