Under review as a conference paper at ICLR 2026

CONCISEHINT: BOOSTING EFFICIENT REASONING VIA
CONTINUOUS CONCISE HINTS DURING GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and
OpenAl ol series have achieved notable performance enhancements on complex
reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT).
However, a critical issue is their tendency to produce excessively verbose reasoning
processes, leading to the inefficiency problem. Existing literature on improving
efficiency mainly adheres to the before-reasoning paradigms such as prompting
and reasoning or fine-tuning and reasoning, but ignores the promising direction
of directly encouraging the model to speak concisely by intervening during the
generation of reasoning. In order to fill the blank, we propose a framework
dubbed ConciseHint, which continuously encourages the reasoning model to speak
concisely by injecting learnable hints (manually designed or learned on concise
data) during the generation of the reasoning. Besides, ConciseHint is adaptive to the
complexity of the query by adaptively adjusting the hint intensity, which ensures
it will not undermine model performance. Experiments on the state-of-the-art
LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method
can effectively produce concise reasoning while maintaining the performance well.
Moreover, we show that ConciseHint is flexible and can be seamlessly integrated
with existing methods to further push the upper bound of the efficiency.

1 INTRODUCTION

Reasoning ability is significant for large language models (LLMs) (Liu et al., 2024; Yang et al., 2024;
Grattafiori et al., 2024; Hurst et al., 2024; Ouyang et al., 2022) to execute effectively across a wide
range of complex tasks (Zhao et al., 2023; Chang et al., 2024; Qu et al., 2025; Hao et al., 2023; Wei
et al., 2022), including arithmetic reasoning, commonsense reasoning, etc. Chain of thought (Wei
et al., 2022; Kojima et al., 2022) (CoT) is the most popular manner to enhance the reasoning ability
for LLMs by explicitly generating intermediate reasoning steps. Recently, state-of-the-art reasoning
models (e.g., Gemini-2.5 (Deepmind, 2025), OpenAl-ol (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025)) have internalized the chain-of-thought paradigm instead of few-shot (Wei et al., 2022)
or zero-shot prompting (Kojima et al., 2022).

Although large reasoning models (LRMs) with CoT demonstrate remarkable performance, a critical
limitation lies in the inefficiency of their reasoning process (Qu et al., 2025; Liu et al., 2025; Sui
et al., 2025; Feng et al., 2025; Han et al., 2024). Typically, the output of reasoning models consists of
far more tokens compared to common LLMs, due to the detailed and usually verbose intermediate
reasoning steps, leading to substantial computational costs and high inference latency. For example,
LRMs usually present unnecessary coherence tokens (Su et al., 2025) or perform redundant self-
checks (Qu et al., 2025; Fu et al., 2025).

To improve the efficiency by making the reasoning model speak more concisely, mainstream methods
follow the two paradigms: (i) Prompting in the input stage: Adding extra control prompts (Renze &
Guven, 2024; Han et al., 2024; Lee et al., 2025; Aytes et al., 2025) like “Be concise.” to the model at
the input stage, and then perform the reasoning. (2) Finetune-and-use: Internalizing the conciseness
by optimizing the model with supervised fine-tuning (SFT) (Xia et al., 2025; Munkhbat et al., 2025;
Ma et al., 2025) or reinforcement learning (RL) (Shen et al., 2025; Luo et al., 2025), and then perform
the reasoning. They don’t directly intervene during the reasoning stage when the model generates
tokens one by one. Therefore, an orthogonal and largely unexplored question arises: Is it possible

Under review as a conference paper at ICLR 2026

Original Reasoning (2266 tokens)

Okay, let me try to figure out this problem. So, the question is about how many bolts of fiber are needed for a robe <omitted>
Wait, let me make sure | didn‘t misinterpret the question. The problem says “half that much white fiber” <omitted>

Wait, is there anything else | need to consider? Let me check again. The “that much” refers to the blue fiber <omitted>

Wait, the question is asking for how many bolts in total does it take. So, answer is 3. But let me check again <omitted>

