
AutoOS: Make Your OS More Powerful
by Exploiting Large Language Models

Huilai Chen 1 2 Yuanbo Wen 1 Limin Cheng 3 Shouxu Kuang 2 3 Yumeng Liu 3 Weijia Li 2 3 Ling Li 3

Rui Zhang 1 Xinkai Song 1 Wei Li 1 Qi Guo 1 Yunji Chen 1

Abstract

With the rapid development of Artificial Intelli-
gence of Things (AIoT), customizing and optimiz-
ing operating system (OS) kernel configurations
for various AIoT application scenarios is crucial
for maximizing system performance. However,
existing approaches falter due to the overwhelm-
ing problem complexity (i.e., over 15,000 config-
uration options in the Linux kernel), together with
the huge evaluation costs and error-prone options
that may result in OS boot-up failure, which all
make it an unresolved problem to optimize the
Linux kernel automatically. In this paper, we in-
troduce AutoOS, a novel framework exploiting
Large Language Models for customizing and op-
timizing OS kernel configurations automatically
for various AIoT application scenarios. Inspired
by the inherently directory-structured kernel con-
figuration process, we first formulate our research
problem as optimizing on a dynamic tree. We
then propose a novel framework integrating a state
machine-based traversal algorithm as the observe-
prune-propose-act-correct loop, which can effec-
tively refine the optimization space and ensure
a successful OS boot-up. Experimental results
show that AutoOS can automatically customize
and optimize the OS kernel configurations without
human effort. More importantly, AutoOS even
achieves better performance by up to 25% than
vendor-provided configuration.

1State Key Lab of Processors, Institute of Computing Technol-
ogy, Chinese Academy of Sciences, Beijing, China 2University
of Chinese Academy of Sciences, Beijing, China 3Intelligent
Software Research Center, Institute of Software, CAS, Beijing,
China. Correspondence to: Ling Li <liling@iscas.ac.cn>, Qi Guo
<guoqi@ict.ac.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
With the development of AIoT (Artificial Intelligence of
Things), the application of embedded systems has become
increasingly widespread (Liu et al., 2023b; IoT, 2023). In
order to accommodate the growing complexity and diversity
of AIoT applications, customizing and optimizing operating
system (OS) kernel configurations has become essential for
maximizing system performance (Kuo et al., 2020b), partic-
ularly in light of embedded devices’ constrained hardware
resources (Lin et al., 2020). While vendors typically of-
fer default configurations for generality (Kuo et al., 2020a),
these presets frequently fail to meet the specific optimization
goals, thus presenting substantial opportunities for OS ker-
nel tuning to unlock the full potential of the entire system’s
capabilities.

However, such performance optimization is so challenging
in three-fold. Firstly, the Linux kernel has more than 15,000
configuration options (Oh et al., 2021; Franz et al., 2021),
creating a vast and intricate optimization space where op-
tions interact with each other and exhibit interdependencies
(Mortara & Collet, 2021), making optimizing performance
daunting. For example, combining two sets of good perfor-
mance configuration options directly often results in poor
performance. Secondly, the performance evaluation for
every configuration is time-consuming (Xia et al., 2023)
(e.g., 1∼2 hours), involving several steps like OS kernel
compilation, installation, boot-up, and performance testing.
Thirdly, as many functional-related options exist, the entire
optimization process is error-prone, which may lead to OS
boot-up failure. Overall, tuning OS kernel configurations
is a complex black-box optimization problem for non-OS
professionals who need more expert knowledge.

The difficulty of this problem makes existing approaches
including Neural network approaches (Herzog et al., 2021;
Martin et al., 2021; Zhang & Huang, 2019) and Bayesian
optimization approaches (Jung et al., 2021; Shar et al., 2023)
unsurprisingly ineffective. Neural network approaches can
learn and adapt to perform a specific task by training a
computational model from a well-established dataset (Ak-
gun et al., 2020; Hao et al., 2020; Doudali et al., 2019).
However, these approaches require considerable manual ef-

1

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

fort to create the dataset from scratch, especially for the
time-consuming performance evaluation process for OS
kernel configurations. Thus, there is a lack of available
datasets to date. Bayesian optimization approaches can usu-
ally efficiently find the optimum of an expensive-to-evaluate
function by building a probabilistic model that guides the
search process (Ziomek & Ammar, 2023; Liu et al., 2023a).
However, Bayesian optimization approaches are usually
best-suited for optimization over continuous domains of
less than 20 dimensions (Frazier, 2018), and thus these ap-
proaches still fail to address our problem because of the vast
optimization space, which contains more than 215,000 possi-
bilities if only considering Boolean options. Furthermore,
both Neural network approaches and Bayesian optimiza-
tion approaches fall short of taking the error-prone options
into consideration, which is decisive in guaranteeing the
successful boot-up of the OS.

I want to improve the speed of creating processes, how do

I modify the linux kernel's configuration options? Please

provide specific options directly and give the recommend

setting.

Recommended Setting: 1000

Modifying the kernel's configuration options to improve the speed

largely depends on the specific use case and requirementsKeep
in mind that changing kernel configurations should be done with
caution and with a good understanding of the potential impacts on

your system.

1 CONFIG_BASE_SMALL:
Recommended Setting: y
description: ...
2 CONFIG_PREEMPT:
Recommended Setting: y (for desktop systems), n (for servers)
Description:...
...

7 CONFIG_HZ:

Description:...

chatgpt： of creating Linux image processes can be a complex task, and it

usr：

CONFIG_CC_IS_GCC=y
CONFIG_GCC_VERSION=100301
CONFIG_CLANG_VERSION=0
CONFIG_AS_IS_GNU=y
CONFIG_AS_VERSION=23500
CONFIG_LD_IS_BFD=y
CONFIG_LD_VERSION=23500
CONFIG_LLD_VERSION=0
CONFIG_CC_CAN_LINK=y

...

CONFIG_TEST_MEMINIT is not set
CONFIG_TEST_FREE_PAGES is not set

CONFIG_ARCH_USE_MEMTEST=y

(a) (b)

Figure 1. (a) A simple direct request to ChatGPT to modify con-
figuration options for better performance, which is only able to list
a smaller number of configuration names, and (b) an example of a
vendor-provided default Linux configuration file that only lists the
enabled options.

To address the above challenges, we propose to utilize the
pre-trained Large Language Models (LLMs) (Touvron et al.,
2023; Team et al., 2023; Ouyang et al., 2022; Achiam et al.,
2023; Zhang et al., 2022; Jiang et al., 2023; Driess et al.,
2023; Li et al., 2023) to optimize the OS performance auto-
matically. However, directly prompting the state-of-the-art
LLM (i.e., ChatGPT) to generate relevant OS kernel config-
uration options for user-specific requirements seems inef-
fective, as shown in Figure 1(a). This simple attempt shows
that it can only make LLMs output a small number (10∼20)
of general configuration options, which is not aligned with
the user’s requirements and means nearly no performance
improvement. Besides, it is hard for controlling LLMs to
flexibly adapt to specific OS kernel version, since the names
and numbers of options in different versions of Linux kernel
are slightly different. Additionally, LLMs are not suitable
for the natural approach that directly reads the default config-
uration file of Linux kernels provided by OS distributions or

hardware vendors (e.g., Figure 1(b) lists part of the default
configurations) and perform further optimization, mainly
because of the prompt tokens limits. For example, the state-
of-the-art GPT-4 has a 32,000-token context limit (OpenAI,
2023), while the entire Linux kernel configurations contain
about 100,0000 words.

