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Abstract

Heating, Ventilation, and Air-Conditioning (HVAC) systems account for a substan-
tial share of global building energy use, making reliable anomaly detection essential
for improving efficiency and reducing emissions. Classical rule-based approaches
offer explainability but lack adaptability, while deep learning methods provide
predictive power at the cost of transparency, efficiency, and physical plausibility.
Recent attempts to use Large Language Models (LLMs) for anomaly detection im-
prove interpretability but largely ignore the physical principles that govern HVAC
operations. We present PILLM, a Physics-Informed LLM framework that oper-
ates within an evolutionary loop to automatically generate, evaluate, and refine
anomaly detection rules. Our approach introduces physics-informed reflection and
crossover operators that embed thermodynamic and control-theoretic constraints,
enabling rules that are both adaptive and physically grounded. Experiments on the
public Building Fault Detection dataset show that PILLM achieves state-of-the-art
performance while producing diagnostic rules that are interpretable and actionable,
advancing trustworthy and deployable Al for smart building systems.

1 Introduction

The global imperative to mitigate climate change has placed the urban built environment at the
forefront of sustainability research. Buildings account for approximately 40% of global energy
consumption and a third of greenhouse gas emissions, making them a critical leverage point for
decarbonization [[United Nations Environment Programme| [2021]. The complex Heating, Ventilation,
and Air-Conditioning (HVAC) systems within them are major consumers of this energy. However,
anomalies in HVAC system operation not only undermine energy efficiency but are also difficult to
detect amidst the complexity and scale of building data, underscoring the critical need for robust
anomaly detection methods [[Amasyali and El-Gohary, 2018]].

Automated Fault Detection and Diagnostics (AFDD) has long been pursued to address anomalies
in HVAC systems. Recent work emphasizes that effective anomaly detection must jointly satisfy
explainability, reproducibility, and autonomy. Classical rule-based methods can detect explainable
predefined faults [Katipamula and Brambley}, 2005]], but they require expert-crafted knowledge, are
static in the face of evolving building dynamics, and struggle with the complexity of real-world
operations [[Kim and Katipamulal 2018]]. Deep learning methods, including LSTM and Transformer-
based architectures, have since shown strong predictive performance by uncovering subtle, non-linear
patterns [Karpontinis and Alexandridis, 2024} [Wang et al.,|2020]. However, they remain difficult
to deploy in practice: models often act as black boxes, demand heavy computation, and generalize
poorly when physical knowledge of the built environment is not incorporated [Jiang and Dong,
2024]). These trade-offs highlight a persistent tension between the interpretability of heuristics and
the accuracy.
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Recently, Large Language Models (LLMs) have emerged as a promising tool for rule design in
anomaly detection. By generating human-readable heuristics and providing natural-language ratio-
nales, LLM-based methods enhance explainability and reduce the manual effort required for rule
construction [Liu et al.l 2025} Ye et al., 2024, |Lin and Hual 2025]]. However, current LLM-based
approaches often overlook critical physical constraints and domain knowledge inherent to HVAC
systems. Without grounding anomaly detection in these real-world physical principles, the resulting
rules risk being incomplete, misaligned with building dynamics, or prone to false alarms. Bridging
LLM-driven rule generation with physically grounded knowledge therefore represents a crucial step
toward developing anomaly detection systems that are not only explainable and adaptive, but also
robust and trustworthy in practical deployment.

To address the limitations of prior approaches, we present Physics-Informed Large Language Model
(PILLM), a framework wherein LLMs operate within an evolutionary loop to automatically generate,
evaluate, and refine anomaly detection rules, critically guided by real-world physical principles to
ensure transparency and plausibility. Our approach automatically incorporates real-world physical
principles into the rule generation process. By combining LLMs’ world knowledge with curated
building context and sensor data, PILLM generates diagnostic rules that are both transparent and
physically plausible. Furthermore, we embed physical constraints directly into the evolutionary
optimization process through novel reflection and crossover operators, ensuring that the generated
rules remain aligned with thermodynamic and control-theoretic principles.

Our main contributions are as follows:

1. We propose PILLM, a novel framework that integrates LLMs with evolutionary search
to automatically generate anomaly detection rules while explicitly incorporating building
physics and operational semantics.

2. We design physics-informed reflection and crossover mechanisms that guide LLM-generated
rules toward physical plausibility and robustness, addressing the limitations of purely
statistical or heuristic-based approaches.