Wait, maybe “half that much” is half of the total? But that would be different. Let me think. If the total is 2 bolts <omitted>

</think> <Conclusion> The final answer is \boxed{3}.
Verbose and slow... |

Query: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Efficienﬂ \
/ Control prompt i @Input @Input In-reasoning

or Before o Intervention
o reasoning ConciseHint: =
Model Opt|m|)zat|on—> Optimization (Ours) 1 (learnable) hint

(SFT/RL (Previous)
Inject hint

Short reasoning (1201 tokens) . .
g . Short reasoning (701 tokens)

Okay, let me try to figure out this problem. So, the question is about
Okay, let me try to figure out this problem. So, the question is

<omitted> "
Wait, let me check that interpretation. If that refers to the blue fiber <omitted>
<omitted> Wait, let me check if there's another possible interpretation
Wait, let me check again. Maybe the problem is trying to trick me? <omitted>
<omitted> </think> <Conclusion> The final answer is \boxed{3}.
K </think> <Conclusion> The final answer is \boxed{3}. /

Figure 1: Previous works mainly enhance conciseness before the actual reasoning (i.e., adding the
control prompt or optimizing the model via SFT/RL), while we focus on intervening during the
reasoning process to encourage conciseness, i.e., in-reasoning intervention. ConciseHint achieves
this goal by continuously injecting learnable hints during the generation.

to guide the reasoning model to speak more concisely by intervening during the generation of the
intermediate reasoning steps? We point out two key points needed to answer this question: one is to
design an approach to enable effective intervention during reasoning, and the other is to select an
optimal intensity of intervention adaptively to the complexity of a given query.

To fill the blank, we propose ConciseHint, which performs intervention during the generation of
reasoning, encouraging the model to speak concisely by injecting hints, as illustrated in Figure 1.
Specifically, ConciseHint continuously influences the reasoning by injecting the hint that can either
be a manually designed text (e.g., “make answer concise!”) or continuous embeddings learned on
a concise dataset. Both types of hints can encourage the subsequent token generation to be more
concise. Trained on concise data, the learned hint can capture concise patterns inherent in the data,
thereby further enhancing the efficiency over the manual hint. Besides, the controllability of the
reasoning length can be easily achieved by interpolating in the embedding space. Additionally,
ConciseHint adaptively adjust the injection intensity according to the complexity of the query, as
easy queries can usually tolerate a larger compression ratio of reasoning than complex ones. This
complexity-adaptive strategy facilitates a good efficiency-accuracy balance by employing a lower
hint intensity for complex queries and a higher intensity for easy ones. Moreover, ConciseHint
dynamically adjusts the position of the injection to ensure a good computing-accuracy balance.

To evaluate ConciseHint, we conduct experiments on the state-of-the-art large reasoning models
(DeepSeek-R1 (Guo et al., 2025) and Qwen-3 (Alibaba, 2025) series) with a range of benchmarks
(AIME24, GSM8K, and GPQA-Diamond) with varying complexity levels. Experimental results
indicate that our in-reasoning intervention framework can effectively improve the reasoning efficiency
while maintaining the model performance well. Moreover, they also demonstrate that ConciseHint
can serve as a flexible plugin that can be seamlessly integrated with existing methods to further
enhance the efficiency, effectively pushing the upper bound of the efficiency.

2 RELATED WORKS

2.1 REASONING MODELS AND THE INEFFICIENCY ISSUE

The emergence of chain-of-thought (Wei et al., 2022; Kojima et al., 2022) endowed LLMs with
powerful reasoning ability through explicitly generating intermediate reasoning steps. Initially,

