
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH LINEARIZATION METHODS FOR REASONING
ON GRAPHS WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have evolved to process multiple modalities beyond text,
such as images and audio, which motivates us to explore how to effectively
leverage them for graph reasoning tasks. The key question, therefore, is how
to transform graphs into linear sequences of tokens—a process we term “graph
linearization”—so that LLMs can handle graphs naturally. We consider that
graphs should be linearized meaningfully to reflect certain properties of natu-
ral language text, such as local dependency and global alignment, in order to
ease contemporary LLMs, trained on trillions of textual tokens, better understand
graphs. To achieve this, we developed several graph linearization methods based
on graph centrality and degeneracy. These methods are further enhanced using
node relabeling techniques. The experimental results demonstrate the effective-
ness of our methods compared to the random linearization baseline. Our work
introduces novel graph representations suitable for LLMs, contributing to the po-
tential integration of graph machine learning with the trend of multimodal pro-
cessing using a unified transformer model.

1 INTRODUCTION

Transformer-based large pre-trained models have revolutionized machine learning research, demon-
strating unprecedented performance across diverse data modalities and even a mixture of modalities,
including image, audio, and text domains (Xu et al., 2023; Yin et al., 2023). In particular, large lan-
guage models (LLMs) have shown promising results in arithmetic, symbolic, and logical reasoning
tasks (Hendrycks et al., 2020). Despite their success, the adaptation for processing graphs—an
ubiquitous data structure that encapsulates rich structural and relational information—remains a
comparably emerging and underdeveloped research direction, even if it has recently been gaining
attention (Ye et al., 2023; Fatemi et al., 2023; Wang et al., 2024). This asymmetry is due in large
part to the inherent challenge of representing graphs as sequential tokens, in a manner conducive to
the language modeling objectives typical of transformers, a challenge not encountered when dealing
with the other modalities. This unique problem has encouraged us to investigate a key question:
How can we represent graphs as linear sequences of tokens for transformers in a suitable way? We
refer to this research endeavor as Graph Linearization.

Existing methods of using LLMs for graph machine learning tasks, such as graph reasoning and
graph generation, represent entire graphs as either raw edge lists or natural language descriptions
that adhere to adjacency matrices without any special treatment (Fatemi et al., 2023; Wang et al.,
2024; Yao et al., 2024). For example, a natural language description of the star graph S might be:
“An undirected graph with nodes a, b, c, and d. Node b is connected to a. Node c is connected to b.
Node b is connected to d.”, its equivalent edge list representation is: “[(b, a), (c, b), (b, d)]”. Either
of the linearized representations is then appended with a task-specific question to form an LLM
query prompt, e.g., “Is there a cycle in this graph?”. Other studies focus solely on node-level tasks
(Zhao et al., 2023; Ye et al., 2023), centering the linearization around an ego-subgraph for a target
node (Hamilton et al., 2017), where the neighboring graph structure and node features up to k-hop
are described in the prompt. However, there is a lack of studies investigating how to maintain the
integrity of graph structures while efficiently transforming them into sequences suitable for LLMs.

Our research addresses this limitation. By relying on edge list representations as exemplified above,
we study the performance impact on LLMs of various methods to order the edges in the list and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

1

2

3

4

57

6

Core
Number
Ranking

{4: 3, 7: 3,
6: 3, 5: 3,
0: 2, 1: 2,
3: 2, 2: 2}

(4, 5),
(4, 6),
(4, 7),
(4, 3),
(5, 7),
(5, 6),
(6, 7),
(3, 2),
(3, 0),
(2, 1),
(1, 0)

Graph
Reasoning

Task

LLM
Model

Graph
G

Core Number-based
Linearization

Linearized
Graph LIN(G)

Task-specific
Prompt

Figure 1: An example of core number-based graph linearization method. Given an input graph
G, we rank its nodes based on their degree and then explore the edges in that order. The resulting
linearized LIN(G) graph is then combined with a task-specific prompt and passed into a LLM.

rename interchangeable node labels, as shown in Figure 1. We argue that if the linearization of
graphs is conducted in a meaningful way, capturing properties similar to those found in natural
language such as local dependency and global alignment, it will benefit contemporary LLMs by
enhancing their ability to understand graphs, as they are trained on trillions of textual tokens.

To this end, we introduce two guiding principles for graph linearization: local dependency and
global alignment. Local dependency refers to arranging edges so that structurally related compo-
nents of the graph appear close together in the token sequence, increasing the likelihood that the
model can use its contextual window effectively, much like how adjacent words in natural language
share semantic relationships. Global alignment refers to consistently relabeling interchangeable
node identifiers across examples so that structurally important nodes occupy similar token positions,
mirroring the consistent placement of key words or phrases in natural language prompts.

Addressing this question helps identify LLM-suitable representations for graphs that potentially
align with natural languages, unlocking new insights and applications in fields where graphs natu-
rally represent data. Graph linearization paves the way for extending transformer models’ capabil-
ities to graph data and unifying various graph tasks across domains, serving as a fundamental step
toward building successful large graph models. This also facilitates the integration of graph learning
with the multi-modal processing trend and the development of cohesive AI systems using a unified
transformer model.

In this work, we propose general graph linearization methods that leverage centrality and degener-
acy measures, further enhanced through node relabeling to capture language-like properties. Our
experiments cover both graph reasoning tasks and real-world classification datasets. We observe
that our structured linearizations consistently outperform random orderings and achieve competitive
performance compared to GNN baselines on real-world datasets. Our key findings are:

• Ordering matters – Structured graph linearizations improves the reasoning capabilities of LLMs.
• Node relabeling helps – Incorporating structural features into labels further enhances accuracy.
• Task-specific orderings – Node- and edge-based strategies excel in their respective tasks.

2 RELATED WORK

Transformers for graph machine learning Transformers (Vaswani et al., 2017) have been suc-
cessfully applied in various domains beyond text, demonstrating both versatility and effectiveness
(Devlin et al., 2018). For instance, the Vision Transformer (Dosovitskiy et al., 2020) has achieved
remarkable performance in image classification tasks by treating images as sequences of patches,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

marking a shift from traditional CNN-based approaches. Similarly, transformers have been used in
speech recognition. Models like the Speech Transformer (Dong et al., 2018) apply self-attention
mechanisms to process audio data as sequences, outperforming traditional RNN-based methods.

These successes have spurred interest in using modified transformers to replace the de facto GNN-
based approaches for graph machine learning tasks. Notably, Graphormer (Ying et al., 2021) enables
transformer to effectively capture the dependencies and relationships within a graph. It achieves this
by integrating node centrality encoding and attention biases that account for the spatial distance
between nodes. Graph Transformer (GT) (Dwivedi & Bresson, 2020) generalizes the transformer
architecture for graph representation learning. GT introduces the concept of relative positional en-
codings to account for the pairwise distances between nodes in a graph. This approach allows the
model to learn rich node representations that capture both local and global graph structures.

In contrast to the above works, Kim et al. (2022) show that by treating all nodes and edges as
independent tokens and inputting them into a standard Transformer encoder without any graph-
specific modifications, notable outcomes can be achieved both theoretically and practically. Results
on molecular graphs for quantum chemical property prediction show that this approach outperforms
all GNN baselines and achieves competitive performance compared to graph Transformer variants.
Despite not applying any structural alterations to the Transformer, this approach still requires so-
phisticated token-wise node and edge embeddings to explicitly represent the connectivity structure.

