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Abstract

We study Stochastic Convex Optimization in Differential Privacy model (DP-SCO). Unlike
previous studies, here we assume the population risk function satisfies the Tsybakov Noise
Condition (TNC) with some parameter θ > 1, where the Lipschitz constant of the loss could
be extremely large or even unbounded, but the ℓ2-norm gradient of the loss has bounded
k-th moment with k ≥ 2. For the Lipschitz case with θ ≥ 2, we first propose an (ϵ, δ)-DP

algorithms whose utility bound is Õ

((
r̃2k( 1√

n
+ (

√
d

nϵ )) k−1
k

) θ
θ−1
)

in high probability, where
n is the sample size, d is the model dimension, and r̃2k is a term that only depends on
the 2k-th moment of the gradient. It is notable that such an upper bound is independent
of the Lipschitz constant. We then extend to the case where θ ≥ θ̄ > 1 for some known
constant θ̄. Moreover, when the privacy budget ϵ is small enough, we show an upper bound

of Õ

((
r̃k( 1√

n
+ (

√
d

nϵ )) k−1
k

) θ
θ−1
)

even if the loss function is not Lipschitz. For the lower
bound, we show that for any θ ≥ 2, the private minimax rate for ρ-zero Concentrated

Differential Privacy is lower bounded by Ω
((

r̃k( 1√
n

+ (
√

d
n

√
ρ )) k−1

k

) θ
θ−1
)

.

1 Introduction

Machine learning is increasingly being integrated into daily life, driven by an ever-growing volume of data.
This data often includes sensitive information, which raises significant privacy concerns. In response, regula-
tions such as the GDPR mandate that machine learning algorithms not only effectively extract insights from
training data but also uphold stringent privacy standards. Differential privacy (DP) Dwork et al. (2006), a
robust framework for ensuring statistical data privacy, has garnered substantial attention recently and has
emerged as the leading methodology for conducting privacy-preserving data analysis.

Differential Privacy Stochastic Convex Optimization (DP-SCO) and its empirical form, DP Empirical Risk
Minimization (DP-ERM), stand as core challenges within the machine learning and differential privacy
communities. These methodologies have been the focus of significant research over the past decade, beginning
with seminal works like those by Chaudhuri et al. (Chaudhuri et al., 2011) and followed by numerous
influential studies (Bassily et al., 2014; Wang et al., 2017; 2019a; Wu et al., 2017; Kasiviswanathan & Jin,
2016; Kifer et al., 2012; Smith et al., 2017; Wang et al., 2018; 2019b; Asi et al., 2021a). For instance, Bassily
et al. Bassily et al. (2019) have provided near-optimal rates for DP-SCO across both convex and strongly
convex loss functions. Feldman et al. Feldman et al. (2020) have developed algorithms that boast linear
time complexity, and Su et al. Su et al. (2023) have expanded the discussion to non-Euclidean spaces.

However, the majority of existing theoretical frameworks primarily focus on scenarios where the loss function
is O(1)-Lipschitz across all data, necessitating assumptions that the underlying data distribution is either
bounded or sub-Gaussian. Such assumptions are crucial for the effectiveness of differential privacy methods
based on output perturbation Chaudhuri et al. (2011) and objective or gradient perturbation Bassily et al.
(2014). Yet, these assumptions may not be valid for real-world datasets, particularly those from fields like
biomedicine and finance, which are known to exhibit heavy-tailed distributions Woolson & Clarke (2011);
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Biswas et al. (2007); Ibragimov et al. (2015). This discrepancy can compromise the effectiveness of the
algorithms in maintaining differential privacy. To bridge this gap, recent research has begun exploring DP-
SCO in the context of heavy-tailed data, where the Lipschitz constant for the loss may be significantly higher
or even unbounded Wang et al. (2020); Kamath et al. (2022); Hu et al. (2022); Lowy & Razaviyayn (2023);
Tao et al. (2022a). These studies typically assume that the gradient of the loss is bounded only in terms of
its k-th moment for some k > 0, a much less stringent requirement than O(1)-Lipschitz continuity.

Although DP-SCO with heavy-tailed data has been extensively studied, most research has concentrated on
general convex or strongly convex functions. Yet, numerous other problems exist that exceed the complexity
of strongly convex functions or do not neatly fit within the convex-to-strongly convex spectrum. In non-
private settings, several studies have managed to achieve faster convergence rates by introducing additional
constraints on the loss functions. It has been demonstrated that it is possible to exceed the convergence
rates of general convex functions (Yang et al., 2018; Koren & Levy, 2015; van Erven et al., 2015), and some
approaches have even matched the rates typical of strongly convex functions without the function actually
being strongly convex (Karimi et al., 2016; Liu et al., 2018; Xu et al., 2017). Similar advancements have
been observed in the context of privacy-preserving algorithms (Asi et al., 2021b; Su & Wang, 2021). This
leads to a compelling question:

For the problem of DP-SCO with heavy-tailed data and special classes of population risk
functions, is it possible to achieve faster rates of excess population risk than the optimal ones
of general convex and (or) strongly convex cases?

In this paper, we affirmatively respond by examining certain classes of population risk functions. Specifically,
we focus on the case where the population risk function possesses a large or potentially infinite Lipschitz
constant and meets the Tsybakov Noise Condition (TNC) 1, encompassing strongly convex functions, SVM,
ℓ1-regularized stochastic optimization, and linear regression with heavy-tailed data as notable examples.

Our contributions are detailed as follows (refer to Table 1 for details).

1. We study DP-SCO where the population risk satisfies (θ, λ)-TNC with θ > 1. Here, the loss
function is Lf -Lipschitz, and the k-th moment of the loss gradient is small, where Lf < ∞ could
be extremely large and k ≥ 2. Based on our newly developed localization method, we propose an
(ϵ, δ)-DP algorithm whose utility bound, with high probability, is Õ((r̃2k( 1√

n
+ (

√
d

nϵ )) k−1
k ) θ

θ−1 ) when
θ ≥ 2. Here, n is the sample size, d is the model dimension and r̃2k is a term that only depends
on the 2k-th moment of the gradient. It is notable that such an upper bound is independent of the
Lipschitz constant.

2. We further relax the assumption that θ ≥ 2 to θ ≥ θ̄ > 1 for some known θ̄ and propose an algorithm
that could achieve asymptotically the same bound as the previous one. Moreover, when the privacy
budget ϵ is small enough, we show that even if the loss function is not Lipschitz, we can still get an
upper bound of Õ((r̃k( 1√

n
+ (

√
d

nϵ )) k−1
k ) θ

θ−1 ).

3. On the lower bound side, for any θ ≥ 2, we show that there exists a population risk function satisfying
TNC with parameter θ, whose minimax population risk under ρ-zero Concentrated Differential
Privacy is always lower bounded by Ω((r̃k( 1√

n
+ (

√
d

n
√

ρ )) k−1
k ) θ

θ−1 ).

2 Related Work

DP-SCO with Heavy-tailed Data. As we mentioned previously, there is a long list of work for DP-
SCO from various perspectives. Here we only focus on the work related to DP-SCO with heavy-tailed data.
Generally speaking, there are two ways of modeling heavy-tailedness: The first one considers each coordinate
of loss gradient has bounded moments, while the second one assumes the norm of loss gradient has bounded
moments, which is stronger than the first one. For the first direction, Wang et al. (2020) provides the first

1This is also referred to as the Error Bound Condition or the Growth Condition in related literature (Liu et al., 2018; Xu
et al., 2017).
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Table 1: Comparion with previous results on DP-SCO with different assumptions in (ϵ, δ)-DP (we always
assume the loss is smooth). All results omit the term of log 1

δ , smoothness and strong convexity. † means
the result is for ρ-zCDP. ⋆ indicated the result holds when ϵ = Õ( 1

n ) .
Upper Bound Lower Bound Assumption

Bassily et al. (2019) O
(

1√
n

+
√

d
nϵ

)
Ω
(

1√
n

+
√

d
nϵ

)
O(1)-Lipschitz

Bassily et al. (2019) O
( 1

n + d
n2ϵ2

)
Ω
(

1√
n

+ d
n2ϵ2

)
O(1)-Lipschitz

Kamath et al. (2021) Õ
(

d√
n

+ d2

nϵ ( ϵn

d
3
2

) 1
k

)
Ω(
√

d
n +

√
d(

√
d

n
√

ρ ) k−1
k )† O(1)-Lipschitz and bounded k-th moment (k ≥ 2)

Kamath et al. (2021) Õ
(

d
n + d(

√
d

nϵ )
2(k−1)

k

)
Ω
(

d
n + d(

√
d

n
√

ρ )
2(k−1)

k

)†
O(1)-Lipschitz, strongly convex and bounded k-th moment (k ≥ 2)

Asi et al. (2021a); Su & Wang (2021) Õ

((
1√
n

+
√

d
nϵ

) θ
θ−1
)

Ω
((

1√
n

+
√

d
nϵ

) θ
θ−1
)

when θ ≥ 2 O(1)-Lipschitz under TNC with θ > 1

Lowy & Razaviyayn (2023) O

(
R̃2k,n

(
1√
n

+
(√

d
ϵn

) k−1
k

))
Ω
(

r̃k

(
1√
n

+
( √

d√
ρn

) k−1
k

))†

(large) Lipschitz, bounded k-th moment (k ≥ 2)

Lowy & Razaviyayn (2023) Õ

r̃k

 1√
n
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
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1
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)1/4 √
d

ϵn

) 4(k−1)
5k−1

,
(√

d
ϵn
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
 Ω

(
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(
1√
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( √

d√
ρn

) k−1
k

))†

bounded k-th moment (k ≥ 2)

Lowy & Razaviyayn (2023) Õ

(
R̃2

2k,n

(
1
n +

(√
d

ϵn

) 2(k−1)
k
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Ω
(

r̃2
k

(
1
n +

( √
d√

ρn

) 2(k−1)
k
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strongly convex, bounded k-th moment (k ≥ 2)

This paper Õ

(R̃2k,n( 1√
n

+
(√

d
ϵn

) k−1
k )
) θ

θ−1

 Ω

(r̃k( 1√
n

+
(√

d
ϵn

) k−1
k )
) θ

θ−1

 when θ ≥ 2 (large) Lipschitz function under TNC with θ > 1

This paper Õ

r̃
θ

θ−1
k

(
1√
n

+
(√

d
ϵn

) k−1
k

) θ
θ−1

⋆

Ω

(r̃k( 1√
n

+
(√

d
ϵn

) k−1
k )
) θ

θ−1

 when θ ≥ 2 TNC with θ > 1

study under the assumption of bounded k-th moment (k ≥ 2) and proposes three different ways for both
convex and strongly convex loss. The bounds were later improved by Kamath et al. (2021). Specifically,
Kamath et al. (2021) provides improved upper bounds for convex loss and optimal rate for strongly convex
loss. Later, there are some works that consider different extensions. For example, Hu et al. (2022) extends to
the high dimensional and polyhedral cases, Tao et al. (2022a) extends to the case where the gradient only has
(1 + v)-th moment with v ∈ (0, 1], Wang & Xu (2022) considers the ℓ1-regression. For the second direction,
Lowy & Razaviyayn (2023) provides a comprehensive study for both convex and strongly convex loss. In
detail, for Lipschitz loss whose gradient has k-th moment, they provide upper bounds that are independent
of the Lipschitz constant. Compared to Lowy & Razaviyayn (2023), we first extend to the population risks
that satisfy TNC (when θ = 2, our results match their results for strongly convex loss). Moreover, the results
in Lowy & Razaviyayn (2023) are in expectation form while we provide new algorithms, and our results are
in the high probability form.