To this end, in this work, we propose a novel framework,
i.e., AutoOS, unleashing the power of LLMs for customiz-
ing and optimizing OS kernel configurations automatically
for various AIoT application scenarios. The key insight
is that we exploit the expert’s prior knowledge in LLMs,
which can narrow the vast optimization space aligning with
the user requirements, meanwhile detecting and bypassing
the error-prone options to guarantee a successful OS boot-
up. To achieve this, we first leverage the inherent tree-like
structured nature of the OS kernel configurations, formulat-
ing this problem as to optimize on a dynamic tree. Then,
we propose a state machine-based traversal algorithm with
randomness to interact with OS kernel configurations for
exploring optimal configuration option combinations. More-
over, we introduce a correcting stage that allows LLMs to
automatically debug the OS boot-up failure. Experimental
results show that AutoOS achieves 1.08× to 1.25× better
performance than vendor-provided default configurations.
More importantly, AutoOS can automatically customize and
optimize the OS kernel configurations without human effort
in several hours, significantly reducing the time-consuming
costs of manual optimization by experts.

We conclude our contributions as follows:

• To the best of our knowledge, we present AutoOS, the
first work to automatically customize and optimize OS
kernel configurations by exploiting LLMs.

• Inspired by the inherently directory-structured kernel
configuration process, we first formulate the problem
of OS kernel configuration as an optimization problem
on a dynamic tree. Accordingly, the proposed frame-
work integrates a state machine-based traversal algo-
rithm as the observe-prune-propose-act-correct loop,
which can effectively refine the optimization space and
guarantee a successful OS boot-up.

• We conduct thorough evaluations on several public
Linux distributions, indicating that AutoOS can auto-
matically customize and optimize the OS kernel con-
figurations without human effort. Moreover, AutoOS
shows superior performance to those achieved through
expert manual optimization, underscoring its efficacy
and potential impact in the field.

2

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

2. Problem Formulation
In this section, we introduce the formulation of our research
problem. We first introduce the background of OS kernel
configurations. Then, we propose our problem definition of
optimizing on a dynamic tree. Finally, we briefly describe
the interaction process between LLMs and OS.

2.1. OS Kernel Configurations Basis

The Linux kernel’s ‘make menuconfig’ command, integral
to its build system, enables interactive kernel option con-
figuration (Martin et al., 2021). This command is naturally
directory-based, with configuration options often exhibit-
ing complex, sometimes multi-level, dependencies. In the
graphical human configuration interface, dependencies dic-
tate that unmet conditions render options unselectable or
hidden. Inspired by this, we conceptualize the configura-
tion space as a dynamic tree structure. Changes in option
combinations lead to the tree’s dynamic transformation,
with unselectable options akin to branch removal and newly
selectable options to branch insertion. We formalize the
research problem as follows:

2.2. Problem Definition: Optimizing on a Dynamic Tree

Definition 2.1. (Optimization on the dynamic tree). Con-
sider the configuration space as a tree T = (N,E), where
N represents the nodes (i.e., configuration options), and E
represents the relationships between nodes. For a given op-
timization goal g (i.e., customize and optimize an OS kernel
on a specific AIoT device), there exists a special subset of
nodes Lg ⊆ N , which archives optimal OS performance.
Additionally, there is a set K ⊆ N , which contains config-
uration nodes that are related to OS boot-up issues. Given
an evaluation function f : 2N → R, this function can as-
sign a performance score to any subset of nodes. Formally,
the problem is to find the M maximizing f(M), where
M ≈ Lg and M ∩K = ∅.

We emphasize the necessity of formulating the problem
for optimization on a dynamic tree as follows: Firstly, this
tree model is universally applicable across all Linux kernel
versions, allowing for an exhaustive exploration of the con-
figuration space as internal nodes expand. Secondly, the
dynamic nature of this tree meticulously maintains the inter-
option dependencies. Thirdly, the tree’s branching structure
is inherently conducive to pruning and is also well-suited for
conducting searches with a certain degree of randomness,
which we will address in Section 3. Lastly, each level’s
content in the tree can be processed sequentially and the
leaf nodes per level are limited, which accommodates the
constraints on the context length of LLMs.

2.3. Atomic Action for Interacting between LLMs and
OS

It is essential to equip the LLMs with the capability to in-
teract with the OS kernel configurations when optimizing
the dynamic tree. Unfortunately, the existing kernel source
code does not provide this functionality, only in the form
of a graphical interface. We observed that the ’kconfiglib’
library (ulfalizer, 2023) provides a command-line form of
interaction similar to the interface. To address this issue, Au-
toOS made slight engineering modifications to the library,
abstracting a series of atomic APIs for code-based manipula-
tion of a dynamic tree. These atomic APIs include returning
all the semantic information of nodes at a specific level of
the tree, modifying a particular configuration, and returning
all newly appeared options after configuration changes, etc.

3. Method
3.1. Overview

Based on the problem formulation in Definition 2.1, AutoOS
introduces a state-machine-based framework to navigate the
OS kernel configuration space, i.e., finding the set M in
Definition 2.1 to make f(M) while ensuring M ∩K = ∅,
as shown in Figure 2. The framework consists of five stages:
observation, pruning, proposing, acting, and correcting. The
initial four stages aim to explore potential combinations
of kernel configuration options that could enhance perfor-
mance while avoiding options that impact system boot-up
and pruning redundant and irrelevant options. The final
correcting stage poses a debug process, which ensures the
candidate configurations are viable for a successful OS boot-
up. Thus, the above observe-prune-propose-act-correct loop
based on LLMs can effectively customize and optimize OS
kernel configurations for various AIoT application scenar-
ios.

Concretely, AutoOS employs three key techniques. Firstly,
AutoOS introduces the dynamic tree traversal algorithms
with randomness, i.e., the former four stages of the state-
machine framework, to enhance the search for optimal con-
figuration options within the optimization space. Secondly,
to efficiently direct LLMs towards identifying optimized
sets of configuration options that meet user requirements,
we adopt self-explanation (Rajani et al., 2019) mechanism
to fully leverage the LLMs. Lastly, the correction stage
enables automatic debugging, swiftly detecting and fixing
boot-up failures through the LLMs’ expert prior knowledge.

These key techniques will be detailed in the subsequent
subsections.

3

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Prompt
“I want to explore the configuration of the Linux kernel's
'config' to {target} ...Here's how I'll show you the
directories : ...Your response format:... For relevant
directories: ...
 For example...Do not recommend any directory related
to device driver , cryptographic, ... ,platform type,Bus, or
architecture-depend directories.
 Here are some directories,please recommend :...”

directories in this level:
0 printk and dmesg options
1 Compile-time checks and compiler
options
...configurations in this level:
0 Kernel debugging (DEBUG_KERNEL)
1 Debug shared IRQ handlers (DEBUG_SHIRQ)
...

Prompt

"For {target_object}, analyze each of the following settings
separately to determine whether they will increase or decrease
{target_object} if the setting is enable..."

"Based on the analysis above, provide the options that could
potentially affect {target_object} and analyse...

“According to the above analysis,for the options that could
potentially impact {target_object} , determine whether each
option will increase or decrease {target_object}, Output format:...
for example... please output...”

