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Abstract—Due to their flexible mobility and stable network
connectivity, unmanned aerial vehicles (UAVs) are increasingly
being used as mobile data collectors, greatly expanding the
spectrum of data collection. However, safe and effective path
planning of multiple UAVs in dynamic environments and complex
terrains is always challenging: frequent conflicts arise due to
dense flight paths, incomplete observations due to dynamic
environments, and risk of local optima from limited exploration.
Therefore, we propose a UAV path planning approach based on
deep reinforcement learning (DRL). Specifically, we employ the
multi-agent proximal policy optimization (MAPPO) algorithm
to maximize the data collection rate. We first model the multi-
UAV path planning problem as a multi-agent partial observ-
able Markov decision process (MA-POMDP) and integrate the
traditional proximal policy optimization (PPO) algorithm into a
multi-agent learning framework. Then, to improve the training
efficiency of the algorithm and the decision-making capability of
the UAVs, the strategy of combining centralized training with
decentralized execution is used to enable the effective sharing
of information and strategies among UAVs. Furthermore, to
mitigate the issue of local optimal convergence during strategy
learning due to insufficient exploration of various action plans
and strategies in the environment, entropy regularization is
introduced into the strategy objective function, enabling the
agents to learn more comprehensive and effective path planning
strategies. Simulation results validate that the algorithm maxi-
mizes total system throughput while adhering to constraints on
flight duration, information age, and collision avoidance.

Index Terms—Internet of Things, Unmanned aerial vehicle,
path planning, deep reinforcement learning, proximal policy
optimization

I. INTRODUCTION

The increasing popularity of wireless devices in the Internet
of Things (IoT) has added complexity to the integration with
future networks [1], [2]. Unmanned aerial vehicles (UAVs),
with their flexible mobility and stable network connectivity, are
increasingly being used as mobile data collectors or temporary
aerial hubs for IoT endpoints, greatly expanding the spectrum
of data collection [3]. With the diversification and increasing
complexity of application scenarios, path planning for UAVs

has emerged as a critical technological challenge. In dynamic
environments and complex terrains, effectively planning paths
to avoid obstacles and ensure the successful completion of
tasks has become a focal point of current research [4]. Never-
theless, conventional path planning methodologies struggle to
accommodate environments characterized by high dynamics
and unpredictability [5]. Furthermore, with the increasing
number of UAVs, achieving collaborative operations among
multiple UAVs to avoid path conflicts remains an urgent issue
to be addressed. Therefore, an energy-efficient multi-UAV path
planning algorithm is needed to optimize task completion and
improve overall system performance.

Objective optimization in the planning of UAV flight paths
has been highlighted as an area of interest in recent studies.
Traditional node-based algorithms are unable to find workable
paths in dynamic environments due to the predetermined graph
[6]. In contrast, sampling-based approaches provide more
flexibility in the case of dynamic obstacles or environmental
changes. The Extended Path Rapidly-Exploring Random Tree
(EP-RRT) algorithm was introduced in [7], enhancing the effi-
ciency and convergence of path planning in extended corridor
environments using heuristic sampling and the greedy heuristic
of RRT-Connect. Although the above algorithms use random
sampling of the environment to search for paths, generating
feasible paths in narrow passages presents a challenge. To
address this issue, [8] introduced a decentralized multi-agent
path planning algorithm based on parameterized B-splines.
Compared to mathematical-based algorithms, bio-inspired al-
gorithms excel in global search and are better equipped to
address the issue of local optima in path planning. A novel
particle swarm optimization algorithm was proposed in [9],
which addressed the issue of local optima in complex environ-
ments through adaptive parameter adjustment and differential
evolution operators, enhancing the quality and efficiency of
path planning. Bio-inspired algorithms are developed using the
structures and behavior found in natural biological systems,



while reinforcement learning algorithms focus on the learning
process of UAVs through environmental interactions [10]. A
Q-learning-based path planning algorithm was proposed in
[11], introducing a shortest distance prioritization policy and a
grid-graph-based method, to address the efficient path planning
problem for unmanned aerial vehicles (UAVs). Further, [12]
introduced a novel reinforcement learning based approach
to handle the problem of collision avoidance and optimal
trajectory-planning in the context of UAVs in communication
networks. Although the aforementioned algorithms effectively
address the problem of UAV path planning, demonstrating
adaptability to complex environments and flexible decision-
making learning, they require a substantial amount of inter-
action experience for training, resulting in challenges such as
lengthy training times, low sample efficiency, and susceptibil-
ity to local optima.