Under review as a conference paper at ICLR 2026

vanilla LLMs such as GPT-40 (Hurst et al., 2024) and PaLM (Chowdhery et al., 2023) can obtain the
enhanced reasoning ability by few-shot (Wei et al., 2022) or zero-shot (Kojima et al., 2022) prompting.
Recently, large reasoning models such as Gemini-2.5 (Deepmind, 2025), OpenAl-ol (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) have internalized the reasoning ability by supervised
fine-tuning (SFT) and reinforcement learning (RL), no longer needing manual prompting. While
demonstrating superior performance compared to common LLMs, reasoning models incur high
computational costs due to the detailed and usually verbose reasoning process (Qu et al., 2025;
Zhao et al., 2023; Chang et al., 2024), leading to inefficiency in reasoning. For example, substantial
works point out that reasoning models usually overthink simple queries (Qu et al., 2025; Chen et al.,
2024; Shen et al., 2025), generate verbose multiple rounds of self-check (Qu et al., 2025; Fu et al.,
2025), and allocate a substantial proportion of tokens to support textual coherence (Su et al., 2025)
rather than the core reasoning advancement. These sorts of inefficiency issues result in the waste of
computational resources and energy.

2.2 EFFICIENT METHODS FOR REASONING MODELS

Recently, researchers have paid attention to alleviating the inefficiency of large reasoning models.
Existing methods can be roughly divided into three groups (Qu et al., 2025), i.e., training-free
methods, SFT-based methods, and RL-based methods. SFT-based methods either fine-tune the
reasoning model to internalize the concise reasoning patterns on the curated concise datasets (Xia
et al., 2025; Munkhbat et al., 2025), or replace explicit token generation in the reasoning process
by predicting answers based on internal latent representations (Deng et al., 2024; Hao et al., 2024).
RL-based methods usually incorporate the length constraint into the reward function to encourage
conciseness (Shen et al., 2025; Luo et al., 2025), or teach the model “when to think” (Huang et al.,
2025; Fang et al., 2025; Zhang et al., 2025). In contrast, training-free methods do not involve training,
which is easy to use and can serve as a plug-in. For example, prompt-based methods (Renze &
Guven, 2024; Han et al., 2024; Aytes et al., 2025) add control prompts to the user input to encourage
answering concisely. Early exit methods (Fu et al., 2025; Yang et al., 2025) terminate the thinking in
advance when meeting certain confidence conditions.

The previous literature mainly conforms to the paradigm of prompting or optimizing the model before
using it to perform reasoning generation, and does not dynamically intervene in the model during
the token generation for reasoning to make it speak more concisely. In this work, we aim to explore
whether we can enhance the conciseness by continuously exerting influence during the reasoning.

3 THE PROPOSED CONCISEHINT FRAMEWORK

In this section, we elaborate on our proposed ConciseHint that encourages models to speak concisely
by continuously and adaptively exerting influence on the reasoning process. ConciseHint injects
learnable hints into the reasoning process to enhance efficiency. To avoid excessive intervention in
complex queries while maintaining intensive intervention for easy queries, ConciseHint adaptively
controls the injection intensity, ensuring it is negatively correlated with the complexity. To avoid
compromising accuracy and achieve computational savings, ConciseHint dynamically determines the
injection position, from head to tail progressively. Both manual and learned hints can encourage the
subsequent reasoning to be more concise. Even though the manual hint (denoted as ConciseHint) can
already achieve significant efficiency improvement in a training-free way, the learned hint trained
on concise data (denoted as ConciseHint-T) can further enhance the efficiency by capturing concise
patterns inherent in the data. Controllability of the reasoning length can be easily achieved by
interpolating in the embedding space. The overall framework is presented in Figure 2.

ConciseHint continuously injects the hint in a complexity-adaptive way. Specifically, ConciseHint
continuously injects the hint like “make answer concise!” in the reasoning process. For instance, if
the original text is “Okay, let me try to figure out this problem. The problem says a robe takes 2 bolts
of blue fiber and half that much white fiber” will be modified to “Okay, make answer concise! let me
try to figure out this problem. The problem says a robe takes 2 bolts of blue fiber and half that much
white fiber”. Injecting the hint can encourage the following reasoning to be more concise. However, a
critical problem is how to select an optimal injection intensity for a given query. An excessively high
injection intensity will harm the accuracy, particularly for complex queries, while a low intensity will
decrease the efficiency improvement (see Table 3 in the ablation study). We propose to tackle this

Under review as a conference paper at ICLR 2026

/ ComgeEat Bl Generate

wcomplexny adaptlve‘ T tokens

\

Finish
Input

m |:> C/N ‘Inject concise hint easonmg
b .