LLMs for graph reasoning Following the recent success of LLMs in tasks beyond language pro-
cessing (Hendrycks et al., 2020), several studies have explored the capacity of off-the-shelf LLMs
for graph reasoning. While there is no clear consensus on the specific tasks, models are tested on
understanding basic topological properties, such as graph size, node degree and connectivity, which
form the foundation for a deeper understanding of graph structures (Zhang et al., 2023b). Using
various prompting methods, these studies show that LLMs, even without fine-tuning, demonstrate
preliminary graph reasoning abilities.

Several studies have evaluated LLMs for graph reasoning at both the node and graph levels. For
example, NLGraph (Wang et al., 2024) covers eight graph reasoning tasks of varying complexity,
ranging from simple tasks like connectivity and shortest path to complex problems like maximum
flow and simulating graph neural networks. This work also proposes two graph-specific prompting
methods that achieve notable performance improvements. GraphQA (Fatemi et al., 2023) focuses
on relatively simple tasks to measure the performance of pre-trained LLMs in edge existence, node
degree, node count, edge count, connected nodes, and cycle checks. It shows that larger mod-
els generally perform better on graph reasoning, with graphs generated synthetically using various
graph generators. Similar works include various studies that explore graph reasoning using different
LLMs, prompting techniques, graph tasks, domains, and evaluation approaches (Chen et al., 2023;
Guo et al., 2023; Zhang et al., 2023a; Hu et al., 2023; Huang et al., 2024; Liu & Wu, 2023; Das
et al., 2023; Yuan et al., 2024; Wu et al., 2024; Skianis et al., 2024).

Another line of research criticizes the above approach, arguing that solely using prompt engineering
or in-context learning with frozen LLMs hinders achieving top performance in downstream graph
tasks. Therefore, instruction-tuning or fine-tuning is necessary. The work of Ye et al. (2023) pre-
liminarily confirms this on the multi-class node classification task. A prompt template is designed
to describe both the neighbor graph structure and node features centered around a target node up to
the 3-hop level. Similarly, Zhao et al. (2023) draw inspiration from linguistic syntax trees. For a
target node, the work converts its ego-subgraph into a graph syntax tree with branches describing the
neighborhood’s “label” and “feature”, which are then encoded as text in the prompt. Results show
that instruction-tuning performs much better than in-context learning, and is on par with GNN-based
models. Similar conclusions can be observed in recent studies on graph-level reasoning settings (Luo
et al., 2024). Finally, Perozzi et al. (2024) introduce GraphToken, which trains an encoder to create
continuous representations, rather than converting graphs into text tokens.

While these approaches demonstrate strong performance, they rely on fine-tuning or additional com-
ponents beyond the base LLM. In contrast, our method requires no training or parameter updates.
We focus on input-level graph linearization techniques that make graphs more interpretable to frozen
LLMs, maximizing their utility on graph reasoning tasks without any model modification.

Linearization for specific graphs In deriving an ordering for graphs, topological sorting in graph
theory examines the linear ordering of directed acyclic graphs, such that for every directed edge

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(u, v), u precedes v in the ordering. However, such graph traversal is node-centric, making edge
information not encoded.

In other domains involving specific types of graphs, such as discourse graphs—a directed weakly
connected graph reflecting discourse structure—nodes represent utterances, and edges represent dis-
course relations (e.g., elaboration, clarification, completion) within a conversation (Rennard et al.,
2024). The work of Chernyavskiy et al. (2024) proposes a linearization method for discourse graphs
that arranges utterances chronologically, assigning unique identifiers to speakers, utterances, and
addressees. It incorporates discourse relations and sentiment tokens to generate a structured se-
quence, using special tokens for clarity. This structured sequence is then used to train a BART
(Lewis et al., 2020) for dialogue generation. Similarly, Abstract Meaning Representation (AMR)
uses directed acyclic graphs to provide a structured semantic representation of language, incorporat-
ing semantic roles with annotated arguments and values where nodes represent concepts and edges
represent semantic relations (Banarescu et al., 2013). AMR corpora are usually linearized using the
PENMAN-based notation (Patten, 1993) as in the work of (Ribeiro et al., 2021) and (Hoyle et al.,
2021) to fine-tune pre-trained language models to perform graph-to-text generation. For citation net-
works, Guo et al. (2023) have explored the Graph Modeling Language (GML) and Graph Markup
Language (GraphML) for graph representation (Himsolt, 1997; Brandes et al., 2013). GML is a
simple, human-readable format, while GraphML is XML-based and offers extensibility for complex
applications.

The scope of our work. Unlike the above linearization methods limited to specific types of graphs,
where linearization can be naturally derived to some extent, we focus on general graphs. Further-
more, unlike previous works using LLMs for reasoning, where edge lists are directly leveraged
without special treatment, we introduce various linearization methods for ordering the edges in the
list and renaming interchangeable node labels to make them suitable for LLMs. Although our work
involves mostly graph reasoning experiments, our graph linearization methods are general and ap-
plicable to various scenarios. This allows for the effective transformation of graph structures into
sequences suitable for language models and has the potential to improve performance in variety of
graph tasks, with or without fine-tuning.

3 GRAPH LINEARIZATION

This section describes our graph linearization approaches, emphasizing the use of graph features to
enhance graph reasoning with LLMs.

Generally speaking, we define graph linearization as the process of representing graphs as linear
sequences of tokens. In this work, we aim to identify the linearization approaches that will benefit
LLMs by enhancing their ability to understand graphs. We argue that linearized graphs, represented
as sequences of textual tokens, should capture properties similar to those in natural language, given
the fact that LLMs are pre-trained on trillions of textual tokens. Such properties should include local
dependency and global alignment.

By local dependency we refer to the capacity to predict the subsequent (or missing) token based on
the preceding (or surrounding) context within the token sequence of a single linearized graph. This
property is analogous to the foundational distributional hypothesis of language (Joos, 1950; Harris,
1954; Firth, 1957), which asserts that words occurring in similar contexts tend to exhibit similar
meanings or functions. The hypothesis suggests that, upon encountering an unfamiliar word, its
meaning can be inferred from the contexts in which it appears. In the context of graphs, this implies
that grouping structurally related components enhances the likelihood that an LLM’s contextual
window will capture meaningful connectivity patterns.

Similarly, global alignment pertains to the alignment of token sequences across different linearized
graphs, ensuring that corresponding tokens align consistently across examples. This property cap-
tures the overarching structure of the sequences, reflecting the predictable flow of natural language,
wherein common words tend to occupy consistent positions within a sequence. Thus, global align-
ment can be facilitated by consistently initiating the linearization from structurally important nodes,
such as starting from the highest-degree node, and by ensuring that these nodes are consistently
labeled as index 0 across graphs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To empirically evaluate these properties, we consider three distinct categories of measures: Degree
(local connectivity), PageRank (global influence), and Core number / degeneracy (membership in
dense substructures). These measures are applied in both node-centric linearizations, where incident
edges are emitted while scanning nodes in rank order, and in an edge-centric variant, by applying
the same pipeline to the line graph (L{G}).

3.1 IMPLEMENTATION

Our approach to capitalizing on the local dependency property involves the following steps. Given a
graph G, we initially rank the nodes by the centrality and degeneracy measures described previously.
Then, we begin exploring the nodes by descending order and list the edges connected to it, arranging
them in a random order. Each edge is represented as a node pair. In the case where two or more
nodes share an equal value, the order is selected randomly. After the ordering process has concluded,
each edge list constitutes a sequence of tokens following a descending order of node importance.