DP for Heavy-tailed Data. In addition to DP-SCO, there is also some work on DP for heavy-tailed
data. Barber & Duchi (2014) provided the first study on private mean estimation for distributions with the
bounded moment, which has been extended by Kamath et al. (2020); Liu et al. (2021); Brunel & Avella-
Medina (2020) recently. However, these methods cannot be applied to our problem as these results are all
in the expectation form. Motivated by Wang et al. (2020), we later consider statistical guarantees of DP
Expectation Maximization and applies to the Gaussian Mixture Model. Wu et al. (2023); Tao et al. (2022b);
Wu et al. (2024) considers private reinforcement learning and bandits learning where the reward follows a
heavy-tailed distribution. However, since the reward is a scalar, these methods are not applicable to our
problem.

Loss functions with TNC. While most of this paper focuses on loss functions that are either convex
or strongly convex, many loss functions fall between these two categories. That is, they are not strongly
convex, but their statistical rate is better than purely convex losses. For TNC and Lipschitz loss functions,
the best-known current rate is O(( 1√

n
) θ

θ−1 ) (Liu et al., 2018), which corresponds to the first term in our
upper bounds. In Theorem 5, we demonstrate that this upper bound is tight for θ ≥ 2. A comparison to
the non-private setting will be included in the final version of the paper.

Our methods introduce novel technical challenges compared to non-private approaches. The key innovation
lies in our analysis, which is based on algorithmic stability and a newly developed localized and clipped
algorithm (Algorithm 3), which has not been previously studied. Specifically, Algorithm 4 is inspired by
Algorithm 2 in (Liu et al., 2018). However, while the base algorithm in (Liu et al., 2018) is a simple averaged
version of projected SGD, our Algorithm 3 is significantly more complex. One major technical challenge
is that Algorithm 2 in (Liu et al., 2018) assumes a Lipschitz loss function with a fixed Lipschitz constant.
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Consequently, their bounds rely on this constant. In contrast, we address scenarios where the Lipschitz
parameter can be extremely large. Therefore, we developed a new base algorithm that removes dependence
on this parameter and instead utilizes moments.

3 Preliminaries

Definition 1 (Differential Privacy (Dwork et al., 2006)). Given a data universe X , we say that two datasets
S, S′ ⊆ X are neighbors if they differ by only one entry, which is denoted as S ∼ S′. A randomized algorithm
A is (ϵ, δ)-differentially private (DP) if for all neighboring datasets S, S′ and for all events E in the output
space of A, the following holds

P(A(S) ∈ E) ⩽ eϵP(A(S′) ∈ E) + δ.

If δ = 0, we call algorithm A is ϵ-DP.
Definition 2 (zCDP Bun & Steinke (2016)). A randomized algorithm A is ρ-zero-concentrate-differentially
private (zCDP) if for all neighboring datasets S, S′ and α ∈ (1, ∞), we have Dα(A(S)∥A(S′)) ⩽ ρα, where
Dα is the α-Rényi divergence between A(S) and A(S′).
Remark 1. In this paper, we focus on (ϵ, δ)-DP for upper bounds and ρ-zCDP for lower bounds, and we
mainly use the Gaussian mechanism to guarantee the DP property. For Algorithms 1-5, which are based on
stability analysis and the Gaussian mechanism, they operate as one-pass algorithms without sub-sampling.
As a result, they can easily meet the requirements for CDP. However, a challenge arises with Algorithm 6. In
this case, we employ privacy amplification via shuffling to reduce the noise. Currently, privacy amplification
via shuffling is only applicable to ϵ and (ϵ, δ)-LDP, and no version exists for zCDP. To maintain consistency
throughout the paper, we use (ϵ, δ)-DP for all our upper bounds.
Definition 3 (Gaussian Mechanism). Given any function q : X n → Rd, the Gaussian mechanism is defined
as q(S) + ξ where ξ ∼ N (0,

16∆2
2(q) log(1/δ)

ϵ2 Id), where ∆2(q) is the ℓ2-sensitivity of the function q, i.e.,
∆2(q) = supS∼S′ ∥q(S) − q(S′)∥2. Gaussian mechanism preserves (ϵ, δ)-DP for 0 < ϵ, δ ⩽ 1.
Definition 4 (DP-SCO Bassily et al. (2014)). Given a dataset S = {x1, · · · , xn} from a data universe X
where xi are i.i.d. samples from some unknown distribution D, a convex loss function f(·, ·), and a convex
constraint set W ⊆ Rd, Differentially Private Stochastic Convex Optimization (DP-SCO) is to find wpriv so
as to minimize the population risk, i.e., F (w) = Ex∼D[f(w, x)] with the guarantee of being differentially
private. The utility of the algorithm is measured by the (expected) excess population risk, that is

EA[F (wpriv)] − min
w∈W

F (w),

where the expectation of A is taken over all the randomness of the algorithm. Besides the population risk,
we may also measure the empirical risk of dataset S: F̄ (w, S) = 1

n

∑n
i=1 f(w, xi).

Definition 5 (Lipschitz). A function f : W 7→ R is L-Lipschitz over the domain W if for all w, w′ ∈ W,
|f(w) − f(w′)| ⩽ L∥w − w′∥2.

Definition 6 (Smoothness). A function f : W 7→ R is β-smooth over the domain W if for all w, w′ ∈ W,
f(w) ⩽ f(w′) + ⟨∇f(w′), w − w′⟩ + β

2 ∥w − w′∥2
2.

Definition 7 (Strongly Convex). A function F : W 7→ R is λ-strongly convex over the domain W if, for all
w, w′ ∈ W, F (w) + ⟨∇F (w), w′ − w⟩ + λ

2 ∥w′ − w∥2
2 ⩽ F (w′).

Previous work on DP-SCO only focused on cases where the loss function is either convex or strongly convex
Bassily et al. (2019); Feldman et al. (2020). In this paper, we mainly examine the case where the population
risk satisfies the Tsybakov Noise Condition (TNC) Ramdas & Singh (2012); Liu et al. (2018); Ramdas &
Singh (2013), which has been extensively studied and has been shown that it could achieve faster rates than
the optimal one of general convex loss functions in the non-private case. Below, we introduce the definition
of TNC.
Definition 8 (Tsybakov Noise Condition). For a convex function F (·), let W∗ = arg minw∈W F (w) denote
the optimal set and for any w ∈ W, let w∗ = arg minu∈W∗ ∥u − w∥2 denote the projection of w onto the
optimal set W∗. The function F satisfies (θ, λ)-TNC for some θ > 1 and λ > 0 if, for any w ∈ W, the
following inequality holds:

F (w) − F (w∗) ≥ λ∥w − w∗∥θ
2. (1)
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From the definition of TNC and Definition 7, we can see that a λ-strong convex function is (2, λ
2 )-TNC.

Moreover, if a function is (θ, λ)-TNC, then it is also (θ′, λ)-TNC for any θ < θ′. Throughout the paper, we
assume that θ is a constant and thus we omit the term of cθ in the Big-O notation if c is a constant.
Lemma 1 (Lemma 2 in (Ramdas & Singh, 2012)). If the function F (·) is (θ, λ)-TNC and Lf -Lipschitz,
then we have ∥w −w∗∥2 ⩽ (Lf λ−1) 1

θ−1 and F (w)−F (w∗) ⩽ (Lθ
f λ−1) 1

θ−1 for all w ∈ W, where w∗ is defined
as in Definition 8.

As mentioned earlier, our primary focus here is on cases where the loss function’s Lipschitz constant is
sufficiently large or even infinite. In such cases, we may seek alternative terms to replace the Lipschitz
constant. Motivated by previous work on DP-SCO with heavy-tailed gradients, we consider the moments of
the gradient. Specifically, we assume that the stochastic gradient distributions have bounded k-th moment
for some k ⩾ 2:
Assumption 1. There exists k ⩾ 2 and r̃(k) > 0 such that E

[
supw∈W ∥∇f(w, x)∥k

2
]
⩽ r̃(k), where r̃k :=(

r̃(k))1/k. Moreover, we assume the constrained set W is bounded with diameter D.

If the loss function is Lf -Lipschitz, we can always observe that r̃k ⩽ Lf = supw,x ∥∇f(w, x)∥2. Moreover,
r̃k could be far less than the Lipschitz constant.

To state our subsequent theoretical results more clearly, we introduce some additional notations. For a batch
of data X ∈ X m, we define the k-th empirical moment of f(w, ·), by

r̂m(X)(k) = sup
w∈W

1
m

m∑
i=1

∥∇f(w, xi)∥k
2 .

For X ∼ Dm, we denote the k-th expected empirical moment by

ẽ(k)
m := E[r̂m(X)(k)],

and let
r̃k,m := (ẽ(k)

m )1/k.

Note that r̃k,1 = r̃k. We define R̃k,n :=
√∑l

i=1 2−ir̃2
k,ni

, where ni = 2−in and l = log2 n. Actually, R̃k,n, a
weighted average of the expected empirical moments for distinct batch sizes, is a constant used in the excess
risk upper bounds, where we give more weight to r̃m for large m. The following lemma indicates that it is
smaller than r̃k.
Lemma 2 ((Lowy & Razaviyayn, 2023)). Under Assumption 1, we have: r̃(k) = ẽk

1 ⩾ ẽ
(k)
2 ⩾ ẽ

(k)
4 ⩾ · · · ⩾

r(k). Thus, we have R̃k,n ⩽ r̃k.

4 Large Lipschitz Constant Case

In this section, we will focus on the population risk function satisfying (θ, λ)-TNC, and the Lipschitz constant
of the loss is extremely large (but finite). Before that, we first propose a novel localized noisy stochastic
gradient method whose excess population risk is independent of the Lipschitz constant for general convex
loss. See Algorithm 3 for details.

