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Abstract

In conversational AI, personalizing dialogues001
with persona profiles and contextual under-002
standing is essential. Despite large language003
models’ (LLMs) improved response coherence,004
effective persona integration remains a chal-005
lenge. In this work, we first study two com-006
mon approaches for personalizing LLMs: tex-007
tual prompting and direct fine-tuning. We ob-008
served that textual prompting often struggles to009
yield responses that are similar to the ground010
truths in datasets, while direct fine-tuning tends011
to produce repetitive or overly generic replies.012
To alleviate those issues, we propose Selective013
Prompt Tuning (SPT), which softly prompts014
LLMs for personalized conversations in a se-015
lective way. Concretely, SPT initializes a set016
of soft prompts and uses a trainable dense re-017
triever to adaptively select suitable soft prompts018
for LLMs according to different input contexts,019
where the prompt retriever is dynamically up-020
dated through feedback from the LLMs. Addi-021
tionally, we propose context-prompt contrastive022
learning and prompt fusion learning to encour-023
age the SPT to enhance the diversity of per-024
sonalized conversations. Experiments on the025
CONVAI2 dataset demonstrate that SPT sig-026
nificantly enhances response diversity by up to027
90%, along with improvements in other critical028
performance indicators. Those results highlight029
the efficacy of SPT in fostering engaging and030
personalized dialogue generation.031

1 Introduction032

Personalization in dialogue systems enhances user033

interaction by creating a coherent and customized034

experience. It involves adapting conversations to035

individual preferences, backgrounds, and real-time036

context, ensuring each dialogue feels personally037

relevant. This tailored approach fosters a deeper038

connection between users and technology, mak-039

ing interactions more intuitive and engaging. By040

understanding and anticipating user needs, person-041

alized dialogues can offer more than just relevant042

responses; they provide a seamless, conversational 043

experience that mirrors human interaction, enrich- 044

ing the overall quality of digital communication. 045

PersonaChat (Zhang et al., 2018) has become a 046

pivotal dataset for personalization research in con- 047

versational AI, offering persona profiles that detail 048

an interlocutor’s preferences and background in 049

four to five sentences. These profiles guide conver- 050

sational agents in creating dialogues that are both 051

engaging and consistent with the persona’s char- 052

acteristics and prior conversational context. This 053

area has seen diverse approaches for enhancing per- 054

sonalization, such as attention mechanisms (Huang 055

et al., 2023b), reinforcement learning with multiple 056

rewards (Song et al., 2021; Liu et al., 2020), and 057

persona profile enrichment through stories (Huang 058

et al., 2023a), demonstrating the breadth of innova- 059

tion in making interactions more personalized and 060

meaningful. 061

Recently, the advent of large language models 062

(LLMs) (Zhang et al., 2022; Touvron et al., 2023) 063

has opened new avenues for dialogue generation, 064

offering the potential for creating conversations 065

that align with human preferences. However, fully 066

leveraging LLMs to achieve the level of person- 067

alization showed in PersonaChat is a promising 068

yet underexplored area. Currently, LLMs are pri- 069

marily guided by direct textual prompts or through 070

parameter-efficient fine-tuning like prompt tuning 071

(Lester et al., 2021) that only tunes a few virtual 072

tokens instead of whole LLMs for specific tasks. 073

However, designing personalized conversational 074

agents with LLMs faces two main challenges. The 075

primary issue lies in diverse settings in conversa- 076

tions, which encompass a wide array of dialogues, 077

each characterized by unique persona profiles and 078

varying lengths of conversation. This diversity ne- 079

cessitates an understanding of the distinct conver- 080

sational settings within the data. Through textual 081

prompting, it is hard to guide the model to gener- 082

ate desired responses aligned with the target texts. 083
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Simply fine-tuning LLMs through prompt tuning084