In addition to linearization methods, node relabeling is employed as a means to attempt the attain-
ment of the global alignment property. Specifically, node relabeling introduces an additional step
to our procedure. After ranking the nodes, their original labels are replaced with their respective
positions in the ranking. Consequently, the node with index 0 corresponds to the one with the high-
est core number, and so forth. This approach may prove advantageous for the LLM by ensuring a
consistent association between node indices and their respective importance properties.

Finally, we conducted experiments in which the edges were ordered directly, rather than the nodes.
This allows our linearization to directly capture relationships between edges, which can be essential
for understanding complex graph structures. To achieve this, each graph was transformed into its
corresponding linegraph representation. A linegraph L(G) of a graph G is the graph where each
edge of G is replaced by a node, and where two edges of G are connected in L(G) if they are
incident in G. Subsequently, the previously described processes were applied directly to L(G).

4 EXPERIMENTAL SETUP

In this section, we present a comprehensive overview of the experimental setup, detailing the
methodologies, resources, and evaluation frameworks employed in our experiments. We first de-
scribe experiments conducted on synthetic datasets designed for graph reasoning tasks, followed by
experiments on real-world protein-based datasets for graph classification tasks.

4.1 SYNTHETIC DATASETS

4.2 DATASETS

(a) clique (b) star (c) fan,fan (d) diamond (e) tree (f) clique,star,fan

Figure 2: Overview of GraphWave synthetic dataset.

GraphWave. First, we constructed a synthetic graph dataset using GraphWave (Donnat et al.,
2018). This graph generator was originally developed for controlled experimentation and evaluation
of node embedding techniques and measurement of structural equivalence on graphs with known
network motifs. Motifs, in the context of network science, are sub-graphs that repeat themselves
either within the same graph or across different graphs. For our analysis, these structurally simi-
lar sub-graphs enable us to construct structure-related tasks, that allow us to assess the ability of
language models to analyze and infer structural features within these graphs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The generator operates by sequentially constructing a base graph, that follows either a cycle or chain
structure, and then attaching a number of motifs that follow predetermined shapes—cliques, stars,
fans, diamonds, and trees. To cover a wider variety of structural complexities, we also include all
combinations of two shapes, along with all combinations of three shapes with unique shapes per
triplet. Example graphs can be found in Figure 2.

For each combination of shapes, we generated 100 graphs, leading to a total of 3000 graphs. This
ensures sufficient variance in graph sizes and in the combinations of base and motif sub-graphs. The
number of nodes in each graph shape is selected randomly, with the following constraints: base (3-
21 nodes); clique, fan, and star (4-11 nodes); diamond (6 nodes); and tree (perfect binary trees with
3-6 levels). The generated dataset contains an average of 32.33 nodes and 43.72 edges per graph.

GraphQA. Furthermore, we included GraphQA (Fatemi et al., 2023), which is widely used to
evaluate the graph reasoning capabilities of LLMs. Similar to GraphWave, the dataset consists of
randomly generated graphs derived from various graph generators, including Erdős–Rényi graphs
(Erdős & Rényi, 1959), scale-free networks (SFN) (Barabási & Albert, 1999), the Barabási–Albert
model (BA) (Albert & Barabási, 2002), and the stochastic block model (SBM) (Holland et al., 1983),
along with star, path, and complete graph generators. A total of 500 graphs were sampled for ER,
BA, SFN, and SBM models, whereas 100 graphs were sampled for path, complete, and star graphs
due to their lower structural variability. All generated graphs contained between 5 and 20 nodes.

Table 1: Accuracy scores for all tasks on the GraphWave dataset using Llama 3 8B, including the
overall average. Each task compares two node labeling schemes in zero-shot / one-shot prompt-
ing against the random Baseline. The linearization names represent the node ordering methods
used (CoreNumber, Degree, or PageRank), while ‘LG{*}’ indicates graphs were transformed to the
corresponding linegraph beforehand. Underlined scores denote the best-performing linearization
method for each task, labeling, and X-shot combination; bold indicates task-wise best.

Node Counting Max Degree Node Degree Edge Existence Diameter Shortest Path Path Existence Motifs’ Shape Average
Random Labeling
CoreNumber 25.97 / 34.98 17.47 / 17.37 58.53 / 56.79 51.83 / 55.29 8.9 / 11.87 24.57 / 17.84 85.17 / 66.16 45.8 / 64.07 39.78 / 40.55
Degree 28.0 / 36.98 27.63 / 27.14 60.83 / 52.22 47.6 / 53.72 7.97 / 10.17 27.8 / 15.81 84.63 / 69.12 48.47 / 64.8 41.62 / 41.24
PageRank 28.81 / 39.18 24.10 / 23.57 59.4 / 56.42 44.9 / 47.52 8.83 / 11.27 27.37 / 16.34 84.63 / 72.69 44.93 / 65.73 40.37 / 41.59
LG{CoreNumber} 21.9 / 27.38 19.00 / 16.47 46.23 / 42.68 52.47 / 50.12 8.73 / 12.0 23.03 / 16.21 83.87 / 64.22 44.4 / 63.13 37.45 / 36.53
LG{Degree} 20.4 / 26.51 27.63 / 18.87 48.07 / 47.92 55.47 / 52.65 8.7 / 11.94 26.3 / 17.64 84.8 / 62.29 44.33 / 61.17 39.46 / 37.37
LG{PageRank} 29.1 / 27.28 18.83 / 17.97 46.8 / 40.61 47.9 / 49.02 8.47 / 12.14 24.73 / 16.04 87.07 / 70.52 42.4 / 60.0 38.16 / 36.7

Node Relabeling
CoreNumber 28.65 / 36.05 14.57 / 16.17 58.3 / 61.32 59.43 / 59.89 9.7 / 10.54 27.53 / 18.57 88.0 / 72.92 44.3 / 64.57 41.31 / 42.5
Degree 31.44 / 43.85 29.40 / 32.48 62.93 / 56.79 58.5 / 55.09 11.1 / 11.24 30.3 / 16.31 82.0 / 72.79 48.37 / 76.3 44.26 / 45.61
PageRank 34.35 / 38.01 26.07 / 25.24 65.37 / 56.92 50.83 / 46.08 10.47 / 11.17 32.33 / 17.67 82.13 / 72.89 47.6 / 68.63 43.64 / 42.08
LG{CoreNumber} 15.64 / 20.34 13.33 / 8.67 56.23 / 48.15 63.97 / 55.55 8.5 / 12.5 27.6 / 17.67 85.83 / 70.66 45.0 / 50.9 39.51 / 35.56
LG{Degree} 23.59 / 31.94 19.83 / 16.11 48.9 / 47.85 60.03 / 63.05 10.1 / 12.14 29.63 / 17.31 84.8 / 70.36 41.07 / 54.23 39.74 / 39.12
LG{PageRank} 27.57 / 37.45 17.03 / 18.64 51.8 / 48.45 54.37 / 51.15 9.73 / 12.34 26.6 / 15.41 85.47 / 71.72 39.4 / 51.77 39.0 / 38.37

Baseline 32.46 / 34.6 15.13 / 12.94 39.36 / 45.99 36.99 / 53.25 7.99 / 12.38 22.73 / 16.57 86.98 / 68.05 43.53 / 66.8 34.86 / 34.86

4.2.1 TASKS

Our experiments encompass a series of graph reasoning tasks, which can be broadly categorized into
classification-based and numerical tasks. Numerical tasks, ranging in difficulty, require the model
to produce a numerical output, either through structural computation or counting-based inference.
This combination of tasks allows us to comprehensively evaluate LLMs’ understanding of structural
features and examine how different edge list orderings affect their performance.