#2 Pruning stage

#3 Proposing stage with self-explanation

#1 Observing stage

enumerated config

LLM search path

Information from the tree

API: Tree Status =
config.run(f"write {name_t} ...")

#4 Acting stage
Modify the config

directory

numerical config
modified config
subtree removed
subtree inserted

#5 Correcting stage
Closed -loop Processing

when no appeared
options,expand

next leve
the tree and go to

l

when traversal
with certain
 randomness
 finish

when options appear

step1. Observing this level

step2. Pruning

step3. Proposing options for
modification

step5. For newly inserted leaf nodes,
proposing and acting. There is no
appeared one again.

step6. Expanding and go to
step1 to observintg the new level.

 Traversal on a Specific Level

step4. Acting and tree changing

"I modified the following option:...
The boot-up error is ...
Which option did I change to cause
this?"

 prune(a) (b)

Instruction: Enhance the unixbench score for PolyOs on riscv-based board

Figure 2. AutoOS overview. (a) The proposed AutoOS framework can effectively interact between LLMs and the OS kernel, navigate
the OS kernel configuration space, fulfilling the user’s requirements for customizing and optimizing an OS kernel for the specific AIoT
application scenario. We design an LLM-based systematic prompt template that performs like a state machine, which consists of five
stages: observation, pruning, proposing, acting, and correcting. The initial four stages aim to explore potential combinations of kernel
configuration options that could enhance performance while avoiding options that impact system boot-up and pruning redundant and
irrelevant options. The final correcting stage poses a debug process, which ensures the candidate configurations are viable for a successful
OS boot-up. (b) illustrates an example of how to traverse the dynamic tree on a specific tree level, which will be detailed in Section 3.2.

3.2. Traversal with Certain Randomness

In order to find configuration option combinations M that
may enhance performance in the entire optimization space,
AutoOS adopts a method of traversing the dynamic tree
of configuration options with certain randomness. At the
same time, in order to avoid options that affect boot-up and
irrelevant options in the combination as much as possible, a
pruning strategy is introduced. Algorithm 1 details the pseu-
docode for this dynamic tree traversal with randomness in
AutoOS. Each stage in the traversal algorithm is introduced
in detail as follows:

Observing stage. During this stage, atomic operations are
adopted to furnish the LLM with comprehensive data regard-
ing all directories D and configuration options S present
at this particular level, which including details such as the
names and types of the options, as shown in step1 of Fig-
ure 2(b). Such a method allows the LLM to adapt to the
characteristics of the specific configuration space.

Pruning stage. We direct the LLM to evaluate subdirecto-
ries at each tree level, implementing pruning of intermediate

nodes. Specifically, for each intermediate node ni ∈ D,
there are two options: pruning (p) and not pruning (¬p).
When pruning results,The LLM can determine the proba-
bility of pruning as P (p|ni) based on internal knowledge.
It then carries out a sampling process, making the pruning
both random and knowledge-guided, as shown in step2 of
Fig 2(b). This approach is designed to preemptively exclude
exploration into subtrees that lack relevance to performance
optimization. Moreover, this pruning process enables Au-
toOS to sidestep options that could lead to boot-up failures,
thereby diminishing the elements within M ∩ K, signifi-
cantly reducing the correcting costs in the final correcting
stage.

Proposing stage. During this phase, we furnish the LLM
with semantic details of options highlighted in pink in Fig
2(b) gathered from the observing and pruning stage, ac-
companied by comprehensive information (e.g., the range
for numerical options) from the kernel source code. For
each config option si ∈ S, its inclusion in set M and the
recommendation of settings for these selected options will
be determined based on the probability P (si) leveraging

4

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Algorithm 1 Pseudocode for Dynamic Tree Traversal With
Certain Randomness in AutoOS
1: Input: Tree xi

2: Initialize expanded set = {root}, M = ∅
3: repeat
4: Go to the level of expanded set.pop()
5: Get options S, intermediate nodes D for this level
6: expanded set.append(LLM RandomPrune(D))
7: propose set = LLM RandomSelect(S)
8: Push the propose set to the execution queue
9: appear set = ∅, disappear set = ∅

10: repeat
11: for opt in queue do
12: Modify opt and add to M.
13: Update appear set, disappear set
14: queue = queue \ disappear set
15: end for
16: propose set = LLM RandomSelect(appear set)
17: push the propose set to queue
18: until propose set = ∅
19: until expanded set = ∅

LLM internal knowledge, which is likely to boost OS per-
formance.

Acting Stage. Following the proposal phase, we enqueue
the suggested options for execution, methodically applying
the recommendations from the proposing stage. Should al-
terations occur within the dynamic tree of the configuration
space, we exclude the disappeared options from the execu-
tion queue. The modified options are marked in red in step4
of Fig 2(b). Subsequently, we revert to the proposing stage
to identify any newly emerged options, as shown in step5
of Fig 2(b). This phase, in conjunction with the proposing
stage, establishes a cyclical process to manage the contin-
ual emergence of options until the dynamic tree stabilizes.
Upon completing the traversal of the dynamic tree without
any outstanding nodes for expansion, we transition to the
final correction stage. If not, we proceed to the next child
node, returning to the initial observing stage, as depicted in
step6 of Fig 2(b).

By employing randomness in the pruning and proposing
phases, AutoOS adeptly traverses various pathways and
configurations, culminating in distinctive sets of options M .
This strategic incorporation of randomness broadens the
exploration scope during the search, thereby augmenting
the likelihood of discovering optimal OS configurations.

3.3. Self-Explanation Mechanism

We found that LLMs exhibited inconsistency in articulating
the impact of a configuration option on the optimization
goal and in determining whether to recommend that op-
tion for the same goal. For instance, LLMs might endorse
configurations that, according to their interpretation, could
negatively affect performance. Such inconsistency leads

LLMs to suggest configurations potentially detrimental to
the OS kernel’s performance.

To address this inconsistency, we introduce a self-
explanation mechanism during the proposing stage, illus-
trated in Figure 2(a). By conducting two rounds of self-
explanation, we predominantly achieve a consistent reason-
ing and decision process for the suggested configurations
of LLMs. This mechanism can effectively enhance Au-
toOS’s optimization capabilities. Moreover, by leveraging
the LLMs’ expert prior knowledge, the self-explanation
mechanism avoid modifying redundant options or boot-up
failure options, thus significantly streamlining the optimiza-
tion space and reducing correction efforts.

3.4. Correting Stage

Upon finishing the dynamic tree traversal, we obtain the con-
figuration set M . At this point, the state machine transitions
from the acting stage to the correcting stage.

As shown in Fig.2, during this phase, we adopt a closed-
loop process, wherein error feedback and constituents of
M are relayed to the LLM for boot-up failure detection
and correction. The constricted intersection between M
and K (∥M ∩ K∥), a result of the former pruning and
self-explanation mechanism, along with the relatively small
number of options in M by filtering out the irrelevant op-
tions, enables the closed-loop correcting mechanism to effi-
ciently tackle boot-up issues in most scenarios at acceptable
costs. When there is only one option causing the startup
failure and the closed-loop process is in effect, the cor-
rection phase can effectively reduce the debugging over-
head from O(∥M ∩ K∥) (checking all valid options) or
O(log ∥M ∩K∥) (binary search) to O(1).

There are occasions where the LLM-assisted correcting
stage fails to detect errors. In such cases, AutoOS uses
binary search to identify faulty options, ensuring successful
OS boot-up.

