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ABSTRACT

Neural networks are not learning optimal decision boundaries. We show that de-
cision boundaries are situated in areas of low training data density. They are im-
pacted by few training samples which can easily lead to overfitting. We provide
a simple algorithm performing a weighted average of the prediction of a sam-
ple and its nearest neighbors’ (computed in latent space) leading to minor favor-
able outcomes for a variety of important measures for neural networks. In our
evaluation, we employ various self-trained and (state-of-the-art) pre-trained con-
volutional neural networks to show that our approach improves (i) resistance to
label noise, (ii) robustness against adversarial attacks, (iii) classification accuracy,
and yields novel means for (iv) interpretability. Our interpretability analysis is of
independent interest to the XAl community, as it is applicable to any network.
While improvements are not necessarily large in all four areas, our approach is
conceptually simple, i.e., improvements come without any modification to net-
work architecture, training procedure or dataset. Furthermore, our approach is in
stark contrast to prior works that often require trade-offs among the four objectives
combined with architectural adaptations or provide valuable, but non-actionable
insights. Finally, we provide a theoretical analysis.

1 INTRODUCTION

In the realm of machine learning, the decision boundary plays a crucial role in distinguishing be-
tween classes. Classes typically share certain characteristics and tend to form clusters. The decision
boundary is a hypersurface that partitions the input space into regions corresponding to different
classes. An optimal decision boundary implies an optimal classifier and vice versa. Simple classi-
fiers, such as support vector machines (SVMs), logistic regression, and k-nearest neighbors, often
generate simple decision boundaries (Cortes & Vapnikl [1995). On the other hand, deep neural net-
works (DNNs) have shown remarkable capabilities in learning feature hierarchies and capturing
complex, non-linear decision boundaries owing to their depth and non-linear activation functions
(LeCun et al.l 2015). They can be said to have revolutionized the field of computer vision and oth-
ers, leading to astonishing improvements in accuracy on multiple benchmarks. Still, these models
also suffer from weaknesses such as a lack of interpretability, lack of robustness as witnessed by
the effectiveness of adversarial samples (Goodfellow et al 2014). Many techniques that tackle the
problem of adversarial samples, interpretability, as well as improving handling of noisy labels come
with tradeoffs. That is, the pursuit of any of these goals often leads to lower accuracy or requires
altering training schemes, datasets, and architectures.

In this work, we propose a technique that should tackle all of these issues as illustrated in Table [T}
‘We combine the prediction of a pre-trained neural network of a sample to predict and the prediction
of the k-nearest neighbors (kNNs). We compute nearest neighbors (NNs) in latent space using layer
activations of a (pre-trained) classifier. We calculate a weighted average of the actual prediction and
those of NNs as final prediction (see Figure ).

This approach improves robustness against adversarial samples, interpretability, and handling noisy
samples without compromising performance of the classifier, i.e., we mostly improve it. It also
does not require altering a (pre-trained) classifier. However, obtaining kNNs is also computationally
expensive and our technique does also not fully address the desiderata (in Table [I), but rather it
marks a step forward. This, is still a major achievement given that other techniques require rather
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Figure 1: Method: The training data and the sample to infer is run through the classifier up to some
layer yielding an embedding to compute the KNNs. A weighted average of the last layer of the
sample to infer and the NN is used for prediction.

unpleasant trade-offs. Our work is also interesting as it sheds new insights on decision boundaries
and interpretability based on training data that are applicable even when kNNs are not employed
for predictions. We show that classifiers do generally not learn optimal decision boundaries (also)
due to the fact that these boundaries lie in areas of few training samples and thus naturally suffer
from overfitting. Predictions of samples near the decision boundary, i.e., samples in these sparse
areas, can benefit from using NNs. While we expect few (test) data in such sparse areas, differences
when altering the boundary using NNs can still be observed. Our work also allows a novel form of
simple contrastive analysis by focusing on instances, where adding NN actually caused a change in
prediction. As shown in our evaluation, this allows more easily to hypothesize what characteristics
are responsible for a decision and, thus, contributes to the field of explainability(XAI)(Longo et al.,
2024).

Table 1: Comparison to prior work
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2 METHOD

Our method is different from classical kNNs in three ways. First, we compute nearest neighbors
based on a latent representation given by layer activations rather than on input samples or final
outputs. Second, the prediction is a combination of the network output of the sample to predict
and its NNs, while for classical kNNs only the NNs are used to make a prediction. Third, the
combination is based on directly aggregating network outputs rather than performing a majority
vote of the classes of the KINNs.

Algorithm 1 LAtent-SEIf-kNN (LaSeNN)
Input: Classifier C, (training) data D, sample to predict z,

—_

||z —
Lp :=A{(Cy(xi), yi)|(zi,yi) € D}
NN (C,y(ay)) = n
:173 =w-C(xy) + (1 -w)- Exe}\”}:k =
Yp = argmax, xj > Predicted class is index o of “neuron” with maximal output

k-NNs of C.;(z4) in Lp using metric sim

2: Output: Prediction y,,

3 k=3 > number of NNs
4: w:=0.88 > weight of sample x,
5. j:=n—2 Layer index to obtain embeddings used for similarity computation for NNs
6: sim(z,z’) := 2'|[3 > similarity metric for NN
7:

8:

9:

_
e

The method is illustrated in Figure [T, More formal pseudocode is shown in Algorithm [I] called
“LAtent-SEIf-kNN”’(LaSeNN), since it combines the sample to predict and its NNs computing NNs
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based on similarity in latent space. We are given a classifier C = (L1, ..., L) consisting of N
layers, a training dataset D = {(x;, y;)7~ } and a query sample x, used for inference. We compute
the activations C.;(z;) of layer j for all samples in the training dataset and the sample for inference,
ie. 2 € {DU{z,}}. Then we compute the k-nearest neighbors NN (C.;(x4)) C D and, finally, a

weighted average
ZzGNNk C(x)

k

The underlying motivation is illustrated in Figure 3] Classes form dense clusters that are separated
by sparse space. The decision boundary runs through the sparse space. The exact location of the
boundary is heavily influenced by the samples in the sparse space and it likely overfits. Generally,
using NNs can lead to a smoother boundary that is simpler and less-prone to overfitting (see e.g.
textbooks like [Hastie et al.[(2009)).
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(a) Illustration of points of two classes above. The

histogram below shows the distribution of (length
of) projections onto the line connecting the cluster
centers for a VGG-13 trained on Cifar-10 using the
third last convolutional layer. It shows that NNs of
wrongly classified points are more often of the cor-

(b) Changes of predictions due to Algorithm
LaSeNN illustrated using the distribution of projec-
tions (see Figure 2a] — top panel) for a ResNet-34
trained on Imagenet using the layer (outputs) prior
to the last dense layer. It illustrates that changes oc-

rect class than not. cur mostly in lower density areas.

Figure 2: Comparison of VGG-13 on Cifar-10 and ResNet-34 on Imagenet using Nearest Neighbor-
based analysis.

Predictions for samples near any of the cluster centers are relatively far from the decision boundary
and bear little uncertainty and are likely correct. They are not impacted by our method, i.e., the
prediction using Algorithm [T] (LaSeNN) and the prediction of the network without using NN is
identical. However, predictions in the sparse space are potentially close to the decision boundary,
which is strongly influenced by a few samples. Using kNNs leads to changes to the boundary in
this space, i.e., a ‘novel’ decision boundary as illustrated conceptually in Figure 3] (Actual data
is shown in Figures [2a] and 2b]) As shown in Figure [2a] for a class ¢y we compute the mean of
class samples and find the class c¢; with the mean that is at minimum L2-distance. We then compute
the projection of points z onto the line connecting the centers, i.e. (x — ¢g) - (¢1 — ¢o) (based on
an ordinary dot product) and create histograms of the length of the projection. Figure 22 shows
that errors, i.e.,“confusion” of the two classes occurs primarily in areas of lower density. Figure [2b]
shows that changes of samples due to Algorithm LaSeNN also occur primarily in low density areas.
Furthermore, there are only relatively few changes, e.g., the dense areas containing most samples
are not impacted by our method, but only areas of low density. Note that Figure 2bhas a twin axis,
i.e., the left y-axis is for the distribution of class samples counts and the right one only for those
samples which prediction got changed due to the use of NN, i.e. Algorithm LaSeNN.

The returned NNs help to better understand classifier decisions, i.e., they are well-interpretable.
They indicate which samples of the training data contribute at least the fraction (1 — w) to the
decision, i.e., each classifier output of a NN has a weight of “Tw If the layer 1 is close to the output,
the NNs also resemble samples that are considered “very similar” by the classifier and therefore
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Figure 3: The decision boundary between two classes (solid green line) is influenced by a few
points in a sparse area. Using NNs (left panel) might lead to a smoother boundary in the sparse area
(compare left and right panel).

can help in understanding, which concepts are relevant (see concept-based XAl techniques such as
Schneider & Vlachos|(2022)). This can be leveraged in particularly, when class predictions change
due to NN as discussed in our evaluation.

3 EVALUATION

Our evaluation focuses on image classification using various classifiers and datasets. We do the
following:

* Assessing basic assumptions on distribution of layer activations (Section [3.2))

* Analyzing parameter sensitivity, e.g., impact of number of NNs and their weight on classi-
fier accuracy (Section [3.3)

* Robustness to adversarial samples (Section [3.3]) and label noise (Section [3.4)
* Discussing interpretability focusing on changes to predictions due to NNs (Section [3.6)

* Performance of Algorithm LaSeNN for unchanged, pre-trained classifiers on ImageNet

(Section

3.1 DATASETS, NETWORKS AND SETUP

Datasets used are CIFAR-10/100 (Krizhevsky & Hinton, [2009), scaled to 32x32, and Ima-
geNet (Deng et al.,|2009). As networks we used VGG (Simonyan & Zisserman), 2014), Resnet (He
et al.,[2016), MobileNetv3 (Howard et al.,[2019)) and ConvNext (Liu et al.l [2022) networks. We used
pre-trained networks from the Pytorch’s torchvision library v0.15 based on ImageNet (Deng et al.,
2009) ‘IMAGENET1KV1’. We trained multiple models on CIFAR-10/100 on our own. Training
was standard, i.e., stochastic gradient descent with momentum 0.9, batchsize 128, weight decay of
0.0005, no data augmentation and 80 epochs (starting from learning rate 0.11 and decaying it twice
by 0.1). We trained five networks for each configuration, i.e. hyperparameter setting and report
the mean and standard deviation of metrics. We employ two common targeted adversarial attacks
using the Pytorch Advertorch library with default parameters and targets being set to “(index of
ground truth class +1) modulo numberOfClasses”. Specifically, we use the PGD attack (Kurakin
et al.|[2016) and the Basic Iterative Attack(BIA) (Madry et al.,2018)) which is an iterative extension
of FGSM (Goodfellow et al., 2014). If not stated differently, we use Algorithm E] LaSeNN with
the stated parameters in the algorithm. For VGG-13, the third last convolutional layer as layer ¢ by
default, while for ResNet-10 we use the output of the second last ‘BasicBlock’.