3. We evaluate our framework on the public LBNL Automated Fault Detection for Buildings
dataset, showing that it achieves state-of-the-art performance while producing interpretable
and actionable diagnostic rules.

2 Related Work

LLM for Anomaly Detection A systematic literature review highlights that LLMs can serve three
main roles: augmenting detection pipelines with synthetic data or pseudo-labels, acting directly
as anomaly/out-of-distribution detectors, and generating interpretable explanations for detection
outcomes [Liu et al.,[2025]]. In time-series settings, methods like LLMAD employ retrieval of similar
patterns and a chain-of-thought reasoning strategy to deliver both accurate and interpretable results
[Liu et al.} 2025]. SigLLM further explores dual operational modes for time-series anomaly detection:
in Detector mode, LLMs predict the next steps in the sequence and identify anomalies by comparing
predictions with ground-truth signals, while in prompter mode, LLMs are directly prompted with time-
series data to localize anomalous indices [Alnegheimish et al.l 2024]. Other systems adopt an agentic
paradigm, for instance, Argos uses LLMs to autonomously generate explainable anomaly rules in an
iterative, rule-based framework, achieving significant accuracy improvements [|Gu et al., 2025]. In the
specific context of building HVAC systems, LLMs such as DistilBERT have been fine-tuned to classify
operational fault conditions from time-series data, demonstrating strong performance (F1 scores up
to 99%) and robustness to noisy inputs [Langer et al.,2024]]. These developments underscore the
flexibility of LLMs in anomaly detection tasks, particularly for enhancing explainability, adaptability,
and performance across varied application domains.

Further references on classical approaches and deep learning methods can be found in the appendix.

3 Methodology

In this section, we present PILLM as illustrated in We introduce two key components :
Physical Informed Reflection (PIR), and Physical Informed Crossover (PIC). Together with the
evolving anomaly detection rules generation pipeline, these components enable dynamic, flexible,
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Figure 1: Overview of PILLM. The framework follows an evolutionary generate-and-reflect pipeline
for anomaly detection rules. In each iteration, the current rule population undergoes Physical-
Informed Reflection, where physical context is incorporated into candidate rules. These reflections
are then used in Physical-Informed Crossover to produce the next generation of rules. Finally, elite
rules are refined through mutation, resulting in evolved rules that are adaptive.

and smart way to embed the physical information into the rule generation. We then lay out the
components details and the training scheme.

3.1 PILLM

Our framework builds on the Reflective Evolution paradigm [Ye et al., |2024], where LLMs are
employed as reasoning engines to perform genetic operators—initialization, reflection, crossover,
and mutation—while being explicitly guided by physical knowledge of HVAC systems. Unlike
conventional evolutionary approaches, PILLM does not treat heuristics as abstract code snippets.
Instead, each rule is continuously contextualized by its physical meaning (e.g., temperature dynamics,
airflow, occupancy schedules), ensuring that the evolutionary process remains grounded in real-world
building physics.

Initial Population. The process begins by prompting the generator LLM with a task specification
for anomaly detection rules. The specification defines the inputs (e.g., room and floor temperatures,
fan status, fan speed), the output (an anomaly score), and the objective function (e.g., maximize
detection accuracy). To seed the process, the LLM is also provided with a simple baseline heuristic
(e.g., a peak-over-threshold rule). From this prompt, the LLM generates a diverse population of
N initial rule candidates in executable code form, each accompanied by a short natural-language
rationale. This ensures diversity not only in implementation but also in interpretability.

Physics-Informed Reflection. At each iteration, candidate rules are reflected upon using physical
context. The reflection stage compares the relative performance of rules and analyzes their alignment
with the real-world meaning of input features. Crucially, the LLM is provided with metadata
describing each feature’s physical role in the HVAC system (e.g., “Zone temperature reflects indoor
thermal conditions,” “Fan speed governs airflow rate and pressure”). The LLM then produces
structured reflections that highlight which physical aspects a rule captures and which are neglected.
For example, a reflection might conclude that a rule focusing exclusively on outdoor temperature
misses critical dynamics of indoor load variation. These reflections serve as a bridge between raw
performance metrics and domain knowledge, guiding the evolutionary process toward rules that are
both effective and physically sound.