without careful conversational setting analysis risks085

producing responses that lack specificity and depth,086

resulting in a generic and bland generation.087

Secondly, another equally critical challenge088

arises from the limitations inherent to the datasets089

used for persona-based dialogue generation. Typi-090

cally small and lacking in diversity, these datasets091

can restrict the model’s exposure to a wide range092

of conversational scenarios. When LLMs (e.g.,093

Llama2-7B (Touvron et al., 2023)) are tuned094

through trainable soft prompts on PersonaChat,095

they risk overfitting to specific persona profiles.096

This overfitting manifests in the model’s responses,097

which become repetitive and overly aligned with098

the persona, often at the cost of dynamic and con-099

textually appropriate interactions. Although this100

might lead to improvements in metrics such as F1101

or BLEU scores, it detracts from the overall diver-102

sity and engagingness of the dialogues, undermin-103

ing the model’s ability to emulate authentic human104

conversation.105

To handle those two challenges when designing106

personalized conversations with LLMs, we propose107

a Selective Prompt Tuning (SPT) model. Specif-108

ically, to tackle the first challenge, it is crucial to109

identify inherent data patterns without explicit an-110

notations. To achieve this, it is intuitive to utilize a111

group of multiple soft prompts to handle different112

conversational settings when tuning the model in113

a parameter-efficient way. However, as previously114

mentioned, the annotations for the dialogue settings115

are missing and even hard to discover and anno-116

tate. If we naively concurrently tune all prompts117

without clear distinctions, this would yield only118

marginal differences compared with tuning one119

soft prompt. Therefore, to build effective multiple120

prompts to discover the inherent data pattern in-121

side the personalized dialogue, the proposed SPT122

model utilizes a dense retriever to adaptively select123

a proper soft prompt from the soft prompt group124

based on the given input context. To distinguish the125

effectiveness of soft prompts, we utilize the loss126

from LLMs as feedback to guide the update of the127

dense retriever without explicit annotations. Based128

on this, the proposed SPT model could discover129

patterns intrinsically associated with different dia-130

logues. In this way, the retriever and soft prompt131

group evolve together, benefiting from continuous132

interactions that enrich their capability to discrim-133

inate and generate diverse, contextually relevant134

responses.135

To address the second challenge that LLM may 136

overfit small-scale datasets such as PersonaChat, 137

the proposed SPT method integrates two comple- 138

mentary mechanisms: context-prompt contrastive 139

learning and prompt fusion learning. The context- 140

prompt contrastive learning mechanism ensures 141

diversity by encouraging the use of different soft 142

prompts for varied dialogue contexts, preventing 143

repetitive responses. Concurrently, prompt fusion 144

learning aggregates all prompt predictions during 145

back-propagation, optimizing towards a unified out- 146

put. This dual strategy not only preserves response 147

diversity across contexts but also enhances over- 148

all model performance, demonstrating their coop- 149

erative effectiveness in tackling overfitting while 150

maintaining the performance. 151

By integrating the above two parts into the SPT 152

method, experiments on the CONVAI2 dataset (Di- 153

nan et al., 2019) with LLMs (i.e., Llama2 (Tou- 154

vron et al., 2023) and OPT (Zhang et al., 2022)) 155

not only demonstrate marked improvements in re- 156

sponse diversity and engagingness but also indicate 157

enhancements in other key performance metrics. 158

Quantitatively, the proposed SPT model consis- 159

tently outperforms baselines across models with 160

various sizes. Moreover, SPT offers profound in- 161

sights into different dialogue scenarios, particularly 162

in the model’s strategic prompt selection. Compre- 163

hensive ablation studies highlight the adaptability 164

of different prompts to specific dialogue contexts. 165

Overall, our contributions can be summarized as 166

follows. 167

• We present the novel SPT method by integrat- 168

ing a trainable dense retriever with dynamic 169

soft prompt selection to improve dialogue per- 170

sonalization and enhance both the diversity 171

and engagingness. 172

• In the proposed SPT method, we introduce the 173

context-prompt contrastive mechanism and 174

prompt fusion learning within a unified frame- 175

work to foster prompt diversity and adaptabil- 176

ity. 177

• Extensive experiments show the effectiveness 178

of the proposed SPT method. 179

2 Related Work 180

2.1 Personalized Dialogue Generation 181

The CONVAI2 dataset, curated from the Per- 182

sonaChat dataset (Zhang et al., 2018), features a 183
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persona profile with four to five sentences for each184