3.2 DISTRIBUTION OF LAYER ACTIVATIONS

We aim to assess our assumption that layer activations of (most) samples of one class are closer
to each other than to those of other classes, or, put differently, (activations of) class samples form
clusters with dense centers that get increasingly sparse towards their boundary, i.e., Figure 3] shows
roughly Gaussian shape for the distribution of projections for each class. To verify this assumption,
we compute for each point x of the test set, the nearest neighbors N N (x) (for k = 3) in the training
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Table 2: Results for accuracy and adversarial att. on ImageNet

Net corr(P,avgL2) samePred avgL2.orr av9L2yrong aV9L2change
ResNet-34 -0.35 0.989 3.985 4.099 4.152
CoNexT-Tiny -0.49 0.993 1.434 1.565 1.663
MobileNetv3-Large -0.29 0.988 3.588 3.614 3.668

Table 3: Results for similarity metrics

Net Data Metric Acc. LaSeNN  Acc. Original A Acc
ResNet10 Cifar10 oo 08000 Oeatoor  0.000500
VGGI3  Cifarl0 Gl 0 oslesoo  0.0085000
ResNerl0 G100 0 (3T0my  omrstoor 001 oo
L2 0.51140.003 0.5054-0.002 0.006+0.0

VGGI3 Cifar-100 Cosine  0.522+0.003 0.505+£0.002 0.01740.001

dataset and compute (1) pureness P: number of samples within N Ny (x) that are of the same class
as x and (2) the average L2-distance avgL2 of the NNs to 1ﬂ

If our assumption is correct, we expect that density measured by average L2 distance (avgL2) and
pureness P are negatively correlated corr(P, avgL2) < 0, i.e., higher density is expected for points
of the same class (high pureness) and lower density for points of distinct classes(low pureness).
As shown in Table 2] the Pearson correlation yielded values between -0.29 to -0.49 for all pretrained
networks with p-values < 0.001. We also expect that most predictions remain unaltered due to using
Algorithm LaSeNN, which is confirmed in Table 2] showing that more than 98% of all samples yield
the same class prediction (samePred) if we compare the predictions of LaSeNN and the native
classifier. We also expect that the mean distance to neighbors is lower for correctly classified points
(since they are in dense areas near a center of a class) than for incorrectly classified samples (since
they are in sparser areas with samples of different classes), i.e., avgL2.op < aVgL24p0ng, Which is
also confirmed (see Table[2). We also expect that changes of class predictions due to LaSeNN occur
primarily in low density areas (e.g. for large mean distances), i.e., avgL2:hange > avgL2, which is
also confirmed.

3.3 PARAMETER SENSITIVITY

First, we assess the sensitivity to similarity metrics, i.e., we evaluate two common similarity met-
rics for high dimensional vectors: the (negative) L2-norm sim(z,x’) = —||z — 2'||3 and cosine
similarity sim(s,s’) = cosine(z,z’). Our evaluation shows that both lead to gains when using
NN but cosine leads to larger gains. This is expected since the space is relatively sparse (the Cifar
10/100 datasets are small with just 50k samples and the number of dimensions is large (at least 512
dimensions). In sparse spaces measures like cosine that neglect magnitude and are only concerned
with direction are more favorable. In turn, L2 is more adequate for dense spaces, i.e., large training
datasets — We used L2 for our benchmarks with Imagenet.

The outcomes for different layers ¢ are shown in Figure ] Using layers further from the output
though not too close to the input tends to lead to best results. These layer outputs still maintain
a significant amount of information about the input, i.e., are not too much tuned to be discrimina-
tive, while still capturing task specific aspects — as can be seen when comparing reconstruction and
classification losses (Schneider & Prabhushankar, [2024)). Given a network of sufficient capacity all
training samples will be perfectly classified after training, meaning they will have close to zero loss.
In turn, the output of the very last layer is similar for all samples of a class, e.g., samples cannot be
well discriminated using the final layer output.

In Table [5] we see that using NN in addition to the sample to classify leads to gains from 0.1% up
to about 3%. Gains are largest if the weight w of the sample to predict is about 75% and that of the
neighbors jointly only 25% though there is no strong sensitivity of the weight w. Using only NNs

"Distance to the kNN has been employed for density-based clustering, e.g., Schneider & Vlachos| (2017)
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Table 4: Results for layer ¢ used for similarity computation

Net Data Layer 4 Acc. LaSeNN  Acc. Original A Acc
prior to dense 0.85340.002 0.8524-0.002 0.040.0

ResNet-10  Cifar-10 prior to 4x4 pool 0.85440.002 0.8524-0.002 0.00240.0
prior to last block  0.864+0.004 0.85440.002 0.0140.002

prior to dense 0.817+0.001 0.81640.001 0.00140.0
. 2nd last conv 0.816+0.001 0.81640.001 -0.0014-0.001
VGGI3 Cifar-10- 4ih Tast cony 082540001  0.816+0001  0.008+0001
6th last conv 0.824+0.001 0.816+0.001 0.008-+0.002
prior to dense 0.581£0.001 0.57440.002 0.00740.002
ResNet-10  Cifar-100  prior to 4x4 pool 0.585+0.003 0.57540.002 0.0140.002
prior to last block  0.593+0.001 0.57440.002 0.01940.001
prior to dense 0.508+0.002 0.50540.002 0.003£0.001
e 2nd last conv 0.51840.002 0.505+0.002 0.01240.0
VGal13 Cifar-100 it tast conv 052240003  0.505+£0002  0.017+0001
6th last conv 0.518+0.003  0.505+£0.002  0.013+0.001
Table 5: Results for weight w
Net Data w Acc. LaSeNN  Acc. Original A Acc
0 0.85320.0 0.85210.0 0.001£0.0
0.52  0.854200 0.852-£0.0 0.001-£0.0
. 076  0.85420.0 0.85240.0 0.00240.0
ResNet-10 Cifar-10 ggg ('g5410002 085240002 0002400
094  0.854+0.0 0.8520.0 0.002+0.0
097  0.853200 0.852-0.0 0.001£0.0
0 0.799-+0.002 0.816+0.001 -0.01740.004
052 0.825-0.001 0.816£0.001  0.009-:0.002
. 076  0.83140.0 0.816£0.001  0.015:0.001
VGG13 Cifar-10 hgg  0.825+0001 081640001  0.008-0.001
0.94  0.821+0.001 0.816£0.001  0.004-£0.001
097  0.819-+0.001 0.816£0.001  0.002-£0.001
0 0.586£0.0 0.577£00 0.01£00
0.52  0.58620.0 0.577£0.0 0.009-£0.0
] . 0.76  0.58740.0 0.577400 0.012:00
ResNet-10 Cifar-100 gg ('S8510003 057540002 00140002
0.94  0.585+0.0 0.577£00 0.00820.0
097  0.58+£0.0 0.577+0.0 0.0040.0
0 0.448+0.003 0.505£0002  -0.058+0.004