4. Evaluation
In this section, we first present the experimental setup. Then,
we report our main experiment results, which primarily fo-
cus on customizing and optimizing the Linux kernel con-
figuration options for various hardware and scenarios to
enhance the overall performance. Besides, we conduct abla-
tion studies to verify the effectiveness of the key techniques
(i.e., pruning and self-explanation mechanism) of AutoOS.

4.1. Experimental Setup

We evaluate AutoOS on three different OS kernel config-
uration tasks. Table 1 lists the details of the OS, option
numbers, hardware, scenario, and optimization goal, which

5

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Table 1. Experimental Setup. We evaluate AutoOS on three different OS kernel configuration tasks .

Scenario OS Options Testbed Optimization Goal

1 AIoT PolyOS 15,365 Hifive Embedded Board UnixBench, LMbench

2 AIoT Fedora 15,561 Hifive Embedded Board UnixBench

3 General-purpose Ubuntu 16,621 PC machine UnixBench

we will detail as follows:

OS. The OS we used include three distinct Linux distribu-
tions, i.e., PolyOS (PolyOS, 2023), Fedora, and Ubuntu.
Specifically, PolyOS is a lightweight OS designed for the
RISC-V architecture. It contains 15,365 OS configuration
options with Linux kernel version 5.17.2. Fedora (Fedo-
raproject, 2023), distinguished for its extensibility and ro-
bust community support, is implemented with Linux kernel
version 5.18.8, comprising approximately 15,561 options.
These distributions primarily support intelligent mobile and
AIoT scenarios. Moreover, we also incorporated Ubuntu
22.04.3, a widely-used general-purpose distribution running
on Linux kernel version 6.2.0, with over 16,621 configura-
tion options, ensuring a comprehensive evaluation on the
general-purpose scenario.

Testbed. The experiment was conducted on two different
hardware: an AIoT device and a PC machine. The former
is a Hifive embedded development board powered by
the SiFive Freedom U740 (FU740), an SoC that includes a
high-performance multi-core, 64-bit dual-issue, superscalar
RISC-V processor with 16GB of DDR4. The latter is a
PC based on the Intel(R) Core(TM) i7-13700F, x86 64
architecture processor, with 15GB of DDR5 and 30GB of
swap memory.

These different kinds of OS distributions and hardware plat-
forms allow us to assess the generalizability and perfor-
mance of our methods on different OS configuration tasks
(e.g., facing the challenge of different Linux kernel ver-
sions), providing a comprehensive evaluation of AutoOS’s
effectiveness.

Benchmark. We adopt the popular Unixbench scores (Ge
et al., 2020; Xu et al., 2022; Bergman et al., 2023) as the
benchmark, as well as the optimization goal of our experi-
ments. UnixBench provides a comprehensive evaluation of
an OS’s performance across multiple perspectives, such as
file I/O, process creation, system function calls, and etc..

To further validate the effectiveness of our methods, we also
include LMbench (McVoy et al., 1996; Kuo et al., 2020b)
as a benchmark. This benchmark consists of 54 sub-metric
for different OS tasks.

Comparison baselines. We first include the vendor-
provided or default kernel configuration for each OS
as a baseline. Notably, PolyOS’s performance on the Hifive

Embedded Board, having undergone exhaustive manual op-
timization, establishes a strong baseline in the expert-level.

The commonly-used approaches including neural networks
approaches and bayesian optimization approaches fail to
address this problem mainly because of the extensive num-
ber of configurations, significant evaluation costs, and the
risk of selecting error-prone options leading to OS boot
failures. Consequently we consider the LLM-Vanilla, i.e.,
directly prompting LLMs to optimize OS kernel configu-
rations as the second baseline, as shown in Figure 1. Note
that LLM-Vanilla with limited prompt length prevents it
from reading all the Linux Kernel configuration files, we
prompt to directly recommend optimization-related configu-
rations (around 10∼20 options), and handly integrate these
to the aforementioned default configurations and evaluate
the performance.

Model. In this experiment, we directly integrated the pub-
licly available GPT-3.5-Turbo into AutoOS. To ensure a
degree of randomness, the temperature setting for the LLM
was set to 1.0.

Seach setting. In order to diversify the configuration options
explored during each random traversal of the dynamic tree,
AutoOS will automatically explore different optimization
targets from Unixbench, including integer or floating-point
operations, execl throughput, file transfers, context switches
on pipes, process creation throughput, system call capabil-
ities or directly increase the total score of Unixbench. We
let AutoOS run the search with 24 search trials with the
optimized OS kernel configurations for different OS distri-
butions, and then report the ’best total score’ among them.
Each search trial is independent and begins at the default
configuration. This means that AutoOS is designed to have
an upper limit on the total search time (i.e., about one day
considering the evaluation costs of about 1 to 2 hours for a
candidate OS kernel configuration).

4.2. Overall Performance

Results on AIoT scenarios. Table 2 and Table 3 list the
experimental results of the PolyOS and Fedora, respectively,
representing the performance improvement of AutoOS on
the AIoT scenarios. Results show that AutoOS performs
consistently better than the two selected baselines. Con-
cretely, AutoOS archives 1.08× and 1.26× performance

6

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Table 2. The best optimization results for PolyOS running on the Sifive Unmatched board, with scores in UnixBench evaluations(higher is
better). In the first column, ‘default’ represents OS configuration from human, ‘LLM-Vanilla’ corresponds to the naive method from
Fig.1’s left side. Results show that AutoOS achieves performance improvement than default by 8.4%.

Dhrystone Whetstone Execl File
1024

File
256

File
4096

Pipe
Throughput

Pipe
Switching

Process
Creation

Shell
1

Shell
8

System
Call

Total
Score

Default 459 197 515 235 295 213 245 141 166 463 1095 382 309

LLM-Vanilla 461 197 482 221 273 210 213 105 156 436 1023 303 283 (-8.5%)

AutoOS 460 197 578 246 364 219 265 175 191 473 1118 419 335 (+8.4%)

Table 3. The optimization results for Fedora running on the Sifive Unmatched board, with scores in UnixBench evaluations.

Dhrystone Whetstone Execl File
1024

File
256

File
4096

Pipe
Throughput

Pipe
Switching

Process
Creation

Shell
1

Shell
8

System
Call

Total
Score

Default 358 202 197 197 210 167 155 66 98 257 648 369 207

LLM-Vanilla 347 200 176 192 203 182 143 60 89 240 610 293 194 (-6.3%)

AutoOS 367 198 284 240 310 216 187 137 140 264 696 425 260 (+25.6%)

improvement over the vendor-provided default OS kernel
configuration, respectively. Notably, although the default
OS kernel configuration of PolyOS has undergone exhaus-
tive manual optimization, AutoOS still archives better per-
formance, indicating that AutoOS is able to discover a better
OS kernel configuration than experts without human efforts.

LLM-vanilla performs worse than the default OS kernel con-
figuration, contrary to the optimization goals. The reason is
two-fold: 1) LLM-Vanilla cannot interact with the entire OS
kernel configuration options due to its limited token context
windows, and 2) LLM-Vanilla can not handle the interde-
pendencies between different configuration options, which
is crucial for performance. AutoOS addresses this through
the proposed framework that integrates a state machine-
based traversal algorithm on the dynamic tree, which can
iteratively recommend options in different tree levels and
naturally recognize correlations between options through a
tree structure.