interlocutor (Dinan et al., 2019). This dataset has185

been established as a benchmark for personalized186

dialogue generation. Building upon this dataset,187

a variety of studies have explored different meth-188

ods. For example, Wolf et al. (2019) extend the189

GPT2 model (Radford et al., 2019) with fine-tuning190

techniques specific to persona-based conversations.191

Differently, Song et al. (2021) employed a tripartite192

BERT architecture (Devlin et al., 2019), optimized193

through reinforcement learning, to craft responses.194

Similarly, Liu et al. (2020) introduces a transmitter-195

receiver model by applying reinforcement learning196

with custom rewards to refine the dialogue gener-197

ation process. Cao et al. (2022) leverage model-198

agnostic data augmentation techniques to enrich the199

training dataset with pseudo-samples using models200

like GPT2 and BERT. Huang et al. (2023b) develop201

an adaptive attention mechanism that coherently202

integrates persona and context information. Huang203

et al. (2023a) propose a LAPDOG method to incor-204

porate an external story corpus to enhance persona205

profiles for richer response generation. In contrast206

to those methods, the proposed SPT framework de-207

composes the task with multiple soft prompts with-208

out necessitating additional annotations or reliance209

on external corpora, which enables the generation210

of diverse and engaging responses while maintain-211

ing the integrity of the conversational context.212

2.2 Language Models and Personalization213

Language models (LMs) estimate text sequence214

probabilities, with recent models expanding from215

millions (Radford et al., 2019; Zhang et al., 2022)216

to billions of parameters (Brown et al., 2020; Zhang217

et al., 2022), and training corpora now including218

vast web texts and instructional data (Ouyang et al.,219

2022; Touvron et al., 2023). Such advancements220

have notably improved the performance of LMs on221

various NLP tasks, especially in generating high-222

quality text for conversational applications. While223

those LMs are adept at providing user-centric re-224

sponses, personalization remains a challenge. The225

prevalent strategy involves appending manually226

crafted hard prompts to LMs, which is overly sim-227

plistic and can result in the ‘lost in the middle’228

problem (Liu et al., 2023). This occurs when the229

output of the LM is generically correct but lacks230

personalized context, struggling to reconcile broad231

training data with specific user prompts. To coun-232

teract this, the proposed SPT method enables the233

LLM to adapt its responses to varying personalized234

contexts more effectively. As a result, SPT fosters 235

the generation of dialogue responses that are not 236

only consistent but also highly personalized, ad- 237

dressing the core challenge of maintaining context 238

relevance in user interactions. 239

3 Methodology 240

In this section, we introduce the proposed SPT 241

method. 242

3.1 Problem Settings 243

In persona-based dialogue sessions, a context is rep- 244

resented as C = {P,U}, where P = {p1, . . . , pe} 245

denotes the persona comprising e sentences (e.g., 246

4 ≤ e ≤ 5) to provide background informa- 247

tion for a machine interlocutor m and U = 248

{uh,1, um,1, . . . , uh,n} denotes the dialogue con- 249

text initiated by the human h to capture the ex- 250

change between human h and machine m. The 251

goal is to generate a machine’s response r = um,n 252

that aligns with its persona P and the context U . 253

3.2 Architecture 254

Figure 1 illustrates the SPT framework, consist- 255

ing of a soft prompt group, a dense retriever, and 256

a frozen LLM. Within this framework, the dense 257

retriever selects an appropriate soft prompt from 258

the soft prompt group by determining the closest 259

match to the given context C. The chosen prompt 260

is then merged with C to guide the LLM to pro- 261

duce compelling responses. The SPT framework 262

restricts the soft prompt group and dense retriever 263

to be trainable, while maintaining the LLM in a 264

frozen state, which could significantly reduce the 265

memory footprint and optimize resource utilization 266

during training. 267

Soft Prompt Group The soft prompt group, de- 268

noted by SP = {sp1, ..., spK}, consists of K soft 269

prompts with random initialization. Each prompt 270

features L×D virtual tokens, where D denotes the 271

hidden dimension of the LLM and L denotes the 272

length of prompts. These prompts are fine-tuned 273

during training while the LLM remains frozen. 274

Soft Prompt Selection The soft prompt selec- 275

tion is done by a trainable retriever, Ret(·, ·), 276

which calculates the similarity score sC,sp = 277

{sC,1, ..., sC,K} between the context embedding 278

embC from the LLM and each candidate spi in the 279

soft prompt group SP . It ranks all the soft prompts 280

based on the computed similarity score {sC,i}Ki=1 281

to identify the most suitable prompt for the context. 282
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Figure 1: An illustration of the proposed SPT method.

LLMs The LLMs deployed here are the decoder-283

only causal language model with frozen weights284

and initialized from pre-trained models.285

3.3 Computing Similarity between Soft286

Prompts and Context287

To reduce computational overhead, the dense re-288

triever Ret utilizes two linear layers, i.e., linC and289

linsp, for computing the similarity scores {sC,i}.290

Those similarity scores are calculated using the291

context embedding embC ∈ RM×D obtained by292

the LLM’s word embedding layer LLMemb and the293

soft prompt representation in RL×D. The similarity294

score is computed as295

embC = LLMemb(C),

vC = linC(embC),

vsp,i = linsp(spi),

v̄C = Avgdim=0(vC),

v̄sp,i = Avgdim=0(vsp,i),

srawc,i =
v̄C · v̄sp,i

∥v̄C∥2 · ∥v̄sp,i∥2
,

sC,i = Softplus(srawC,i ),

(1)296

where Avgdim=0(·) denote the averaging opera-297

tion along the length dimension to address the se-298

quence length discrepancy between embC and spi,299

Softplus(·) denotes the softplus activation function300

to ensure that sC,i remains in the range [0, 1] and301

enhance the numerical stability during training, and302

sC,i represents the normalized similarity score be-303

tween the context C and the soft prompt spi.304

3.4 Learning Prompt Selection305

Navigating the lack of explicit annotations in com-306

plex dialogue scenarios poses a challenge in accu-307

rately guiding the retriever to assess the similarity 308

between the context and each soft prompt. A naive 309

method, which independently fine-tunes the entire 310

soft prompt group and then selects candidates based 311

on the similarity score during decoding, might lead 312

to sub-optimal performance, akin to tuning a single 313

soft prompt. To address this, we leverage context- 314

driven losses from soft prompts, refining similarity 315

score computations and enabling informed retriever 316

decisions during training, as introduced in the next 317

two subsections. 318

3.4.1 Soft Prompt Loss 319

For simplicity, consider the case with a single con- 320

text. Given a context cn from persona and dialogue 321

history and its corresponding ground truth response 322

targetn, we calculate the negative log-likelihood 323

loss for each soft prompt as 324

predi,n = LLM(concat(spi, cn)), 325

LLLM
i = NLL(predi,n, targetn), (2) 326

where concat(·, ·) denotes the concatenation opera- 327

tion, LLM(·) denotes the LLM’s forward operation, 328

which takes a text sequence as the input and re- 329

turns the predicted token probability distribution as 330

the output, and NLL(·, ·) denotes the negative log- 331

likelihood loss. This process generates K losses 332

LLLM = {LLLM
1 , ...,LLLM

K } to measure the pre- 333

dictive ability of each soft prompt. 334

3.4.2 Prompt Selection Loss 335

In the absence of explicit annotations for conver- 336

sational settings, updating the retriever to identify 337

the most effective soft prompt for a given context 338

is challenging. However, by using soft prompts 339
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in LLMs with the same context, the loss from dif-340