A fundamental task is Node Counting, where the LLM estimates the number of nodes. In
Node Degree calculation, the LLM determines the degree of a node. A more advanced variant,
Maximum Degree calculation, requires the LLM to internally calculate the degree of all nodes
and then identify the maximum among them.

Beyond node-related tasks, we assess the ability to infer relational properties. In Edge
Existence and Path Existence tasks the LLM is given a randomly selected pair of nodes
and must determine whether an edge or a connecting path exists between them, respectively. In the
Shortest Path task, the model must compute the length of the shortest path between two given
nodes, requiring a deeper understanding of graph connectivity. The Diameter Estimation
task requires the model to determine the longest shortest path in the graph, showcasing global graph
structure understanding.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Finally, we evaluated Motifs’ Shape classification, a dataset-specific task leveraging Graph-
Wave’s embedded structures, where the LLM is given definitions of the five motif types and asked
is to identify which is present.

In every prompt, a node v is represented by an incremental integer, while an edge between nodes
v and u is denoted by the bracketed pair (v, u). An edge list is expressed as a sequence of edges,
sorted according to the scheme used in each linearization method. We tested both zero-shot and
one-shot approaches, where a randomly selected graph from the dataset was used consistently as the
one-shot example across all experiments. The prompt templates are provided in Appendix D.

4.2.2 LLMS

We used the 8B parameter Llama 3 Instruct (Dubey et al., 2024) with a temperature of 1e−3 and a
sampling parameter of 1e−1 for more deterministic outputs to assess sensitivity to our linearization
methods. Experiments were conducted on an NVIDIA A5000. Further experiments with different
model sizes and families, including the Llama 3 70B and Qwen 2.5 14B-1M (Yang et al., 2025), are
provided in Appendix A.

4.2.3 BASELINES

For our comparisons, we consider a random baseline. This baseline involves a fully random order-
ing of the edge list, where edges are arranged without following any inherent scheme. To further
eliminate structural biases, we also randomly shuffle the node labels. This baseline is founded on
the fact that we are working with general graphs, where default labels or ordering are neither pre-
determined nor necessarily provide meaningful information in real-world applications. In addition,
to mitigate the risk of skewed results, we applied five different random orderings and averaged their
performance. Our random ordering can be considered comparable to prior studies, which tend to
preserve the inherent structure of the generator.

Table 2: Accuracy scores for all tasks on the GraphQA dataset using Llama 3 8B, , including the
overall average. Notations remain the same as in Table 1.

Node Counting Max Degree Node Degree Edge Existence Diameter Shortest Path Path Existence Average
Random Labels
CoreNumber 60.77 / 24.28 15.88 / 18.67 54.44 / 37.23 70.68 / 61.59 3.28 / 18.53 49.21 / 57.25 95.51 / 98.39 49.97 / 45.13
Degree 62.18 / 28.91 25.6 / 29.75 54.99 / 29.4 68.02 / 58.6 3.39 / 14.82 50.24 / 53.34 94.39 / 98.71 51.26 / 44.79
PageRank 62.12 / 28.31 26.03 / 28.94 56.23 / 28.05 68.39 / 59.26 3.16 / 15.25 29.34 / 47.3 94.51 / 98.68 48.54 / 43.68
LG{CoreNumber} 61.14 / 23.94 10.81 / 25.89 49.09 / 36.65 69.26 / 58.83 2.9 / 16.97 42.08 / 42.35 95.92 / 98.71 47.31 / 43.33
LG{Degree} 59.53 / 27.22 12.97 / 28.25 48.46 / 37.69 68.25 / 60.39 2.7 / 16.34 23.99 / 43.1 95.2 / 98.82 44.44 / 44.54
LG{PageRank} 60.66 / 26.24 11.59 / 28.65 47.51 / 38.43 69.49 / 62.66 2.67 / 17.43 40.78 / 45.6 94.31 / 98.79 46.72 / 45.4

Node Relabeling
CoreNumber 61.06 / 34.38 22.09 / 30.29 51.94 / 30.49 72.02 / 70.17 2.36 / 14.41 46.28 / 52.85 94.79 / 98.56 50.08 / 47.31
Degree 65.31 / 45.48 39.11 / 44.3 54.76 / 29.2 70.18 / 74.6 2.93 / 14.3 46.22 / 52.01 96.89 / 98.76 53.63 / 51.24
PageRank 64.71 / 44.97 40.72 / 43.15 58.77 / 28.65 69.97 / 70.83 3.57 / 14.13 26.17 / 49.54 97.04 / 98.82 51.56 / 50.01
LG{CoreNumber} 63.56 / 32.54 22.69 / 33.49 47.48 / 29.14 72.91 / 59.15 1.93 / 15.1 24.33 / 43.84 96.52 / 98.82 47.06 / 44.58
LG{Degree} 64.77 / 35.07 27.87 / 35.27 47.2 / 39.18 70.46 / 59.26 3.19 / 15.13 42.45 / 46.72 96.06 / 98.76 50.29 / 47.06
LG{PageRank} 69.37 / 32.42 26.37 / 36.02 49.5 / 38.9 70.84 / 63.98 3.13 / 15.19 41.53 / 47.44 95.48 / 97.96 50.89 / 47.42

Baseline 66.28 / 27.38 9.28 / 20.37 49.78 / 35.86 67.02 / 58.99 2.94 / 14.98 37.7 / 44.55 95.83 / 98.51 46.98 / 42.95

4.2.4 EVALUATION

We use exact accuracy to compare our methods, measuring the ratio of correct predictions as
1
n

∑n
i=1 I (yi = ŷi), where n is the number of graphs, yi the correct answer, and ŷi the LLM’s

response. For numerical tasks, we consider a result accurate only if it is an exact match. For the
motifs’ shape classification task, accuracy reflects the total across all shapes, requiring the predicted
shape to appear at least once in the graph.

4.3 REAL-WORLD DATASETS

To further assess the effectiveness of our graph linearization methods beyond synthetic datasets, we
evaluate them on two widely used real-world graph binary classification datasets from the TUDataset
collection (Morris et al., 2020): AIDS and MUTAG. These datasets consist of molecular graphs,
where nodes represent atoms and edges represent chemical bonds, offering a more challenging set-
ting. For this experiment, we employ the Qwen 2.5 14B - 1M language model, which supports

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

extended context lengths and can encode full graph sequences as input. Our aim is to determine
whether zero-shot LLMs, when given only linearized graph representations and task prompts, can
generalize to graph classification tasks without any parameter tuning.

To benchmark performance, we compare against two standard GCN models: one using only train-
able node embeddings and another incorporating the original node features provided by the dataset.
These models are trained end-to-end on 80% of the data, with evaluation on the remaining 20%
test split. In contrast, the LLM is evaluated only on the test set using zero-shot prompting, without
any access to the training data. This separation allows us to measure the generalization ability of
frozen LLMs under realistic constraints and to isolate the impact of linearization in the absence of
task-specific training.

