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Abstract

Heating, Ventilation, and Air-Conditioning (HVAC) systems account for a substan-1

tial share of global building energy use, making reliable anomaly detection essential2

for improving efficiency and reducing emissions. Classical rule-based approaches3

offer explainability but lack adaptability, while deep learning methods provide4

predictive power at the cost of transparency, efficiency, and physical plausibility.5

Recent attempts to use Large Language Models (LLMs) for anomaly detection im-6

prove interpretability but largely ignore the physical principles that govern HVAC7

operations. We present PILLM, a Physics-Informed LLM framework that oper-8

ates within an evolutionary loop to automatically generate, evaluate, and refine9

anomaly detection rules. Our approach introduces physics-informed reflection and10

crossover operators that embed thermodynamic and control-theoretic constraints,11

enabling rules that are both adaptive and physically grounded. Experiments on the12

public Building Fault Detection dataset show that PILLM achieves state-of-the-art13

performance while producing diagnostic rules that are interpretable and actionable,14

advancing trustworthy and deployable AI for smart building systems.15

1 Introduction16

The global imperative to mitigate climate change has placed the urban built environment at the17

forefront of sustainability research. Buildings account for approximately 40% of global energy18

consumption and a third of greenhouse gas emissions, making them a critical leverage point for19

decarbonization [United Nations Environment Programme, 2021]. The complex Heating, Ventilation,20

and Air-Conditioning (HVAC) systems within them are major consumers of this energy. However,21

anomalies in HVAC system operation not only undermine energy efficiency but are also difficult to22

detect amidst the complexity and scale of building data, underscoring the critical need for robust23

anomaly detection methods [Amasyali and El-Gohary, 2018].24

Automated Fault Detection and Diagnostics (AFDD) has long been pursued to address anomalies25

in HVAC systems. Recent work emphasizes that effective anomaly detection must jointly satisfy26

explainability, reproducibility, and autonomy. Classical rule-based methods can detect explainable27

predefined faults [Katipamula and Brambley, 2005], but they require expert-crafted knowledge, are28

static in the face of evolving building dynamics, and struggle with the complexity of real-world29

operations [Kim and Katipamula, 2018]. Deep learning methods, including LSTM and Transformer-30

based architectures, have since shown strong predictive performance by uncovering subtle, non-linear31

patterns [Karpontinis and Alexandridis, 2024, Wang et al., 2020]. However, they remain difficult32

to deploy in practice: models often act as black boxes, demand heavy computation, and generalize33

poorly when physical knowledge of the built environment is not incorporated [Jiang and Dong,34

2024]. These trade-offs highlight a persistent tension between the interpretability of heuristics and35

the accuracy.36
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Recently, Large Language Models (LLMs) have emerged as a promising tool for rule design in37

anomaly detection. By generating human-readable heuristics and providing natural-language ratio-38

nales, LLM-based methods enhance explainability and reduce the manual effort required for rule39

construction [Liu et al., 2025, Ye et al., 2024, Lin and Hua, 2025]. However, current LLM-based40

approaches often overlook critical physical constraints and domain knowledge inherent to HVAC41

systems. Without grounding anomaly detection in these real-world physical principles, the resulting42

rules risk being incomplete, misaligned with building dynamics, or prone to false alarms. Bridging43

LLM-driven rule generation with physically grounded knowledge therefore represents a crucial step44

toward developing anomaly detection systems that are not only explainable and adaptive, but also45

robust and trustworthy in practical deployment.46

To address the limitations of prior approaches, we present Physics-Informed Large Language Model47

(PILLM), a framework wherein LLMs operate within an evolutionary loop to automatically generate,48

evaluate, and refine anomaly detection rules, critically guided by real-world physical principles to49

ensure transparency and plausibility. Our approach automatically incorporates real-world physical50

principles into the rule generation process. By combining LLMs’ world knowledge with curated51

building context and sensor data, PILLM generates diagnostic rules that are both transparent and52

physically plausible. Furthermore, we embed physical constraints directly into the evolutionary53

optimization process through novel reflection and crossover operators, ensuring that the generated54

rules remain aligned with thermodynamic and control-theoretic principles.55

Our main contributions are as follows:56

1. We propose PILLM, a novel framework that integrates LLMs with evolutionary search57

to automatically generate anomaly detection rules while explicitly incorporating building58

physics and operational semantics.59

2. We design physics-informed reflection and crossover mechanisms that guide LLM-generated60

rules toward physical plausibility and robustness, addressing the limitations of purely61