Regarding the multiple sub-goals in UnixBench, AutoOS ex-
hibits a higher performance improvement relative to the total
score of UnixBnech. For instance, although AutoOS only
archives 1.08× improvement on total score than that of the
default kernel on PolyOS, it achieves performance improve-
ment by 24.5% for pipeline switching, 16.7% for process
creation, and a notable 23.3% for transfering 256 small data
blocks, which is valuable for in real-world applications. In
the case of Fedora, alongside a 25.54% performance in the
total score, AutoOS accomplishes remarkable enhancements
of 44% in execl throughput and 43% in process creation.
The modest overall score increment is predominantly due
to hardware limitations, particularly as gains in integer and
floating-point operations, which are significantly dependent
on CPU rather than the OS.

Results on general-purpose scenario. We applied AutoOS

to a general-purpose Ubuntu OS running on a PC, further
validating the universality of our approach. As shown in
Table 4, it can be seen that AutoOS exhibited character-
istics similar to those observed on the previous two OS
distributions again, reaching a 9.08% increase in overall
performance.

In our experiments conducted on PolyOS, Fedora, and
Ubuntu, AutoOS executed an average of 0.125, 0.417, and
0.625 correction phases per search across 24 trials. This
indicates that the OS generated by AutoOS can successfully
boot up in many cases without needing correction phases.

Performance improvement on LMbench. Our previous
experiments primarily focused on using Unixbench, a spe-
cific benchmark for optimization and evaluation. To verify
that our method does not overfit the given optimization
goals, we select the OS kernel configuration optimized for
the UnixBench on PolyOS, and evaluate its performance
for the LMbench. Experimental results show that in the 54
different sub-metrics in LMbench, AutoOS archives better
performance for 37 out of 54, ranging from 10% to 30%,
and also achieves comparable performance for 13 out of
54 (which mainly consists of integer and floating opera-
tions), while only achieves slightly worst performance for 4
out of 54. This experiment provides strong proof that Au-
toOS does not overfit the optimization goal, and effectively
customizes and optimizes the OS kernel configuration to
specific hardware.

4.3. Ablation Study

The efficacy of the pruning and self-explanation. We
perform an in-depth ablation study to elucidate the efficacy
of the pruning and self-explanation methods incorporated
in AutoOS. The term ’plain’ denotes AutoOS devoid of
the pruning and self-explanation features, yet retaining the

7

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Table 4. The optimization results for Ubuntu running on a PC, with scores in UnixBench evaluations.

Dhrystone Whetstone Execl File
1024

File
256

File
4096

Pipe
Throughput

Pipe
Switching

Process
Creation

Shell
1

Shell
8

System
Call

Total
Score

Default 6595 2150 1641 6969 4539 13800 3217 952 1448 6015 18554 2351 3885

LLM-Vanilla 6693 2167 1659 6947 4446 13503 3223 985 1483 6033 18868 2286 3898(+0.3%)

AutoOS 6674 2163 1800 7933 5255 14536 3704 989 1670 6115 19609 2904 4238 (+9.0%)

Table 5. Ablation studies of pruning (except the first layer in the
tree) and the self-explanation proposed in Section 3. The ex-
periment was conducted on PolyOS running on AIoT devices.
The ’plain’ represents the AutoOS without pruning and self-
explanation, but maintains the other component of the proposed
framework. Search time encompasses solely the duration of in-
teraction with the LLMs, excluding evaluation periods, whereas
correcting time covers the complete debugging and OS evaluation
process. The total score is the UnixBench score same as before.

Plain w/ Pruning w/ Explanation AutoOS

Num of modified options 230 20 74 17
Search time (seconds) 321 132 1, 522 429

Num of boot-up options 5 2 0 0
Correcting time (hours) 26.7 6.6 0 0

Total score 137 298 332 335

remainder of the framework’s components. To assess the
impact of these strategies, we employ several metrics, as
delineated in Table 5. These metrics include the total num-
ber of suggested options and those causing boot-up failures.
Additionally, search time encompasses solely the duration
of interaction with the LLMs, excluding evaluation periods,
whereas correcting time covers the complete debugging and
OS evaluation process. The total score is the UnixBench
score same as before.

Experimental results on PolyOS show that both the pruning
and self-explanation techniques can effectively reduce the
total number of modified options (from 230 to 20 and 74),
which refines and narrows the optimization space. Moreover,
both two techniques are able to bypass those options that
cause boot-up failure. Notably, self-explanation achieves
zero boot-up failure options, obviating the need for sub-
sequent correction and markedly reducing AutoOS’s total
runtime duration, underscoring its effectiveness of signif-
icantly streamlining the optimization space and reducing
correction efforts. Despite the minimal increased search
time necessitated by two rounds of interactions with LLMs,
self-explanation secures performance on par with the Au-
toOS, indicating its effectiveness for optimizing the OS
performance.

Different iterations of the self-explanation. We adopt
two rounds of self-explanation in AutoOS. The proposed

Table 6. Ablation studies of the number of self-explanation itera-
tions. The ’Iterations’ refers to the rounds of self-explanation. The
iteration count of 0 indicates that the explanation of an option is not
within the same contextual window as the execution result output
by the LLM. The ’thinking’ denotes the performance impact of an
option within the LLM’s explanation. The ’doing’ represents the
actual output when the large model proposes the option. ’Positive’,
’Negative’ and ’Neutral’ denote the three types of impacts that
configuration options have on performance.

Iterations 0 1 2 8

Positive (doing/thinking) 22/48 25/28 35/36 40/40
Negative 17/29 35/38 37/40 37/39
Neutral 0/59 53/70 55/60 52/57
Consistency (%) 28.60% 83.08% 93.38% 94.85%

Self-Explanation mechanism aims to mitigate inconsisten-
cies in LLMs discussed in Section 3.3. An ablation study
was conducted to examine the influence of varying self-
explanation iterations on this inconsistency. This study
involved a dataset comprising 136 options, all from the
pruning phase (i.e., the input to self-explanation) within a
single dynamic tree traversal. Configuration options were
categorized as positive, negative, or neutral concerning OS
performance. Metrics reported include the count of ”doing”
(proposing a setting for an option), ”thinking” (believing
in the impact of an option on performance), and overall
consistency. We explored several self-explanation iterations:
0, 1, 2, and 8.

The results in Table 6 show that two iterations of self-
explanation in AutoOS 1) effectively enhance the consis-
tency of AutoOS from 28.6% (0 iterations) to 93.38% (2
iterations), and 2) are enough to address this inconsistency
as increasing the iterations of self-explanation from 2 to 8
no longer results in a significant improvement (93.38% →
94.85%); instead, it requires a large number of tokens spent
in LLMs.

5. Related Work
Data-driven methods. A significant number of studies have
concentrated on enhancing software configuration settings
through data-driven machine learning approaches. Deep-
perf (Ha & Zhang, 2019)created a dataset linking applica-
tion configurations with performance, utilizing FNNs and
sparse regularization for performance prediction. VCONF

8

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

(Rao et al., 2009)introduced a reinforcement learning-based
framework for dynamic VM configuration adjustment in
response to online traffic, employing a reward model and an
action space. However, these methods are primarily effec-
tive in contexts where software performance can be rapidly
assessed, which does not apply to scenarios in which OS
kernel compilation and installation require 1-2 hours. Addi-
tionally, differing from these tasks, the OS kernel comprises
several immutable critical configuration options that influ-
ence the boot-up process. Herzog(2021) pre-identified 22
kernel parameters from sysfs by which avoid boot-up issues.
They employed neural networks to adjust them based on
the features of the applications. Notably, the sysfs’s kernel
parameters can be modified during runtime without neces-
sitating kernel recompilation, thereby reducing the time
required for performance evaluation. Acher(2019) used ran-
dom forests to predict kernel compression sizes, forming a
95,854-entry dataset. Differing from us, they overlooked
boot-up issues, focusing on kernel size measurement en-
abling quick data collection within 10 minutes without the
time for installation and evaluation. Our approach also does
not aim at kernel size reduction.