Table 3: Accuracy scores for TUDatasets (Morris et al., 2020) AIDS and MUTAG using Qwen 2.5
14B - 1M. We compare against two basic GCN models, one where we ignore the node features
and instead each node is assigned a trainable embedding vector and one where the node features
are included. The train split is 80%, the LLM is evaluated over the test split only with a zero-shot
setting.Underlined scores denote best performing linearization; bold indicates dataset-wise best.

AIDS MUTAG
Random Labels
CoreNumber 55.14 66.42
Degree 54.64 65.79
PageRank 46.62 60.53
LG{CoreNumber} 51.63 66.42
LG{Degree} 59.92 63.16
LG{PageRank} 59.4 65.79

Node Relabeling
CoreNumber 53.13 65.79
Degree 58.4 65.79
PageRank 50.38 68.42
LG{CoreNumber} 51.63 65.79
LG{Degree} 76.19 65.79
LG{PageRank} 68.42 63.16

Random Ordering 40.5 65.79
Default Ordering 32.08 63.16

GCN 80.0 67.56
GCN-NodeFeatures 79.75 84.21

5 EXPERIMENTAL RESULTS ANALYSIS

The performance of our methods is presented in Tables 1 and 2, which report results on the Graph-
Wave and GraphQA datasets with the Llama 3 8B model. Results on real-world datasets with the
Qwen2.5 14B model are provided in Table 3. The results are organized into three groups: one where
node labels in the linearized graphs are randomly assigned, ensuring a fair comparison since, in real-
world graphs, labels might be arbitrary; another where node labels are reindexed according to each
method, as described in Section 3; and finally, a comparison against the baselines. The performance
related to the pseudo-random (default) node labels originally provided by synthetic graph generators
is discussed in Appendix A.

Overall, across both synthetic datasets, our linearization methods consistently outperform the ran-
dom baseline, highlighting the critical role of graph linearization, as evident in the average perfor-
mance and across multiple individual tasks. Notably, on the GraphQA dataset, the combination
of degree-based ordering and node relabeling improves performance by approximately 35% on the
maximum node degree estimation task and by around 13% on the shortest path task. Similarly, on
the GraphWave dataset, the combination of degree-based ordering and node relabeling enhances
edge existence performance by roughly 26%. Comparing random and node relabeling reveals that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ordering alone offers significant improvements over the baseline, while the additional information
from structured relabeling further enhances accuracy on nearly all tasks. Among all tasks, diameter
estimation is the most challenging across both datasets, with consistently low performance, indicat-
ing LLMs struggle to infer global graph properties at this level of complexity.

Linegraph-based methods (LG{*})—where edges are reinterpreted as nodes—highlight the impor-
tance of edge-to-edge relationships. While their overall average score is lower, they generally per-
form better in edge-based tasks, such as edge existence and path reasoning, by capturing interde-
pendencies that might be less evident in traditional node-focused representations. These findings
suggest that a more suitable linearization approach may be necessary to fully exploit the benefits of
the linegraph transformation.

Similarly, CoreNumber-based methods achieve better performance in edge-centric tasks, which can
be attributed to its ability to capture the structural cohesiveness of a graph. By emphasizing nodes
embedded in densely connected subgraphs, core number ordering effectively preserves key connec-
tivity patterns, making it particularly advantageous for reasoning about edge relationships. In con-
trast, while Degree- and PageRank-based orderings demonstrate the most consistent performance
across various tasks, their strengths are more pronounced in node-related tasks.

When moving from zero-shot to one-shot setting, we notice a performance loss on binary classifica-
tion tasks like edge and path existence. This decline may result from the model’s reliance on a single
graph example, which does not fully capture the complexity and diversity of the dataset. However,
despite this drop, one-shot prompting remains effective for more complex tasks.

The results in the real-world datasets demonstrate that structured graph linearization methods signif-
icantly improve the zero-shot graph classification performance of a frozen LLM (Qwen 2.5 14B) on
real-world datasets, compared to both random and default orderings. Notably, the linegraph-based
linearization with degree ordering and node relabeling (LG{Degree}) achieves the best LLM per-
formance on the AIDS dataset (76.19%), outperforming all other linearizations and approaching the
GCN baseline (80.0%). On MUTAG, the best LLM result (68.42%) is achieved by PageRank with
node relabeling, slightly exceeding the GCN (67.56%) and only lagging behind the GCN variant
that uses node features (84.21%). These findings support our core claim: that carefully designed
graph linearizations—without any training or fine-tuning—can make frozen LLMs competitive on
graph-based tasks. Although LLMs have not yet matched the performance of fully trained GCNs
in all scenarios, our approach significantly improves their performance through prompt engineering
alone, highlighting its practicality over traditional GNNs.

6 CONCLUSION

This work addresses a fundamental challenge in using LLMs for graph-based reasoning: how to
represent graph structures as linear textual token sequences in a way that aligns with the models’
training on natural language. We explore a family of graph linearization methods that embed two
key properties—local dependency and global alignment—directly into the sequence structure. Local
dependency is encouraged by ordering edges based on node-centric measures such as degree, core
number, and PageRank, allowing nearby tokens to reflect structurally related regions of the graph.
Global alignment is introduced via node relabeling, ensuring that important nodes are consistently
assigned the same token indices across examples, thereby aligning the positional priors LLMs rely
on.

Our experiments show that even without fine-tuning, LLMs like LLaMA 3 and Qwen 2.5 benefit
from these structural cues: performance on a range of graph reasoning tasks improves significantly
over random orderings. Results on real-world datasets further demonstrate that these input-level
strategies can generalize beyond synthetic graphs.

Unlike prior methods that adapt the model through training, we show that effective prompt de-
sign—when grounded in graph structure—can unlock latent capabilities of LLMs for graph tasks.
By encoding structural bias into the input, our approach provides a simple and general path toward
integrating graphs into the LLM ecosystem, with no architectural changes or training required.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All experiments in this work are fully reproducible. Our study uses standard graph algorithms
such as k-core decomposition, degree computation, and line graph construction, implemented with
publicly available libraries. All LLM prompting parameters are described in Section 4.2.2, the exact
prompts used are provided in Section D, and all LLMs used are publicly available.

REFERENCES

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1):47–97, 2002.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract Meaning Represen-
tation for sembanking. In Antonio Pareja-Lora, Maria Liakata, and Stefanie Dipper (eds.),
Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse,
pp. 178–186, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL
https://aclanthology.org/W13-2322.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999.

Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich. Graph markup language
(graphml). In Roberto Tamassia (ed.), Handbook of graph drawing visualization, Discrete math-
ematics and its applications, pp. 517–541. CRC Press, Boca Raton [u.a.], 2013. ISBN 978-1-
58488-412-5.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning
on graph. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

Alexander Chernyavskiy, Lidiia Ostyakova, and Dmitry Ilvovsky. GroundHog: Dialogue gener-
ation using multi-grained linguistic input. In Michael Strube, Chloe Braud, Christian Hard-
meier, Junyi Jessy Li, Sharid Loaiciga, Amir Zeldes, and Chuyuan Li (eds.), Proceedings
of the 5th Workshop on Computational Approaches to Discourse (CODI 2024), pp. 149–160,
St. Julians, Malta, March 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.codi-1.14.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. arXiv preprint
arXiv:1907.04931, 2019. URL https://arxiv.org/abs/1907.04931.