This paper presents a deep reinforcement learning (DRL)-
based UAV path planning method. Specifically, we utilize the
multi-agent proximal policy optimization (MAPPO) algorithm
within an integrated sensing and communication (ISAC)-
assisted UAV framework. This innovation effectively addresses
challenges faced by existing path planning algorithms, such as
the complexity of multi-UAV collaboration, the unpredictabil-
ity of dynamic environmental changes, the limitations of
incomplete observations, and the issue of getting stuck in local
optima. To overcome the constraints of UAV detection ranges
and environmental observation incompleteness, we model the
multi-UAV path planning problem as a multi-agent partially
observable Markov decision process (MA-POMDP) and inte-
grate the proximal policy optimization (PPO) algorithm into a
multi-agent learning framework for multi-UAV scenarios, ac-
commodating the complex dynamics of multi-UAV operations.
Then, to enhance information sharing and strategy coordina-
tion among UAVs while increasing their operational flexibility
and robustness, we use a strategy that combines centralized
training and decentralized execution and utilize the spectrum
reuse capability of ISAC to enable UAVs to autonomously
select radar and communication modes, further improving the
efficiency and decision-making capability of path planning.
Moreover, to address the problem of converging to local
optima during strategy learning due to insufficient exploration
of various action plans and strategies in the environment,
entropy regularization is introduced into the strategy objective
function, enabling UAVs to learn path planning strategies in a
more comprehensive and effective manner.

The remainder of this study is outlined as follows. Section
II delineates the system architecture. Section III introduces a
deep reinforcement learning (DRL)-based algorithm for inte-
grated communication-sensing scheduling and UAV trajectory
optimization. Section IV details the validation of the proposed
algorithm via simulation studies. The paper concludes with
Section V.

II. SYSTEM MODEL AND PROBLEM MODELING

In this paper, we explore a system comprised of multiple
UAVs equipped with ISAC, operating within a M × M ∈

Fig. 1. Multi-UAV-assisted IoT system model.

N2 grid where N belongs to the set of natural numbers. The
system consists of I identical dual-function UAVs, and the
environment includes specified takeoff and landing locations
L as well as obstacles B. The environment is represented by a
tensor I ∈ BM×M×2, B = {0, 1}, I = L×B. The architecture
of this system is depicted in Fig. 1.

A. UAV Model

UAVs operate at a fixed height H , occupying a single cell
within this grid. Their movements are carefully regulated to
prevent collisions with any obstacles. The movement actions
of the i-th UAV are auav,i(t) ∈ ãuav(ui(t)),

ãuav(ui(t)) =

{
auav, if ui(t) ∈ L
auav\aland, otherwise,

, (1)

where ãuav(ui(t)) is a set of feasible actions that depend on
the position of the UAVi. The UAV is limited to moving at a
horizontal velocity Vuav or standing still, i.e., the velocity of
UAVi at time slot t is vi(t) ∈ {0,Vuav}, t ∈ [0, T ], T ∈ N is
the end time of the UAV’s data collection task. The position
of the entity changes in accordance with the following motion
model:

ui(t+ 1) =

{
ui(t) + auav,i(t), if ϕi(t) = 1

ui(t), otherwise.
. (2)

The operational state ϕi(t) ∈ {0, 1} of UAVi, either
stationary or in motion:

ϕi(t+ 1) =

{
0, auav,i(t) = aland ∨ ϕi(t) = 0

1, otherwise.
. (3)

The battery energy level bi(t) ∈ N of UAV is defined as,

bi(t+ 1) =

{
bi(t)− 1, if ϕi(t) = 1

bi(t), otherwise.
. (4)

The battery charge of the UAV bi(t) is initialized at b(0) ∈ N
and diminishes by one unit with each movement step.