In Algorithm 3, we first partition the dataset into O(log2 n) subsets where the i-th set has O(2−in) samples.
In the i-th iteration, we use the i-th set and construct an ℓ2-regularized empirical risk function Fi with
hyperparameter λi in step 5. Moreover, based on the current model wi−1, we construct the constrained set
Wi with diameter exponential decay Di. To handle large Lipschitz constant and to solve the ℓ2-regularized
empirical risk, we adopt a clipped gradient descent method (Algorithm 2) with clip threshold Ci, where we
use clipped gradients (Algorithm 1) to update our model instead of the original gradient. After Ti iterations,
we add Gaussian noise based on the stability of our clipped gradient descent to ensure (ϵ, δ)-DP. In the
following we show Algorithm 3 could achieve a rate Õ(max{ 1√

n
, ( d log 1

δ

ϵn ) k−1
k }) with specific parameters λi, Ti

and Ci.
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Algorithm 1 ClippedMean({zi}n
i=1, n, C)

Input: Z = {zi}n
i=1, C > 0,

1: Compute ṽ := 1
n

n∑
i=1

∏
C(zi), where

∏
C(z) := argminy∈BC

∥y − z∥2
2 denotes the projection onto the ℓ2

ball BC .
Return ṽ

Algorithm 2 Clipped Regularized Gradient Method
Input: Dataset S ∈ X n, iteration number T , stepsize η, clipping threshold C, regularization λ ⩾ 0, con-

straint set W and initialization w0 ∈ W.
1: for all t ∈ [T − 1] do
2: ∇̃Ft(wt) :=ClippedMean({∇f(wt, xi)}n

i=1; C) for gradients ∇f(wt, xi).
3: wt+1 =

∏
W [wt − η(∇̃Ft(wt) + λ(wt − w0))]

4: end for
Return wT

Theorem 1. Under Assumption 1, suppose that f(·, x) is α-smooth and Lf -Lipschitz with Lf < ∞ for every
x. Then, for any 0 < ϵ ⩽

√
log(1/δ), 0 < δ < 1 and ηi ⩽ 1

α for all i, Algorithm 3 is (ϵ, δ)-DP. Let p ≥ 1 such

that Lf ⩽ np/2R̃2k,n( 1√
n

+ (
√

d log n

ϵn ) k−1
k ). For any 0 < β ⩽

1
n

, with probability at least 1 − β, it holds that

F (wl) − F (w∗) ⩽Õ

(
R̃2k,nD( 1√

n
+ (

√
d

ϵn
)

k−1
k )
)

,

where the Big-Õ notation omits all logarithmic terms (it is the same for other upper bounds).
Remark 2. Previous work on DP-SCO such as Wang et al. (2017); Bassily et al. (2014), Lipschitz is still
required for the loss function, though, it disappears in the final excess risk upper bound. And due to the
property of worst-case stability and our assumption that Lf can be controlled by np/2R̃2k,n( 1√

n
+(

√
d log n

ϵn ) k−1
k )

for sufficiently large p, we reach the upper bound with high probability without Lf in the final result.
Compared to Lowy & Razaviyayn (2023), the main difference is that our result is in the high probability
form while Lowy & Razaviyayn (2023) is only in the expectation form. Specifically, to achieve a high
probability result, instead of adding Gaussian noise to the gradient, we use the stability of the gradient
descent. However, we cannot directly use the stability result in Hardt et al. (2015) here, which depends on
the Lipschitz constant, making a large noise, we show that by using clipping, the stability now only depends
on the clipping threshold.

Based on our novel locality algorithm, we then apply it to TNC functions. See Algorithm 4 for details.
Specifically, we partition the dataset into several subsets of equal size. As the iteration number increases,
we consider a constrained set centered at the current parameter with a smaller diameter and learning rate
in Algorithm 3.
Theorem 2. Under Assumption 1 and suppose that the population risk function F (·) is (θ, λ)-TNC with
θ ≥ 2, and f(·, x) is α-smooth and Lf -Lipschitz for each x. Additionally, take p ≥ 1 such that Lf ⩽

np/2R̃2k,n( 1√
n

+ (
√

d log n

ϵn ) k−1
k ), then algorithm 4 is (ϵ, δ)-DP. Moreover, for sufficiently large n such that

γl ⩽ 1
α , with probability at least 1 − β, we have

F (ŵm) − F (w∗) ⩽ Õ

(
1

λ
1

θ−1
(R̃2k,n( 1√

n
+ (

√
d

ϵn
)

k−1
k )) θ

θ−1

)
.

We note that there is no dependence on p in the final bound in Theorem 1 and 2. p is used to control the
Lipschitz constant thus we can remove the Lipschitz constant from the final bound. We can see that in the
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Algorithm 3 Localized Noisy Clipped Gradient Method for DP-SCO(LNC-GM)(w0, η, n, W)
Input: Dataset S ∈ X n, stepsize η, clipping threshold {Ci}log2 n

i=1 , privacy parameter ϵ, δ, hyperparameter p,
initialization w0 ∈ W.

1: Let l = log2 n.
2: for all i ∈ [l] do
3: Set ni = 2−in, ηi = 4−iη, λi = 1

ηinp
i

when i ⩾ 2, and λ1 = 1
η1n2p

1
, Ti = Θ̃

(
1

λiηi

)
, and Di = 2Lf

λi
.

4: Draw a new batch Bi of ni = |Bi| samples from S without replacement.
5: Denote F̂i(w) := 1

ni

∑
j∈Bi

f(w, xj) + λi

2 ∥w − wi−1∥2.

6: Use Algorithm 2 with initialization wi−1 to minimize F̂i over Wi := {w ∈ W| ∥w − wi−1∥ ⩽ Di} for
Ti iterations with clipping threshold Ci = r̃2k,ni( ϵni√

d log(n)
)1/k and stepsize ηi. Let ŵi be the output of

Algorithm 2.
7: Set ξi ∼ N (0, σ2

i Id) where σi = 8Ci

√
log 1

δ

niλiϵ
8: Set wi = ŵi + ξi.
9: end for

10: Return the final iterate wl

proof of Theorem 1, there exists a term with np both in the numerators and denominators. By assuming
that Lf is controlled by the O(np/2) and choosing specific η, we can eliminate the p in the final bound. A
similar result holds for Theorem 2.
Remark 3. In the case of O(1)-Lipschitz loss under TNC, compared with the optimal rate Θ((( 1√

n
+

(
√

d
ϵn ) k−1

k )) θ
θ−1 ) in Asi et al. (2021b), our improved result gets rid of the dependence of Lipschitz constant,

which could be extremely large. Moreover, when θ = 2, i.e., the population risk is strongly convex, our
result covers the result in Lowy & Razaviyayn (2023). Thus, our result is a generalized upper bound. It is
also notable that our upper bound is independent of the diameter of the constrained set and the Lipschitz-
smoothness parameter. In Algorithm 4, one need the projection onto the ball W ∩ B(ŵl−1, Rl−1) in each
iteration of the Phased-SGD in each phase. This could be solved using Dykstra’s algorithm (Dykstra, 1983;
Boyle & Dykstra, 1986).

Example. We consider the ℓ1 constrained ℓ4-norm linear regression, which has been studied in (Xu et al.,
2017) and satisfies TNC with θ = 4 (Liu et al., 2018). Specifically, it can be written as the following.

min
∥w∥1⩽1

F (w) ∆= E[(⟨w, x⟩ − y)4]. (2)

When y is bounded by O(1) and x follows a truncated normal Gaussian distribution at [−n, n]d. Then we
can see that the loss function is Poly(n)-Lispchitz, but its 2k-th moment is O(1). In this case, our bound in
equation 2 is much smaller than the previous results in Asi et al. (2021b); Su & Wang (2021).

So far, we have proposed an algorithm for TNC. Nevertheless, we also find that Theorem 2 needs a strong
assumption on θ, i.e. θ ⩾ 2. Thus, a direct question that occurs to us is whether we can further improve the
upper bound. To conquer the disadvantage of the above algorithm, we propose the following. We assume θ
is unknown but bigger than some definite θ̄ > 1. Then we divide the whole dataset into subsets with distinct
elements, detailly l = ⌊(logθ̄ 2) · log log n⌋ with ni =

⌊
2i−1n/(log n)log2

θ̄
2
⌋

samples for each subset. Then we
run the Algorithm 1 for l times while each phase implements on the i-th subset and is initialized at the
output of the previous one.
Theorem 3. Under Assumption 1 and assume that the loss function F (·) satisfies (θ, λ)-TNC with parameter
θ ⩾ θ̄ > 1 for some definite constant θ̄, and f(·, x) is convex, α smooth and Lf -Lipschitz for each x. Algorithm

5 is (ϵ, δ)-DP for any ϵ ⩽ 2 log(1/δ), and take p ≥ 1 such that Lf ⩽ np/2R̃2k,n( 1√
n

+(
√

d log n

ϵn ) k−1
k ). Moreover,

if the sample size n is sufficiently large such that θ̄ ⩾ 2
log log n
log n−1 and ηt ⩽ 1

α , we have with probability at least
1 − β

7
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Algorithm 4 Private Stochastic Approximation(w1, n, R0)
Input: Dataset S ∈ X , initial point w1 ∈ W, privacy parameter ϵ and δ, hyperparameter p, initial diameter

R0.
1: Set ŵ0 = w1, m = ⌊ 1

2 log2
2n

log2 n ⌋ − 1, n0 = ⌊ n
m ⌋. Then partition the dateset S into m disjoint subsets,

namely, {S1, · · · , Sm} with each |Si| = n0.
2: for all l ∈ [m] do
3: Set γl = Rl−1

n
p
2
0

min{ 1
Lf

, 1

R̃2k,nn
p+1

2
0

( ϵn0√
d log n

) k−1
k , 1

n
p−1

2
0 L2

f

√
log n0 log(1/β)

} and Rl = Rl−1
2 .

4: Denote ŵl = LNC-GM(ŵl−1, γl, nl, W), and constrained set W ∩ B(ŵl−1, Rl−1).
5: end for

Return ŵm

Algorithm 5 Iterated Localized Noisy Clipped Gradient Method
Input: Dataset S ∈ X n, initial point w0 ∈ W, privacy parameter ϵ and δ, parameter p, initial diameter R0.

1: Partite the data S into l disjoint subsets {S1, · · · , Sl}, where l = ⌊(logθ̄ 2) · log log n⌋ and for each
i ∈ [l], |Si| = ni =

⌊
2i−1n/(log n)log2

θ̄
2
⌋
.

2: for all t = 1, · · · , l do
3: Let wt = Algorithm 3 with input (Si, wt−1, ηt, W), where ηt = Rt−1

n
p
2
0

min{ 1
Lf

, 1

R̃2k,nn
p+1

2
i

( ϵni√
d log n

) k−1
k ,

1

n
p−1

2
i

L2
f

√
log ni log(1/β)

} and Rl = Rl−1
2 .

4: end for
Return wl

F (wl) − F (w∗) ⩽ Õ

(
( 1
λ

) 1
θ−1 (R̃2k,n( 1√

n
+ (

√
d

ϵn
)

k−1
k )) θ

θ−1

)
.

Remark 4. We pause to have another glimpse of Algorithm 4 and Algorithm 5. Note that they have a
similar procedure to take the dataset apart, while the number of each subset is the same in Algorithm 5 and
increases in Algorithm 5 as the iteration grows. And the set we project on also varies between Algorithm 4
and 5.

5 Lower Bounds

In this section, we will show that the above upper bounds is nearly optimal (if r̃2k and r̃k are asymptotically
the same) by providing lower bounds of the private minimax rate for ρ-zCDP. Specifically, for a sample
space X ⊆ Rd and collection of distributions P over X , we define the function class Fθ

k (P, r̃(k)) as the set
of population risk functions from Rd 7→ R that satisfy (θ, 1)-TNC and their loss satsifies Assumption 1. We
define the constrained minimax risk

M(W, P, Fθ
k (P, r̃(k)), ρ) = inf

A∈Q(ρ)
max

F ×P ∈Fθ
k

(P,r̃k)×P
EA,D∈P n [F (A(D)) − min

w∈W
F (w)],

where Q(ρ) is the set of all ρ-zCDP algorithms. We will show the following two results for different sample
spaces and constraint sets.
Theorem 4. For any θ, k ≥ 2, r̃(k) > 0, denote X = {±p− 1

k
r̃k

2
√

d
}d ∪ {0} with r̃k = (r̃(k)) 1

k , and W = Br

with r = ( p
− 1

k r̃k

2 ) 1
θ−1 and p = d

n
√

ρ , then, if n is large enough such as n ≥ Ω(
√

d√
ρ ), we have the following

lower bound

M(W, P, Fθ
k (P, r̃(k)), ρ) ≥ Ω

(
(r̃k((

√
d

√
ρn

)
k−1

k )) θ
θ−1

)
.