Physics-Informed Crossover. Reflections directly shape the crossover operation. Instead of
combining rules blindly, the LLM merges parent rules in a way that respects and integrates their
associated physical contexts. For instance, one parent rule may emphasize temperature fluctuations
across indoor and outdoor sensors, while another focuses on fan speed and airflow pressure. Through
physics-informed crossover, the offspring rule may learn to model the causal relationship between
thermal gradients and airflow control, yielding a more coherent and actionable heuristic. By explicitly
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anchoring code recombination to physical interpretations, this stage avoids the generation of arbitrary
hybrids and instead synthesizes offspring with meaningful improvements in diagnostic coverage.

Elitist Rule Mutation. Finally, elite rules undergo mutation guided by long-term reflections.
Instead of wholesale rewrites, the LLM proposes targeted refinements, such as adding occupancy
schedules or weather normalization, to enhance robustness and generalizability.

4 Experiment

For more details about dataset preprocessing, hyperparameters, baseline settings, hardware and
software environment, as well as additional results and analysis, please refer to the appendix.

Main Results. We report the performance of

PILLM against a set of benchmark methods in Table 1: Performance results of different anomaly
Across all baselines, PILLM achieves detection baselines. Best and second best results
the highest precision and F} score, while main- are in bold and underline.

taining competitive recall. In particular, AR-  Method Precision Recall F.

GOS achieves the strongest recall, but its overall

performance remains slightly below PILLM in ~ AnomalyTransformer 0.482 0395 0.282

terms of F. Other classical (e.g., AutoRegres- AutoRegression 0.731 0.699  0.668
sion, LSTMAD) and LLM-based baselines (e.g., LSTMAD 0.861 0.781 0818
LLMAD, SigLLM) lag behind, reflecting either =~ LLMAD 0.045 0.835  0.083
limited adaptability or poor precision. These  SigLLM 0.012 0502 0.021
results confirm that PILLM not only produces =~ ARGOS 0.921 0.885  0.902

state-of-the-art performance but also balances

. . e PILLM 0.968 0.859  0.926
accuracy with physical plausibility. wio PIR 0.889 0851 0869
w/o PIC 0.945 0.803  0.868

Ablation Study. We further analyze the role

of physics-informed components by ablating

PIR and PIC. As shown in(Table 1} removing either PIR or PIC leads to clear performance degradation,
particularly in F;. Without PIR, the model underperforms in aligning rules with feature semantics,
while without PIC, the offspring rules become less coherent and lose physical grounding. These
results validate the importance of explicitly embedding physical knowledge in the evolutionary loop.

Explainability. A key advantage of PILLM is that it generates anomaly detection rules in executable,
human-readable Python code. Unlike neural baselines that act as black boxes, the heuristics evolved
by PILLM are transparent and easily interpretable. For example, an evolved rule might explicitly
check for abnormal thermal gradients in relation to fan speed or weather conditions, providing clear
physical reasoning behind the anomaly flag. This interpretability enhances trust and usability for
building operators, who can validate, debug, and refine the generated rules with domain expertise.
By producing rules that are both performant and understandable, PILLM bridges the gap between
machine learning advances and real-world operational deployment.

5 Conclusion

In this work, we introduced PILLM, a physics-informed LLM framework for anomaly detection in
HVAC systems. By embedding domain knowledge into the evolutionary generation of rules through
physics-informed reflection and crossover, PILLM bridges the gap between adaptability and physical
plausibility. Experiments on the LBNL Automated Fault Detection dataset demonstrate that PILLM
achieves state-of-the-art precision and F} score while maintaining competitive recall, outperforming
both classical and neural baselines. Beyond accuracy, PILLM produces rules that are interpretable and
actionable, offering building operators transparent insights into system faults. These results highlight
the promise of combining LLM reasoning with physics-informed optimization to advance trustworthy
and deployable Al for cyber-physical systems. Future work will explore extending PILLM to other
building subsystems and investigating its scalability to real-time anomaly detection in large-scale
smart infrastructure.
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Appendix

Detailed Problem Definition

Task We address building-level anomaly detection in HVAC systems using multivariate time-series
data. Given a building b with sensor set 7, = {f1, fa,..., far}, the input at each timestep ¢ is
a feature vector Sy = (xj ¢, 2} ¢,,---, 25 f, ), Where } . € R denotes the reading of feature f
(e.g., zone temperature, fan speed, air flow rate). The goal is to learn a mapping from the observed
sequence H, = (S},. .. ,SbT °s) to a binary anomaly label yj € {0, 1} at each timestep, where 0
denotes normal operation and 1 denotes anomalous behavior. Models are trained on a labeled dataset
Diain = {(Hp, yp)} and evaluated on a held-out test set Dy, with the objective of maximizing
detection performance while minimizing false alarms.