Bayesian approach. Bayesian optimization (Bergstra et al.,
2011; Snoek et al., 2012) is frequently utilized for costly
optimization tasks, particularly excelling in neural network
hyperparameter adjustments (Li et al., 2018; Lindauer et al.,
2022; Bischl et al., 2023). It is also applied to optimize
hardware and software configurations. For example, HiPer-
BOt (Menon et al., 2020) employs Bayesian optimization
to optimize application and platform-level configuration pa-
rameters related to high performance. Willemsen (2021)
applied it to GPU kernel configuration optimization. In the
OS field, Wayfinder(Jung et al., 2021) explored LibOS’s
network configuration space, choosing over 200 kernel and
network library configurations and employing Bayesian op-
timization. Contrasting with it, our method focus on opti-
mizing across the entire kernel configuration space, without
the need for pre-selecting configurations, addressing boot
issues and can automatically customize and enhance the
overall performance of OS.

Related tools. Genkernel (Thiruvathukal, 2004) is an estab-
lished tool used to semi-automatically customize hardware-
specific kernel configurations on Gentoo and related distri-
butions. But it is only tooling to automate the build process
of the Gentoo OS (i.e., automating the kernel’s compilation
and installation), but rather generates optimized kernel con-
figuration automatically. It provides a very general default
configuration and users need to manually adjust the con-
figuration based on their own needs. Conversely, AutoOS
automatically optimizes kernel configurations, removing the
need for manual customization expertise, and is compatible
across various Linux kernel-based OS distributions.

6. Conclusion
In this paper, we introduce AutoOS, a novel framework
exploiting Large Language Models for customizing and op-
timizing OS kernel configurations automatically for various
AIoT application scenarios. The proposed framework in-
tegrates a state machine-based traversal algorithm as the
observe-prune-propose-act-correct loop, which can effec-
tively refine the optimization space and guarantee a success-
ful OS boot-up. Experimental results show that AutoOS can
automatically customize and optimize the OS kernel config-
urations without human effort. Moreover, AutoOS shows
superior performance to those achieved through exhaustive
manual optimization, underscoring its efficacy and potential
impact in the field.

As the first attempt to tackle the challenging problem of
customizing and optimizing OS kernel automatically by
exploiting LLMs, the future work mainly focuses on two
aspects: 1) there are several potential techniques to further
improve the performance, e.g., naturally integrating with
Bayesian optimization when refining the optimization space
by LLMs, and 2) extend the application of AutoOS to other
tasks except for the OS kernel performance optimization,
such as addressing the challenge of optimizing energy con-
sumption. It is expected that this work will inspire more
advanced research in this field.

7. Limitations
AutoOS can be easily adapted to Linux-based OS or those
OSs that provide kconfig-like configuration commands.
However, it currently can not be directly applied to opti-
mization tasks for non-Linux kernel-based OS. In non-Linux
kernel-based systems, the main impediment to AutoOS im-
plementation stems from the lack of readily accessible APIs
for abstracting kernel configurations into dynamic trees.
Some engineering efforts are required to develop these APIs
for automatic optimization and customization of OS kernel
configurations.

Acknowledgements
We extend our heartfelt thanks to each individual who con-
tributed to this work during both the submission and rebuttal
phases. Additionally, we are grateful to the reviewers for
their insightful suggestions that improved the quality of our
paper.

This work is partially supported by the National Key
R&D Program of China(under Grant 2022YFB4501603),
the NSF of China(under Grants 92364202, U22A2028,
61925208, 62222214, 62341411, 62302483, 62102399,
62302482, 62102398, U20A20227, 62372436, 62302478,
62302480), Strategic Priority Research Program of the Chi-

9

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

nese Academy of Sciences, (Grant No. XDB0660300,
XDB0660301, XDB0660302), CAS Project for Young Sci-
entists in Basic Research(YSBR-029), Youth Innovation
Promotion Association CAS, Xplore Prize and Major Pro-
gram of ISCAS (Grant No. ISCAS-ZD-202402).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and OS. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References
Acher, M., Martin, H., Pereira, J. A., Blouin, A., Jézéquel,

J.-M., Khelladi, D. E., Lesoil, L., and Barais, O. Learn-
ing very large configuration spaces: What matters for
Linux kernel sizes. PhD thesis, Inria Rennes-Bretagne
Atlantique, 2019.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Akgun, I. U., Aydin, A. S., and Zadok, E. Kmlib: Towards
machine learning for operating systems. In Proceedings
of the On-Device Intelligence Workshop, co-located with
the MLSys Conference, pp. 1–6, 2020.

Bergman, S., Silberstein, M., Shinagawa, T., Pietzuch, P.,
and Vilanova, L. Translation pass-through for near-native
paging performance in vms. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), 2023.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Al-
gorithms for hyper-parameter optimization. Advances
in neural information processing systems (NeurIPS), 24,
2011.

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter,
J., Coors, S., Thomas, J., Ullmann, T., Becker, M.,
Boulesteix, A.-L., et al. Hyperparameter optimization:
Foundations, algorithms, best practices, and open chal-
lenges. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 13(2):e1484, 2023.

Doudali, T. D., Blagodurov, S., Vishnu, A., Gurumurthi,
S., and Gavrilovska, A. Kleio: A hybrid memory page
scheduler with machine intelligence. In Proceedings of
the 28th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC), pp. 37–48,
2019.

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery,
A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T.,

et al. Palm-e: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378, 2023.

Fedoraproject. SiFive unmatched im-
age. https://dl.fedoraproject.
org/pub/alt/risc-v/disk_images/
Fedora-Developer-Rawhide-20220705.
n.0.SiFive.Unmatched/, 2023. Accessed on
2/6/2023.

Franz, P., Berger, T., Fayaz, I., Nadi, S., and Groshev, E.
Configfix: interactive configuration conflict resolution
for the linux kernel. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 91–100. IEEE,
2021.

Frazier, P. I. A tutorial on bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.

Ge, X., Niu, B., and Cui, W. Reverse debugging of kernel
failures in deployed systems. In 2020 USENIX Annual
Technical Conference (USENIX ATC), pp. 281–292, 2020.

Ha, H. and Zhang, H. Deepperf: Performance prediction
for configurable software with deep sparse neural net-
work. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 1095–1106. IEEE,
2019.

Hao, M., Toksoz, L., Li, N., Halim, E. E., Hoffmann, H.,
and Gunawi, H. S. LinnOS: Predictability on unpre-
dictable flash storage with a light neural network. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pp. 173–190, 2020.

Herzog, B., Hügel, F., Reif, S., Hönig, T., and Schröder-
Preikschat, W. Automated selection of energy-efficient
operating system configurations. In Proceedings Of The
Twelfth ACM International Conference On Future Energy
Systems, pp. 309–315, 2021.