ferent prompts can serve as a guide to determine341

which soft prompt is most suitable. Based on this342

consideration, we use the soft prompt loss (i.e.,343

LLLM defined in Eq. (2)) to gauge each candidate344

spi in the soft prompt group SP within cn. Align-345

ing the LLM’s performance evaluation with the346

retriever’s similarity scores is achieved by using347

the KL divergence between the negative language348

model loss (as guidance) and similarity scores. By349

denoting by Scn,SP = [Scn,sp1 , . . . , Scn,spK ] the350

similarity scores between cn and each spi in SP ,351

the prompt selection loss is formulated as352

LLLM
normed = Softmax(−LLLM/τg),

Lselection = KL(Scn,SP ,LLLM
normed),

(3)353

where Softmax(·) denotes the softmax function,354

τg is a temperature hyper-parameter, and KL(·, ·)355

denotes the KL divergence.This loss is pivotal in356

ensuring the selections of the dense retriever are357

informed and coherent with the LLM, effectively358

mirroring the performance of soft prompts in gener-359

ating contextually relevant and engaging responses.360

3.5 Context-Prompt Contrastive Learning361

While the aforementioned losses aid in training,362

there is a risk that the retriever often retrieves a sin-363

gle prompt and stagnates in such sub-optimal states.364

To alleviate this and foster prompt diversity to re-365

trieve more prompts, we propose a context-prompt366

contrastive loss. This loss refines prompt selection367

by adjusting similarity scores based on the textual368

similarity of distinct contexts, thereby preventing369

to always select a single soft prompt and promoting370

varied selections. Specifically, the context-prompt371

contrastive loss dynamically recalibrates the simi-372

larity scores between pairs of context contents, con-373

sidering their textual resemblance. Mathematically,374

the context-prompt contrastive loss is formulated375

as376

Lcon(sci , scj ) =

{
1− cos(sci , scj ) if M(ci, cj) > Γ

max(0, cos(sci , scj )) otherwise
(4)377

where M(·, ·) denotes a distance function such as378

BLEU (Papineni et al., 2002), Γ denotes a thresh-379

old, sci denotes a vector of cosine similarity scores380

between a context ci and soft prompts in the soft381

prompt group, and cos(·, ·) denotes the cosine sim-382

ilarity.383

The function Lcon amplifies the cosine similarity384

for similar context pairs (i.e., M(ci, cj) > Γ) and385

dampens it for dissimilar pairs (i.e., M(ci, cj) ≤ 386

Γ). This contrastive strategy not only ensures the 387

retriever’s alignment with the LLM’s evaluations 388

but also fosters a rich diversity and distinctiveness 389

among different dialogue contexts, significantly 390

bolstering the framework’s overall adaptability. 391

3.6 Prompt Fusion Learning 392

To optimize the effectiveness of the soft prompts, 393

we introduce a prompt fusion learning loss. This 394

loss averages the predictive probabilities from all 395

the soft prompts in the soft prompt group, aiming 396

to aggregate a unified outcome that closely aligns 397

with the desired output. The averaging operation 398

in this loss smooths out variances and biases from 399

individual prompts, thus improving the overall pre- 400

diction accuracy and reliability. Formally, this loss 401

is formulated as 402

pfused =
1

K

K∑
i=1

LLM(concat(spi, cn)) 403

Lfusion = NLL(pfused, targetn). (5) 404

By utilizing the collective strengths of diverse 405

prompts, this loss enhances the model’s ability to 406

generate context-appropriate responses. 407

3.7 Overall Objective Function 408

The SPT framework hinges on the harmonious inte- 409

gration of the aforementioned loss functions, where 410

each addresses a distinct aspect. The soft prompt 411

loss (i.e., LLLM ) ensures the LLM fidelity, the 412

prompt selection loss (i.e., Lselection) aligns the re- 413

triever’s similarity assessment with the LLM’s out- 414

put, the context-prompt contrastive loss (i.e., Lcon) 415

promotes diversity in prompt selection, and the 416

prompt fusion learning loss (i.e., Lfusion) enhance 417

the overall performance for all the soft prompts. 418

The overall objective of the SPT method is to min- 419

imize a composite loss function that encapsulates 420

these individual components. Formally, the overall 421

objective function LTotal for the SPT framework 422

is formulated as 423

LTotal =

K∑
i=1

LLLM
i + λ1

K∑
i,j=1
i ̸=j

Lcon(sci , scj ) 424

+ λ2Lselection + λ3Lfusion, (6) 425

where λ1, λ2, and λ3 are hyperparameters that con- 426

trol the relative contribution of each loss compo- 427

nent. In our experiments, we simply set λ1, λ2, and 428

λ3 to be 1, which could achieve good performance. 429
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By minimizing LTotal during training, the SPT430