0.52 0.5254-0.002 0.50540.002 0.0240.002
0.76  0.53640.002 0.50540.002 0.031£0.002
0.88  0.52240.003 0.505+0.002 0.017£0.001
094  0.51540.004 0.50540.002 0.01+0.002
0.97  0.51140.002 0.505+0.002 0.005+0.0

VGG13 Cifar-100

(instead of the sample to classify) can be much worse (i.e. for VGG13), but it can also be slightly
beneficial (e.g. for ResNet-10).

Considering the number of neighbors & (Table[7), we see that overall improvements are largest, if
just a single nearest neighbor is used. This is not surprising, since the space is sparse and, thus,
the larger k the more distant and dissimilar the neighbors become and the less valuable they are for
prediction, i.e., they are more likely of another class than the ground truth class.

3.4 NoisYy LABELS

Table [6] shows that using nearest neighbors leads to larger gains with growing noise, i.e., if we
permute an increasing fraction of labels in the training data and the classifier is trained on this noisy
data. This suggests that in latent space (induced by a classifier layer) training samples with permuted
(incorrect) label are still placed near samples of the correct label since they share similarities (beyond
the class label).

3.5 ROBUSTNESS TO ADVERSARIAL ATTACKS

In Table[§]we see that the difference between LaSeNN and the unmodified classifier is larger for both
of the targeted adversarial attacks indicating that our approach increases robustness to adversarial
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Table 6: Results for noisy labels

Net. Data  Perm. Acc. Acc. A Ace Table 7: Results for nearest neighbors %
labels LaSeNN Original
0.0 0.854+0.002 0.852£0.002 0.002=£0.0 Net, Data k Acc. Acc. A Acc
0.01 0841400  0.839+0.001 0.00240.0 LaSeNN Original
ResNet-10  0.04  0.807+00  0.80740.001 0.040.0 8 0.856+£0.003 0.854+0.002 0.00240.001
Cifar-10  0.08  0.7740.0 0.76640.0  0.00340.001 ResNet.lo 4 0-855£0003  0.854:£0.002  0.0010.001
0.16  0.70840.002 0.70340.001  0.0054:0.001 Cifar.10 3 085420002 0.852:0002  0.00240.0
032 0.59+0003  0.581+0.003 0.0140.0 2 0.856+0.002 0.854+0.002 0.00240.0
0.0 0.825+0.001 0.816+0.001 0.008=0.001 1 0.85640.002 0.854+0.002 0.00140.0
0.01  0.81440.003 0.806+0.004 0.00840.001 8 0.824+0001 0.816+0.001 0.007£0.001
VGG-13 004  0.796+0.001 0.78340.002 0.013+0.002 VGG.13 4 082420001 081620001  0.008:£0.001
Cifar-10 ~ 0.08  0.767+0.004 0.753+0.004 0.014:0.0 Cifar-10 3 0-825+0.001 0.816:£0.001 0.0080.001
0.16  0.71640.001  0.696+0.001 0.0240.0 2 0.825+0002 0.81640.001 0.00940.0
032 0.60440.0  0.57740.003 0.02640.003 1 0.826+0.001 0.816+0.001 0.01-£0.001
0.0 0.585+0.003 0.575%0.002 0.0140.002 8 0.582+0.002 0.574%0.002 0.008£0.0
0.01 0576400  0.566+£00  0.01£0.0 ResNet.1o 4 0-584£0002 05740002 0.01:£0.0
ResNet-10  0.04  0.542+0.001 0.52940.001 0.013+0.001 Cifar-100 3 0.585+0.003 0.575+0.002  0.0140.002
Cifar-100  0.08  0.502+0.002 0.49+0.002  0.012-£0.0 2 0.587+0001 0.574+0.002 0.01240.001
0.16 0437400  0.424+0.002 0.01340.002 1 0.587+0.003 0.57440.002 0.01240.001
032 0.33240002 0.31540.002 0.01740.0 8§ 0.519+0.003 0.505+0.002 0.014%0.001
0.0 0.522+0.003 0.50540.002 0.017=0.001 VG134 052240002 0.505+0.002  0.0170.001
0.01  0.5240001  0.501£0.001 0.01940.002 Cifar.100 3 0-522+0003  0.50540.002  0.017+£0.001
VGG-13  0.04 049340002 0.473+0.003 0.02+0.001 2 0.524+40002 0.505+0.002 0.01840.0
Cifar-100  0.08  0.4740002  0.45+0002  0.0240.001 1 0.52740001 0.505+0.002 0.02240.001

0.16  0.42240.0 0.39940.001  0.022+0.001
032 0.33+0.01 0.30740.007  0.02440.003

Table 8: Results for adversarial attacks

Net Data Attack  Acc. LaSeNN  Acc. Original A Acc
None 0.854+0.002 0.85240.002 0.00240.0

ResNet-10  Cifar-10 BIA 0.093+0.01 0.09-£0.009 0.00340.001
PGD 0.11840.012 0.11640.012 0.0034-0.001
None 0.825+0.001 0.816+0.001 0.008+0.001

VGG13 Cifar-10 BIA 0.23540.01 0.2024-0.006 0.0334-0.006
PGD 0.26140.011 0.23740.004 0.02440.008

None 0.5854-0.003 0.57540.002 0.0140.002
ResNet-10  Cifar-100  BIA 0.0454-0.003 0.038+0.003 0.007+0.001
PGD 0.0564-0.003 0.04840.003 0.008+0.0
None 0.52240.003 0.505+0.002 0.0170.001
VGG13 Cifar-100  BIA 0.1324-0.001 0.09140.002 0.0440.002
PGD 0.1540.003 0.11340.004 0.0372£0.005

attacks. We believe that this is due to the fact that the adversarial samples are closer to the decision
boundary and, thus, are more likely changed, when combined with NNs.