B. Communication Model

UAVi facilitates communication with sensor nodes employ-
ing a straightforward time division multiple access (TDMA)
method. In this method, during each communication slot
n ∈ [0, N ], every sensor node k ∈ [1,K] selects the
data with the highest SNRi,k(n) for uploading, based on a
scheduling algorithm. The TDMA constraint on scheduling
variable qi,k(n) ∈ {0, 1}

K∑
k=1

qi,k(n) ≤ 1, n ∈ [0, N ], ∀i ∈ I. (5)

The achievable throughput of the i-th UAV in a task slot t
is the sum of the achievable rates of K sensor nodes during
communication slot n ∈ [κt, κ(t+ 1)− 1]

Ci(t) = ϕi(t)

κ(t+1)−1∑
n=κt

K∑
k=1

qi,k(n)Ri,k(n), (6)

where Ri,k(n) is the information rate of the k-th device at
communication slot n.

C. Perception Environment Model

In the UAV flight environment, we consider two environ-
mental features e = {eweather, eobject}, where eweather repre-
sents weather conditions and eobject indicates the presence
of moving objects near the UAV. For simplicity in data
representation, both attributes are quantified on a binary scale,
where {eweather, eobject} ∈ [0, 1]. A value of zero is indicative
of optimal safety conditions, whereas higher values reflect
increasing risks. This study applies a Bernoulli distribution to
characterize the probability of an individual UAV encountering
high-risk events X at continuous time intervals. This model
includes a probability parameter α exp(eβ), where α is kept
fixed and β is a vector of the coefficients that should be
estimated to forecast risk properly [13].

We also take into account the minimization of the age of
information (AoI) of data packets for the UAV to perform com-
munication and perception mode switches quickly based on
observed environmental features and also change operational
states. Since the maximum size of the packet data queue is
L, the age of the packets l in the queue is given by Al, such
that together they form the age vector A ∈ RL. Furthermore,
the corresponding emergency category of each data packet is
Cl ∈ {1, 2, ...,M}, such that C ∈ RL. The vector Λ ∈ RM

represents the AoI for each emergency category.

D. Problem Formulation

The primary goal of the UAV path planning challenge is to
optimize data collection efficiency by maximizing throughput,
while ensuring compliance with several key constraints: com-
pliance with a prespecified maximum flight duration, obstacle
avoidance along the entire flight path and the safe landing
within a certain designated area. This optimization problem is
defined through the equation outlined below:

max

T∑
t=0

I∑
i=1

Ci(t) = max

T∑
t=0

I∑
i=1

[ϕi(t)

κ(t+1)−1∑
n=κt

K∑
k=1

qi,k(n)Ri,k(n)],

(7)
s.t.ui(t) ̸= uj(t) ∨ ϕj(t) = 0, ∀i, j ∈ I, i ̸= j, ∀t, (7a)
ui(t) /∈ Z, ∀i ∈ I, ∀t, (7b)
bi(t) ≥ 0, ∀i ∈ I, ∀t, (7c)
ui(0) ∈ L ∧ zi(0) = h,∀i ∈ I, (7d)
ϕi(0) = 1, ∀i ∈ I, (7e)

K∑
k=1

qi,k(n) ≤ 1, n ∈ [0, N ]∀i ∈ I. (7f)

(7a) ensures that active UAVs avoid collisions with each
other. (7b) mandates that UAVs steer clear of collisions with
high structures. (7c) restricts the operating time of the UAV,
forcing it to safely land within the landing area before the
battery is depleted. (7d) stipulates that the starting position of
the UAV is at the takeoff/landing area, with a takeoff height of
h, while (7e) ensures that the UAV starts in a valid operational
state. (7f) is TDMA constraint.