framework effectively balances the fidelity to the431

LLM, the accuracy of the retriever, and the diversity432

in prompt selection, leading to an adaptive dialogue433

generation system.434

3.8 Inference435

During inference, the dense retriever selects the436

most appropriate soft prompt from the soft prompt437

group based on the given context. This selected438

prompt, along with the context, is then fed into the439

LLM to decode the final result. Formally, for a440

given context C, soft prompt group SP , and dense441

retriever Ret, the inference process proceeds as442

i∗ = argmax
1≤i≤K

Ret(C, SP ),

pred = LLM(concat(spi∗ , C)),
(7)443

where spi∗ denotes the selected soft prompt with444

index i∗ and pred denotes the response generated445

by the LLM.446

4 Experiments447

In this section, we empirically evaluate the pro-448

posed SPT model.449

4.1 Dataset450

We conduct experiments on the ConvAI2 dataset451

(Dinan et al., 2019), a benchmark for personal-452

ized dialogue generation. It comprises 8,939 train-453

ing and 1,000 validation multi-turn conversations454

sourced from crowdworkers. Each dialogue in-455

cludes persona profiles, each of which has four to456

five sentences to describe the background of each457

speaker, and the conversational history between the458

two interlocutors. By following (Liu et al., 2020;459

Huang et al., 2023a), our experiments employ a460

self-persona setting where only the speaking in-461

terlocutor’s persona is revealed, maintaining the462

other’s persona as obscured.463

4.2 Experimental Setup464

All experiments are based on two LLMs, including465

OPT (Zhang et al., 2022) and Llama2 (Touvron466

et al., 2023) of different sizes, which serve as the467

foundation model for the proposed SPT method.468

We randomly initialize soft prompts using a stan-469

dard Gaussian distribution. For OPT models, we470

set the soft prompt token length to 8, and for the471

Llama2 model, we use a token length of 1. The472

soft prompt group consists of K = 4 candidates.473

Learning rates of different LLMs are recorded in 474

Table 6 in the Appendix. The threshold Γ in Eq. (4) 475

is set to 20. 476

4.3 Evaluation Metrics 477

We evaluate our model using a suite of estab- 478

lished metrics for persona-based dialogue gener- 479

ation, including Unigram F1, BLEU, ROUGE, 480

BERT Score, and textual unigram/bigram distinct- 481

ness (denoted by DIST-1 and DIST-2). Unigram F1 482

measures the harmonic mean of precision and re- 483

call at the token level. BLEU (Papineni et al., 2002) 484

and ROUGE (Lin, 2004) evaluate the overlap of 485

n-grams between the generated text and target ref- 486

erence. BERT score (Zhang et al., 2019), using the 487

deberta-xlarge-mnli model1 as recommended for 488

its improved performance over roberta-large, cap- 489

tures the semantic similarity of text pairs. Unigram 490

and bigram distinctness (denoted by DIST-1 and 491

DIST-2) gauge the diversity of the generated text, 492

where DISTAV G denotes the average of DIST-1 493

and DIST-2. 494

4.4 Results 495

Table 1 illustrates that the proposed SPT consis- 496

tently outperforms the baseline models across var- 497

ious metrics. Notably, the OPT-2.7B-SPT and 498

Llama2-7B-SPT models exhibit significant perfor- 499

mance improvements (i.e., 33.04% and 26.26%, 500

respectively). Those improvements affirm the effec- 501

tiveness of the proposed SPT method in fostering 502

more diverse and personalized responses. 503

For baseline models, we can see that there ex- 504

ists a common trade-off between linguistic quality 505

and diversity. Specifically, the Llama2-7B model 506

scores 17.12 in F1 and 1.99 in BLEU, but its di- 507

versity seems not so good (i.e., 2.80 in DIST-1 and 508

12.91 in DIST-2). This is in contrast to the OPT- 509

125M model, which has lower linguistic scores (i.e., 510

10.79 in F1 and 1.61 in BLEU) but higher distinct- 511

ness (i.e., 3.94 in DIST-1 and 13.67 in DIST-2). 512

Different from those models, the proposed SPT 513

method significantly enhances both diversity and 514

linguistic quality, thereby avoiding the common 515

compromise between linguistic enhancement and 516

diversity. 517

5 Ablation Studies 518

In this section, we conduct ablation studies for the 519

proposed SPT method. 520

1https://github.com/Tiiiger/bert_score
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Model F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTF1 BERTP BERTR DIST-1 DIST-2 AVG↑
OPT-125M-PT 10.79 1.61 14.36 2.67 13.25 53.15 53.90 52.91 3.94 13.67 -
OPT-125M-SPT 11.06 2.22 16.45 3.60 15.42 54.86 56.23 53.91 4.87 17.38 16.60%
OPT-1.3B-PT 8.16 1.82 11.48 2.22 10.29 55.31 57.12 53.93 4.87 17.19 -
OPT-1.3B-SPT 9.94 2.66 13.74 3.24 12.38 56.34 58.08 54.99 4.93 17.76 16.43%
OPT-2.7B-PT 8.67 1.77 11.84 2.30 10.61 56.25 58.48 54.49 5.18 18.61 -
OPT-2.7B-SPT 12.23 3.11 16.97 4.37 15.61 57.96 59.92 56.45 5.84 20.76 33.04%
Llama2-7B-PT 17.12 1.99 15.74 4.07 13.72 52.30 48.57 57.11 2.80 12.91 -
Llama2-7B-SPT 17.49 2.80 17.02 4.48 15.24 54.66 53.02 57.14 5.69 22.86 26.62%

Table 1: Performance comparison of different LLMs across different model sizes. BERTF1, BERTP , and BERTR

denote the BERT Score F1, Precision, and Recall. AVG↑ indicates the average improvement over the corresponding
baseline method. Models appended with ‘-SPT’ indicate the combination of the proposed SPT method with the
corresponding LLM, while ‘-PT’ indicates the conventional prompt tuning method. The best performance in each
metric is in bold.

Model F1 BLEU ROUGE-L BERTF1 DISTAV G

Llama-7B-SPT 17.49 2.80 15.24 54.66 14.27
w/o CL 15.95 2.00 13.17 52.80 14.23
w/o FUSION 16.02 1.90 13.24 52.89 14.69
w/o SL 16.39 1.93 13.71 53.75 13.06

Table 2: The ablation study on the training losses. ‘w/o
CL’, ‘w/o FUSION’, and ‘w/o SL’ denote no context-
prompt contrastive loss, no prompt fusion learning loss,
and no prompt selection loss, respectively.

Figure 2: Analysis of the usage of each soft prompt
cross the conversational process, where the horizontal
axis represents the index of the conversational turn and
the vertical axis denotes the times that each soft prompt
is chosen.

5.1 Training Losses521

Table 2 reveals the impact of different training522

losses on performance. Omitting the prompt fu-523

sion loss slightly increases the prediction diversity524

in terms of DISTAV G but reduces the overall perfor-525

mance in terms of F1, BLEU, ROUGE, and BERT526

Score. One possible reason is that the prompt fu-527

sion loss contributes to the linguistic quality at the528

cost of the diversity. Excluding the context-prompt529

contrastive loss leads to a decline in all the evalu-530

ated metrics, which shows the effectiveness of the531

context-prompt contrastive loss. The absence of532

the prompt selection loss significantly affects the533

prediction diversity, causing the model to favor a534

single soft prompt, akin to utilizing a single prompt.535

The above results underscore the importance of536

each loss in enhancing the model performance and537

response diversity.538

I love cats and have two cats.
My favorite season is winter. 
I won a gold medal in the 1992

Olympics. 
I've a hat collection of over 1000 hats.

I have a turtle his name is
Speedy. Kitties are nice too,
tho!