Metrics. We evaluate anomaly detection performance using precision, recall, and their harmonic
mean, the F1 score. Precision is defined as the ratio of true positives (TP) to the sum of true positives
and false positives (FP), while recall is the ratio of true positives to the sum of true positives and false
negatives (FN). Formally, the F1 score is given by

2 x Precision x Recall Precisi TP Recall TP

= , Precision = TP+ P’ ecall = TPLFN

In time-series anomaly detection, defining positive and negative samples requires care, since anoma-
lies are typically labeled as contiguous incidents rather than isolated points. Following prior work
[Gu et al.| 2025]], we adopt the Event-F1 with Point Adjustment (Event-F1 PA) metric as our primary
evaluation measure. This method treats each anomaly incident as a single detection target and
considers it successfully detected if at least one point within the ground-truth incident is flagged. At
the same time, false positives are penalized at the point level, which provides a balanced evaluation
of both precision and recall. This choice ensures that models are not rewarded for overly coarse
predictions and aligns with practical expectations in building operations, where operators require
both timely and precise alarms.

F1

Precision + Recall

Details of Dataset

The assembled dataset is specifically designed to move beyond traditional binary fault detection and
enable a more sophisticated diagnostic task. This section details the diagnostic targets and defines the
expected output from the PILLM framework.

Fault Types and Intensities The dataset includes rich, labeled examples of various common and
critical HVAC faults. The Fault Type provides a descriptive, human-understandable label for
the specific malfunction occurring in the system. The Fault Intensity provides a normalized,
numerical scale of the fault’s severity, where a higher number indicates a more severe deviation from
normal operation.

Examples of fault conditions captured in the dataset include:

» Heating Coil Leaking: A condition where the heating coil valve is not shutting off com-
pletely, allowing hot water to leak through even when heating is not required. This leads to
energy waste and potential overheating.

* Damper Stuck: An air damper is mechanically stuck at a certain position (e.g., 20% open),
preventing the system from properly regulating the mix of outdoor and recirculated air. This
impacts both energy efficiency and indoor air quality.

* Sensor Drift / Bias: A temperature sensor provides consistently incorrect readings (e.g.,
always reporting 5°F higher than the true temperature). The system then makes incorrect
control decisions based on this faulty data.

* Control Logic Faults: Such as the Simultaneous_Heat_Cool condition, where program-
ming errors lead to inefficient and counterproductive system operation.

Expected PILLM Output: Generating Actionable Diagnostics The primary objective for the
PILLM is not to predict a class label, but to generate a structured, human-readable diagnostic
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report. For each input "diagnostic snapshot" (i.e., a row from the dataset), the PILLM is tasked with
generating a textual output that accomplishes the following:

1. Identify the Fault: Correctly state the Fault Type in natural language (e.g., "The diagnosis
is a stuck outdoor air damper.").

2. Provide Evidence: Justify the diagnosis by referencing the physical evidence from the input
data (e.g., "This is indicated because the damper position signal is fixed at 20% while the
control command is varying.").

3. Assess Severity: Characterize the fault’s intensity and impact (e.g., "This is a moderate-to-
severe fault leading to poor ventilation and increased fan energy consumption.").

Advantages Over Traditional Methods This diagnostic-generation task formulation offers signifi-
cant advantages over conventional approaches:

* Interpretability and Trust: Unlike a traditional classifier that outputs a cryptic label like
"Fault_Class_ID: 3°, the PILLM’s narrative output is transparent. By explaining why it
reached a conclusion, it allows building operators to verify the reasoning and build trust in
the system.

* Actionability: The LLM’s output is directly actionable. An operator reading "inspect the
outdoor air damper linkage" knows exactly what to do, whereas *Fault_Class_ID: 3> would
require consulting a manual.

» Handling Novelty and Nuance: By reasoning from the engineered physical features, the
PILLM has the potential to describe deviations from first principles. This may allow it to
characterize novel or compound faults that were not explicitly present in the training set,
offering a degree of zero-shot diagnostic capability that is difficult to achieve with rigid
classification models.