Debarati Das, Ishaan Gupta, Jaideep Srivastava, and Dongyeop Kang. Which modality should i
use–text, motif, or image?: Understanding graphs with large language models. arXiv preprint
arXiv:2311.09862, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 5884–5888. IEEE, 2018.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node embed-
dings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1320–1329, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://aclanthology.org/W13-2322
https://aclanthology.org/2024.codi-1.14
https://aclanthology.org/2024.codi-1.14
https://arxiv.org/abs/1907.04931

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae, 6:290–297, 1959.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560, 2023.

John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, 1957.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
language models understand graph structured data? an empirical evaluation and benchmarking.
arXiv preprint arXiv:2305.15066, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Michael Himsolt. Gml: Graph modelling language. University of Passau, 1997.

Paul W. Holland, Kathryn B. Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5(2):109–137, 1983.

Alexander Miserlis Hoyle, Ana Marasović, and Noah A. Smith. Promoting graph awareness in
linearized graph-to-text generation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli
(eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 944–
956, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
findings-acl.82. URL https://aclanthology.org/2021.findings-acl.82.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 22118–22133, 2020. URL
https://arxiv.org/abs/2005.00687.

Yuntong Hu, Zheng Zhang, and Liang Zhao. Beyond text: A deep dive into large language models’
ability on understanding graph data. arXiv preprint arXiv:2310.04944, 2023.

Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms effectively leverage graph struc-
tural information through prompts, and why? Transactions on Machine Learning Research, 2024.

Martin Joos. Description of language design. The Journal of the Acoustical Society of America, 22
(6):701–707, 1950.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1603.08861, 2016. URL https://arxiv.org/abs/1603.
08861.

11

https://aclanthology.org/2021.findings-acl.82
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/1603.08861
https://arxiv.org/abs/1603.08861

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 7871–7880, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https:
//aclanthology.org/2020.acl-main.703.

Chang Liu and Bo Wu. Evaluating large language models on graphs: Performance insights and
comparative analysis. arXiv preprint arXiv:2308.11224, 2023.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, and Hai
Jin. Graphinstruct: Empowering large language models with graph understanding and reasoning
capability. arXiv preprint arXiv:2403.04483, 2024.

Christopher Morris, Matthias Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Tudataset: A collection of benchmark datasets for learning with
graphs. arXiv preprint arXiv:2007.08663, 2020. URL https://arxiv.org/abs/2007.
08663.

Terry Patten. Book reviews: Text generation and systemic-functional linguistics: Experiences
from English and Japanese. Computational Linguistics, 19(1), 1993. URL https://
aclanthology.org/J93-1011.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv
preprint arXiv:2402.05862, 2024.

Virgile Rennard, Guokan Shang, Michalis Vazirgiannis, and Julie Hunter. Leveraging discourse
structure for extractive meeting summarization, 2024. URL https://arxiv.org/abs/
2405.11055.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich Schütze, and Iryna Gurevych. Investigating
pretrained language models for graph-to-text generation. In Alexandros Papangelis, Paweł
Budzianowski, Bing Liu, Elnaz Nouri, Abhinav Rastogi, and Yun-Nung Chen (eds.), Proceed-
ings of the 3rd Workshop on Natural Language Processing for Conversational AI, pp. 211–227,
Online, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
nlp4convai-1.20. URL https://aclanthology.org/2021.nlp4convai-1.20.

Konstantinos Skianis, Giannis Nikolentzos, and Michalis Vazirgiannis. Graph reasoning with large
language models via pseudo-code prompting. arXiv preprint arXiv:2409.17906, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36, 2024.

Qiming Wu, Zichen Chen, Will Corcoran, Misha Sra, and Ambuj K Singh. Grapheval2000:
Benchmarking and improving large language models on graph datasets. arXiv preprint
arXiv:2406.16176, 2024.

Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2.5-1m technical report. arXiv preprint
arXiv:2501.15383, 2025.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Benchmarking graph neural networks.
arXiv preprint arXiv:1811.05868, 2018. URL https://arxiv.org/abs/1811.05868.

12

https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://arxiv.org/abs/2007.08663
https://arxiv.org/abs/2007.08663
https://aclanthology.org/J93-1011
https://aclanthology.org/J93-1011
https://arxiv.org/abs/2405.11055
https://arxiv.org/abs/2405.11055
https://aclanthology.org/2021.nlp4convai-1.20
https://arxiv.org/abs/1811.05868

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yang Yao, Xin Wang, Zeyang Zhang, Yijian Qin, Ziwei Zhang, Xu Chu, Yuekui Yang, Wenwu Zhu,
and Hong Mei. Exploring the potential of large language models in graph generation. arXiv
preprint arXiv:2403.14358, 2024.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is
all a graph needs. arXiv preprint arXiv:2308.07134, 2023.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Zike Yuan, Ming Liu, Hui Wang, and Bing Qin. Gracore: Benchmarking graph comprehension and
complex reasoning in large language models. arXiv preprint arXiv:2407.02936, 2024.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, Simin Wu, and Wenwu Zhu.
Llm4dyg: Can large language models solve problems on dynamic graphs? arXiv preprint
arXiv:2310.17110, 2023a.

Ziwei Zhang, Haoyang Li, Zeyang Zhang, Yijian Qin, Xin Wang, and Wenwu Zhu. Graph meets
llms: Towards large graph models. In NeurIPS 2023 Workshop: New Frontiers in Graph Learn-
ing, 2023b.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. arXiv preprint arXiv:1707.04638, 2017. URL https://arxiv.org/abs/1707.
04638.

A ADDITIONAL EXPERIMENTS

Pseudo-random linearization. We also investigated the performance of utilizing the edge ordering
directly provided by the graph generator. Most non-random graph generators create graphs pro-
cedurally, inherently embedding structural information within the edge list order. For instance, in
GraphWave, the process begins with a base graph and subsequently attaches motifs, making it easier
to distinguish between different structures. We hypothesize that this embedded structural knowl-
edge will enhance task performance and boost the LLM’s capabilities. However, generating such
structure-aware edge lists requires an understanding of the graph construction process, which may
not be feasible for real-world applications involving larger and more complex graphs.

The results of both datasets are presented in Table 4. For the GraphWave dataset, the default edge
ordering shows mixed performance compared to the random ordering baseline. When combined
with structured edge ordering (Table 1), accuracy improves consistently across tasks, except for path
existence. When comparing default labeling with structured node labeling, performance generally
improves, though default labeling remains competitive in certain tasks. For the GraphQA dataset,
the default edge ordering performs significantly better than the random ordering across all tasks
except path existence. In this case, the default ordering proves to be particularly robust, making it
challenging for structured edge ordering to achieve higher accuracy. Even compared to structured
edge ordering (Table 2), default ordering often maintains a performance advantage, highlighting its
effectiveness in this dataset.

LLM Family Variation with Extended Context. To further examine the influence of model archi-
tecture and extended context capacity, we evaluated the performance of Qwen 2.5 14B-1M (Yang
et al., 2025), a large-context language model from a distinct model family capable of processing
input sequences of up to 1 million tokens. This evaluation allows us to assess whether architec-
tural differences impact performance on graph-based reasoning tasks. Table 6 reports the results
obtained for the same selection of tasks previously used in Table 5, enabling a direct comparison
across models with varying capacities.