😻🐱 I have two cats, fluffy
and mittens. They are
adorable! 

System
 Persona

How old are you? I turned four
on my birthday!

Selected Idx: 2

34 years old. I won a gold
medal in the 1992 summer
Olympics. 

Long Turns
Short Turns

Selected Idx: 3

Figure 3: The varied response styles of the Llama2-
7B-SPT model, highlighting its tendency to incorporate
emojis into responses during initial conversational turns.

5.2 Prompt Usage in Varied Contexts 539

To see the prompt usage during the conversational 540

process, we plot in Figure 2 the times each soft 541

prompt is chosen during the entire conversation. 542

According to Figure 2, we can see that in the OPT- 543

1.3B-SPT model, prompt sp3 is predominantly uti- 544

lized for the initial stage in the conversation, sp2 545

for the middle stage of the conversation, and sp1 for 546

the later stage of the conversation. For the Llama2- 547

7B-SPT model, we have similar observations, in- 548

dicating that soft prompts have functionalities in 549

different stages of the conversation. 550

Moreover, Figure 3 explores the stylistic aspects 551

of responses generated by different prompts, i.e., 552

emojis in the generated responses. In the Llama2- 553

7B-SPT model, sp2, which is often used in the 554

initial stage of the conversations, tends to generate 555

emojis in the generated response. Differently, sp3, 556

often used in the late stage of the conversation, 557

tends to generate few emoji in decoded responses. 558

This phenomenon suggests a strategic use of emojis 559

at different stages of the conversation. 560
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K F1 BLEU ROUGE-L BERTF1 DISTAV G

1 17.76 1.76 15.21 54.86 14.15
2 17.71 2.55 15.63 55.52 14.29
3 17.34 2.45 15.09 55.31 15.23
4 17.49 2.80 15.24 54.66 14.27
5 16.07 2.42 12.88 47.12 13.99
6 17.46 2.21 14.94 54.43 15.12
7 17.76 2.42 15.42 54.96 13.51
8 17.48 2.32 15.29 54.87 13.89

Table 3: The effect of the size of the soft prompt group
(i.e., K) to the performance of Llama2-7B-SPT.

5.3 Number of Soft Prompt Candidates561

Table 3 shows the effect of the number of soft562

prompts (i.e., K) to the model performance in563

terms of different metrics. Though the best per-564

formance occurs at different K’s for different per-565

formance metrics, the best performance for differ-566

ent metrics usually occurs when K ≤ 4, which is567

likely due to the sizes of both the CONVAI2 dataset568

and the LLM used. Hence, in all the experiments,569

K is set to be 4 by default.570

5.4 Comparison to Longer Prompt Tuning571

As shown in Table 4, the SPT method with four572

single-token soft prompts outperforms the four-573

token prompt tuning method, highlighting effective-574

ness of the proposed SPT method. Moreover, SPT575

excels the eight-token prompt tuning method in576

terms of BLEU, ROUGE, and DISTAV G, showing577

its effectiveness despite fewer trainable parameters.578

5.5 Comparison to LoRA579

As LoRA (Hu et al., 2022) is another type of580

parameter-efficient finetuning method and has581

shown to be effective to utilize LLMs for differ-582

ent applications, we compare the proposed SPT583

method with it based on the Llama2-7B model584

under the condition that they have comparable585

numbers of trainable parameters. As shown in Ta-586

ble 4, LoRA exhibits improvements in the BLEU587

score and DISTAV G but has lower ROUGE-L,588

BERTF1, and F1 scores compared with the four-589

token prompt tuning method. Moreover, the pro-590

posed SPT method surpasses LoRA across all the591

evaluation metrics, highlighting its superior per-592

formance and affirming its effectiveness under the593

condition of comparable numbers of trainable pa-594

rameters.595

5.6 Comparison to In-Context Learning596

To compare the performance with In-Context597

Learning (ICL) on LLMs, we compare the SPT598

Model F1 BLEU ROUGE-L BERTF1 DISTAV G

Llama2-7B-SPT 17.49 2.80 15.24 54.66 14.27
Llama2-7B-4-PT-TOKEN 16.47 1.78 13.64 52.65 9.52
Llama2-7B-8-PT-TOKEN 17.64 2.13 14.69 55.85 13.33
Llama2-7B-LoRA 15.61 2.20 11.66 47.46 10.21
GPT-3.5-ICL 6.78 0.77 0.09 47.96 23.24

Table 4: Performance comparison across varying
prompt token lengths as well as LoRA and In-Context
Learning on GPT-3.5 Turbo. ‘-SPT’ denotes the pro-
posed SPT model with a single token length per prompt,
while Llama2-7B-4-PT-TOKEN and Llama2-7B-8-PT-
TOKEN have token lengths of 4 and 8, respectively.

Model BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4
Llama2-7B-PT 8.79 43.42 20.44 13.51 10.06
Llama2-7B-SPT 2.07 41.99 16.62 10.48 6.95

Table 5: Comparison of text overlapping between the
prediction of different models and the persona.