3.6 INTERPRETABILITY: HOW DO NNS ALTER PREDICTIONS?

Using NN for interpretation is not novel, however understanding how they impact predictions to
understand models is. That is, we particularly focus on cases, where NNs changed predictions.
By investigating what characteristics an input sample and the NNs share, one might gain a better
understanding about what aspects a model seems sensitive to, what relevant features for prediction
a model seems to lack, and what features it might focus on that might be irrelevant. That is, it can
lead to hypothesis that can be investigated using other techniques such as TCAV. For illustration,
we used w = 0.5 (and k = 3), i.e., all three NNs together contribute as much to the prediction as
the input sample. Figure [d]shows samples to predict and their NNs, where NNs yielded a change in
prediction (more samples are in the Appendix). It is interesting to notice that sometimes NNs can
be from different classes although appearing similar, hinting that background has a strong influence.
For example, in the first row all NNs differ in class. In the examples, the image is classified as
airplane without NNs but correctly as dog using NNs. The first and last NN share partially the
typical blue background of airplanes but especially for the first one the object (dog) looks quite
different from an airplane. The second image is very different from the predicted and the correct
class. Overall the NNs caused a correct prediction suggesting that this could be due to different
backgrounds of the NNs (in particular the one of the dog) as well as the second image showing a
dog with typical fur textures. To further investigate, one might simply remove any of the NN, adjust
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( Cun: dog; C: airplane NN:cat NN:dog

NNs fixed
prediction

Cwn: truck; C: automobile NN:truck NN:truck

-
Cun: cat; C: frog

NNs caused
wrong
prediction

NN:truck NN:truck

Figure 4: Samples where NN changed the prediction. The first column shows the input to classify,
columns 2 to 4 are NNs.

Table 9: Results for accuracy and adversarial att. on pretrained networks on ImageNet

Net Attack  Acc. LaSeNN  Acc. Original A Acc
None  0.7337 0.73316 0.00053
ResNet34 PGD 0.01189 0.00991 0.00198
BIA 0.01414 0.01191 0.00222
None  0.82218 0.82128 0.00090
ConvNext-Tiny PGD 0.01175 0.01035 0.00140
BIA 0.01388 0.01252 0.00136
None  0.74154 0.74056 0.00097
MobileNetV3-Large PGD 0.00614 0.00506 0.00108
BIA 0.00847 0.00707 0.00140

weights and see if the NN still fixes the prediction. In contrast, in the second row, the trucks appear
very similar. However, it can be noted that the misclassified truck as automobile without NNs is
somewhat smaller making it more similar to a car. The hypothesis that scale is highly relevant could
be further tested by shrinking other samples. For the misclassified samples due to NNs, we see in
the last row that a car got misclassified as a truck. The trucks look quite similar, in particular, in
the right upper part of the car is a white area (i.e., the top looks like a ladder shown on the trucks)
that could contribute to it being classified as truck as the two most similar trucks also have white
parts (i.e. a ladder or white colored cabins). Also the perspective of the car is somewhat unusual
making the back appear very large. For the second last row, it becomes apparent that quite likely
the background (dirt/earth) played a role in obtaining the NN (frogs), leading to a misclassification,
which could also be assessed by simple editing the sample to classify.

3.7 PRETRAINED NETWORKS

While we have shown accuracy gains and robustness to adversarial samples and label noise on our
small self-trained networks, it is unclear to what extent they also exist on large scale networks trained
using heavy data augmentation. To this end, we evaluate our technique on multiple pre-trained
networks available through Pytorch’s Torchvision library using the layer j prior to the last dense
layer, w = 0.94, and cosine similarity sim(x,2’) = cosine(x,z’). We also employ augmentation
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for our nearest neighbor query, i.e., we compute the NNs for sample x, and for the horizontally
flipped version x, of sample z,. We take the union of the NN (i.e. the original one and the flipped
ones) and take those that are closest. In Table [9] we observe minor gains for all networks. This is
somewhat surprising given that all these models are trained based on extensive data augmentation
(e.g., random rotation, color jittering, random cropping and resizing, horizontal flipping), while our
approach only uses horizontal flipping. Aligned with our self-trained smaller networks we also find
that there is an increased robustness to adversarial attacks.

4 THEORETICAL ANALYSIS

We analyze a simple scenario to illustrate the potential advantages of integrating neural network
predictions with a nearest neighbor approach. While both methods have been in use for decades,
theoretical analyses of their hybridization are notably scarce. We only outline key points here and
refer to the Appendix for details.

In addition to assuming a one-dimensional data structure, we impose mild assumptions on the data,
such as a gradual decrease in density as one moves away from a central region. Establishing results
for the general case poses significant challenges due to various interacting factors. These include
the non-linearity and high-dimensional parameter spaces inherent in neural networks, the challenge
of characterizing the geometry of their decision boundaries (Karimi et al.,[2019), and the sensitivity
to the underlying data distribution (Section[5). Due to these complexities, we focus our analysis on
a critical region R situated near the decision boundary of the neural network, where classification
errors are most likely to occur. The following theorem formalizes our main result.

Theorem 1 Under a set of assumptions S specified in Appendix[7} there exists a region R within the
embedding space where the proposed method is expected not to diminish classification performance.