8
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Theorem 5. For any θ, k ≥ 2, r̃k > 0, denote X = {± r̃k

2
√

d
}d, and W = Br with r = ( r̃k

2 ) 1
θ−1 , then, if

n ≥ Ω(
√

d), we have the following lower bound

M(W, P, Fθ
k (P, r̃(k)), ρ) ≥ Ω

(
( r̃k√

n
) θ

θ−1

)
.

Remark 5. First, it is notable that although the upper bounds in Section 4 are for (ϵ, δ)-DP, we can easily
extend to the ρ-zCDP case as we used the Gaussian mechanism and parallel theorem to guarantee DP, which
also hold for zCDP Bun & Steinke (2016). The only difference is replacing the term O(

√
log 1

δ

ϵ ) by O( 1√
ρ ).

Thus, from this side, combining with Theorem 4 and 5, we can see the upper bound is nearly optimal for
ρ-zCDP in the general case if r̃2k (since R̃2k,n ⩽ r̃2k) and r̃k are asymptotically the same. Secondly, in the
Lipschitz case for (ϵ, δ)-DP, Asi et al. (2021a) proved the lower bound result via a reduction to the ERM
problem for general convex loss. However, their reduction cannot be applied to our problem as their proof
heavily relies on the O(1)-Lipschizt condition, which is not satisfied for our loss. For ϵ-DP, Asi et al. (2021a)
considered the empirical risk and used the packing argument for the lower bound, which cannot be applied
to our problem as our loss is not constant Lipschitz. In our proof, we directly considered the population risk
FP (w) = −⟨w,EP [x]⟩ + 1

θ ∥w∥θ
2 for some data distribution P and used private Fano’s lemma to prove the

lower bound.

6 Relax the Lipschitz Assumption

Algorithm 6 Permuted Noisy Clipped Accelerated SGD for Heavy-Tailed DP SCO (PNCA-SGD)
Input: Data S ∈ X n, iteration number T , stepsize parameters {ηt}t∈[T ], {αt}t∈[T ] with α1 = 1, private

paratemter ϵ, δ, initialization w0.
1: Randomly permute the data and denote the permuted data as {x1, · · · , xn}.
2: Initialize wag

0 = w0.
3: for all t ∈ [T ] do
4: wmd

t := (1 − αt) wag
t−1 + αtwt−1.

5: Draw new batch Bt (without replacement) of n/T samples from S.
6: ∇̃Ft

(
wmd

t

)
:= ClippedMean

({
∇f

(
wmd

t , x
)}

x∈Bt
; n

T ; C
)

+ ζi, where ζi ∼ N (0, σ2Id), σ2 =

O( C2T log 1
δ

n2ϵ2 ) and C = r̃k

(
ϵn√

d log(1/δ)

)1/k

.

7: wt := arg
w∈W

{
αt

〈
∇̃Ft

(
wmd

t

)
, w
〉

+ ηt

2 ∥wt−1 − w∥2
}

.

8: wag
t := αtwt + (1 − αt) wag

t−1.
9: end for

Return wag
T

In the previous section, we have considered the Lipschitz case and show that under the TNC, compared to
that for the general convex loss, it is possible to get improved excess population risk that is independent of
the Lipschitz constant. There are still two questions left: (1) Compared to the previous studies on DP-SCO
with heavy-tailed gradient such as Wang et al. (2020); Kamath et al. (2021), our above upper bounds still
need the finite Lipschitz condition; (2) We can see our upper bounds depend on R̃2k,n ⩽ r̃2k while the lower
bounds only depend on r̃k. Thus, there is a gap for the moment term. In this section, we aim to address
these two issues. Specifically, we will show that even if the loss function is not Lipschitz, it is still possible
to get the same upper bound as in the above section when ϵ is small enough. Moreover, we can improve the
dependency from R̃2k,n to r̃k.

Specifically, our main method, Algorithm 7, shares a similar idea as in Algorithm 5 with different parameters
and base algorithm. Specifically, rather than using Algorithm 3, here we propose Algorithm 6 as our base
algorithm, which is a shuffled, clipped, and private version of the accelerated SGD. Specifically, in step 1
we randomly shuffle the data for privacy amplification Feldman et al. (2022). Then, in each iteration, we

9
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clipped the gradients and added Gaussian noise to ensure DP. We can show that with some parameters, the
output could achieve an upper bound similar to Theorem 1 even if the loss is not Lipschitz.

Algorithm 7 Iterated PNCA-SGD
(
w0, n, W, θ̄

)
Input: Dataset S ∈ X n, initial point w0 ∈ W, privacy parameter ϵ and δ.

1: Partite the data S into k disjoint subsets {S1, · · · , Sk}, where k = ⌊(logθ̄ 2) · log log n⌋, and for each
i ∈ [k], |Si| = ni =

⌊
2i−1n/(log n)log2

θ̄
2
⌋
.

2: for all t = 1, · · · , k do
3: Let wt = PNCA-SGD (wt−1, ηt, nt, W), where the AC-SA runs on the t-th subset Si.For (ϵ, δ)-DP,

ηt = 4η
t(t+1) , αt = 2

t+2 and Rl = Rl−1
2 .

4: end for
Return wk

Theorem 6. For any ϵ = O(
√

log n/δ
n ), and 0 < δ < 1, Algorithm 6 is (ϵ, δ)-DP. Moreover, under Assump-

tion 1 and assume function F is β-smooth with the diameter D over w ∈ W, then the output of Algorithm
6, by selecting the following T ,

T = min{
√

βD

r̃k
· ( ϵn√

d log(1/δ)
)

k−1
2k ,

√
βD

r̃k
· n1/4},

we have

EF (wag
T ) − F ∗ ⩽ O

(
r̃kD( 1√

n
+ (
√

d log(1/δ)
ϵn

)
k−1

k )
)

.

Note that (Lowy & Razaviyayn, 2023) also proposes a private accelerated SGD. However, their bound is
sub-optimal (see the second row is Table 1). Here, we leverage privacy amplification via shuffling to reduce
the noise added to each iteration. Thus, we can get the optimal rate here. We note that this is also the first
result that can achieve the optimal rate for the general convex function without the Lipschitz assumption.
Based on this result, we have the following theorem for Algorithm 7.

Theorem 7. For any ϵ = O(
√

log n/δ
n ), and 0 < δ < 1, Algorithm 7 is (ϵ, δ)-DP. Moreover, under Assump-

tion 1 and assume function F is β-smooth, then we have

EF (ŵm) − F (w∗) ⩽ Õ

(
1

λ
1

θ−1
(r̃k( 1√

n
+ (

√
d

ϵn
)

k−1
k )) θ

θ−1

)
. (3)

Compared with the results in the above section, we can see the result in Theorem 7 is in the expectation
form, which is due to the noisy clipped gradient in Algorithm 6. Moreover, the constraint of ϵ = O(

√
log n/δ

n )
comes from the results of privacy amplification via shuffling Feldman et al. (2022). We leave these two
assumptions to be relaxed for future research. Moreover, the improvement from R̃2k,n to r̃k is due to the
different results between Theorem 6 and 1.

7 Conclusion

In this paper, we address the challenge of DP-SCO with heavy-tailed data. We establish bounds for Lipschitz
loss functions using the k-th moments, without relying on the Lipschitz constant. A key contribution of our
work is the elimination of the Lipschitz requirement for loss functions. Furthermore, we introduce the
Tsybakov Noise Condition as a unifying framework for our analysis. We reveal the fundamental trade-off
between privacy preservation and utility, offering comprehensive insights into the interplay between privacy
guarantees and data quality.

10



Under review as submission to TMLR

References
Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private assouad, fano, and le cam. In

Algorithmic Learning Theory, pp. 48–78. PMLR, 2021.

Hilal Asi, John Duchi, Alireza Fallah, Omid Javidbakht, and Kunal Talwar. Private adaptive gradient
methods for convex optimization. In International Conference on Machine Learning, pp. 383–392. PMLR,
2021a.

Hilal Asi, Daniel Lévy, and John C Duchi. Adapting to function difficulty and growth conditions in private
optimization. Advances in Neural Information Processing Systems, 34:19069–19081, 2021b.

Rina Foygel Barber and John C. Duchi. Privacy and statistical risk: Formalisms and minimax bounds. arXiv
preprint arXiv:1412.4451, 2014.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient al-
gorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pp. 464–473. IEEE, 2014.

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta. Private stochastic convex optimiza-
tion with optimal rates. arXiv preprint arXiv:1908.09970, 2019.

Atanu Biswas, Sujay Datta, Jason P Fine, and Mark R Segal. Statistical advances in the biomedical science.
Wiley Online Library, 2007.

James P Boyle and Richard L Dykstra. A method for finding projections onto the intersection of convex
sets in hilbert spaces. In Advances in order restricted statistical inference, pp. 28–47. Springer, 1986.

Victor-Emmanuel Brunel and Marco Avella-Medina. Propose, test, release: Differentially private estimation
with high probability. arXiv preprint arXiv:2002.08774, 2020.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, pp. 635–658. Springer, 2016.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk mini-
mization. Journal of Machine Learning Research, 12(3), 2011.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Richard L Dykstra. An algorithm for restricted least squares regression. Journal of the American Statistical
Association, 78(384):837–842, 1983.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algorithms
with nearly optimal rate. In Conference on Learning Theory, pp. 1270–1279. PMLR, 2019.

Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal rates in
linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp.
439–449, 2020.

Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple and nearly optimal
analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 954–964. IEEE, 2022.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. arXiv e-prints, pp. arXiv–1509, 2015.

Lijie Hu, Shuo Ni, Hanshen Xiao, and Di Wang. High dimensional differentially private stochastic optimiza-
tion with heavy-tailed data. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pp. 227–236, 2022.

11



Under review as submission to TMLR

Marat Ibragimov, Rustam Ibragimov, and Johan Walden. Heavy-tailed distributions and robustness in eco-
nomics and finance, volume 214. Springer, 2015.

Gautam Kamath, Vikrant Singhal, and Jonathan Ullman. Private mean estimation of heavy-tailed distri-
butions. In Proceedings of 33rd Conference on Learning Theory (COLT), pp. 2204–2235, 2020.

Gautam Kamath, Xingtu Liu, and Huanyu Zhang. Improved rates for differentially private stochastic convex
optimization with heavy-tailed data. arXiv preprint arXiv:2106.01336, 2021.

Gautam Kamath, Xingtu Liu, and Huanyu Zhang. Improved rates for differentially private stochastic convex
optimization with heavy-tailed data. In International Conference on Machine Learning, pp. 10633–10660.
PMLR, 2022.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 795–811. Springer, 2016.

Shiva Prasad Kasiviswanathan and Hongxia Jin. Efficient private empirical risk minimization for high-
dimensional learning. In International Conference on Machine Learning, pp. 488–497, 2016.

Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization and high-
dimensional regression. In Conference on Learning Theory, pp. 25–1, 2012.

Tomer Koren and Kfir Y Levy. Fast rates for exp-concave empirical risk minimization. In NIPS, pp. 1477–
1485, 2015.

Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, and Tianbao Yang. Fast rates of erm and stochastic
approximation: Adaptive to error bound conditions. arXiv preprint arXiv:1805.04577, 2018.

Xiyang Liu, Weihao Kong, Sham Kakade, and Sewoong Oh. Robust and differentially private mean estima-
tion. arXiv preprint arXiv:2102.09159, 2021.

Andrew Lowy and Meisam Razaviyayn. Private stochastic optimization with large worst-case lipschitz pa-
rameter: Optimal rates for (non-smooth) convex losses and extension to non-convex losses. In International
Conference on Algorithmic Learning Theory, pp. 986–1054. PMLR, 2023.

Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis.
In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp. 19–30,
2009.

Aaditya Ramdas and Aarti Singh. Optimal rates for first-order stochastic convex optimization under tsybakov
noise condition. arXiv preprint arXiv:1207.3012, 2012.

Aaditya Ramdas and Aarti Singh. Algorithmic connections between active learning and stochastic convex
optimization. In International Conference on Algorithmic Learning Theory, pp. 339–353. Springer, 2013.

Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay. Is interaction necessary for distributed private
learning? In 2017 IEEE Symposium on Security and Privacy (SP), pp. 58–77. IEEE, 2017.

Jinyan Su and D Wang. Faster rates of differentially private stochastic convex optimization. arXiv preprint
arXiv, 2108, 2021.

Jinyan Su, Changhong Zhao, and Di Wang. Differentially private stochastic convex optimization in (non)-
euclidean space revisited. In Uncertainty in Artificial Intelligence, pp. 2026–2035. PMLR, 2023.

Youming Tao, Yulian Wu, Xiuzhen Cheng, and Di Wang 0015. Private stochastic convex optimization and
sparse learning with heavy-tailed data revisited. In IJCAI, pp. 3947–3953, 2022a.

Youming Tao, Yulian Wu, Peng Zhao, and Di Wang. Optimal rates of (locally) differentially private heavy-
tailed multi-armed bandits. In International Conference on Artificial Intelligence and Statistics, pp. 1546–
1574. PMLR, 2022b.

12



Under review as submission to TMLR

Tim van Erven, Peter D Grünwald, Nishant A Mehta, Mark D Reid, and Robert C Williamson. Fast rates
in statistical and online learning. Journal of Machine Learning Research, 16:1793–1861, 2015.

Di Wang and Jinhui Xu. Differentially private ℓ1-norm linear regression with heavy-tailed data. In 2022
IEEE International Symposium on Information Theory (ISIT), pp. 1856–1861. IEEE, 2022.

Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited: Faster and
more general. In Advances in Neural Information Processing Systems, pp. 2722–2731, 2017.

Di Wang, Marco Gaboardi, and Jinhui Xu. Empirical risk minimization in non-interactive local differential
privacy revisited. In Advances in Neural Information Processing Systems, pp. 965–974, 2018.

Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimization with non-convex
loss functions. In International Conference on Machine Learning, pp. 6526–6535, 2019a.

Di Wang, Adam Smith, and Jinhui Xu. Noninteractive locally private learning of linear models via polynomial
approximations. In Algorithmic Learning Theory, pp. 897–902, 2019b.

Di Wang, Hanshen Xiao, Srinivas Devadas, and Jinhui Xu. On differentially private stochastic convex
optimization with heavy-tailed data. In International Conference on Machine Learning, pp. 10081–10091.
PMLR, 2020.

Robert F Woolson and William R Clarke. Statistical methods for the analysis of biomedical data, volume
371. John Wiley & Sons, 2011.

Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey Naughton. Bolt-on differ-
ential privacy for scalable stochastic gradient descent-based analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data, pp. 1307–1322. ACM, 2017.

Yulian Wu, Xingyu Zhou, Sayak Ray Chowdhury, and Di Wang. Differentially private episodic reinforcement
learning with heavy-tailed rewards. In International Conference on Machine Learning, pp. 37880–37918.
PMLR, 2023.

Yulian Wu, Xingyu Zhou, Youming Tao, and Di Wang. On private and robust bandits. Advances in Neural
Information Processing Systems, 36, 2024.

Yi Xu, Qihang Lin, and Tianbao Yang. Stochastic convex optimization: Faster local growth implies faster
global convergence. In International Conference on Machine Learning, pp. 3821–3830. PMLR, 2017.

Tianbao Yang, Zhe Li, and Lijun Zhang. A simple analysis for exp-concave empirical minimization with
arbitrary convex regularizer. In International Conference on Artificial Intelligence and Statistics, pp.
445–453. PMLR, 2018.

A Omitted Proof

Proof of Lemma 2. Let l ∈ N, and n = 2l and consider

r̂n(X)(k) = 1
n

sup
w

n/2∑
i=1

∥∇f(w, xi)∥k +
n∑

i=n/2+1

∥∇f(w, xi)∥k


⩽

1
n

sup
w

n/2∑
i=1

∥∇f(w, xi)∥k + sup
w

n∑
i=n/2+1

∥∇f(w, xi)∥k

 .

Taking expectations over the random draw of X ∼ Dn and we have ẽ
(k)
n ⩽ ẽ

(k)
n/2. Thus, R̃k,n ⩽ r̃k.
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Proof of Theorem 1. Privacy. Since in each epoch of Algorithm 3 we use a disjoint dataset, it is sufficient
for us to show each wi is (ϵ, δ)-DP.

Since the batches Bi
l
i=1 are disjoint, it suffices (by parallel composition in (McSherry, 2009) to show that

wi (produced by Ti iterations of Algorithm 2 in line 6 of Algorithm 3) is ε2

2 -zCDP for all i ∈ [l], hence by
Proposition 1.3 in (Bun & Steinke, 2016), then it is (2ϵ

√
log(1/δ), δ)-DP

With clip threshold Ci and batch size ni, the ℓ2 sensitivity of the clipped subgradient update is bounded by

∆ = sup
w,x∼x′

∥∥∥∥∥∥ 1
ni

ni∑
j=1

ΠCi(∇f(w, xj)) − ΠCi(∇f(w, x′
j))

∥∥∥∥∥∥ = 1
ni

sup
w,x,x′

∥ΠCi(∇f(w, x))−ΠCi(∇f(w, x′))∥ ≤ 2Ci

ni
.

(4)

Note that the terms arising from regularization cancel out. Thus, by Proposition 1.6 of [2], conditional on the
previous updates w1:i, the (i + 1)-st update in line 3 of Algorithm 2 satisfies ε2

2Ti
-zCDP. Hence, Lemma 2.3

in [2] implies that wi (in line 6 of Algorithm 3) is ε2

2 -zCDP, hence (2ϵ
√

log(1/δ), δ)-DP. By the assumption
that ϵ ⩽

√
log(1/δ), the mechanism is (2ϵ, δ)-DP.

Excess risk: We finish our proof through several parts. We first recall the following lemma.

Lemma 3. [(Feldman & Vondrak, 2019)] Assume diam2(X ) ⩽ D. Let S = (S1, . . . , Sn) where Sn
1

iid∼ P
and f(w, x) is L-Lipschitz and λ-strongly convex for all x ∈ X . Let x̂ = argminx∈X F̄ (w) be the empirical
minimizer. For 0 < β ⩽ 1/n, with probability at least 1 − β

F (x̂) − F (x⋆) ⩽ cL2 log(n) log(1/β)
λn

+ cLD
√

log(1/β)√
n

.

Theorem 8. We have the following bound for ∥wT − ŵ∥2 for T iterations:

∥wT − ŵ∥2 ⩽ exp{−ληT

2 } ∥w0 − ŵ∥2 + 8ηr̂2
n(x)
λ

+ 8ηλD2 + 20B̂2

λ2 .

Proof. Detailly,

∥∥∇̃Fλ (wt)
∥∥2

⩽ 2
(∥∥∥∇F̂λ (wt)

∥∥∥2
+ ∥bt∥2

)
⩽ 2

(
2r̂n(X)2 + 2λ2D2 + B̂2

)
,

And also, by Young’s inequality,

|⟨bt, wt − ŵ⟩| ⩽ B̂2

λ
+ λ

4 ∥wt − ŵ∥2
.

Set ∇̃Fλ (wt) = ∇F̂λ (wt) + bt = 1
n

∑n
i=1 ΠC (∇f (w, xi)) + λ (w − w0) as the biased, noisy subgradients of

the regularized empirical loss in Algorithm 3 , with Nt ∼ N
(
0, σ2Id

)
and bt = 1

n

∑n
i=1 ΠC (∇f (wt, xi)) −

1
n

∑n
i=1 ∇f (wt, xi). Denote yt+1 = wt−η∇̃Fλ (wt), so that wt+1 = ΠW (yt+1). For now, by strong convexity,

14
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we have

F̂λ (wt) − F̂λ(ŵ) ⩽
〈

∇F̂λ (wt) , wt − ŵ
〉

− λ

2 ∥wt − ŵ∥2

=
〈

∇̃Fλ (wt) , wt − ŵ
〉

− λ

2 ∥wt − ŵ∥2 +
〈

∇F̂λ (wt) − ∇̃Fλ (wt) , wt − ŵ
〉

= 1
2η

(
∥wt − ŵ∥2 + ∥wt − yt+1∥2 − ∥yt+1 − ŵ∥2

)
− λ

2 ∥wt − ŵ∥2

+
〈

∇F̂λ (wt) − ∇̃Fλ (wt) , wt − ŵ
〉

= 1
2η

(
∥wt − ŵ∥2 (1 − λη) − ∥yt+1 − ŵ∥2

)
+ η

2

∥∥∥∇̃Fλ (wt)
∥∥∥2

+
〈

∇F̂λ (wt) − ∇̃Fλ (wt) , wt − ŵ
〉

⩽
1
2η

(
∥wt − ŵ∥2 (1 − λη) − ∥wt+1 − ŵ∥2

)
+ η

2

∥∥∥∇̃Fλ (wt)
∥∥∥2

− ⟨bt, wt − ŵ⟩ ,

where we used non-expansiveness of projection and the definition of ∇̃Fλ (wt) in the last line. Now, re-
arranging this inequality,

∥wt+1 − ŵ∥2 ⩽ ∥wt − ŵ∥2 (1 − λη) + η2
∥∥∥∇̃Fλ(wt)

∥∥∥2
− 2η⟨bt, wt − w⟩ − 2η(F̂λ(wt) − F̂λ(ŵ))

⩽ ∥wt − ŵ∥2 (1 − λη) + η2
∥∥∥∇̃Fλ(wt)

∥∥∥2
− 2η⟨bt, wt − w⟩

⩽ ∥wt − ŵ∥2 (1 − λη

2 ) + η2 · 2(2r̂2
n(x) + 2λ2D2 + B̂2) + 2ηB̂2

λ

⩽ ∥wt − ŵ∥2 (1 − λη

2 ) + 4η2(r̂2
n(x) + λ2D2 + B̂2) + 2ηB̂2

λ
,

where B̂ is defined as below,

B̂ = sup
t∈T

∥bt∥ ⩽
r̂n(X)(k)

(k − 1)Ck−1 .