Continue to [| learnable concise hint |
generate

ConciseHint

The reasoning process
& with ConciseHint

From no hint to manual and learned hints

manually

| d
@;}K No hint 22 2266 tokens :@% g@ esigning =

. . 122
No ConciseHint make answer concise!

Efficiency A7°

- | 140 tokens

Manually design hint

Bl [niect X hint-tuning Efficiency SN
= — . with NTP - 1140 680
@ T ! + 6 — o | hint | e tokens™ tokens
concise concise data initial @ learned y=0 ---» y=1
reasoning data with hint embeddings hint embeddings

Learn hint embeddings
on concise data

‘ Efficient v ‘ ‘ Plug—and—play\/‘ ‘ Learnable v ‘ ‘ Controllable v ‘

Construct data

Figure 2: The illustration of ConciseHint(-T) framework. Upon obtaining 74, the LRM generates
the next 7 tokens, injects the hint, and updates {;, and 73, in sequence, repeating this cycle until the
reasoning is finished. The corresponding pseudo-code is shown in Algorithm 1. There are two ways
of obtaining the hint. Firstly, we can manually design the text with expertise and prior knowledge.
Secondly, we can train the hint embeddings on concise reasoning data with SFT in a Next-token
Prediction (NTP) way, which can further enhance the efficiency and acquire the controllability.

problem from a complexity-adaptive perspective. We model the control of the injection intensity as
the selection of the injection interval, i.e., the number of tokens between two adjacent injections. We
propose a complexity-adaptive and dynamic interval control mechanism, formulated as follows:

n=a+p06-lx, a>0,5>0, (1)

where 7y, is the current injection interval. I, denotes the current length of the reasoning process, i.e.,
the number of current output tokens, which serves as a complexity indicator herein. « is the basic
length of the injection interval, and f3 is a positive coefficient to control the strength of adaptivity.
Every time 7, is obtained, the model will generate the next 73, tokens, inject the hint, and update [,
and 7 in sequence. This cycle is repeated until the reasoning process is completed. The injection
interval 7y, is a linear function of the current length, which indicates that the hint interval will increase
with the current reasoning length. Here, we hold a prior that the reasoning length of a query is
approximately positively correlated with its complexity (Muennighoff et al., 2025; Lee et al., 2025),
and the intuitive assumption that easy queries can tolerate a larger compression ratio than complex
ones. When the current length [is small, the injection interval is set to a small value, resulting
in a higher hint intensity. The reasoning of easy queries will complete in a short length, such as
hundreds of tokens, so their average hint intensity is high, ensuring a high level of conciseness. If the
length continues to increase, it will indicate that this query should be complex rather than easy, so
Equation (1) accordingly relieves the hint intensity by increasing the injection interval 7y, avoiding
excessive hinting that harms the accuracy. This adaptive strategy avoids manually setting the injection
interval based on precise estimation of the complexity, as it is usually intractable.

The selection of the hyperparameters o and 5. « should be set to a small value to ensure
conciseness for easy queries, as they can tolerate high injection intensity. Empirical results show the
performance is not sensitive to /3, as long as it is not excessively small. Detailed ablation study and
discussion about « and 3 can be found in Appendix A.1. In all our experiments, we fixed « to 128 (a
small value) and 3 to 0.2 to avoid manual hyper-parameter tuning, and we find it always works well
for various models and benchmarks.

Under review as a conference paper at ICLR 2026

The dynamic selection strategy for the hint injection position. Another problem is how to select
the position to inject the hint. Let 7" denote the original generated text whose length is 71, p denote
the position of injection, and 7};,,; denote the hint. Then, the modified text after hint injection will
be:

T =T[0:p)+ Thine + Tlp: 7 — 1], p€ [0, 7 — 1].)