III. DRL-BASED ALGORITHM

A. Data Processing

Since the actions of the agents are based solely on their rela-
tive positions to features, such as their distance to devices, this
paper employs UAV-centric global map mapping processing,
which significantly improves learning efficiency. Then the map
data can be directly provided to UAVs, and the input space is
defined as:

Ω = R2︸︷︷︸
UAV

Position

×BM×M×3︸ ︷︷ ︸
Environment

Map

×RM×2︸ ︷︷ ︸
Device
Position

× RM×2︸ ︷︷ ︸
DeviceData

Map

× N︸︷︷︸
Flying
Time

. (8)

where p(t) = [x(t), y(t)]
T ∈ R2 is the UAV’s ground-

projected position, I ∈ BM×M×3 is the physical environment
map in the Boolean field B ∈ {0, 1}, D ∈ RK×2 is the
two-dimensional coordinates of K IoT devices, D ∈ RK×2

is the available data for each device, and bt ∈ N represents
the remaining flight time of UAVs. For the purpose of UAV-
centric global map processing, the map is enlarged to a
dimension of (2M − 1) × (2M − 1) to ensure UAVs can
independently observe the entire map regardless of its position.
This expansion centers the map around the UAV’s current
location, creating the defined input space,

Ωc = B(2M−1)×(2M−1)×3︸ ︷︷ ︸
CenteredEnvironment

Map

× R(2M−1)×2︸ ︷︷ ︸
Centered Device

Position

× R(2M−1)×2︸ ︷︷ ︸
CenteredDevice

DataMap

× N︸︷︷︸
Flying
Time

.
(9)

B. Markov Decision Process (MDP)

In an ISAC-assisted multi-UAV framework, we define the
combined challenge of communication-sensing scheduling and
UAVs path optimization as a partial observable Markov de-
cision process (POMDP). To tackle this, we utilize DRL



techniques that approximate the optimal control strategies for
UAVs, despite the lack of initial knowledge about the complex
characteristics of wireless channels in densely populated urban
settings.

1) State space: To enhance carrier sensing capabilities, the
local state information for each agent has been expanded to
include tlast and tidle. Here, tlast denotes the number of time
steps since the joint radio communication (JRC) system is
last utilized to maintain the channel in an idle state, and
tidle indicates the duration in time steps that the channel has
remained unoccupied. Another approach to carrier sensing
involves the use of channel state c, which, in a multi-agent
environment, signifies whether a device user is granted priority
access to the channel. If a device user successfully transmits
data at time step t − 1, this user alone is awarded priority
(c = 1) for the subsequent time step t. Each agent is
restricted to observing only its immediate state and the local
environmental conditions, and the state space available to each
agent is structured as follows:

Si = [ei, ai, ui,Λi, tlast,i,tidle,ui,I,D,D, bi]. (10)

The system’s state space is composed by aggregating the
observation spaces of each of the I agents:

S = [e1, a1, u1,Λ1, tlast,1,ui, ..., eI , aI , uI ,ΛI , tlast,I ,uI , tidle,I,D,D, b].
(11)

2) UAV action space: Agents are allowed to cooperate by
foregoing their access to the communication channel, thus
broadening the range of possible actions to include a non-
operational action,

Ai = {nop,auav, a
r, a(1), a(2), ..., a(M )}, (12)

where the subscript i is the index of the given agent.
3) Reward: At each time step i, the reward structure for

the agent is designed as a weighted sum that promotes efforts
to minimize the age of data packets in the queue while also
aiming to enhance throughput.

ri(t) = wi,ageri,age(t) + wi,overri,over(t) + wi,radri,rad(t)

+ wi,datari,data(t) + wi,scri,sc(t) + wi,movri,mov(t)

+ wi,crashri,crash(t),

(13)

where wi,age, wi,over, wi,rad , wi,data, wi,sc , wi,mov and wi,crash
are weights. ri,age encourages agents to minimize AoI as much
as possible, encourages agents to send packets before queue
overflow occurs, ri,rad encourages agents to perform radar
scans when environmental conditions are unfavorable, ri,data
is the reward for data collection based on the throughput
achieved during the current period, ri,mov is the penalty for
UAVs continuing to move without completing tasks, and
ri,crash is the penalty for UAVs failing to safely land in the
landing zone when the remaining flight time is zero.