method with the zero-shot GPT-3.5 turbo with in- 599

structions. According to results shown in Table 4, 600

we can see that ICL gains a higher diversity score 601

(i.e., DISTAV G) but lower scores in terms of other 602

metrics. This implies that simply prompting a more 603

powerful LLM without proper tuning is hard to gain 604

comparable performance to tuning methods. 605

5.7 Text Overlap Between Prediction and 606

Persona 607

Table 5 presents BLEU scores between the model’s 608

predictions and the system’s persona descriptions 609

for different models. We can see that the prompt 610

tuning method exhibit larger text overlap with the 611

system’s persona, often leading to repetitive re- 612

sponses aligned with the persona. In contrast, the 613

proposed SPT method has lower linguistic similari- 614

ties to the persona, which results in more diverse 615

and effective responses. This suggests that the pro- 616

posed SPT method effectively balances the persona 617

consistency and response diversity, avoiding the 618

pitfalls of over-repetition. 619

6 Conclusion 620

In this paper, we introduce SPT, a strategic 621

approach for personalized dialogue generation 622

through selective prompt tuning. By jointly train- 623

ing a soft prompt group and a dense retriever, SPT 624

adeptly navigates various conversational scenarios 625

automatically, enriching response diversity while 626

improving both linguistic and neural-based metrics. 627

Experiments on the CONVAI2 dataset highlights 628

the capacity of SPT to identify intrinsic conversa- 629

tional settings, showing its effectiveness in generat- 630

ing contextually appropriate dialogues. 631
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7 Limitations632

This paper has introduced the selective prompt tun-633

ing in personalized dialogue generation. Through634

diverse prompting, the LLMs can generate more di-635

verse and engaged responses when compared with636

single prompt tuning. However, despite the context-637

prompt contrastive mechanism and prompt selec-638

tion loss, there is still a risk for the retriever to fall639

into a narrow selection of soft prompts (e.g., given640

K = 4 in Llama2-7B, there is still one soft prompt641

that is selected only once during inference). This642

limitation may caused by a larger K used, making643

the determination of K important. Meanwhile, in644

the context-prompt contrastive loss, simply using645

BLEU to measure text similarity may not be suf-646

ficient to distinguish the difference between two647

dialogues, which could be enhanced by neural met-648

rics powered by LLMs that could distinguish texts649

from both semantic and linguistic perspectives. Ad-650

ditionally, in the decoded text of Llama2-7B, the ex-651

istence of emoji is not designed in the PersonaChat652

dataset, which is worth further investigation.653

8 Ethic Statement654

This research confines the use of personal data to655

fictional persona profiles in the CONVAI2 dataset,656

avoiding the handling or storage of real personal657

data. All the soft prompts within the SPT are658

vector-based parameters without directly encoding659

or representing any individual’s personal informa-660

tion. When applying to real-world applications,661

it is vital to prioritize data privacy, ensuring that662

personal information for personalized dialogues is663

ethically sourced and used with informed consent.664
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A Appendix782

A.1 Complete Training Procedure783

The full training procedure is described at Algo-784

rithm 1.785

A.2 Detailed Settings for SPT Training786

Shared Parameters
HyperParameter Value
K 4
Optimizer Adam
τg 1
λ1 1
λ2 1
λ3 1
λ4 1

Llama2-7B-SPT
Prompt Length 1
Learning Rate 0.01

OPT-2.7B
Prompt Length 8
Learning Rate 0.001

OPT-1.3B
Prompt Length 8
Learning Rate 0.01

OPT-125M
Prompt Length 8
Learning Rate 0.01

Table 6: The hyper-parameters for the SPT training.

Table 6 lists the detailed hyper-parameters for787

training SPT. The share parameters are used for788

all model training. Meanwhile, the Llama2-7B-789

SPT, OPT-2.7B, OPT-1.3B, and OPT-125M indi-790

cate the specific hyper-parameters used in the spe-791

cific model training. We trained the SPT models792

on eight Tesla-V100 32GB GPUs. For each SPT793

model except OPT-125M-SPT, we train one epoch794

and then do the evaluation. For OPT-125M-SPT,795

we train for 15 epochs until it converges.796

A.3 Case Study797

Figure 4 shows a comparison between SPT and a798

prompt-tuned model. SPT uniquely incorporates799

horror-related emojis in a conversation about hor-800

ror movies, while the prompt-tuned model tends to801

repeat persona profile content. This trend contin-802

ues in subsequent dialogues. In the last case, SPT803

adeptly weaves persona details into its responses,804

offering a more engaging and personalized conver-805

sational experience compared to the more generic 806

replies of the prompt-tuned model. 807

A.4 Details for Ablation Study 808

Table 8 details our ablation study’s findings. Se- 809

lective Prompt Tuning (SPT) with four one-token 810

soft prompts demonstrates superior performance 811

over both the traditional four-token and eight-token 812

soft prompt tuning approaches, highlighting our 813

method’s effectiveness. In a comparative analysis 814

with LoRA under a similar parameter setup, SPT 815

outperforms in all evaluated metrics, reinforcing 816

its efficiency. Furthermore, compared to GPT-3.5 817

Turbo’s In-Context Learning (ICL), SPT shows 818

significant improvements in F1 and BLEU scores, 819

indicating challenges with ICL’s alignment to tar- 820

get responses despite its higher diversity in textual 821

outputs. 822

Persona Consistency Dialogue Consistency Engageness
Llama2-7B-SPT 1.89 1.29 1.34
Llama2-7B-PT 1.33 1.13 1.29

Table 7: Human evaluation over Llama2-7B-SPT and
Llama2-7B-PT.