We reveal two rules about the selection of injection position p: (i) p should not be too close to 75, — 1
to avoid accuracy degradation. Concretely, if p is very close to 7, — 1, the injected hint will approach
the tail of the generated text. In this case, we observe that the subsequent generation will soon
terminate the thinking or just lazily repeat the text generated after the last hint (see case studies in
Appendix A.3), which significantly undermines accuracy, as shown in Table 4. (ii) p should not be
too close to 0. Although injecting the hint into the head solves the accuracy degradation problem,
it introduces extra computing costs caused by prefilling the text between the injection position and
the end, i.e., T'[p : 7, — 1]. Therefore, to ensure a good computing-efficiency balance, we propose a
dynamic selection strategy for the position p, formulated as follows:

p = 7 * min((1 — «)/1024, 0.8), 3)

where 7}, is the current injection interval and « is the basic injection interval length, the same as
those in Equation (1). During the early reasoning, 75 is small, so the injection position is close to the
head, not suffering from the aforementioned accuracy degradation. As the reasoning proceeds, 7
becomes larger, the injection position moves towards the tail to save prefilling costs. Meanwhile, we
restrict the maximum position to 7 - 0.8 to prevent it from being too close to the tail, avoiding the
accuracy degradation. The detailed theoretical and empirical analysis for injection costs can be found
at Appendix A.2, which indicates that the extra costs of our strategy are negligible.

Algorithm 1 The proposed ConciseHint algorithm.

1: Input: input prompt P and model M. hint T}, basic interval length «, and coefficient /3.

221, =0a,l;=0.0, =P > Initialize injection interval, current length, and current output.
3: while True do

4: T, finish_reason = client.completions.create(model= M, prompt= Oy, max_token_len= 73) >

Call model generation.

5: p =1« min((7, — «)/1024, 0.8) > Compute the injection position.
6: T =T0:p]+ Thine + Tlp: 7 — 1], p€[0,7 —1]. > Inject the hint.
7: O =0 +T > Update current output.
8: I, =l + 7, > Update current length.
9: Te=0+0" 1 > Update injection inverval.
10: if finish_reason is Stop then break
11: end if
12: end while
13: Return Oy, > Get the overall answer.

ConciseHint-T: training the embeddings of hint on concise reasoning data to learn concise pat-
terns. Even though the training-free ConciseHint effectively improves the efficiency, further training
the hint embeddings can bring additional token reduction. Concretely, firstly, we prepare a dataset
consisting of questions and corresponding concise reasoning responses. Next, we construct modified
reasoning responses by injecting hint embeddings to be trained into the original responses at a fixed
interval. We initialize the hint embeddings as the embeddings of our manually designed hint (E,,;)
used in ConciseHint. Finally, we conduct supervised fine-tuning (like Prompt Tuning (Lester et al.,
2021)) on the questions and corresponding modified responses, following the next-token prediction
paradigm, and obtain the optimized hint embeddings E, .. We expect the hint embeddings to
learn the inherent concise patterns in the concise reasoning responses. Then, ConciseHint-T uses
the optimized hint embeddings and thus further reduces token usage. Moreover, we observe that we
can control the token usage through the interpolation between the initial hint embeddings and the
optimized embeddings. The interpolation embeddings can be derived from:

Under review as a conference paper at ICLR 2026

Einterp =7 * Eoptim + (1 - ’7) * Eo’r‘i7 7 S [07]-] (4)

Controllability can be achieved by adjusting ~, where a higher value usually leads to less token
usage. v = 1 denotes our ConciseHint-T, while v = 0 is ConciseHint.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We validate our method on three commonly-used benchmarks for large reasoning
models, i.e., GSM8K (Cobbe et al., 2021), AIME24 (Committees, 2024), and GPQA-Diamond (Rein
et al., 2024). GSM8K(Grade School Math 8K) consists of more than 8,000 high-quality quality
linguistically diverse grade school math word problems. We use the test split containing 1,319
problems. AIME24 consists of 30 mathematical problems from the 2024 American Invitational
Mathematics Examination (AIME24), a renowned high school math competition recognized for
its difficult and thought-provoking problems. GPQA-diamond consists of 198 high-quality and
challenging multiple-choice questions written by domain experts in biology, physics, and chemistry.