Upon evaluating the data transmission and expiry within
the current time step, the penalty for exceeding the queue’s
capacity is calculated based on the number of new data
packets that cannot be accommodated. This penalty scales in

Algorithm 1 MAPPO-based algorithm for ISAC-assisted
UAVs path planning

1: for episode = 1 to Num episodes do
2: Run the agents in the environment according to policy

πθold

3: Calculate the advantage estimate A for each agent using
equation (17)

4: for step = 1 to T do
5: for minibatch with size M < N/K do
6: Sample mini-batch of experiences (states, actions,

rewards)
7: Compute advantage estimates Ai and discounted

returns Ri

8: Compute policy probabilities πθnew(ai | si)
9: Compute surrogate objective function LCLIP (θ)+

r(τ) as per equation (19)
10: Update policy parameters θ by optimizing

LCLIP (θ) + r(τ)
11: end for
12: end for
13: end for

direct proportion to the excess packets, reflecting the system’s
inability to manage the overflow effectively,

ri,over(t) = min(0, (

L∑
l=1

[IR+(ul(t))− IR+(al(t)−Amax)− Tl(t)]

+

M∑
m=1

Υ(m)(t)−N)).

(14)

Whenever a high-risk event X occurs, the number of
adverse environmental characteristics in ri,rad(t) and e is
proportional:

ri,rad(t) = −(eweather, eobject)×X(t). (15)

C. Algorithm Design Based on MAPPO

In multi-agent scenarios characterized by complexity, tra-
ditional Q-learning applied individually to agents typically
results in inadequate performance [14]. To address the chal-
lenges posed by partially observable Markov decision pro-
cesses, we propose a MAPPO algorithm. This algorithm
leverages the strengths of policy gradient techniques, which are
notably advantageous because they do not require knowledge
of the state transition probabilities P (st+1 | st, at). This
freedom from the Markov assumptions of the preceding states
is a significant methodological advantage. Although as a
rule agent-based systems utilize inter-agent communication or
centralized frameworks, our method introduces a decentral-
ized multi-agent PPO algorithm. This innovation is aimed at
improving the effectiveness without the necessity to have a
centralized control or direct interaction among the agents.

In a multi-agent setting with I agents, we describe π =
{π1, π2, . . . , πI} as the set of policies, parameterized by
Θ = {Θ1,Θ2, . . . ,ΘI}. For each iteration of the algorithm,



the policy of each agent can be trained independently. To
improve the knowledge sharing among the agents, we suggest
the construction of sequence of policy models, represented by
I− with I− < I . Each policy πi− is assigned to a subset of
agents in the environment. Therefore, the objective function
of the policy function is as follows:

LCLIP (Θi−) = Eoi,a∼πi−
[min(δ(Θi−)Â

πi−
i (t),

max(1− ϵ,min(δt(Θi−), 1 + ϵ))Â
πi−
i (t))],

(16)

where δt(Θi−) =
πi− (at|ot)

πi−,old(at|ot) is the ratio of the policy πi−

change between the previous and current iterations. Âπi−
i (t)

represents the estimated advantage value:

Â
πi−
i (t) = ri(t) + γV̂

πi−
i (s(t + 1))− V̂

πi−
i (s(t)). (17)

The objective function of the parameterized value function
Θi− is:

LV AL(Θi−) = Eoi,a∼πi−
[(V̂

πi−
i (oi(t))− yi(t))

2
], (18)

where yi(t) = ri(t)+γV̂
πi−
i (s(t+1)) is the target value. While

this framework necessitates the sharing of policy parameters
among the agents during the training phase, it supports au-
tonomous decision-making by each agent when operational.