statistical or heuristic-based approaches.62

3. We evaluate our framework on the public LBNL Automated Fault Detection for Buildings63

dataset, showing that it achieves state-of-the-art performance while producing interpretable64

and actionable diagnostic rules.65

2 Related Work66

LLM for Anomaly Detection A systematic literature review highlights that LLMs can serve three67

main roles: augmenting detection pipelines with synthetic data or pseudo-labels, acting directly68

as anomaly/out-of-distribution detectors, and generating interpretable explanations for detection69

outcomes [Liu et al., 2025]. In time-series settings, methods like LLMAD employ retrieval of similar70

patterns and a chain-of-thought reasoning strategy to deliver both accurate and interpretable results71

[Liu et al., 2025]. SigLLM further explores dual operational modes for time-series anomaly detection:72

in Detector mode, LLMs predict the next steps in the sequence and identify anomalies by comparing73

predictions with ground-truth signals, while in prompter mode, LLMs are directly prompted with time-74

series data to localize anomalous indices [Alnegheimish et al., 2024]. Other systems adopt an agentic75

paradigm, for instance, Argos uses LLMs to autonomously generate explainable anomaly rules in an76

iterative, rule-based framework, achieving significant accuracy improvements [Gu et al., 2025]. In the77

specific context of building HVAC systems, LLMs such as DistilBERT have been fine-tuned to classify78

operational fault conditions from time-series data, demonstrating strong performance (F1 scores up79

to 99%) and robustness to noisy inputs [Langer et al., 2024]. These developments underscore the80

flexibility of LLMs in anomaly detection tasks, particularly for enhancing explainability, adaptability,81

and performance across varied application domains.82

Further references on classical approaches and deep learning methods can be found in the appendix.83

3 Methodology84

In this section, we present PILLM as illustrated in Fig. 1. We introduce two key components :85

Physical Informed Reflection (PIR), and Physical Informed Crossover (PIC). Together with the86

evolving anomaly detection rules generation pipeline, these components enable dynamic, flexible,87
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Figure 1: Overview of PILLM. The framework follows an evolutionary generate-and-reflect pipeline
for anomaly detection rules. In each iteration, the current rule population undergoes Physical-
Informed Reflection, where physical context is incorporated into candidate rules. These reflections
are then used in Physical-Informed Crossover to produce the next generation of rules. Finally, elite
rules are refined through mutation, resulting in evolved rules that are adaptive.

and smart way to embed the physical information into the rule generation. We then lay out the88

components details and the training scheme.89

3.1 PILLM90

Our framework builds on the Reflective Evolution paradigm [Ye et al., 2024], where LLMs are91

employed as reasoning engines to perform genetic operators—initialization, reflection, crossover,92

and mutation—while being explicitly guided by physical knowledge of HVAC systems. Unlike93

conventional evolutionary approaches, PILLM does not treat heuristics as abstract code snippets.94

Instead, each rule is continuously contextualized by its physical meaning (e.g., temperature dynamics,95

airflow, occupancy schedules), ensuring that the evolutionary process remains grounded in real-world96

building physics.97

Initial Population. The process begins by prompting the generator LLM with a task specification98

for anomaly detection rules. The specification defines the inputs (e.g., room and floor temperatures,99

fan status, fan speed), the output (an anomaly score), and the objective function (e.g., maximize100

detection accuracy). To seed the process, the LLM is also provided with a simple baseline heuristic101

(e.g., a peak-over-threshold rule). From this prompt, the LLM generates a diverse population of102

N initial rule candidates in executable code form, each accompanied by a short natural-language103

rationale. This ensures diversity not only in implementation but also in interpretability.104

Physics-Informed Reflection. At each iteration, candidate rules are reflected upon using physical105

context. The reflection stage compares the relative performance of rules and analyzes their alignment106

with the real-world meaning of input features. Crucially, the LLM is provided with metadata107

describing each feature’s physical role in the HVAC system (e.g., “Zone temperature reflects indoor108

thermal conditions,” “Fan speed governs airflow rate and pressure”). The LLM then produces109

structured reflections that highlight which physical aspects a rule captures and which are neglected.110