Thus, iterating the above equation, we get

∥wT − ŵ∥2 ⩽ (1 − λη

2 )T ∥w0 − ŵ∥2 + (4η2(r̂2
n(x) + λ2D2 + B̂2) + 2ηB̂2

λ
)

T −1∑
t=1

(1 − λη

2 )t

⩽ (1 − λη

2 )T ∥w0 − ŵ∥2 + (4η2(r̂2
n(x) + λ2D2 + B̂2) + 2ηB̂2

λ
) 2
λη

= (1 − λη

2 )T ∥w0 − ŵ∥2 + 8η

λ
(r̂2

n(x) + λ2D2 + B̂2) + 4B̂2

λ2

⩽ exp{−ληT

2 } ∥w0 − ŵ∥2 + 8ηr̂2
n(x)
λ

+ 8ηλD2 + 8ηB̂2

λ
+ 4B̂2

λ2

⩽ exp{−ληT

2 } ∥w0 − ŵ∥2 + 8ηr̂2
n(x)
λ

+ 8ηλD2 + 20B̂2

λ2 .

The last inequality holds due to the assumption that η ⩽ 2
λ .

Theorem 9. We have the following bound for f(wl) − f(ŵl):

F (wl) − F (ŵl) ⩽ Õ

(
r̃2k,nl

R̃2k,n

· DLf√
n

)
.

15
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Proof. Firstly, the choise of Di ensures that ŵi ∈ Wi.

Then by the above lemma, and choosing specific Ti,

∥wi − ŵi∥2 ⩽ exp{−λiηiTi

2 } ∥wi−1 − ŵi∥2 +
8ηir̂

2
ni

(Bi)(2)

λi
+ 8ηiλiD

2
i +

20r̂2
ni

(Bi)(2)

λ2
i (k − 1)Ck−1

i

.

∥wi − ŵi∥2 ≲
ηi

λi
L2

f + r̃
(2k)
ni

λ2
i C2k−2

i 4i
≲

η2n

16i4i
(L2

f + nr̃
(2k)
ni

C2k−2
i 4i

). (5)

Then by setting L = supw∈W ∥∇F (w)∥ ⩽ r. Therefore,

F (wl) − F (ŵl) ⩽
√

∥wl − ŵl∥2

⩽L

√√√√η2
l (L2

f + ẽ
(2k)
ni

C2k−2
l 4i

)

≲L
η

n2 (Lf + r̃k
2k

Ck−1
l

)

≲L
η

n2 (Lf + r̃k
2k

Ck−1
l

)

⩽L
η

n2

(
Lf + r̃2k(

√
d

ϵ
)

k−1
k

)
.

We know that ξi ∼ N (0, σ2
i ) and ξ is sub-Gaussian, thus, we can derive that

P{∥ξi∥ ⩾ t
√

d} ⩽ 2 exp{− t2

16σ2
i

}.

Here there shall be some confusion about the lower index, where k is equivalent to l as above, not the original
k here. Therefore, with probability 1 − β, ∥ξi∥ ⩽ 4

√
dσi log(4/β). Thus, due to the choice of η, we have

F (wl) − F (ŵl) ⩽4Lf

√
dσl log(4/β) = 4Lf

√
d log(4/β)8Cl

√
log(1/δ)

nlλlϵ

=32Lf

√
d log(4/β)Clηln

p−1
l

ϵ

=32Lf

√
d log(4/β)r̃2k,nl

(
ϵnl√

d log(n)

) 1
k

η

4l

np−1

(2l)p−1
1
ϵ

⩽
r̃2k,nl

R̃2k,n

· 32DL log(1/β)
√

n logp+ 5
2 n

.

Finally, we reach the upper bound for F (wl) − F (w∗):

Theorem 10. Finally, we reach the upper bound for F (wl) − F (w∗):

F (wl) − F (w∗) ≲ R̃2k,nD( 1√
n

+ (
√

d log n

ϵn
)

k−1
k ) + D

√
log(1/β)

2p+1√n
.

16
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Proof. Rewrite this term into summation of their differences,

F (wl) − F (w∗) =
l∑

i=1
[f(ŵi) − f(ŵi−1)] + [f(wl) − f(ŵl)],

By lemma 3,

F (ŵi) − F (ŵi−1) ⩽ cL2 log ni log (2/β)
λini

+ cLDi

√
log(2/β)

√
ni

+ λi

2 ∥wi−1 − ŵi−1∥2
.

For ∥wi − ŵi∥2 ⩽ ηi

λi
L2

f + r̃(2k)
ni

λ2
i
C2k−2

i
4i

⩽ O

(
η2n

16i4i (L2
f + nr̃(2k)

ni

C2k−2
i

4i
)
)

, then summing over i from 1 to l, we have
with probability at least 1 − β, for some constant C0

f(wl) − f(w∗)

⩽C0

l∑
i=1

{
λi ∥ŵi−1 − wi−1∥2 +

cL2
f log ni log(1/β)

λini
+ cLf Di

√
log(1/β)

√
ni

}

⩽λ1 ∥ŵ0 − w0∥2 +
l∑

i=2
λi ∥ŵi−1 − wi−1∥2 +

l∑
i=1

L2
f log ni log(1/β)

λini
+

l∑
i=1

Lf Di

√
log(1/β)

√
ni

⩽
D2

ηn2p
+

l∑
i=2

λi

[
η2

i np
i L2

f + η2
i n2p

i ẽ
(2k)
ni

C2k−2
i

]
+

l∑
i=1

L2
f (log n − log 2i) log(1/β)

ni
ηin

p
i +

l∑
i=1

L2
f ηin

p− 1
2

i

√
log(1/β)

⩽
D2

ηn2p
+

l∑
i=2

[
η2

i L2
f + ηin

p
i ẽ

(2k)
ni

C2k−2
i

]
+

l∑
i=1

L2
f ηin

p−1
i (log n − log 2i) log(1/β) +

l∑
i=1

L2
f ηin

p− 1
2

i

√
log(1/β)

⩽
D2

ηn2p
+ η

(
L2

f + R̃2k,nnp(d log n

ϵ2n2 )
k−1

k

)
+ L2

f ηnp−1 log(1/β)
l∑

i=1

(log n − i)
4i · (2p−1)i

+ L2
f ηnp− 1

2
√

log(1/β)
l∑

i=1
( 1
2p+ 3

2
)i

⩽
D2

ηn2p
+ η

(
L2

f + R̃2k,nnp(d log n

ϵ2n2 )
k−1

k

)
+L2

f ηnp−1 log(1/β)
(

log n

2p+1 + 1
2p+1 logp n

)
+ L2

f ηnp− 1
2
√

log(1/β)
1 − 1

np+ 3
2

2p+ 3
2 − 1

⩽
D2

ηn2p
+ η(L2

f + R̃2k,nnp(d log n

ϵ2n2 )
k−1

k ) + L2
f ηnp−1 log(1/β) log n · 2−(p+1) + L2

f ηnp− 1
2
√

log(1/β) · 2−(p+ 3
2 ).

Assume that ∃p s.t. Lf ⩽ O

(
np/2R̃2k,n( 1√

n
+ (

√
d log n

ϵn ) k−1
k )
)

and take η =
D

n
p
2

min{ 1
Lf

, 1
R̃2k,nn

p+1
2

( ϵn√
d log n

) k−1
k , 1

n
p−1

2 L2
f

√
log n log(1/β)

}, then the above can be reduced to

f(wl) − f(w∗) ⩽ O

(
R̃2k,nD( 1√

n
+ (
√

d log n

ϵn
)

k−1
k ) + D

√
log(1/β)

2p+1√n

)
,

which holds with probability at least 1 − β.

Proof of Thorem 2.

17
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Theorem 11. Assume that loss function F (·) is (θ, λ)-TNC and f(·, x) is convex, α-smooth and Lf -Lipschitz
for each x. Then algorithm 4 is (ϵ, δ)-DP based on different stepsizes {γk}m

k=1 and noises if γk ⩽ 1
α . Then

for sufficiently large n and (ϵ, δ)-DP, with probability at least 1 − β, we have

F (ŵm) − F (w∗) ⩽ O

 1
λ

1
θ−1

·

R̃2k,n(
√

log n
√

n
+


√

d log3 n

ϵn


k−1

k

) +
√

log n log(1/β)
2p+1√n


θ

θ−1
 .

Proof. The guarantee of (ϵ, δ)-DP is just followed by Theorem 1.

For simplicity, we denote a(n) = O

(
R̃2k,n( 1√

n
+ (

√
d log n

ϵn ) k−1
k ) +

√
log(1/β)
2p+1√n

)
. We set µ0 = 2R1−θ

0 a (n0) , µk =

2(θ−1)kµ0 and Rk = R0
2k , where k = 1, · · · , m.

Then we have µk ·Rθ
k = 2−kµ0Rθ

0. We can also assume that λ ⩽ L

Rθ−1
0

, otherwise we can set λ = L

Rθ−1
0

, which

makes TNC still hold. Recall that m =
⌊

1
2 log2

2n
log2 n

⌋
− 1, when n ≥ 256, it follows that

0 <
1
2 log2

2n

log2 n
− 2 ⩽ m ⩽

1
2 log2

2n

log2 n
− 1 ⩽

1
2 log2 n.

Thus, we have 2m ≥ 1
4

√
2n

log2 n .(if we pick specific m such that 2m ≥ 1
4

√
2n

log2 n · 1
log n0

√
log(1/β)

) Thus

µm = 2(θ−1)mµ0 ≥ 2mµ0

≥ 1
4

√
2n

log2 n

1
log n0

√
log(1/β)

· 2 · R1−θ
0 a (n0)

= 5 · R1−θ
0

log n0
√

log(1/β)

√
2n

log2 n

(
R̃2k,n0( 1

√
n0

+ (
√

d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1√n0

)

≥ 5 · R̃2k,n0R1−θ
0

√
2n

log2 n

 1√
2n

log2 2n−log2 log2 n−4


= 5 · R̃2k,n0R1−θ

0

√
log2 2n − log2 log2 n − 4

log2 n
· log n0

√
log(1/β)

≥ R̃2k,n0R1−θ
0

(
Since 5 ·

√
log2 2n − log2 log2 n − 4

log2 n
≥ 1 when n ≥ 256

)
≥ λ( By assumption ).

where the third inequality is given by throwing away the (
√

d log n0
ϵn0

) k−1
k and

√
log(1/β)

2p+1√n0
term and substituting

m in term 1√
n
m

with 1
2 log2

2n
log2 n − 2. Below, we consider the following two cases.

Case 1 If λ ≥ µ0, then µ0 ⩽ λ ⩽ µm. We have the following lemma.