In policy-gradient learning frameworks, the exploration of
new policies is performed by sampling actions from the recent
modifications of the stochastic policy. The smell of dimin-
ishing randomness of policy selection in the training stage
usually results in poor exploration that confines the system to
local optimal solutions. To overcome this limitation and ensure
a more comprehensive exploration, this paper introduces an
entropy regularization component into the objective function.
This modification increases the exploration power of the agents
that prevents the local optima and enhances the overall system
performance,

LCLIP+V AL(Θ) = Et[L
CLIP (Θ) + k1L

V AL(Θ)

+ k2S[πΘi−
](oi)],

(19)

where k1 and k2 are coefficients, and S[πΘi−
](oi) represents

the policy entropy of πΘi−
given input observation oi. The

MAPPO-based algorithm for ISAC-assisted UAVs path plan-
ning is illustrated in Algorithm 1.

IV. SIMULATION ANALYSIS

TABLE I. Simulation parameters of the system

Parameter Name Parameter Value
Grid Area Size 320× 320
Grid Cell Size 10m× 10m

UAV Flight Speed Vuav 2.5m/s
γlos, γNlos 2.27, 3.64
σ2

los, σ
2
Nlos 2, 5

Data Queue Length L 3
Data Packet Threshold Age Amax 2

TABLE II. Network hyperparameters of MAPPO

Parameter Name Parameter Value
Number of Convolutional Layers 2

Number of Hidden Layers 3
Learning Rate lr 0. 0001
Discount Factor γ 0. 95

Batch Size 32
Activation Function ReLU

In this experiment, the binary exponential backoff (BEB)
algorithm, dueling double deep Q-network (D3QN) algorithm,
and advantage actor-critic (A2C) algorithm are used as com-
parative algorithms. The system parameters are set as shown in
Table 1. The experimental setup involves UAVs tasked with
data collection within a 320×320 grid, initiated with a total
available flight duration of T steps. For each UAV action,
either movement or hovering, there is a decrement of one step
in the remaining flight time. Regulatory compliance mandates
that the UAV cannot operate over tall buildings or beyond the
confines of the designated grid. Each operational slot t ∈ [0, T ]
encompasses κ = 4 communication slots n ∈ [0, N ]. To
enhance data freshness, the system’s threshold for maximum

(a) (b)

Fig. 2. Effect of the number of UAVs on (a) total reward (b) radar reward.



Fig. 3. The effect of the number of IoT devices on data
collection rate.

Fig. 4. The effect of the data volume per device on the data
collection rate.

age has been lowered to Amax = 2, preventing the aging of
data packets in the queue.

The hyperparameter settings for the MAPPO network are
shown in Table 2. The training regimen is structured around
400 time steps per episode, with a total of 2500 episodes
conducted. To validate the stability and reproducibility of the
experimental outcomes, each parameter configuration is rigor-
ously tested using multiple independent trials, each initiated
with a unique random seed.

Fig. 2 demonstrates the impact of the number of UAVs on
the performance of different algorithms. We can observe that
the performance of each algorithm decreases as the number
of UAVs increases. First, as the number of UAVs increases,
the frequency of radar mode switching increases accordingly,
which raises the risk of being penalized. As shown in Fig. 2(b),
this leads to a decrease in radar-related rewards. Additionally,
more UAVs in the system increase the competition for a
limited time step to transmit data or operate the radar. And the
agents frequently switch radar modes, this leads to a decrease
in communication performance and ultimately to a decrease

Fig. 5. The effect of the total flight time on the data collection
rate.

(a) (b)

Fig. 6. Influence of the number of UAVs on the flight path (a)
I = 2 (b) I = 3.

in the overall reward, as shown in Fig. 2(a). However, as the
increasing number of UAVs, the MAPPO method maintains
optimal performance and better balances the increase in radar
operations with the need for normal transmission of data
streams. Therefore, the MAPPO approach enables agents to
learn effective action strategies for the current environmental
conditions with minimal prior knowledge of the environment.

Fig. 3 analyzes the impact of the number of IoT devices on
the average data collection rate for successful UAV landings.
Due to the random placement of IoT devices in unoccupied
areas of the map, an increase in the number of devices results
in more complex trajectory requirements and performance
degradation. From Fig. 3, it is observed that when devices
are less than 5, the proposed algorithm does not achieve the
optimal data collection rate. However, when devices reach or
exceed 5, the performance of the proposed algorithm remains
optimal. This indicates that the proposed algorithm has good
adaptability to an increasing number of devices.