Models. We evaluate our method on the state-of-the-art open-source large reasoning models including
Qwen3-8B, Qwen3-4B, Qwen3-1.7B (Alibaba, 2025), and DeepSeek-R1-14B (Guo et al., 2025),
which deliver remarkable advancements in tackling a wide range of reasoning tasks.

Baselines. The basic baseline is the original reasoning without any efficiency technique. Besides,
we include four representative efficient methods as baselines. Specifically, BeConcise (Renze &
Guven, 2024) is a commonly-used prompting-based method that appends a prompt of “Be concise”
to the input to encourage answering concisely. Besides, we obtain a stronger prompting method by
adding “Please adaptively control the answer length based on the query’s complexity. The lower
the complexity, the more concise your answer should be”. We denote it as “Prompt” for simplicity.
Moreover, we include the early-exit method Deer (Yang et al., 2025), which terminates the reasoning
when the model is confident enough. We also include NoWait (Wang et al., 2025), which prohibits
transition tokens like “wait” and “alternatively” to obtain more efficient self-reflections.

Evaluation configurations. For all experiments, we set the temperature to 0.6 and top-p to 0.95,
which is recommended in the official documentation. We report the accuracy to measure model
performance. Following mainstream works, we report the average token usage, i.e., the average
number of tokens to answer a query, to measure the efficiency. The injected hints are also counted.
Each experiment is run multiple times, and we report the average results.

4.2 MAIN RESULTS.

ConciseHint results. Table 1 shows the main quantitative results of our experiments. Ori. denotes the
original reasoning process without any efficiency technique. Ours (baseline) denotes the combination
of our ConciseHint and the baseline method. For example, Ours (Ori) means applying ConciseHint
in the original reasoning. From the experimental results in Table 1, we can derive the following two
key conclusions:

(i) When individually applied, ConciseHint can effectively improve the reasoning efficiency,
which is comparable to strong baselines. Firstly, compared to the original reasoning (i.e., Ori.),
employing ConciseHint (i.e., Ours (Ori)) can effectively reduce the token usage while maintaining
the accuracy well. For example, on the GSM8K benchmark and Qwen3-4B, Ours (Ori) reduces
48.9% tokens from 2381 to 1213, with only an accuracy loss of 0.07. On the GPQA Diamond, it
reduces 44.5% tokens from 7388 to 4099, even with an accuracy rise of 0.91. Secondly, the efficiency
improvement of Ours (Ori) is comparable to these four efficiency baseline methods. For example, on
the GSM8K benchmark and Qwen3-4B, the token usage of Ours (Ori) is less than BeConcise (1597),
Prompt (1263), Deer (1405) and NoWait (1289). By continuously injecting concise hints, our method
effectively reduces the token usage.

(i) When integrated, ConciseHint consistently and obviously enhances the reasoning efficiency
across all baseline methods, substantially raising the upper bound of efficiency. Let us focus on

Under review as a conference paper at ICLR 2026

Table 1: ConciseHint results on GSM8SK, AIME24, and GPQA-Diamond with Qwen3-4B, Qwen3-
8B, and Deepseek-R1-14B. Ori. denotes the original reasoning process. Besides, we also include
BeConcise (Renze & Guven, 2024), Prompt, Deer (Yang et al., 2025), and NoWait (Wang et al.,
2025) as baselines. Ours (baseline) denotes the combination of our ConciseHint and the baseline
method. We report the accuracy and average token usage. The lowest token usage is highlighted in
bold. The red and blue numbers show the token reduction percentage over the original reasoning and
the corresponding baseline method, respectively.