Lemma 4. Let k∗ satisfies µk∗ ⩽ λ ⩽ 2θ−1µk∗ , then for any 1 ⩽ k ⩽ k∗, the points {ŵk}m
k=1 generated by

Algorithm 4 satisfy
∥ŵk−1 − w∗∥2 ⩽ Rk−1 = 2−(k−1) · R0, (6)

F (ŵk) − F (w∗) ⩽ µkRθ
k = 2−kµ0Rθ

0. (7)

Moreover, for k ≥ k∗, we have
F (ŵk) − F (ŵk∗) ⩽ µk∗Rθ

k∗ . (8)
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Proof. We prove (6), (7) by induction. Note that (6) holds for k = 1. Assume (6) is true for some k > 1,
then we have

F (ŵk) − F (w∗) ⩽ Rk−1 ·

(
R̃2k,n0( 1

√
n0

+ (
√

d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1√n0

)
= Rk−1a (n0)

= 1
2µk2(1−θ)kRθ−1

0 Rk−1

= µkRθ
k

Which is (7). By the definition of TNC, we have

∥ŵk − w∗∥θ
2 ⩽

1
λ

(F (ŵk) − F (w∗))

⩽
F (ŵk) − F (w∗)

µk∗

⩽
µkRθ

k

µk∗
⩽ Rθ

k

Thus (6) is true for k + 1. Now we prove (8). Referring to Theorem 1 , we know that

F (ŵk) − F (ŵk−1) ⩽ Rk−1 · a (n0)
= 2k∗−kRk∗−1a (n0)
= 2k∗−kµk∗Rθ

k∗

= µkRθ
k

Thus, for k > k∗,

F (ŵk) − F (ŵk∗) =
k∑

j=k∗+1
(F (ŵj) − F (ŵj−1))

⩽
k∑

j=k∗+1
2k∗−jµk∗Rθ

k∗

=
(

1 − 2k∗−k
)

µk∗Rθ
k∗

⩽ µk∗Rθ
k∗

Here completes the proof of the lemma. Now we proceed to prove Theorem 1 in this case.
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F (ŵm) − F (w∗) = (F (ŵm) − F (ŵk∗)) + (F (ŵk∗) − F (w∗))
⩽ 2µk∗Rθ

k∗

⩽ 4
(µk∗

λ

) 1
θ−1

µk∗Rθ
k∗

(
Since

(µk∗

λ

) 1
θ−1 ≥ 1

2

)

= 4
(

2(θ−1)k∗
µ0

λ

) 1
θ−1

µk∗Rθ
k∗

= 4
(

2k∗
µk∗Rθ

k∗µ
1

θ−1
0

(
1
λ

) 1
θ−1
)

= 4
(

µ0Rθ
0µ

1
θ−1
0

(
1
λ

) 1
θ−1
)

= 4
(

Rθ
0µ

θ
θ−1
0

(
1
λ

) 1
θ−1
)

= 4 ·

(
(2 · a (n0))

θ
θ−1

(
1
λ

) 1
θ−1
)

= 4 ·
(

1
λ

) 1
θ−1

· 2
(

R̃2k,n0( 1
√

n0
+ (
√

d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1√n0

) θ
θ−1

where m = O (log2 n) ( Recall that m ⩽ 1
2 log2 n).

Case 2 If λ < µ0, then
F (ŵ1) − F (w∗) ⩽ R0a (n0)

=
(

2
µ0

) 1
θ−1

· a (n0)
θ

θ−1

<

(
2
λ

) 1
θ−1

· a (n0)
θ

θ−1

Also, we have

F (ŵm) − F (ŵ1) =
m∑

j=2
(F (ŵj) − F (ŵj−1))

⩽
m∑

j=2
Rj−1 · a (n0)

=
m∑

j=2
2−(j−1)R0 · a (n0)

=
(
1 − (1/2)m−1)R0 · a (n0) < R0 · a (n0)

By a similar argument process as in Case 1, we have

F (ŵm) − F (w∗) = (F (ŵm) − F (ŵ1)) + (F (ŵ1) − F (w∗))

⩽ 2R0a (n0) ⩽ 2
(

2
λ

) 1
θ−1

· a (n0)
θ

θ−1

= 2 ·
(

2
λ

) 1
θ−1

·

(
R̃2k,n0( 1

√
n0

+ (
√

d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1√n0

) θ
θ−1
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Combining the two cases, we conclude that with probability at least 1 − β,

F (ŵm) − F (w∗) ⩽ O

 1
λ

1
θ−1

·

R̃2k,n(
√

log n
√

n
+


√

d log3 n

ϵn


k−1

k

) +
√

log n log(1/β)
2p+1√n


θ

θ−1
 .

Proof of Theorem 3. Proof. The guarantee of (ϵ, δ)-DP is just followed by Theorem 1 and the parallel
theorem of Differential Privacy. In the following we focus on the utility.

Since k = ⌊(log logθ̄ 2) · log log n⌋, then k ⩽ (logθ̄ 2) · log log n, namely 2k ⩽ (log n)log 2 and 2k−1
(log n)log

θ2 ⩽ 1.

Observe that the total sample number used in the algorithm is
∑k

i=1 ni ⩽
∑k

i=1
2i−1n

(log n)log
θ̄

2 = (2k−1)n

(log n)log
θ̄

2 ⩽ n.

For the output of phase i, denote ∆i = F (wi) − F (w∗), and let Dθ
i = ∥wi − w∗∥θ

2. The assumption of
TNC implies that F (wi) − F (w∗) ≥ λ ∥wi − w∗∥θ

2, which is F (wi) − F (w∗) ≥ λ ∥wi − w∗∥θ
2 when we take

expectations at both sides, namely
∆i ≥ λDθ

i . (9)

Thus, we have

∆i ⩽ cR̃2k,nDi−1( 1
√

ni
+ (
√

d log ni

ϵni
)

k−1
k ) + cDi−1

√
log(1/β)

2p+1√ni

(9)
⩽

(
∆i−1

λ

) 1
θ

(
cR̃2k,n( 1

√
ni

+ (
√

d log ni

ϵni
)

k−1
k ) + c

√
log(1/β)

2p+1√ni

)
,

(10)

where the first inequality comes from Theorem 1 and the second inequality uses (9). Denote Ei =
cθ

λ

(
R̃2k,n( 1√

ni
+ (

√
d log ni

ϵni
) k−1

k ) +
√

log(1/β)
2p+1√ni

)θ

. Then (10) can be simplified as

∆i ⩽ (∆i−1Ei)
1
θ . (11)

Notice that ni/ni−1 = 2, then Ei−1
Ei

⩽
(

ni

ni−1

)θ

= 2θ, namely:

Ei ≥ 2−θEi−1. (12)

Then we can rearrange the above inequality as

∆i

E
1

θ−1
i

⩽
(∆i−1Ei)

1
θ

E
1

θ−1
i

⩽ 2 1
θ−1

∆i−1

E
1

θ−1
i−1

 1
θ

, (13)

where the first inequality uses (11) and the second inequality applies (12).

It can be verified that (13) is equivalent to

∆i

2
θ

(θ−1)2 E
1

θ−1
i

⩽

 ∆i−1

2
θ

(θ−1)2 E
1

θ−1
i−1

 1
θ

⩽

(
∆1

2
θ

(θ−1)2 E
1

θ−1
1

) 1
θi−1

.
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According to Lemma 1, ∆1 ⩽
(
Lθλ−1) 1

θ−1 . Also observe that

E1 = cθ

λ

(
R̃2k,n( 1

√
n1

+ (
√

d log n1

ϵn1
)

k−1
k ) +

√
log(1/β)

2p+1√n1

)θ

≥
cθR̃θ

2k,n

λ

1(√
n1
)θ

≥
cθR̃θ

2k,n

λ

1
nθ

.

Let c1 = c
θ

θ−1 2
θ

(θ−1)2 , then ∆1

2
θ

(θ−1)2 E
1

θ−1
1

⩽ n
θ

θ−1

c1
, which implies that for l = ⌊(logθ̄ 2) · log log n⌋,

∆l

2
θ

(θ−1)2 E
1

θ−1
l

⩽

(
n

θ
θ−1

c1

) 1
θl−1

.

Let C1 = 2 θ3
θ−1 +θ2|log c1|. In the following we prove that(

n
θ

θ−1

c1

) 1
θl−1

⩽ C1.

Since l + 1 ≥ (logθ̄ 2) log log n ≥ (logθ 2) log log n, it follows that

(l − 1) log θ + log log C1 ≥ log
(

θ

θ − 1 + |log c1|
)

+ log log n,

which indicates (
θ

θ − 1 + |log c1|
)

log n ⩽ θl−1 log C1.

Thus we have θ
θ−1 log n − log c1 ⩽ θl−1 log C1, which is equivalent to our object

(
n

θ
θ−1

c1

) 1
θk−1

⩽ C1. Now we
know

∆l

2
θ2

(θ−1)2 E
1

θ−1
l

⩽

(
n

θ
θ−1

c1

) 1
θl−1

⩽ C1,

which indicates that ∆l

E
θ

θ−1
l

⩽ 2
θ

(θ−1)2 C1 = 2θ2
(

θ2−θ+1
(θ−1)2 +|log c1|

)
:= C. As a result, we hold a solution with

error:

F (wl) − F (w∗) ⩽ CE
1

θ−1
l = C

(
cθ

λ

) 1
θ−1
(

R̃2k,n( 1
√

nl
+ (
√

d log nl

ϵnl
)

k−1
k ) +

√
log(1/β)
2p+1√nl

) θ
θ−1

Proof of Theorem 4. We first define the set of distributions {Qv}v∈V . Specifically, by the standard
Gilbert-Varshamov bound, there exists a set V ⊂ {±}d such that: (1) |V| ≥ 2 d

20 , (2) for all v, v′ ∈ V,
dham(v, v′) ≥ d

8 Acharya et al. (2021). For each v ∈ V, we define Qv as

Xv =
{

0, with probability 1 − p

p− 1
k

r̃k

2
√

d
v, with probability p

(14)

We can see that for each Xv ∼ Qv, we always have ∥µv = E[Xv]∥2 = p
k−1

k
r̃k

2 = µ.
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We then consider the loss function f(w, x) = −⟨w, x⟩ + 1
θ ∥w∥θ

2, i.e., FP (w) = −⟨w,EP [x]⟩ + 1
θ ∥w∥θ

2 for
distribution P . By Ramdas & Singh (2012) we know it satisfies (θ, 1)-TNC when θ ≥ 2. Moreover, for each
Qv we have

E[ sup
w∈W

∥∇f(w, x)∥k
2 ] = E[ sup

w∈W
∥∥w∥θ−2

2 w − x∥k
2 ] ⩽ E[∥2x∥k

2 ] = r̃k
k = r̃(k), (15)

where the first inequality is due to the radius of W is ( p
− 1

k r̃k

2 ) 1
θ−1 . Thus we can see FP (w) satisfies Assumption

1. For convenience we denote FQv
(w) = Fv(w).

By the form the Fv(w) we can also see that

∇Fv(w∗) = 0 ≡ ∥w∗∥θ−2
2 w∗ = µv. (16)

Thus the optimal solution w∗
v = µv

µ
θ−2
θ−1

∈ W by our assumption on n and thus p ⩽ 1. In total we have

M(W, P, Fθ
k (P, r̃k), ρ) ≥ inf

A∈Q(ρ)

1
|V|
∑
v∈V

EA,D∈Qn
v
[Fv(A(D)) − min

w∈W
Fv(w)], (17)

≥ inf
A∈Q(ρ)

1
|V|
∑
v∈V

EA,D∈Qn
v
∥A(D) − w∗

v∥θ
2 = inf

A∈Q(ρ)

1
|V|
∑
v∈V

EA,D∈Qn
v
∥A(D) − µv

µ
θ−2
θ−1

∥θ
2. (18)

Next, we recall the following private Fano’s lemma:

Lemma 5. [Theorem 1.4 in Kamath et al. (2021)] Let P be a class of distributions over a data universe
X . For each distribution p ∈ T , there is a deterministic function θ(p) ∈ T , where T is the parameter space.
Let ρ : T × T :7→ R+ be a semi-metric function on the space T and Φ : R+ 7→ R+ be a non-decreasing
function with Φ(0) = 0. We further assume that X = {Xi}n

i=1 are n i.i.d observations drawn according to
some distribution p ∈ P, and Q : X n 7→ Θ be some algorithm whose output Q(X) is an estimator. Consider
a set of distributions V = {p1, p2, · · · , pM } ⊆ P such that for all i ̸= j,

• Φ(ρ(θ(pi), θ(pj)) ≥ α,

• DKL(pi, pj) ⩽ β, where DKL is the KL-divergence,

• DT V (pi, pj) ⩽ γ,

then we have for any ρ-zCDP mechanism Q.