A.5 Human Evaluation 823

We conducted human evaluation on three metrics, 824

persona consistency, context consistency, and en- 825

gagingness. Each metric is ranked for three scores: 826

0, 1, 2. For persona consistency, 0 means con- 827

tradicts the persona, 1 means not relevant to the 828

persona, and 2 means consistent to the persona. 829

For context consistency, 0 means contradicts pre- 830

vious dialogue history, 1 means not relevant to the 831

previous dialogue, and 2 means consistent to the 832

previous dialogue. For engagingness, 0 means a 833

boring response, 1 means a safe but bland response, 834

and 2 means an interesting response. We randomly 835

sampled 100 responses from Llama2-7B-SPT and 836

Llama2-7B-PT. The results are displayed in Ta- 837

ble 7. Our proposed SPT outperforms PT over all 838

three metrics, indicating the effectiveness of our 839

approach in both three perspectives. 840
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Algorithm 1 SPT Training

Input: Input context C = {c1, .., cN}, Input context batch Cbatch = {ci, .., ci+batchsize} ⊂ C, ground
truth response Y = {y1, ..., yN}, a soft prompt group SP = {sp1, .., spK}, a dense retriever Ret,
textual similarity threshold Γ, a text similarity metric M , and a large language model LLM

Output: A tuned soft prompt group SP and a tuned dense retriever Ret
1: for Cbatch in C do
2: Initialize batch soft prompt loss LLLM

batch = 0, batch prompt selection loss Lbatch
selection = 0,

3: Initialize batch prompt fusion loss Lbatch
fusion = 0, batch context-prompt contrastive loss Lbatch

con = 0
4: for Input Context cn in Cbatch do
5: Compute one soft prompt LLLM

i = NLLLoss(concat(spi, cn), yn)
6: Obtain K soft prompt loss LLLM = {LLLM

1 , ...,LLLM
K } with above computation

7: Normalized negative soft prompt loss LLLM
normed = Softmax(−LLLM/τg) for retriever update

8: Compute retriever score between context cn and soft prompt spi as scn,spi = Ret(spi, cn)
9: Obtain K retriever scores by scn,SP = {scn,sp1 , ..., scn,spK}

10: Compute prompt selection loss using KL Divergence by Lselection = KL(scn,SP ,LLLM
normed)

11: Aggregate K predictions from LLM given cn and SP as pfused
12: Compute prompt fusion loss as Lfusion = NLL(pfused, yn)
13: Sum soft prompt loss, prompt selection loss, and prompt fusion loss to their batch opponents
14: LLLM

batch = LLLM
batch +LLLM , Lbatch

selection = Lbatch
selection +Lselection, Lbatch

fusion = Lbatch
fusion +Lfusion

15: end for
16: for Input Context ci, cj in Cbatch do
17: Compute textual similarity T = M(ci, cj)
18: Compute retriever score for ci, cj as sci,SP , scj ,SP
19: Compute context-prompt contrastive loss:
20: if thenT > Γ
21: Lcon = 1− cos(sci,SP , scj ,SP )
22: else
23: Lcon = max(0, cos(sci,SP , scj ,SP ))
24: end if
25: Sum context-prompt contrastive loss to batch context-prompt contrastive loss
26: Lbatch

con = Lbatch
con + Lcon

27: end for
28: Sum all objective together: LTotal = LLLM

batch + Lbatch
selection + Lbatch

fusion + Lbatch
con

29: Update soft prompts and retriever via back-propagation with LTotal

30: end for

Model F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTF1 BERTP BERTR DIST-1 DIST-2
Llama-7B-SPT 17.49 2.80 17.02 4.48 15.24 54.66 53.02 57.14 5.69 22.86
Llama2-7B-4-PT-TOKEN 16.47 1.78 15.74 3.74 13.64 52.65 49.09 57.18 3.35 15.70
Llama2-7B-8-PT-TOKEN 17.64 2.13 16.49 4.01 14.69 55.85 54.98 57.34 4.75 21.91
LoRA 15.61 2.20 13.09 2.95 11.66 47.46 47.78 47.48 3.35 17.08
GPT-3.5-ICL 6.78 0.77 0.00 0.00 0.09 47.96 46.73 49.77 8.03 38.45

Table 8: Detailed results for the ablation study.
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I read twenty books a year. 
I'm a stunt double as my second

job. 
I only eat kosher. 

I was raised in a single parent
household.

I just got done watching a
horror movie

Hello, what are doing today? 

I am good, I just got off work
and tired, I have two jobs. 

PT

I don't watch horror movies, I
am a stunt double and I only
eat kosher food. 

D
ialogue H

istory
System

 Persona

SPT

😱👻🕷 💀😱 what did you
think of it?

G
enerated R

esponse

I read twenty books a year. 
I'm a stunt double as my second

job. 
I only eat kosher. 

I was raised in a single parent
household.

I just got done watching a
horror movie

Hello, what are doing today? 

I am good, I just got off work
and tired, I have two jobs. 

PT

I do too, I love the fall. I'm a
stunt double for movies and I
only eat kosher food.

D
ialogue H

istory
System

 Persona

SPT

I do too, I love reading in the
fall. 

G
enerated R

esponse

Wow! I do love a good horror
movie . loving this cooler
weather.

I rather read, i've read about
20 books this year. 

I have a pet turtle. 
I like to play with my dolls. 

I don't pick up my toys. 
My best friend lives next door.

My turtle and myself love to
grill outside

Hey, I enjoy mowing lawns in
the summer.

Hello. How are you? My pet
turtle and I are sitting here. 

PT

i have a pet turtle and i like to
play with my dolls . i don't pick
up my toys . my best friend
lives next door.

D
ialogue H

istory
System

 Persona

SPT

😂🐢 that's so cute. do you
have any dolls? 

G
enerated R

esponse

I also work as a custodian to help
pay the bills. 

I play the piano and guitar and sing. 
My favorite type of music to sing is

folk music. 
I'm a musician and hope to make it

big some day.

Hello, how are you doing?

PT

I'm doing well, thanks for
asking! How about you? 

D
ialogue H

istory
System

 Persona

SPT

I'm doing well, thanks for
asking! I've been busy with
work and music lately. How
about you? 

G
enerated R

esponse

Figure 4: Four case studies, where PT denotes the prompt tuning method (Lester et al., 2021).
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