5 RELATED WORK

Decision boundary: Studying the decision boundary of neural networks dates back multiple
decades (Lee & Landgrebel [1997; |Bishop, [2006). Nowadays, studying the decision boundary is
often motivated due to adversarial samples, which show that minor changes to a sample can result
in crossing the decision boundary, e.g., deep learning networks are non-robust. Commonly, de-
cision boundaries are also examined using measures and tools found in the context of adversarial
examples, e.g., [Ortiz-Jimenez et al.| (2020); Karimi et al.[ (2019); [Szegedy et al.| (2014)). Szegedy
et al.[(2014) discusses adversarial examples in deep learning, illustrating the sensitivity of decision
boundaries in neural networks to slight input perturbations. |[Karimi et al.| (2019) generates samples
near the decision boundary based on techniques from adversarial samples and in a subsequent step
they analyze the generated instances. Nguyen et al.| (2015) presents the existence of "fooling" im-
ages—unrecognizable inputs that deep neural networks classify with high confidence, highlighting
peculiarities in deep learning decision boundaries. Nguyen et al.’s findings shed light on the unusual
and unexpected shapes that decision boundaries in deep networks can take. We approach decision
boundaries more from the perspective that learnt representations are fixed and the task is to identify
an optimal boundary separating samples. |Ortiz-Jimenez et al.| (2020) leverages tools from adver-
sarial robustness to associate dataset features to the distance of samples to the decision boundary.
In turn, they tweak the position of the training samples and measure the resulting changes on the
boundaries. They show that deep learning networks exhibit a high invariance to non-discriminative
features, and that the decision boundary of a neural network only exist “as long as the classifier is
trained with some features that hold them together”(Ortiz-Jimenez et al., [2020).

In addition, there are also a number of theoretical and empirical findings on decision boundaries
for neural networks not relying on ideas from adversarial samples. [Fawzi et al.| (2017)) investigates
topology of classification regions created by deep networks, as well as their associated decision
boundary. The paper claims based on empirical evidence that regions (containing samples of a
class) are connected and flat. |Li et al.| (2018) claims that the decision boundary of the last layer
equals that of a hard SVM. [Lei et al.| (2022)) measures the variability of the decision boundary. They
show that the more variable the boundary, the less the network generalizes. Recently, Mouton et al.
(2023) has predicted generalization performance based on input margins. That is, they use the vari-
ability computed based on PCA to assess generalization performance. Nar et al.|(2019) argues that
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cross-entropy loss leads to poor margins, since samples can be very close to the decision bound-
ary. Support vector machines lead to better margins. In fact, years earlier this has been claimed
empirically, i.e., Tang| (2013)) showed that using a margin-based loss instead of a cross-entropy loss
can lead to improvements. [Yang et al.| (2020) states that thick decision boundaries lead to increased
robustness. In the paper they propose training techniques to achieve this, but these techniques lead
to significantly worse performance on the clean test sets and only improve on adversarial and out-
of-distribution samples.

Noisy Labels: The impact of noise on decision boundaries cannot be understated. Noise in the train-
ing data can potentially lead to overfitting, manifesting as erratic decision boundaries (Zhang et al.,
2021). Large neural networks can “memorize” arbitrary noisy training data (Zhang et al.| [2021).
However, noisy labels degenerate performance and research has investigated special techniques to
deal with label noise. For example, Wu et al.| (2020) constructs a topological filter to remove noisy
samples. Their approach falls short, when data is non-noisy and it is only shown to yield benefits
if a large fraction of labels is noisy. |(Oyen et al.|(2022)) showed that label noise depends directly on
feature space, i.e.,”“when the noise distribution targets decision boundaries, classification robustness
can drop off even at a small scale of noise.”

kNN: Early works (prior to deep learning) (Zhang et al., 2006) trained a SVM on NNs of a query
sample. Theoretical works, e.g., (Cover (1968)), studied also properties of neural networks. How-
ever, few theoretical and practical results are known relating deep learning and kNNs. Zhuang et al.
(2020) designed a network for training a neural enforcing that a sample and its kNNs all belong
to the same class based on a triplet loss. In contrast, we do not constrain training in any way, but
rather compute NN as they emerge by computing them based on the similarity of some layer activa-
tion of a trained classifier. Furthermore, our objective is to improve classifiers rather than primarily
enforcing that decisions are based (solely) on NNs. |Khandelwal et al.| (2019) used kNNs for next
word prediction. They obtained the kNNs training contexts and computed a distribution of their
labels (i.e., words) based on the distance to the test context. Finally, they interpolate the obtained
distribution with that of the input sample. We differ in multiple ways: i) we mostly do not use out-
puts (e.g., outcomes of the softmax layer), but rely on deeper layers; ii) we do not use labels of the
training data. |Borgeaud et al.|(2022); Xu et al.|(2023) enhanced LLMs by retrieving contexts based
on BERT embeddingsBorgeaud et al|(2022) and RAG Xu et al.| (2023)). Their work differ as they
require architectural changes and a separate embedding model.

Memory and attention: Our work also relates to works on including external memory in deep
learning (Graves et al.| 2016)) and to a lesser extent also attention, allowing to focus on specific (in-
put) samples (Vaswani et al.||2017; Bahdanau et al., 2014)). Our approach can be said to use training
data as a read-only external memory in a static manner, in contrast to differentiable neural comput-
ers (Graves et al.,[2016) that allow read and write to memory and learn access. Attention allows to
attend to inputs within a given sequence. Our approach attends to specific training data used already
for network training.