Fig. 4 shows the effect of the initial amount of data
per device on the overall data collection rate. We find that
as the number of UAVs increases, the data collection rate
increases for all algorithms. However, beyond 10-12 data units,
increasing the initial amount of data per device leads to a



decrease in the data collection rate. This is because the UAVs
are limited by a maximum flight time and are prioritized
to land before exceeding this limit, thus forgoing some data
collection. In addition, we note that the data collection rate
of the proposed algorithm decreases at a slower rate as the
initial amount of data per device increases. This indicates that
the proposed algorithm can collect more device data while
satisfying the need to land before the end of the maximum
flight time. This is attributed to the fact that the algorithm
employs entropy regularization, which enhances exploration
and allows for a more effective action selection strategy in
response to an increase in the amount of initial data per device.

Fig. 5 illustrates the relationship between the maximum
allowable flight time and the data collection rate. It is evident
that an increase in the maximum flight time correlates with an
improvement in the rate of data collection. Among the four
different algorithms, the data collection rate of the MAPPO
algorithm is the highest. This is because the MAPPO algorithm
can more effectively utilize each data sample, meaning that
within the same timeframe, MAPPO can learn more envi-
ronmental information, thus collecting more data. However,
as the bulk of the data is secured, this effect diminishes,
leading UAVs to focus more on minimizing total flight time
and ensuring a safe landing rather than gathering the residual
data.

Fig. 3, 4, and 5 illustrate that as scenario parameters
increase, particularly at higher values, the MAPPO algorithm
we propose consistently achieves a higher data collection rate
compared to other algorithms. The BEB algorithm’s random
action selection fails to adopt effective strategies in response to
environmental parameter changes. Additionally, an expansion
of the UAV’s action space with increasing scenario parameters
leads to a decline in the performance of value-based D3QN
algorithms. Although A2C is a policy gradient method, its
high variance and sensitivity to non-linear gradients limit its
effectiveness. Our proposed MAPPO algorithm constrains the
magnitude of policy updates by estimating the policy gradient
and incorporates an entropy regularization term into the objec-
tive function to enhance the agent’s exploration capabilities.
Consequently, the algorithm enables the agent to adapt well
to changes in scenario parameters, thereby making effective
action selection strategies in response to current parameter
variations.

The range of values for random scenario parameters is
as follows: the number of deployed UAVs I ∈ {2, 3}., the
number of IoT sensors K ∈ [310], the amount of data to be
collected by each device Dk ∈ [5.020.0], and the maximum
flight time steps. The positions of IoT devices are randomly
distributed throughout the entire unoccupied map space. In
Fig. 6, other scenario parameters remain constant, and two
scenario instances, labeled 6(a), and 6(b), were selected to
illustrate how path planning adapts to the increase in the
number of UAVs. In Fig. 6(a), two UAVs are deployed. Due
to the maximum flight time limit, they ignore the red, purple,
and brown devices, collect data from other devices, and land
in the bottom-right landing area, achieving a collection rate of

77.3%. In Fig. 6(b), three UAVs are deployed, two from the
top-left and one from the bottom-right, collecting data from
all devices with a collection rate of 100%. The three UAVs
evenly distribute data collection tasks, achieve comprehensive
data collection, avoid tall buildings, and land along efficient
trajectories promptly.

V. CONCLUSION

In this paper, in order to address the challenges of limited
UAV detection range and incomplete environmental obser-
vations, we model the multi-UAV path planning problem
as an MA-POMDP and integrate the PPO algorithm into a
multi-agent learning framework, proposing a MAPPO-based
algorithm to enhance data collection rates. To improve the
training efficiency of the algorithm and the decision-making
capabilities of the UAVs, the strategy of combining centralized
training with decentralized execution is used to enable the
effective sharing of information and strategies among UAVs.
Additionally, to mitigate the problem of converging on local
optima due to insufficient exploration during strategy learning,
entropy regularization is introduced to the strategy objective
function. Simulation results show that compared to competitive
algorithms, the proposed algorithm can significantly improve
the throughput of the system, thereby enhancing data collec-
tion rates.