13

https://arxiv.org/abs/1707.04638
https://arxiv.org/abs/1707.04638

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Accuracy scores for all tasks on the GraphWave (top) and GraphQA (bottom) datasets
using Llama 3 8B. For each task, we compare the default labeling scheme, as provided by the
corresponding graph generator, against the default order the edges have been generated. Notations
remain the same as in Table 1.

Node Counting Max Degree Node Degree Edge Existence Diameter Shortest Path Path Existence Motifs’ Shape
Default Labels
CoreNumber 25.06 / 37.41 17.87 / 16.67 60.9 / 62.45 54.43 / 57.69 7.93 / 11.74 29.97 / 20.74 83.1 / 70.32 43.43 / 63.23
Degree 32.66 / 51.18 28.37 / 26.24 60.77 / 57.79 55.5 / 49.22 8.97 / 11.54 31.7 / 15.97 78.9 / 67.36 47.8 / 61.4
PageRank 35.77 / 49.38 24.40 / 26.88 63.43 / 56.42 49.4 / 53.08 8.63 / 11.5 31.33 / 18.24 81.3 / 73.99 48.03 / 65.27
LG{CoreNumber} 19.79 / 22.21 21.60 / 13.40 55.37 / 47.75 59.4 / 53.35 10.07 / 11.9 27.03 / 19.74 79.4 / 73.06 44.43 / 56.23
LG{Degree} 24.6 / 32.21 23.23 / 17.84 49.33 / 41.35 56.4 / 52.72 10.67 / 11.04 29.33 / 19.47 79.67 / 71.76 43.87 / 52.73
LG{PageRank} 34.83 / 41.78 17.90 / 19.14 54.3 / 50.18 48.9 / 52.15 8.77 / 12.17 27.63 / 16.47 79.77 / 76.59 43.07 / 48.63

Default Ordering 36.75 / 44.38 9.77 / 10.17 47.83 / 41.18 37.23 / 47.48 7.3 / 11.5 30.3 / 16.67 85.5 / 82.79 54.63 / 55.73

Node Counting Max Degree Node Degree Edge Existence Diameter Shortest Path Path Existence
Default Labels
CoreNumber 61.23 / 38.52 22.4 / 34.35 52.72 / 44.51 72.19 / 68.07 1.58 / 9.29 46.65 / 58.57 94.62 / 97.55
Degree 69.31 / 56.88 44.32 / 52.19 54.53 / 26.64 70.23 / 70.4 2.36 / 12.31 25.48 / 54.2 97.12 / 98.79
PageRank 69.03 / 53.97 44.23 / 52.1 54.56 / 33.8 69.66 / 71.66 2.88 / 11.94 45.41 / 50.86 96.98 / 98.79
LG{CoreNumber} 67.73 / 38.38 22.66 / 30.09 47.63 / 33.75 71.87 / 61.71 1.27 / 11.68 40.44 / 47.07 96.69 / 98.79
LG{Degree} 66.9 / 42.84 26.43 / 34.75 46.85 / 38.67 71.99 / 62.49 2.3 / 14.38 41.39 / 46.38 95.8 / 98.82
LG{PageRank} 70.87 / 37.46 24.82 / 35.13 49.5 / 37.83 72.36 / 58.92 2.24 / 16.4 41.53 / 47.61 95.17 / 97.93

Default Ordering 68.43 / 51.06 52.78 / 48.48 56.08 / 33.08 67.33 / 71.06 4.43 / 30.72 28.5 / 41.94 98.25 / 95.51

Table 5: Accuracy scores for a subset of tasks on the GraphWave dataset using Llama 3 70B as an
ablation study. Notations remain the same as in Table 1.

Node Counting Node Degree Diameter Motifs’ Shape
Random Labels
CoreNumber 76.47 / 75.29 72.47 / 63.75 3.97 / 4.07 59.1 / 61.43
Degree 78.2 / 80.96 73.93 / 63.69 2.43 / 4.57 58.07 / 61.4
PageRank 76.1 / 78.09 74.0 / 63.39 2.07 / 3.17 54.33 / 54.6
LG{CoreNumber} 77.8 / 77.36 68.83 / 57.02 4.77 / 6.97 46.8 / 56.23
LG{Degree} 78.9 / 81.16 72.23 / 62.65 4.57 / 7.5 51.5 / 54.2
LG{PageRank} 84.83 / 84.93 72.4 / 61.25 4.93 / 8.0 44.7 / 43.93

Node Relabeling
CoreNumber 89.1 / 86.06 75.87 / 70.99 8.47 / 11.3 54.97 / 53.4
Degree 84.83 / 82.53 76.0 / 69.39 7.27 / 11.8 58.23 / 56.57
PageRank 84.77 / 81.13 73.93 / 67.59 8.63 / 12.84 58.1 / 47.4
LG{CoreNumber} 76.27 / 76.93 75.47 / 65.32 8.77 / 12.84 50.9 / 52.37
LG{Degree} 87.23 / 84.46 76.63 / 68.66 8.47 / 14.67 48.83 / 46.3
LG{PageRank} 86.23 / 84.86 76.43 / 63.32 11.07 / 13.7 47.2 / 41.1

Baseline 83.24 / 83.04 69.69 / 59.81 4.52 / 7.72 41.57 / 42.5

Although scaling from LLaMA 8B to 70B yields substantial gains in tasks such as node counting
and motif shape classification, Table 6 demonstrates that Qwen 2.5 14B—despite having fewer pa-
rameters than LLaMA 70B—achieves competitive, and in some cases superior, performance across
several tasks. This is particularly evident in motif shape classification and diameter estimation,
where Qwen’s results rival or exceed those of the larger model. Nonetheless, in line with trends
observed across LLaMA variants, diameter estimation remains a consistently challenging task, with
overall accuracy remaining low regardless of model architecture or scale.

B PERFORMANCE AND COMPLEXITY

All considered graph measures, such as core number, degree, and PageRank, are computationally
efficient. For graphs where the number of edges exceeds the number of nodes, the computational
complexity scales linearly with the number of edges, that is, O(m), where m denotes the number
of edges. Given that the graphs in the evaluated datasets are relatively small, the computation time
required for these measures is negligible compared to the response generation time of the LLMs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Accuracy scores for a subset of tasks on the GraphWave dataset using Qwen 2.5 14B -
1M as an ablation study. Notations remain the same as in Table 1.

Node Counting Node Degree Diameter Motifs’ Shape
Random Labels
CoreNumber 70.67 / 72.12 76.5 / 68.66 12.1 / 12.5 58.5 / 56.3
Degree 71.23 / 70.96 76.97 / 66.66 12.07 / 13.3 62.27 / 59.43
PageRank 69.77 / 66.99 79.53 / 72.09 12.77 / 12.04 56.9 / 58.5
LG{CoreNumber} 71.13 / 68.92 72.17 / 54.08 12.63 / 14.17 59.17 / 61.97
LG{Degree} 71.77 / 72.86 74.8 / 62.49 13.97 / 15.37 60.5 / 60.6
LG{PageRank} 76.53 / 76.59 72.07 / 65.19 13.07 / 12.44 51.9 / 52.77

Node Relabeling
CoreNumber 86.73 / 87.66 80.23 / 75.49 12.93 / 14.5 58.03 / 53.17
Degree 74.2 / 77.63 78.03 / 72.59 12.8 / 11.3 61.3 / 49.83
PageRank 73.4 / 75.23 79.3 / 73.66 14.33 / 13.14 59.73 / 49.83
LG{CoreNumber} 76.03 / 71.52 78.77 / 69.19 12.63 / 12.64 64.03 / 57.53
LG{Degree} 80.03 / 81.39 76.6 / 69.22 15.4 / 12.77 60.57 / 46.77
LG{PageRank} 84.0 / 84.29 74.8 / 67.96 14.47 / 12.34 52.53 / 44.2

Baseline 78.84 / 77.43 70.09 / 69.19 9.95 / 10.74 54.53 / 57.3

To illustrate this, we report on Table 7 the number of tokens generated per task along with the
average time taken to produce a single response using LLama 3 8b. Numerical tasks, LLM responses
are concise and rapidly converge to a final answer. In contrast, more complex tasks elicit longer
responses that often involve intermediate reasoning steps.