Explainability: Explaining using training data is common, e.g., influence functions (Koh & Liang,
2017) allow to explain the impact of training data on decisions. Naively, the influence of a training
sample is computed by removing the training sample from the training data retraining the classifier
on the reduced data, before assessing how the prediction for a specific sample changes. Our ap-
proach does not yield the influence but rather states that the output of a sample is determined by the
NNss (at least with fraction w). But it is then up to a human to compare the NNs and assess concepts
shared among them, e.g., using additional concept-based explainability methods such as TCAV and
Schneider & Vlachos| (2022).

6 CONCLUSIONS

While many approaches exist that target isolated problems such as interpretability, or robustness
against label noise, or adversarial robustness, or better performance in general, we achieve with
some extra computation‘‘a little bit of most things” using a conceptual simple approach even on pre-
trained networks that highlights that “overfitting” is a concern for deep learning on large datasets in
areas of low data density. Thus, aside from empirical improvements our work also contributes to a
deeper understanding of neural networks.

10
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7 APPENDIX: THEORETICAL MODEL

We introduce the following set of assumptions, denoted as S. First, we utilize a simplified variant
of the proposed method that considers only a single nearest neighbor. Second, we assume class
balance and no distributional shift between the training and unseen test data, which are standard
assumptions in classification tasks. Third, we focus on two classes and assume that the density
of points decreases monotonously from a maximum when moving towards the other class, i.e., we
use a triangular distribution. Fourth, we assume that the neural network perfectly classifies the
training data, a condition that can be attained for sufficiently large networks (Goodfellow et al.,
2016). Finally, we assume that within the region R, the classification of a data point by the model is
entirely determined by the neural network’s classification of its nearest neighbor in the embedding
space. It can be realized or approximated in practice by selecting an appropriate weight w and
considering that R is generally small and situated close to the neural network’s decision boundary.
In such regions, predictions are typically similar and within a narrow range, which makes it easier
to find a more stable and less extreme w that prioritizes the nearest neighbor’s prediction.

7.1 NOTATION

In the following, we assume a suitable underlying probability space with probability measure P for
all probabilistic statements.

For a random variable X taking values in X', we denote its expectation by E[X] and, when appli-
cable, its probability density function as fx. When referring to a specific realization of a random
variable X, if possible, we use the corresponding lowercase letter x € X. We also use 1 4 to denote
the indicator function of the set A, i.e., 14(z) = 1ifx € A and 1 4(z) = 0 otherwise.

7.2 PROOF

Consider a training sample D = {(x;, y;), ..., (Tn, yn)} Where x; € R, n is the dimension of input
data, and corresponding labels y; € {blue, red}.

Additionally, consider a pre-trained neural network f for binary classification that takes an input
z € R and outputs the probability that it is classified as 'red’ || The network first learns a meaningful
data representation, or embedding, and then assigns a label based on this learned representation.
For the purpose of our analysis, we simplify this by defining the embedding learned by the network

2We omit explicit consideration of the neural network weights to keep the notation as simple as possible, as
they are not relevant to the subsequent analysis.
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for any input  as z = h(x), with the assumption that z € [0, 1]. The final layers of the network,
which generate the classification output, are represented simply by o(z), thereby abstracting the
unnecessary computational detailsE] The binary classification probabilities o (z) are then converted

into a proper class variable Cy (z) using the following rule:

C’l(z) _ {red if f(z) =o(h(z)) =0(2) > 0.5, 0

blue otherwise,
where o denotes the sigmoid function.

Next, we investigate the hybrid model introduced in this paper, limited to one nearest neighbor.
Specifically, let z(1) denote the nearest neighbor of z in D with respect to the similarity metric
chosen.
2 = argmin sim(z, 2)
z'e€{h(z;): z;€D} )y < )

The label corresponding to z(1) is denoted by y(1).
The hybrid model, predicts the class label C (z) as follows:

A ~fred ifwo(z) + (1 —w)o(2V) > 0.5,
Cal2) = {blue otherwise, @

where w is a suitable weight within the interval [0, 1].

Additionally, as previously stated, we assume that both training and unseen inputs are realizations
of the random variables (X,Y"). Let Z = h(X) denote the embedding of X generated by the neural
network.

After the embedding, data points typically form clusters in the latent space. As specified in the
earlier assumptions, to replicate this clustering behavior and simplify the analysis, we model Z
given Y = blue as a triangular distribution with parameters ¢ = 0,b = 1,¢ = 0. Similarly, we
model Z given Y = red as a triangular distribution with parameters « = 0,0 = 1, ¢ = 1. Moreover,
we assume P(Y = blue) = P(Y = red).

Let us now return to the original neural network. We denote its decision boundary in the embedding
space as z* € [0,1], where o(z*) = 0.5, and we suppose that z* < 0.5E] This condition defines a
misclassification region for blue points relative to the ideal classifier, represented by:

R={z€][0,1]: z € [z"0.5]}.

As previously specified, however, we assumed that the training data are perfectly classified, though
this is not necessarily true for new, unseen data.

In what follows, we show that the proposed hybrid model is expected to maintain or potentially
enhance the classification of new inputs z when their embedding z lies within R. This region is
particularly important because, as noted earlier, it represents the area where the neural network
deviates from an ideal classifier, allowing the hybrid model to provide improvements.

Note that, intuitively, the hybrid algorithm is expected to have a non-negative impact, potentially
improving the accuracy in this region. This is because it’s more likely to find blue points that were
misclassified by the neural network but have a blue neighbor, rather than finding correctly classified
red points with a blue neighbor, where the correct classification might be disturbed. To verify this
intuition, we will now calculate the difference in expected classification accuracy within the region
‘R between the hybrid model and the neural network:

AAccr = EU]‘{C‘g(Z):Y}(Z’ Y) — ]l{él(z)zy}(Z, Y)|Z S R]
=P(Co(2) =Y, C1(2) £Y|Z € R) = P(Co(Z) #Y,C1(2) = Y|Z € R).

31t is important to note that the specific functional form assumed here, whether involving a single or mul-
tiple final layers, does not impact the subsequent calculations; thus, it is not included among the assumptions
stated above for our analysis. The simplification introduced in the text aims to avoid unnecessary details and
complications in the subsequent analysis.