This study is designed to maximize system throughput,
and while UAV energy consumption is considered under
constraints, it has not been quantitatively analyzed. Consid-
ering the limited battery life and payload capacity of UAVs,
it is crucial to tackle the issue of reducing overall energy
consumption in UAV-assisted IoT systems to extend their oper-
ational lifespan. Therefore, in future research, multi-objective
optimization schemes for throughput and energy efficiency
need to be designed to ensure that the system is better adapted
to practical applications.

ACKNOWLEDGMENT

The authors are grateful to the National Science Foundation
of China for its support of this research. This work is supported
by the National Natural Science Foundation of China under
grants 62161037 and 62071257, and is supported in part by the
Natural Science Foundation of Inner Mongolia Autonomous
Region under Grants 2023JQ17.

REFERENCES

[1] S. Ahmed and M. Z. Ali, “Application-specific security in IoT network,”
in 2024 IEEE 21st Consumer Communications & Networking Confer-
ence (CCNC), pp. 636-637, 2024.

[2] L. Belli, L. Davoli, and G. Ferrari, “A cloud-oriented indoor-outdoor
real-time localization IoT architecture for industrial environments,” in
2024 IEEE 21st Consumer Communications & Networking Conference
(CCNC), pp. 1-6, 2024.

[3] S. Feng, L. Zeng, J. Liu, Y. Yang, and W. Song, “Multi-UAVs collab-
orative path planning in the cramped environment,” IEEE/CAA Journal
of Automatica Sinica, vol. 11, no. 2, pp. 529-538, Feb. 2024.

[4] J. Liu, Y. Yan, Y. Yang, and J. Li, “An improved artificial potential field
UAV path planning algorithm guided by RRT under environment-aware
modeling: Theory and simulation,” IEEE Access, vol. 12, pp. 12080-
12097, 2024.



[5] A. Al-Hilo, M. Samir, M. Elhattab, C. Assi, and S. Sharafeddine, “RIS-
assisted UAV for timely data collection in IoT networks,” IEEE Systems
Journal, vol. 17, no. 1, pp. 431-442, Mar. 2023.

[6] Z. Ren, S. Rathinam, M. Likhachev, and H. Choset, “Multi-objective
path-based D* lite,” IEEE Robotics and Automation Letters, vol. 7, no.
2, pp. 3318-3325, 2022.

[7] Q. Zhang, L. Li, L. Zheng, and B. Li, “An improved path planning
algorithm based on RRT,” in 2022 11th International Conference of
Information and Communication Technology (ICTech), pp. 149-152,
2022.

[8] G. Stagg and C. K. Peterson, “Multi-Agent Path Planning for Level Set
Estimation Using B-Splines and Differential Flatness,” IEEE Robotics
and Automation Letters , vol. 9, no. 5, pp. 4758-4765, May 2024.

[9] C. Huang, X. Zhou, X. Ran, J. Wang, H. Chen, and W. Deng, “Adaptive
cylinder vector particle swarm optimization with differential evolution
for UAV path planning,” Engineering Applications of Artificial Intelli-
gence, vol. 121, 2023.

[10] X. Huang and G. Li, “An improved Q-learning algorithm for path plan-
ning,” in 2023 IEEE International Conference on Sensors, Electronics
and Computer Engineering (ICSECE), pp. 277-281, 2023.

[11] A. Sonny, S. R. Yeduri, and L. R. Cenkeramaddi, “Q-learning-based un-
manned aerial vehicle path planning with dynamic obstacle avoidance,”
Applied Soft Computing, vol. 147, 2023.

[12] Y. H. Hsu and R. H. Gau, “Reinforcement learning-based collision
avoidance and optimal trajectory planning in UAV communication
networks,” IEEE Transactions on Mobile Computing, vol. 21, no. 1,
pp. 306-320, Jan. 2022.
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