Table 7: Tokens generated and response time for a single graph using LLaMA 3 8B across tasks.

Task Number of Tokens Inference Time (sec)
Node Counting 16 0.6
Max Degree 16 0.6
Node Degree 16 0.6
Edge Existence 128 4.8
Diameter 128 4.8
Shortest Path 128 4.8
Path Existence 128 4.8
Motif’s Shape 16 0.6

C GRAPH SIZE LIMITATIONS

In our approach, the entire graph is linearized into a token sequence and embedded directly into
the model’s input prompt. As a result, the maximum size of the graph that can be processed in a
single prompt is constrained by the model’s context window. Since the sequence length is primarily
determined by the number of edges, we estimate the maximum number of edges that can be encoded
per prompt for each model considered in this study.

To compute these estimates, we assume that each edge requires approximately 5 tokens to repre-
sent, and that the accompanying task description consumes an average of 100 tokens. Under these
assumptions, Table 8 reports the estimated edge capacity corresponding to the context window of
each model.

In Table 9, we present statistics for several widely used graph datasets. Many of these graphs are
sufficiently small to fit within the context window of contemporary LLMs, with notable exceptions
such as large-scale social and e-commerce networks (e.g., Reddit, Amazon). This indicates that
a substantial portion of benchmark graph datasets can be fully serialized and input to an LLM in
a single prompt. Nevertheless, in practical applications, even graph neural networks often rely on

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Estimated Maximum Number of Edges considering Context Window Size.

LLM Context Length (tokens) Max Number of Edges
LLama 3 8b 8,192 1,618
LLama 3 70b 8,192 1,618
Qwen 2.5 14B 1M 1,010,000 199,980

sampling strategies rather than processing entire graphs at once. A similar strategy may be necessary
when using LLMs for real-world graph tasks, depending on the application and scale.

Although our study primarily investigates the ability of LLMs to understand and reason over com-
plete graph structures, we recognize that some of the tasks examined—such as node counting—are
primarily diagnostic and may have limited practical relevance. These tasks are intended to serve as
controlled benchmarks to assess the reasoning capabilities of LLMs, rather than to reflect typical
graph processing workloads.

Table 9: Summary of graph datasets. For graph collections, average number of nodes and edges per
graph are shown.

Dataset (Source) #Graphs Avg. #Nodes Avg. #Edges
AIDS (Morris et al., 2020) 2,000 16 32
MUTAG (Morris et al., 2020) 188 18 40
OGBN-Proteins (Hu et al., 2020) 132,534 39 299
Cora (Kipf & Welling, 2016) 1 2,708 1,433
Citeseer (Kipf & Welling, 2016) 1 3,327 9,104
PPI (Zitnik & Leskovec, 2017) 24 2,269 61,318
PubMed (Kipf & Welling, 2016) 1 19,717 88,648
Amazon Computers (Yang et al., 2018) 1 12,752 491,722
Reddit (Hamilton et al., 2017) 1 232,965 114,615,892
Amazon Products (Chiang et al., 2019) 1 1,569,960 264,339,468

D PROMPT TEMPLATES

Node Counting
In an undirected graph G, (i, j) means that node i and node j are connected with an undirected edge.
Q: How many nodes are in G?
G: {linearized graph}

Max Degree
In an undirected graph, (i, j) means that node i and node j are connected with an undirected edge.
The degree of a node is the number of edges connected to the node. Given a graph G and its list of
edges, respond to the following question:
Q: Without any justification, what is the maximum node degree in the following graph G?
G: {linearized graph}

Node Degree
In an undirected graph, (i, j) means that node i and node j are connected with an undirected edge.
The degree of a node is the number of edges connected to the node. Given a graph G and its list of
edges, respond to the following question:
Q: Without any justification, what is the degree of node {node} in the following graph G?
G: {linearized graph}

Edge Existence
In an undirected graph, (i, j) means that node i and node j are connected with an undirected edge.
Given a graph G and its list of edges, respond to the following question:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Q: Does an undirected edge ({node1}, {node2}) exist in the following graph G?.
G: {linearized graph}

Diameter
In an undirected graph, (i, j) means that node i and node j are connected with an undirected edge.
The diameter of a graph is the length of the shortest path between the most distanced nodes. Given
a graph G and its list of edges, respond to the following question:
Q: Without any justification, what is the diameter of the following graph G?
G: {linearized graph}

Shortest Path
In an undirected graph, (i, j) means that node i and node j are connected with an undirected edge.
Given a graph G and its list of edges, respond to the following question:
Q: Without any justification, what is the length of the shortest path from node {node1} to node
{node2}? If no path exists, the response is ’0’.
G: {linearized graph}

Path Existence
In an undirected graph, (i, j) means that node i and node j are connected with an undirected edge.
Given a graph G and its list of edges, respond to the following question:
Q: Does a path that connects node {node1} and {node2} exist in the following graph G?
G: {linearized graph}

Motifs’ Shape Classification:
In an undirected graph, (i, j) means that node i and node j are connected with an undirected
edge. The graph contains a motif graph with strictly one of the following structures. {structure}:
{definition}
Q: Which of the defined structures is included in the following graph?
graph: {linearized graph}

MUTAG Classification:
In an undirected graph, (i, j) means that node i and node j are
connected with an undirected edge.
The graph represents a chemical compound, where nodes are atoms
and edges are bonds.

Given a graph G as a list of edges, respond with 0 if the compound
does not have a mutagenic effect on Salmonella typhimurium, or 1
if the compound has a mutagenic effect on Salmonella typhimurium.
Do not provide any explanation or justification, just output the
predicted class.

Q: What is the mutagenicity class of the compound represented by
the following graph? graph: {linearized graph}

AIDS Classification:
In an undirected graph, (i, j) means that node i and node j are
connected with an undirected edge.
The graph represents a chemical compound, where nodes are atoms
and edges are bonds.

Given a graph G as a list of edges, respond with 0 if the compound
does not show evidence of anti-HIV activity, or 1 if the compound
shows evidence of anti-HIV activity.
Do not provide any explanation or justification, just output the
predicted class.

Q: What is the anti-HIV class of the compound represented by the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

following graph?
graph: {linearized graph}

18

	Introduction
	Related Work
	Graph Linearization
	Implementation

	Experimental Setup
	Synthetic Datasets
	Datasets
	Tasks
	LLMs
	Baselines
	Evaluation

	Real-World Datasets

	Experimental Results Analysis
	Conclusion
	Additional Experiments
	Performance and Complexity
	Graph Size Limitations
	Prompt templates