Baselines

We compare PILLM against a diverse set of baselines, including classical deep learning models,
LLM-based methods, and the recent agentic system ARGOS. Below we summarize each method
included in our evaluation.

* AnomalyTransformer: An unsupervised model that introduces the Anomaly-Attention
mechanism to detect anomalies by exploiting differences in association patterns between
normal and abnormal points. This method has become a widely used benchmark in time-
series anomaly detection.

* AutoRegression: A supervised autoregressive model that applies multiple linear layers to
transform input sequences into anomaly score logits. Its simplicity and efficiency make it a
strong classical baseline, though it lacks adaptability to complex dependencies.

* LSTMAD: A supervised long short-term memory (LSTM) model trained on normal data.
Anomalies are detected based on statistical deviations in prediction error. It leverages
temporal dependencies effectively but often struggles with generalization in highly dynamic
systems.

* LLMAD: A Large Language Model-based approach that prompts the LLM with serialized
time-series data, in-context examples, and contextual information to produce anomaly
predictions. While it improves interpretability compared to deep learning baselines, it
suffers from non-determinism and inconsistent reproducibility.

* SigLLM: An LLM-based method that operates in two distinct modes. In Detector mode,
the LLM predicts the next time-series values and detects anomalies by comparing them
against ground truth observations. In Prompter mode, the LLM is directly prompted with
time-series data to localize anomalous indices. This design improves flexibility but often
trades off precision for recall.

* ARGOS: An agentic anomaly detection system originally developed for monitoring cloud
infrastructure. ARGOS leverages LLMs to autonomously generate explainable and re-
producible anomaly rules as intermediate representations, which are then deployed for
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efficient online detection. By combining multiple collaborative agents, ARGOS achieves
explainability, reproducibility, and partial autonomy in anomaly detection. Experiments
show that ARGOS outperforms prior baselines across several public and industrial datasets,
highlighting the promise of LLM-driven rule-based anomaly detection. We include ARGOS
as a strong state-of-the-art baseline most closely aligned with our motivation.

Extra Experiment Details

Hardware and Software All experiments were conducted on a workstation equipped with an AMD
Ryzen 9 7950X 16-Core Processor and a single NVIDIA RTX 5090 GPU. The PINN framework
generates anomaly detection rules as executable Python code snippets in a Python 3.12 environment,
employing Google’s Gemini 2.5 Flash model [Comanici et al., 2025]].

Prompts We gather prompts used for PILLM in this section. Our prompt structure is flexible
and extensible. To adapt PILLM to a new problem setting, one only needs to define its problem
description, function description, and function signature.

Prompt for population initialization

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to design anomaly detection rules that can effectively
detect the anomaly status of the system.

{ task_description }

Below are the input features and their descriptions for anomaly detection:

{ input_feature_list}

{ seed_function } { context_template }

Refer to the format of a trivial design above. Be very creative and give ‘func_name_v2°.
Output code only, and enclose your code in Python code and one paragraph to describe the
physical hypothesis but nothing else. Format your code as a Python code string: """python
""" and a context string: """context ...

nun

System prompt for Generator LLM

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to design anomaly detection rules that can effectively
detect the anomaly status of the system. { task_description }. Your response outputs Python
code and one paragraph to describe the physical hypothesis but nothing else. Format your
code as a Python code string: """python ...""" and a context string: """context ...

System prompt for Reflection LLM

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to provide hints for designing better anomaly detection
rules.

{ task_description }

Below are the input features and their descriptions for anomaly detection:

{ input_feature_list}

You are provided with two rule versions with their physical context below, where the second
version performs better than the first one.

[Worse Rules] { worse_rules } { worse_rules_physical_context }

[Better Rules] { better_rules } { better_rules_physical_context }

You respond with some hints for designing better rules and a better hypothesis as a physical
context.
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System prompt for Crossover

You are an expert in the domain of building energy, especially in heating, ventilation, and
air-conditioning (HVAC). Your task is to provide hints for designing better anomaly detection
rules.

{ task_description }

Below are the input features and their descriptions for anomaly detection:

{ input_feature_list}

[Worse Rules] { worse_rules } { worse_rules_physical_context }

[Better Rules] { better_rules } { better_rules_physical_context }

[Reflection] { reflection_comments } { reflection_context }

[Improved Code] Please write an improved function ‘function_name_v2°‘, according to the
reflection. Output code only, and enclose your code with Python code.