IoT, A. The rise of industrial ai and
aiot: 4 trends driving technology adop-
tion. https://iot-analytics.com/
rise-of-industrial-ai-aiot-4-trends-\
driving-technology-adoption/, 2023. Ac-
cessed on 28/11/2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jung, A., Lefeuvre, H., Rotsos, C., Olivier, P., Oñoro-Rubio,
D., Huici, F., and Niepert, M. Wayfinder: towards auto-
matically deriving optimal os configurations. In Proceed-
ings of the 12th ACM SIGOPS Asia-Pacific Workshop on
Systems (APsys), pp. 115–122, 2021.

10

https://dl.fedoraproject.org/pub/alt/risc-v/disk_images/Fedora-Developer-Rawhide-20220705.n.0.SiFive.Unmatched/
https://dl.fedoraproject.org/pub/alt/risc-v/disk_images/Fedora-Developer-Rawhide-20220705.n.0.SiFive.Unmatched/
https://dl.fedoraproject.org/pub/alt/risc-v/disk_images/Fedora-Developer-Rawhide-20220705.n.0.SiFive.Unmatched/
https://dl.fedoraproject.org/pub/alt/risc-v/disk_images/Fedora-Developer-Rawhide-20220705.n.0.SiFive.Unmatched/
https://iot-analytics.com/rise-of-industrial-ai-aiot-4-trends-\driving-technology-adoption/
https://iot-analytics.com/rise-of-industrial-ai-aiot-4-trends-\driving-technology-adoption/
https://iot-analytics.com/rise-of-industrial-ai-aiot-4-trends-\driving-technology-adoption/

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Kuo, H.-C., Chen, J., Mohan, S., and Xu, T. Set the con-
figuration for the heart of the os: On the practicality of
operating system kernel debloating. Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, 4(1):1–27, 2020a.

Kuo, H.-C., Williams, D., Koller, R., and Mohan, S. A linux
in unikernel clothing. In Proceedings of the Fifteenth
European Conference on Computer Systems (EuroSys),
pp. 1–15, 2020b.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

Li, Y., Bubeck, S., Eldan, R., Del Giorno, A., Gunasekar,
S., and Lee, Y. T. Textbooks are all you need ii: phi-1.5
technical report. arXiv preprint arXiv:2309.05463, 2023.

Lin, J., Chen, W.-M., Lin, Y., Gan, C., Han, S., et al. Mcunet:
Tiny deep learning on iot devices. Advances in Neural
Information Processing Systems (NeurIPS), 33:11711–
11722, 2020.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp,
A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., and
Hutter, F. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. The Journal
of Machine Learning Research, 23(1):2475–2483, 2022.

Liu, P., Wang, H., and Qiyu, W. Bayesian optimization with
switching cost: Regret analysis and lookahead variants.
In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence (IJCAI), pp. 4011–
4018, 2023a.

Liu, S., Guo, B., Fang, C., Wang, Z., Luo, S., Zhou, Z., and
Yu, Z. Enabling resource-efficient aiot system with cross-
level optimization: A survey. IEEE Communications
Surveys & Tutorials (COMST), 2023b.

Martin, H., Acher, M., Pereira, J. A., Lesoil, L., Jézéquel, J.-
M., and Khelladi, D. E. Transfer learning across variants
and versions: The case of linux kernel size. IEEE Transac-
tions on Software Engineering (TSE), 48(11):4274–4290,
2021.

McVoy, L. W., Staelin, C., et al. lmbench: Portable tools
for performance analysis. In USENIX annual technical
conference, pp. 279–294. San Diego, CA, USA, 1996.

Menon, H., Bhatele, A., and Gamblin, T. Auto-tuning
parameter choices in hpc applications using bayesian
optimization. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 831–840.
IEEE, 2020.

Mortara, J. and Collet, P. Capturing the diversity of analyses
on the linux kernel variability. In Proceedings of the 25th
ACM International Systems and Software Product Line
Conference-Volume A (SPLC), pp. 160–171, 2021.

Oh, J., Yıldıran, N. F., Braha, J., and Gazzillo, P. Find-
ing broken linux configuration specifications by statically
analyzing the kconfig language. In Proceedings of the
29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), pp. 893–905, 2021.

OpenAI. Introducing ChatGPT Enter-
prise. https://openai.com/blog/
introducing-chatgpt-enterprise, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

PolyOS. build portal. https://gitee.com/
riscv-raios/build_portal, 2023. Accessed on
2/6/2023.

Rajani, N. F., McCann, B., Xiong, C., and Socher, R. Ex-
plain yourself! leveraging language models for common-
sense reasoning. arXiv preprint arXiv:1906.02361, 2019.

Rao, J., Bu, X., Xu, C.-Z., Wang, L., and Yin, G. Vconf: a
reinforcement learning approach to virtual machines auto-
configuration. In Proceedings of the 6th international
conference on Autonomic computing, pp. 137–146, 2009.

Shar, L. K., Goknil, A., Husom, E. J., Sen, S., Tun, Y. N.,
and Kim, K. Autoconf: Automated configuration of unsu-
pervised learning systems using metamorphic testing and
bayesian optimization. In 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pp. 1326–1338. IEEE, 2023.

Snoek, J., Larochelle, H., and Adams, R. P. Practi-
cal bayesian optimization of machine learning algo-
rithms. Advances in neural information processing sys-
tems (NeurIPS), 25, 2012.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Thiruvathukal, G. K. Gentoo linux: the next generation of
linux. Computing in science & engineering, 6(5):66–74,
2004.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,

11

https://openai.com/blog/introducing-chatgpt-enterprise
https://openai.com/blog/introducing-chatgpt-enterprise
https://gitee.com/riscv-raios/build_portal
https://gitee.com/riscv-raios/build_portal

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

ulfalizer. Kconfiglib. https://github.com/
ulfalizer/Kconfiglib, 2023. Accessed on
16/11/2023.

Willemsen, F.-J., van Nieuwpoort, R., and van Werkhoven,
B. Bayesian optimization for auto-tuning gpu kernels.
In 2021 International Workshop on Performance Model-
ing, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), pp. 106–117. IEEE, 2021.

Xia, Y., Ding, Z., and Shang, W. Comsa: A modeling-driven
sampling approach for configuration performance testing.
In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1352–1363.
IEEE, 2023.

Xu, J., Lin, H., Yuan, Z., Shen, W., Zhou, Y., Chang, R.,
Wu, L., and Ren, K. Regvault: hardware assisted selec-
tive data randomization for operating system kernels. In
Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC), pp. 715–720, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, Y. and Huang, Y. ” learned” operating systems. ACM
SIGOPS Operating Systems Review, 53(1):40–45, 2019.

Ziomek, J. K. and Ammar, H. B. Are random decomposi-
tions all we need in high dimensional bayesian optimisa-
tion? In International Conference on Machine Learning
(ICML), pp. 43347–43368. PMLR, 2023.

12

https://github.com/ulfalizer/Kconfiglib
https://github.com/ulfalizer/Kconfiglib

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

A. Possibility of Achieving Positive Results in Experiments
Due to the LLM hallucinations and the complex interplay of OS configuration options under specific hardware and software
stacks, AutoOS may not find the optimized configuration in a single search. However, by introducing a degree of randomness
and through multiple dynamic tree traversals, it is possible to identify an optimized set of configurations M .