For example, a reflection might conclude that a rule focusing exclusively on outdoor temperature111

misses critical dynamics of indoor load variation. These reflections serve as a bridge between raw112

performance metrics and domain knowledge, guiding the evolutionary process toward rules that are113

both effective and physically sound.114

Physics-Informed Crossover. Reflections directly shape the crossover operation. Instead of115

combining rules blindly, the LLM merges parent rules in a way that respects and integrates their116

associated physical contexts. For instance, one parent rule may emphasize temperature fluctuations117

across indoor and outdoor sensors, while another focuses on fan speed and airflow pressure. Through118

physics-informed crossover, the offspring rule may learn to model the causal relationship between119

thermal gradients and airflow control, yielding a more coherent and actionable heuristic. By explicitly120
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anchoring code recombination to physical interpretations, this stage avoids the generation of arbitrary121

hybrids and instead synthesizes offspring with meaningful improvements in diagnostic coverage.122

Elitist Rule Mutation. Finally, elite rules undergo mutation guided by long-term reflections.123

Instead of wholesale rewrites, the LLM proposes targeted refinements, such as adding occupancy124

schedules or weather normalization, to enhance robustness and generalizability.125

4 Experiment126

For more details about dataset preprocessing, hyperparameters, baseline settings, hardware and127

software environment, as well as additional results and analysis, please refer to the appendix.128

Table 1: Performance results of different anomaly
detection baselines. Best and second best results
are in bold and underline.

Method Precision Recall F1

AnomalyTransformer 0.482 0.395 0.282
AutoRegression 0.731 0.699 0.668
LSTMAD 0.861 0.781 0.818
LLMAD 0.045 0.835 0.083
SigLLM 0.012 0.502 0.021
ARGOS 0.921 0.885 0.902

PILLM 0.968 0.859 0.926
w/o PIR 0.889 0.851 0.869
w/o PIC 0.945 0.803 0.868

Main Results. We report the performance of129

PILLM against a set of benchmark methods in130

Table 1. Across all baselines, PILLM achieves131

the highest precision and F1 score, while main-132

taining competitive recall. In particular, AR-133

GOS achieves the strongest recall, but its overall134

performance remains slightly below PILLM in135

terms of F1. Other classical (e.g., AutoRegres-136

sion, LSTMAD) and LLM-based baselines (e.g.,137

LLMAD, SigLLM) lag behind, reflecting either138

limited adaptability or poor precision. These139

results confirm that PILLM not only produces140

state-of-the-art performance but also balances141

accuracy with physical plausibility.142

Ablation Study. We further analyze the role143

of physics-informed components by ablating144

PIR and PIC. As shown in Table 1, removing either PIR or PIC leads to clear performance degradation,145

particularly in F1. Without PIR, the model underperforms in aligning rules with feature semantics,146

while without PIC, the offspring rules become less coherent and lose physical grounding. These147

results validate the importance of explicitly embedding physical knowledge in the evolutionary loop.148

Explainability. A key advantage of PILLM is that it generates anomaly detection rules in executable,149

human-readable Python code. Unlike neural baselines that act as black boxes, the heuristics evolved150

by PILLM are transparent and easily interpretable. For example, an evolved rule might explicitly151

check for abnormal thermal gradients in relation to fan speed or weather conditions, providing clear152

physical reasoning behind the anomaly flag. This interpretability enhances trust and usability for153

building operators, who can validate, debug, and refine the generated rules with domain expertise.154

By producing rules that are both performant and understandable, PILLM bridges the gap between155

machine learning advances and real-world operational deployment.156

5 Conclusion157

In this work, we introduced PILLM, a physics-informed LLM framework for anomaly detection in158

HVAC systems. By embedding domain knowledge into the evolutionary generation of rules through159

physics-informed reflection and crossover, PILLM bridges the gap between adaptability and physical160

plausibility. Experiments on the LBNL Automated Fault Detection dataset demonstrate that PILLM161

achieves state-of-the-art precision and F1 score while maintaining competitive recall, outperforming162

both classical and neural baselines. Beyond accuracy, PILLM produces rules that are interpretable and163

actionable, offering building operators transparent insights into system faults. These results highlight164

the promise of combining LLM reasoning with physics-informed optimization to advance trustworthy165

and deployable AI for cyber-physical systems. Future work will explore extending PILLM to other166

building subsystems and investigating its scalability to real-time anomaly detection in large-scale167

smart infrastructure.168
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Appendix232

Detailed Problem Definition233

Task We address building-level anomaly detection in HVAC systems using multivariate time-series234

data. Given a building b with sensor set Fb = {f1, f2, . . . , fM}, the input at each timestep t is235

a feature vector St
b = (xt

b,f1
, xt

b,f2
, . . . , xt

b,fM
), where xt

b,f ∈ R denotes the reading of feature f236

(e.g., zone temperature, fan speed, air flow rate). The goal is to learn a mapping from the observed237

sequence Hb = (S1
b , . . . ,S

Tobs

b ) to a binary anomaly label ytb ∈ {0, 1} at each timestep, where 0238

denotes normal operation and 1 denotes anomalous behavior. Models are trained on a labeled dataset239