1
M

∑
i∈[M ]

EX∼pn
i

,Q[Φ(ρ(Q(X), θ(pi))] ≥ α

2 max{1 − nβ + log 2
log M

, 1 − ρ(n2γ2 + nγ(1 − γ)) + log 2
log M

}.

Now we will leverage the above lemma to lower bound equation 18. We can see in our set of probabilities
{Qv}v∈V , for any v, v′ ∈ V we have DT V (Qv, Qv′) ⩽ p. And

∥ µv

µ
θ−2
θ−1

− µv′

µ
θ−2
θ−1

∥θ
2 = 1

µ
θ(θ−2)

θ−1

∥p
k−1

k
r̃k

2
√

d
(v − v′)∥θ

2 ≥ C
p

θ(k−1)
k

µ
θ(θ−2)

θ−1

r̃θ
k = Ω(r̃

θ
θ−1
k p

k−1
k

θ
θ−1 ). (19)

Taking p =
√

d
n

√
ρ and by Lemma 5 we have

inf
A∈Q(ρ)

1
|V|
∑
v∈V

EA,D∈Qn
v
∥A(D) − µv

µ
θ−2
θ−1

∥θ
2 ≥ Ω

(
(r̃k(

√
d

n
√

ρ
)

k−1
k ) θ

θ−1

)
. (20)
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Proof of Theorem 5. The lower bound for non-private case follows the proof in Asi et al. (2021a). Here
we extend to the heavy-tailed case. For the index set V we consider the same one as in the proof of Theorem
4. For each v ∈ V we define X ∼ Pv as

for j ∈ [d], Xj =
{

vjej
r̃k

2
√

d
, with probability 1+δ

2 ,

−vjej
r̃k

2
√

d
, with probability 1−δ

2 .
(21)

We can see that for each Xv ∼ Qv, we always have ∥µv = E[Xv]∥2 = δ r̃k

2 = µ.

We then consider the loss function f(w, x) = −⟨w, x⟩ + 1
θ ∥w∥θ

2, i.e., FP (w) = −⟨w,EP [x]⟩ + 1
θ ∥w∥θ

2 for
distribution P . By Ramdas & Singh (2012) we know it satisfies (θ, 1)-TNC when θ ≥ 2. Moreover, for each
Qv we have

E[ sup
w∈W

∥∇f(w, x)∥k
2 ] = E[ sup

w∈W
∥∥w∥θ−2

2 w − x∥k
2 ] ⩽ E[∥2x∥k

2 ] = r̃k
k = r̃(k), (22)

where the first inequality is due to the radius of W is ( r̃k

2 ) 1
θ−1 . Thus we can see FP (w) satisfies Assumption

1. For convenience we denote FQv
(w) = Fv(w).

By the form the Fv(w) we can also see that

∇Fv(w∗) = 0 ≡ ∥w∗∥θ−2
2 w∗ = µv. (23)

Thus the optimal solution w∗
v = µv

µ
θ−2
θ−1

∈ W by our assumption on n and thus p ⩽ 1. In total we have

M(W, P, Fθ
k (P, r̃k), ρ) ≥ inf

A∈Q(ρ)

1
|V|
∑
v∈V

EA,D∈Qn
v
[Fv(A(D)) − min

w∈W
Fv(w)], (24)

≥ inf
A∈Q(ρ)

1
|V|
∑
v∈V

EA,D∈Qn
v
∥A(D) − w∗

v∥θ
2 = inf

A∈Q(ρ)

1
|V|
∑
v∈V

EA,D∈Qn
v
∥A(D) − µv

µ
θ−2
θ−1

∥θ
2. (25)

We can see in our set of probabilities {Qv}v∈V , for any v, v′ ∈ V we have DKL(Qv, Qv′) ⩽ δ2. And

∥ µv

µ
θ−2
θ−1

− µv′

µ
θ−2
θ−1

∥θ
2 = 1

µ
θ(θ−2)

θ−1

∥ δr̃k

2
√

d
(v − v′)∥θ

2 ≥ C
δθ

µ
θ(θ−2)

θ−1

r̃θ
k = Ω(r̃

θ
θ−1
k δ

θ
θ−1 ). (26)

Thus by Fano’s lemma or Lemma 5, taking δ =
√

d
n we have the result.

Proof of Theorem 6. Proof of Privacy. We first recall the following lemma:

Lemma 6. (Feldman et al., 2022) For a domain D, let R(i) : f × D → S(i) for i ∈ [n] be a sequence
of algorithms such that R(i)(z1:i−1, ·) is a (ϵ0, δ0)-DP local randomizer for all values of auxiliary inputs
z1:i−1 ∈ S(1) × · · · × S(i−1). Let AS : Dn → S(1) × · · · × S(n) be the algorithm that given a dataset x1:n∈Dn ,
sample a uniformly random permutation π, then sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n],
and the outputs z1:n. Then for any δ ∈ [0, 1] such that ϵ0 ⩽ log

(
n

16 log(2/δ)

)
, AS is (ϵ, δ + O(eϵδ0n))-DP

where ϵ = O

(
(1 − e−ϵ0) · (

√
eϵ0 log(1/δ)√

n
+ eϵ0

n )
)

.

We know that for each x ∈ Bt, we have R(ΠC(∇f(w, x))) = ΠC(∇f(w, x)) + ζx, with ζx ∼ N (0, σ2
1) and

σ2
1 = 8C2 log 1

δ0
ϵ2

0
) is an (ϵ0, δ0)-LDP randomizer. As we randomly shuffled the data in the beginning, thus, the

algorithm will be (ϵ̂, δ̂ + O(eϵ̂δ0n))-DP where ϵ̂ = O

(
(1 − e−ϵ0) · (

√
eϵ0 log(1/δ̂)√

n
+ eϵ0

n )
)

.
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Now, assume that ϵ0 ⩽ 1
2 , then ∃c1 > 0, s.t.,

ϵ̂ ⩽ c1(1 − e−ϵ0) ·


√

eϵ0 log(1/δ̂)
√

n
+ eϵ0

n


⩽ c1 ·

(eϵ0/2 − e−ϵ0/2) ·

√
log(1/δ̂)

n
+ eϵ0 − 1

n


⩽ c1 ·

((1 + ϵ0) − (1 − ϵ0

2 )
)

·

√
log(1/δ̂)

n
+ (1 + 2ϵ0) − 1

n


= c1 · ϵ0 ·

3
2

√
log(1/δ̂)

n
+ 2

n

 .

Set δ̂ = δ
2 , δ0 = c2 · δ

eϵ̂n
for some constant c2 > 0 and replace ϵ0 =

2
√

2C
√

log 1
δ0

σ1
):

ϵ̂ ⩽ c1 ·
2
√

2C
√

log 1
δ0

σ1
) ·

3
2

√
log(1/δ̂)

n
+ 2

n


⩽ O

(
C ·
√

log(1/δ) log(eϵ̂n/δ)
σ1

√
n

)
.

For any ϵ ⩽ 1, if we set σ = O

(
C·

√
log(1/δ) log(eϵ̂n/δ)

ϵ
√

n

)
, then we have ϵ̂ ⩽ ϵ. Furthermore, we need

ϵ0 =
2

√
2C
√

log 1
δ0

σ1
) ⩽ 1

2 , which would be ensured if we set ϵ = O

(√
log(n/δ)

n

)
. This implies that for

σ1 = O

(
C·

√
log(1/δ) log(eϵ̂n/δ)

ϵ
√

n

)
, algorithm 6 satisfies (ϵ, δ)-DP as long as ϵ = O

(√
log(n/δ)

n

)
if releasing

R(ΠC(∇f(w, x))) for all x. Thus in step 6 we can see ∇̃Ft

(
wmd

t

)
= T

n

∑
x∈Bt

(R(ΠC(∇f(wmd
t , x))) is

(ϵ, δ)-DP for each t. And since {Bt} are disjoint, Algorithm 6 is (ϵ, δ)-DP.

Lemma 7. (Barber & Duchi, 2014) Let {zi}s
i=1 ∼ Ds be Rd-valued random vectors with Ezi = ν and

E ∥zi∥k ⩽ r(k) for some k ⩾ 2. Denote the noiseless average of clipped samples by ν̂ := 1
s

s∑
i=1

∏
C(zi) and

ν̃ := ν̂ +N . Then, ∥Eν̃ −ν∥ = ∥Eν̂ −ν∥ ⩽ E∥ν̂ −ν∥ ⩽ r(k)

(k−1)Ck−1 , and E∥ν̃ −Eν̃∥2 = E∥ν̃ −Eν̂∥2 ⩽ dσ2 + r(2)

s .

claim: we can improve the noise to Σ2 := supt∈[T ] E[∥Nt∥2] ⩽ dσ2 + r2T
n ≈ dC2T

ϵ2n2 + r2T
n .

Excess risk: Consider round t ∈ [T ] of Algorithm 6, where Algorithm 1 is run on input data {∇f (wt, xt
i)}

n/T
i=1 .

Denote the bias of Algorithm 1 by bt := E∇̃Ft (wt) − ∇F (wt), where ∇̃Ft (wt) = ν̃ in the nota-
tion of Algorithm 1. Also let ∇̂Ft (wt) := µ̂ (in the notation of Lemma 7) and denote the noise by
Nt = ∇̃Ft (wt) − ∇F (wt) − bt = ∇̃Ft (wt) − E∇̃Ft (wt). Then we have B := supt∈[T ] ∥bt∥ ⩽ r(k)

(k−1)Ck−1

and Σ2 := supt∈[T ] E
[
∥Nt∥2

]
⩽ dσ2 + r2T

n ⩽ O
(

dC2T
ϵ2n2 + r2T

n

)
, by Lemma 5. Plugging these estimates for B
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and Σ2 into Proposition 40 of (Lowy & Razaviyayn, 2023) and setting C = r

(
ϵn√

d log(1/δ)

)1/k

, we get

EF (wag
T ) − F ∗ ⩽ O

(
βD2

T 2 + D(Σ + B)√
T

+ BD

)
⩽ O

(
βD2

T 2 + CD
√

d log(1/δ)
ϵn

+ rD√
n

+ r(k)D

Ck−1

)

⩽ O

βD2

T 2 + rD

 1√
n

+
(√

d log(1/δ)
ϵn

)(k−1)/k
 .

Now, our choice of T

T = min{
√

βD

r
·

(
ϵn√

d log(1/δ)

) k−1
2k

,

√
βD

r
· n1/4},

implies that βD2

T 2 ⩽ rD

[
1√
n

+
(√

d log(1/δ)
ϵn

)(k−1)/k
]

and we get the result upon plugging in T .

Proof of Theorem 7. Similar to the proof of Theorem 3.
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