To better illustrate the ability of AutoOS to find good configurations, as well as the impact of randomness, we extend our
experimentation on PolyOS. Specifically, we increase the search trials from the initial 24 to 56, and investigate the results of
the search process as shown in Figure 3.

Results show that for PolyOs running on the Sifive Unmatched board: 1) AutoOS is able to find the best performance within
24 trials in the experiment. 2) Among the 56 search trials, AutoOS always explores legal configurations, demonstrating the
method’s robustness. 3) 15 out of 56 (26.78%) surpassed the default performance, indicating that AutoOS can often produce
a good result.

0 10 20 30 40 50

The number of search trails

150

200

250

300

350

To
ta

l s
co

re

Best Perf.

Default Perf.

data

Figure 3. Search exploration to illustrate the possibility of achieving positive results on PolyOS. The horizontal axis represents the iteration
number of the search, and ’Total Score’ indicates the UnixBench total score of the OS generated during that search. The blue line
represents the UnixBench total score of the OS under default configuration, while the red line shows the total score of the optimally
generated OS.

B. Case Study of the Optimized OS Kernel Configuration
In this section, we present the configuration option modifications that led to a 25.6% performance enhancement for Fedora
in our experiments. In the optimal configuration, AutoOS made modifications to a total of 45 kernel options, starting
from the default settings. These adjustments fall into several categories, encompassing continuous memory allocation and
management, debugging and security, performance optimization, control groups and resource management, alongside other
areas, the impact of which is summarized in Table 7.

It can be seen that, in pursuit of performance optimization, AutoOS disabled analytical features such
as CONFIG TASKSTATS and debugging functionalities like CONFIG DEBUG KERNEL. Additionally, it deacti-
vated options such as CONFIG VIRTUALIZATION and concurrently enabled memory management options like
CONFIG CONTIGUOUS MEMORY ALLOCATOR.

In the kernel, there are numerous configuration options known for their high overhead, such as KASLR, spectre mitigation,
event counters, profiling support, and others. These options often involve trade-offs between functionality, hardware
compatibility, and security. To better analyze the behavior of large models regarding the handling of these options, we
summarize the modified options related to these features in Table 8.

13

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Table 7. The configuration modifications compared to the default settings that resulted in a 25% performance improvement for Fedora. In
the list, a plus sign (+) indicates default disabled settings that are now enabled, while a minus sign (-) indicates the opposite change.

Category Configuration Options Modifications in Fedora Description of options when enabled

Debugging and Security

CONFIG DEBUG WQ FORCE RR CPU + Force handling of work queues in round-robin fashion for debugging purposes.
CONFIG DEBUG KERNEL - Enable kernel debugging features.
CONFIG FTRACE - Enable function tracing functionality.
CONFIG KUNIT - Enable kernel unit testing framework.
CONFIG RUNTIME TESTING MENU - Enable runtime testing configuration options
CONFIG RCU CPU STALL TIMEOUT 60->3 Set CPU stall timeout for RCU locks.
CONFIG BUG ON DATA CORRUPTION - Trigger bug reports on data corruption.
CONFIG PAGE POISONING - Enable page poisoning to help detect bugs that use released memory.
CONFIG DEBUG RODATA TEST - Test protection of read-only data.
CONFIG DEBUG WX - Detect violations of write-execution (WX) permissions in memory regions.
CONFIG KFENCE - Enable kernel boundary checks to capture errors such as overflows.
CONFIG FRAME POINTER - Preserve function frame pointers for stack tracing support.
CONFIG FRAME WARN 2048->0 Set warning threshold for stack frame sizes.
CONFIG DYNAMIC DEBUG - Enable dynamic debugging functionality.
CONFIG CONSOLE LOGLEVEL QUIET 3->4 Set minimum level for console logging.
CONFIG MESSAGE LOGLEVEL DEFAULT 4->1 Set default message log level.
CONFIG SLAB FREELIST RANDOM + Enable randomization of SLAB free lists.
CONFIG LOG BUF SHIFT 18->17 Set size of log buffer.
CONFIG LOG CPU MAX BUF SHIFT 12->17 Set maximum CPU log buffer size.

Continuous Memory Allocation and Management

CONFIG CONTIGUOUS MEMORY ALLOCATOR + Enable Contiguous Memory Allocator.
CONFIG DEFAULT MMAP MIN ADDR 4096->65536 Set minimum address for memory mapping.
CONFIG CMA SYSFS + Display CMA information in sysfs.
CONFIG DMA CMA + Enable CMA for direct memory access (DMA) allocations.
CONFIG DMABUF HEAPS CMA + Enable CMA’s DMA buffer heaps.
CONFIG CMA SIZE SEL PERCENTAGE + Set CMA size selection based on percentage.
CONFIG CMA ALIGNMENT null->12 Set alignment requirement for CMA allocations.
CONFIG CMA SIZE PERCENTAGE null->0 Set CMA size as a percentage of total memory.
CONFIG ZSWAP COMPRESSOR DEFAULT DEFLATE + Set default compression algorithm for Zswap to deflate.
CONFIG TRANSPARENT HUGEPAGE ALWAYS + Always use transparent huge pages.
CONFIG SLAB FREELIST RANDOM + Use SLAB memory allocator.

CPU and Power Management
CONFIG CPU IDLE - Enable CPU idle time management.
CONFIG SCHED AUTOGROUP - Enable scheduler automatic grouping functionality.
CONFIG PREEMPT NONE + Disable preemptive support.

Profiling
CONFIG ZSMALLOC STAT + Enable statistics for Zsmalloc.
CONFIG PROFILING - Enable performance profiling support.
CONFIG TASKSTATS - Enables the generation of task statistics.

Control Groups and Resource Management

CONFIG MEMCG - Enable memory control groups.
CONFIG CGROUP SCHED - Enable control group scheduler.
CONFIG CGROUP PIDS - Enable process identifier control
CONFIG CGROUP FREEZER - group
CONFIG CGROUP DEVICE - Enable control group freezer functionality.
CONFIG CGROUP PERF - Enable device control group.
CONFIG CGROUP PERF. - Enable performance counter control group.

Others CONFIG VIRTUALIZATION - Enable support for virtualization technology
CONFIG PSI - Enables Pressure Stall Information monitoring to track resource bottlenecks

Table 8. Options associated with resource-intensive features like KASLR, spectre mitigation, event counters, and profiling support, among
others, for the OS achieving a 25.6% performance improvement on Fedora.

Feature Option Modification Impact on other areas Impact on Performance

KASLR SLAB FREELIST RANDOM + Increases security Minimal overhead
Spectre Mitigation no related N/A N/A N/A
Event Counter BUG ON DATA CORRUPTION - May lower immediate detection Reduce disruptions

DEBUG WX - May introduce risks Avoid unnecessary warnings
ZSMALLOC STAT + Beneficial for monitoring memory Minimal overhead
CMA SYSFS + Display CMA information in sysfs Minimal overhead

Profiling Support PROFILING - Remove profiling functionality Reduce overhead
DEBUG KERNEL - Remove debugging functionality Reducing debugging overhead

14

AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Table 8 shows that AutoOS primarily emphasizes optimizing performance when dealing with options related to KASLR,
spectre mitigation, event counters, and profiling support. However, it sometimes enables configs with minimal performance
overhead in exchange for functionality. For instance, it enables ZSMALLOC STAT and CMA SYSFS for better memory
management. Additionally, it activates the SLAB FREELIST RANDOM option regarding its varied impact on performance,
thereby enhancing security.

15