Dtrain = {(Hb, yb)} and evaluated on a held-out test set Dtest, with the objective of maximizing240

detection performance while minimizing false alarms.241

Metrics. We evaluate anomaly detection performance using precision, recall, and their harmonic242

mean, the F1 score. Precision is defined as the ratio of true positives (TP) to the sum of true positives243

and false positives (FP), while recall is the ratio of true positives to the sum of true positives and false244

negatives (FN). Formally, the F1 score is given by245

F1 =
2× Precision × Recall

Precision + Recall
, Precision =

TP

TP + FP
, Recall =

TP

TP + FN
.

In time-series anomaly detection, defining positive and negative samples requires care, since anoma-246

lies are typically labeled as contiguous incidents rather than isolated points. Following prior work247

[Gu et al., 2025], we adopt the Event-F1 with Point Adjustment (Event-F1 PA) metric as our primary248

evaluation measure. This method treats each anomaly incident as a single detection target and249

considers it successfully detected if at least one point within the ground-truth incident is flagged. At250

the same time, false positives are penalized at the point level, which provides a balanced evaluation251

of both precision and recall. This choice ensures that models are not rewarded for overly coarse252

predictions and aligns with practical expectations in building operations, where operators require253

both timely and precise alarms.254

Details of Dataset255

The assembled dataset is specifically designed to move beyond traditional binary fault detection and256

enable a more sophisticated diagnostic task. This section details the diagnostic targets and defines the257

expected output from the PILLM framework.258

Fault Types and Intensities The dataset includes rich, labeled examples of various common and259

critical HVAC faults. The Fault Type provides a descriptive, human-understandable label for260

the specific malfunction occurring in the system. The Fault Intensity provides a normalized,261

numerical scale of the fault’s severity, where a higher number indicates a more severe deviation from262

normal operation.263

Examples of fault conditions captured in the dataset include:264

• Heating Coil Leaking: A condition where the heating coil valve is not shutting off com-265

pletely, allowing hot water to leak through even when heating is not required. This leads to266

energy waste and potential overheating.267

• Damper Stuck: An air damper is mechanically stuck at a certain position (e.g., 20% open),268

preventing the system from properly regulating the mix of outdoor and recirculated air. This269

impacts both energy efficiency and indoor air quality.270

• Sensor Drift / Bias: A temperature sensor provides consistently incorrect readings (e.g.,271

always reporting 5°F higher than the true temperature). The system then makes incorrect272

control decisions based on this faulty data.273

• Control Logic Faults: Such as the Simultaneous_Heat_Cool condition, where program-274

ming errors lead to inefficient and counterproductive system operation.275

Expected PILLM Output: Generating Actionable Diagnostics The primary objective for the276

PILLM is not to predict a class label, but to generate a structured, human-readable diagnostic277
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report. For each input "diagnostic snapshot" (i.e., a row from the dataset), the PILLM is tasked with278

generating a textual output that accomplishes the following:279

1. Identify the Fault: Correctly state the Fault Type in natural language (e.g., "The diagnosis280

is a stuck outdoor air damper.").281

2. Provide Evidence: Justify the diagnosis by referencing the physical evidence from the input282

data (e.g., "This is indicated because the damper position signal is fixed at 20% while the283

control command is varying.").284

3. Assess Severity: Characterize the fault’s intensity and impact (e.g., "This is a moderate-to-285

severe fault leading to poor ventilation and increased fan energy consumption.").286

Advantages Over Traditional Methods This diagnostic-generation task formulation offers signifi-287

cant advantages over conventional approaches:288

• Interpretability and Trust: Unlike a traditional classifier that outputs a cryptic label like289

’Fault_Class_ID: 3’, the PILLM’s narrative output is transparent. By explaining why it290

reached a conclusion, it allows building operators to verify the reasoning and build trust in291

the system.292

• Actionability: The LLM’s output is directly actionable. An operator reading "inspect the293

outdoor air damper linkage" knows exactly what to do, whereas ’Fault_Class_ID: 3’ would294

require consulting a manual.295

• Handling Novelty and Nuance: By reasoning from the engineered physical features, the296