“This hypothesis is not restrictive; in fact, due to inherent statistical variability in the data, we can reasonably
assume that the value will not be exactly 0.5. If instead z* > 0.5, we can simply reverse the roles of the blue
and red points in the subsequent analysis.
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Observe that,

P(Cy(Z) =Y, Ci(Z) £ Y|Z € R) = P(Co(Z) = blue, C1(Z) = red,Y = blue|Z € R)
P(Cy(Z) = red,Cy(Z) = blue,Y = red|Z € R)
P(Cy(Z) = blue, C1(Z) = red,Y = blue|Z € R)
=P(Co(Z) = blue,Y = blue|Z € R),

where the penultimate and ultimate equality hold because points in R cannot be classified as blue
by the neural network. Analogously, we have:

B(Co(2) £Y,C1(Z) = Y|Z € R) =

+

IP( 2(Z) red, Cl(Z) = blue,Y = blue|Z € R)
(C2(2) =

+P(Cy(Z) = blue,Cy(Z) = red,Y = red|Z € R)
= P(Cy(Z) = blue,C1(Z) = red,Y = red|Z € R)
=P(Cy(Z) = blue,Y =red|Z € R).

Therefore, A Accr becomes:
AAcer =P(Cy(Z) = blue,Y = blue|Z € R) —P(Cy(Z) = blue,Y = red|Z € R).
Given that C(z) depends solely on Cy (z(1)) for z € R, we can rewrite it as:
AAcer =P(C1(ZW) = blue, Y = blue|Z € R) — P(C1(ZV) = blue,Y = red|Z € R).
Moreover, since training points are perfectly classified, this difference simplifies to:
AAccr =P(YWV = blue,Y = blue|Z € R) — P(YY) = blue,Y = red|Z € R) =
P(YWM = blue]Y = blue, Z € R)P(Y = blue|Z € R)—
P(YW = bluelY = red, Z € R)P(Y = red|Z € R).
Now, using Byes’ theorem we have:
Adeen :P(YU) = blue|Y = blue, Z € R)P(Z € R|Y = blue)P(Y = blue)
P(Z eR)
P(YM) = blue|]Y =red, Z € R)P(Z € R|Y = red)P(Y = red)
P(Z € R)
= E(P(YM = blue, |Y = blue, Z € R)P(Z € R|Y = blue)—
P(YW = blue, |Y =red, Z € R)P(Z € R|Y = red)),

where k = > 0.

]P’(ZER)
NOWE
Jr PYW = bluelY = blue, Z = z) fz)y (z|blue)dz
P(Z € R|Y = blue)

P(Y®M = blue|Y = blue, Z € R) =
Thus, we have:
AAccr = k/ P(YW = blue|Y = blue, Z = z) fz)y (2|blue)dz—
R
k/ P(Y®V = blue|Y = red, Z = z)fzy (2|red)dz
R

Let us observe that, for every z € R, P(Y(!) = blue|Y = blue, Z = z) can be expressed as follows:

P(Y®M = blue|Y = blue, Z = z) =P(3r > 0, ¢ > 0 such that there are no training points in [z — 7, z 4 7],
there is at least a blue pointin[z — r — ¢,z — r]orin [z + 7,z + r + €],
there are no red pointsin [z —r — ¢,z — 7] and in [z + r, 2 + 7 + €]).

SFor the subsequent notation, refer to|Bertsekas & Tsitsiklis| (2008).
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Similar considerations can be applied to P(Y(") = blue|Y = red, Z = z). Therefore, they are
independent of the value of Y and thus:

P(YW = bluelY = blue, Z = z) = P(YV) = blue|Y = red, Z = 2).
Hence:
AAccr = k;/ P(Y®Y = blue|Y = blue, Z = 2)(fzyy (z|blue) — fz)y (z|red))dz.
R

Since fz)y (z|blue) = 2(1 — z) > fzy (z|red) = 2z for each z € R, it follows that AAccr > 0.

7.3 ADDITIONAL CONSIDERATIONS

Note that the previous reasoning remains valid when considering any subset B C R. If we examine
an interval of the same width on the opposite side of the neighborhood around z*, it is reason-
able to expect similar results, thereby suggesting that the proposed method is likely to maintain or
potentially enhance the classification performance of a pre-trained neural network across an entire
neighborhood of its decision boundary. This expectation arises from the fact that, on the right side
of z*, blue points are likely to be classified as blue by the hybrid model, given that their nearest
neighbors are generally also classified as blue in this region. Consequently, our hybrid model may
assist in correcting the misclassification of red points within this region. A more formal analysis of
this result will be addressed in future work.

8 FURHTER SAMPLES FOR NNS

We show further samples, where NN impacted the prediction (see Figures[5]and [6)).
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Cun: dog; C: cat NN:dog NN:dog NN:airplane

ek

Gun: dog; C: airplane

»

Cun: truck; C: automobile NN:truck NN:truck NN:truck

NN:dog NN:ship

Gun: horse; C: airplane NN:horse NN:cat NN:ship

Cun: horse; C: airplane NN:horse NN:airplane NN:horse
. +.]
s

Cun: frog; C: cat NN:frog NN:frog NN:frog

299

Figure 5: The first column shows samples where NNs (columns 2 to 4) yielded the correct prediction
but without NN the prediction was incorrect.
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Cun: cat; C: dog

NN:truck NN:automobile NN:automobile
— .

Cun bird; C: deer NN:deer NN:deer NN:bird

Cun: cat; C: frog NN:frog NN:frog

Cun- automobile; C: truck NN:truck NN:truck NN:truck

Figure 6: The first column shows samples where NNs (columns 2 to 4) yielded the incorrect predic-
tion but without NN the prediction was correct.
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