System prompt for Elitist Mutation

{ task_description }

{ input_feature_list}

[Prior Reflection] { reflection_comments } { reflection_context }

[Code] { function_signature } { elitist_code }

[Improved Code] Please write a mutated function ‘function_name_v2°, according to the
reflection. Output code only, and enclose your code with Python code.

Extra Related Work

Our research is positioned at the intersection of three established and one emerging field: (1)
traditional Automated Fault Detection and Diagnostics (AFDD) in building systems, (2) data-driven
machine learning for AFDD, (3) the drive towards physics-informed and interpretable Al, and (4) the
novel application of Large Language Models (LLMs) to scientific and engineering domains.

Traditional and Model-Based AFDD The field of AFDD for buildings has a rich history, with
early methods relying on physical models and expert-defined rules. These approaches can be broadly
categorized into quantitative model-based methods, which compare system output to an engineering
model (e.g., a simulation), and qualitative rule-based methods, which use expert knowledge to define
explicit "if-then" rules for fault conditions [Katipamula and Brambley, |2005]]. While highly effective
for pre-defined and well-understood faults, these methods are often labor-intensive to develop, require
significant domain expertise to calibrate, and can be brittle, struggling to adapt to system retrofits or
novel operational conditions that fall outside their programmed logic [Kim and Katipamulal 2018|].

Machine Learning for Fault Detection The increasing availability of high-frequency sensor data
from Building Management Systems (BMS) has led to a surge in the application of data-driven
and machine learning techniques for AFDD. These methods learn patterns directly from historical
data, alleviating the need for explicit physical modeling. A wide array of techniques has been
successfully applied, ranging from statistical methods like Principal Component Analysis (PCA)
to supervised classifiers like Support Vector Machines (SVM) and Random Forests [Zhao et al.,
2019|]. More recently, deep learning models, particularly Convolutional neural network (CNN) and
Long Short-Term Memory (LSTM) networks, have shown exceptional performance in capturing the
complex temporal dependencies inherent in building thermal dynamics, making them powerful tools
for anomaly detection [Zhang et al., 2023|]. However, while these models excel at identifying that an
anomaly has occurred, they often fail to provide the necessary context to understand why.

The Interpretability Challenge and Physics-Informed AI  The high performance of deep learning
models often comes at the cost of interpretability. These "black box" models present a significant
barrier to adoption in high-stakes environments like building operations, where trust and transparency
are paramount [Ciobanu-Caraus et al.,[2024]. An unexplainable alert is often an ignored alert. This
has fueled a growing movement towards Physics-Informed Machine Learning (PIML), which seeks
to embed scientific principles into the learning process. A prominent example is the development of
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Physics-Informed Neural Networks (PINNs), which constrain a neural network’s solution space by
penalizing deviations from known physical laws, such as differential equations [[Raissi et al.,|2019,
Cuomo et al.,[2022]. This approach bridges the gap between data-driven flexibility and engineering
rigor, leading to more robust and generalizable models. Our work builds on this philosophy, not by
encoding physics into the model architecture itself, but by engineering a physics-informed feature
space upon which a reasoning model can act.

Large Language Models as Reasoning Engines While originally designed for natural language
tasks, the emergent capabilities of Large Language Models (LLMs) have opened new frontiers for
their application in complex scientific and engineering domains. Seminal work has demonstrated
that through techniques like chain-of-thought prompting, LLMs can perform multi-step reasoning,
breaking down complex problems into intermediate, sequential steps in a way that mirrors human
logic [Wei et al., 2022]]. This ability to "think step-by-step" has unlocked performance on a wide
range of arithmetic, commonsense, and symbolic reasoning tasks previously thought to be beyond
the scope of language models [Kojima et al., [2022]].

This emerging body of research suggests that LLMs can function as general-purpose reasoning
engines. Recent work has begun to apply these capabilities to the built environment, for example, by
using LL.Ms to automatically design novel, physically-grounded heuristics for energy forecasting
[Lin and Hual 2025]]. Our PILLM framework is directly inspired by this trend. We hypothesize that
an LLM’s demonstrated reasoning abilities can be guided and constrained by physical principles to
perform a diagnostic task that emulates a building engineer, moving beyond simple pattern recognition
to generate causal, evidence-backed explanations for system faults.
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