PILLM has the potential to describe deviations from first principles. This may allow it to297

characterize novel or compound faults that were not explicitly present in the training set,298

offering a degree of zero-shot diagnostic capability that is difficult to achieve with rigid299

classification models.300

Baselines301

We compare PILLM against a diverse set of baselines, including classical deep learning models,302

LLM-based methods, and the recent agentic system ARGOS. Below we summarize each method303

included in our evaluation.304

• AnomalyTransformer: An unsupervised model that introduces the Anomaly-Attention305

mechanism to detect anomalies by exploiting differences in association patterns between306

normal and abnormal points. This method has become a widely used benchmark in time-307

series anomaly detection.308

• AutoRegression: A supervised autoregressive model that applies multiple linear layers to309

transform input sequences into anomaly score logits. Its simplicity and efficiency make it a310

strong classical baseline, though it lacks adaptability to complex dependencies.311

• LSTMAD: A supervised long short-term memory (LSTM) model trained on normal data.312

Anomalies are detected based on statistical deviations in prediction error. It leverages313

temporal dependencies effectively but often struggles with generalization in highly dynamic314

systems.315

• LLMAD: A Large Language Model-based approach that prompts the LLM with serialized316

time-series data, in-context examples, and contextual information to produce anomaly317

predictions. While it improves interpretability compared to deep learning baselines, it318

suffers from non-determinism and inconsistent reproducibility.319

• SigLLM: An LLM-based method that operates in two distinct modes. In Detector mode,320

the LLM predicts the next time-series values and detects anomalies by comparing them321

against ground truth observations. In Prompter mode, the LLM is directly prompted with322

time-series data to localize anomalous indices. This design improves flexibility but often323

trades off precision for recall.324

• ARGOS: An agentic anomaly detection system originally developed for monitoring cloud325

infrastructure. ARGOS leverages LLMs to autonomously generate explainable and re-326

producible anomaly rules as intermediate representations, which are then deployed for327
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efficient online detection. By combining multiple collaborative agents, ARGOS achieves328

explainability, reproducibility, and partial autonomy in anomaly detection. Experiments329

show that ARGOS outperforms prior baselines across several public and industrial datasets,330

highlighting the promise of LLM-driven rule-based anomaly detection. We include ARGOS331

as a strong state-of-the-art baseline most closely aligned with our motivation.332

Extra Experiment Details333

Hardware and Software All experiments were conducted on a workstation equipped with an AMD334

Ryzen 9 7950X 16-Core Processor and a single NVIDIA RTX 5090 GPU. The PINN framework335

generates anomaly detection rules as executable Python code snippets in a Python 3.12 environment,336

employing Google’s Gemini 2.5 Flash model [Comanici et al., 2025].337

Prompts We gather prompts used for PILLM in this section. Our prompt structure is flexible338

and extensible. To adapt PILLM to a new problem setting, one only needs to define its problem339

description, function description, and function signature.340

Prompt for population initialization

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to design anomaly detection rules that can effectively
detect the anomaly status of the system.
{ task_description }
Below are the input features and their descriptions for anomaly detection:
{ input_feature_list}
{ seed_function } { context_template }
Refer to the format of a trivial design above. Be very creative and give ‘func_name_v2‘.
Output code only, and enclose your code in Python code and one paragraph to describe the
physical hypothesis but nothing else. Format your code as a Python code string: """python
...""" and a context string: """context ...""".

341

System prompt for Generator LLM

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to design anomaly detection rules that can effectively
detect the anomaly status of the system. { task_description }. Your response outputs Python
code and one paragraph to describe the physical hypothesis but nothing else. Format your
code as a Python code string: """python ...""" and a context string: """context ...""".

342

System prompt for Reflection LLM

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to provide hints for designing better anomaly detection
rules.
{ task_description }
Below are the input features and their descriptions for anomaly detection:
{ input_feature_list}
You are provided with two rule versions with their physical context below, where the second
version performs better than the first one.
[Worse Rules] { worse_rules } { worse_rules_physical_context }
[Better Rules] { better_rules } { better_rules_physical_context }
You respond with some hints for designing better rules and a better hypothesis as a physical
context.

343
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System prompt for Crossover

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to provide hints for designing better anomaly detection
rules.
{ task_description }
Below are the input features and their descriptions for anomaly detection:
{ input_feature_list}
[Worse Rules] { worse_rules } { worse_rules_physical_context }
[Better Rules] { better_rules } { better_rules_physical_context }
[Reflection] { reflection_comments } { reflection_context }
[Improved Code] Please write an improved function ‘function_name_v2‘, according to the
reflection. Output code only, and enclose your code with Python code.

344

System prompt for Elitist Mutation

{ task_description }
{ input_feature_list}
[Prior Reflection] { reflection_comments } { reflection_context }
[Code] { function_signature } { elitist_code }
[Improved Code] Please write a mutated function ‘function_name_v2‘, according to the
reflection. Output code only, and enclose your code with Python code.

345

Extra Related Work346

Our research is positioned at the intersection of three established and one emerging field: (1)347

traditional Automated Fault Detection and Diagnostics (AFDD) in building systems, (2) data-driven348

machine learning for AFDD, (3) the drive towards physics-informed and interpretable AI, and (4) the349

novel application of Large Language Models (LLMs) to scientific and engineering domains.350

Traditional and Model-Based AFDD The field of AFDD for buildings has a rich history, with351

early methods relying on physical models and expert-defined rules. These approaches can be broadly352

categorized into quantitative model-based methods, which compare system output to an engineering353

model (e.g., a simulation), and qualitative rule-based methods, which use expert knowledge to define354

explicit "if-then" rules for fault conditions [Katipamula and Brambley, 2005]. While highly effective355

for pre-defined and well-understood faults, these methods are often labor-intensive to develop, require356

significant domain expertise to calibrate, and can be brittle, struggling to adapt to system retrofits or357

novel operational conditions that fall outside their programmed logic [Kim and Katipamula, 2018].358

Machine Learning for Fault Detection The increasing availability of high-frequency sensor data359

from Building Management Systems (BMS) has led to a surge in the application of data-driven360

and machine learning techniques for AFDD. These methods learn patterns directly from historical361

data, alleviating the need for explicit physical modeling. A wide array of techniques has been362

successfully applied, ranging from statistical methods like Principal Component Analysis (PCA)363

to supervised classifiers like Support Vector Machines (SVM) and Random Forests [Zhao et al.,364

2019]. More recently, deep learning models, particularly Convolutional neural network (CNN) and365

Long Short-Term Memory (LSTM) networks, have shown exceptional performance in capturing the366

complex temporal dependencies inherent in building thermal dynamics, making them powerful tools367

for anomaly detection [Zhang et al., 2023]. However, while these models excel at identifying that an368

anomaly has occurred, they often fail to provide the necessary context to understand why.369

The Interpretability Challenge and Physics-Informed AI The high performance of deep learning370

models often comes at the cost of interpretability. These "black box" models present a significant371

barrier to adoption in high-stakes environments like building operations, where trust and transparency372

are paramount [Ciobanu-Caraus et al., 2024]. An unexplainable alert is often an ignored alert. This373

has fueled a growing movement towards Physics-Informed Machine Learning (PIML), which seeks374

to embed scientific principles into the learning process. A prominent example is the development of375
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Physics-Informed Neural Networks (PINNs), which constrain a neural network’s solution space by376

penalizing deviations from known physical laws, such as differential equations [Raissi et al., 2019,377

Cuomo et al., 2022]. This approach bridges the gap between data-driven flexibility and engineering378

rigor, leading to more robust and generalizable models. Our work builds on this philosophy, not by379

encoding physics into the model architecture itself, but by engineering a physics-informed feature380

space upon which a reasoning model can act.381

Large Language Models as Reasoning Engines While originally designed for natural language382

tasks, the emergent capabilities of Large Language Models (LLMs) have opened new frontiers for383

their application in complex scientific and engineering domains. Seminal work has demonstrated384

that through techniques like chain-of-thought prompting, LLMs can perform multi-step reasoning,385

breaking down complex problems into intermediate, sequential steps in a way that mirrors human386

logic [Wei et al., 2022]. This ability to "think step-by-step" has unlocked performance on a wide387

range of arithmetic, commonsense, and symbolic reasoning tasks previously thought to be beyond388

the scope of language models [Kojima et al., 2022].389

This emerging body of research suggests that LLMs can function as general-purpose reasoning390

engines. Recent work has begun to apply these capabilities to the built environment, for example, by391

using LLMs to automatically design novel, physically-grounded heuristics for energy forecasting392

[Lin and Hua, 2025]. Our PILLM framework is directly inspired by this trend. We hypothesize that393

an LLM’s demonstrated reasoning abilities can be guided and constrained by physical principles to394

perform a diagnostic task that emulates a building engineer, moving beyond simple pattern recognition395

to generate causal, evidence-backed explanations for system faults.396
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