Model Method GSMSK | AIME24 | GPQA-Diamond
Accuracy% Token usage Accuracy% Tokenusage Accuracy% Token usage
Ori. 94.81 2381 64.33 11634 51.82 7388
Ours (Ori) 94.74 121342 66.67 10523:10% 52.73 4099-:2
BeConcise 94.60 1597 64.33 10929 53.74 6113
Prompt 94.56 1263 63.67 10755 52.93 5180
Qwen3-4B Ours (Prompt) 94.75 839 67.00 925521 51.72 31905
Deer 94.78 1405 64.00 10149 53.23 6878
Ours (Deer) 94.31 8417 65.33 8410 52.31 39254
NoWait 94.33 1289 59.00 10053 52.12 5246
Ours (NoWait) 94.03 8574 58.33 88932 51.31 2730
Ori. 95.86 2382 64.67 11725 57.58 8524
Ours (Ori) 95.53 1489 67.33 11228+ 57.68 54003
BeConcise 95.78 1822 66.67 11371 57.17 7466
Prompt 95.72 1353 68.00 10693 57.58 6285
Qwen3-8B Ours (Prompt) 95.51 935+ 69.67 99963 55.56 38804
Deer 95.62 1223 66.33 10298 55.45 7778
Ours (Deer) 95.22 907 64.67 88433 55.35 5306
NoWait 95.38 1406 64.83 9936 56.67 6575
Ours (NoWait) 95.06 103032 64.17 94571 55.56 3860
Ori. 95.03 981 63.00 9210 56.06 5038
Ours (Ori) 94.87 7132 61.00 762317 54.65 37152
DeepSeck-RI-14B g concise 94.92 770" 63.00 8521 55.96 4739
Prompt 94.18 627 64.67 7597 55.05 4120

the comparison between Ours (baseline) and the corresponding baseline method. For each baseline
method, applying ConciseHint obviously reduces the token usage while maintaining the accuracy
well. For example, on the GSM8K benchmark and Qwen3-4B, compared to Deer, Ours (Deer)
reduces 40.1% tokens from 1405 to 841. The overall reduction ratio against the original reasoning
rises to 65%. Compared to NoWait, Ours (NoWait) reduces 33.5% tokens from 1289 to 857. The
overall reduction ratio is 64%. The results validate the flexibility and compatibility of our approach,
enabling seamless integration with various existing methods.

Table 2: ConciseHint-T (incorporating training) results on GSM8K, AIME24, and GPQA-Diamond
with Qwen3-1.7B. “Ours” and “Ours-T” denote our ConciseHint and ConciseHint-T, respectively.
The embeddings are learned on MixChain-Z-GSMS8K.

Method GSMSK \ AIME24 \ GPQA-Diamond
Accuracy Token usage Accuracy Tokenusage Accuracy Token usage
Ori. 90.87 2458 39.33 13570 39.39 9223
Ours 90.04 1237 42.67 11859 37.37 5105
Ours-T (y = 0.7) 90.19 996 39.00 11029 37.37 4279
Ours-T (v = 1.0) 88.01 742 40.67 10223 35.05 3776

Incorporating hint training to further enhance the efficiency: ConciseHint-T results. We train
the hint embeddings on the MixChain-Z-GSM8K (Ma et al., 2025) dataset, which consists of concise
question-response pairs built on GSM8K training dataset. Table 2 shows the results of ConciseHint-T.
At~y = 0.7, ConciseHint-T achieves additional token reduction over ConciseHint while preserving
the accuracy. Increasing y to 1 yields a more substantial reduction, even though at the cost of accuracy
degradation on GPQA Diamond. These results indicate that the trained embeddings have effectively
captured the concise patterns inherent in the concise reasoning data, thereby enhancing the efficiency
over the manually designed hint. Moreover, the results demonstrate that the learned embeddings
are not only effective on in-domain data (GSMS8K) but also generalize well to out-of-domain data
(AIME24 and GPQA Diamond).

Under review as a conference paper at ICLR 2026

o
©
@

@

Gamma Values
gamma=0 (ConciseHint)
gamma=0.6
gamma=0.7

Accuracy
@
©
)

gamma=0.8
v gamma=0.9

@
0o
)

Accuracy

Gamma Values
gamma=0 (ConciseHint)
gamma=0.6

Accuracy

gamma=0.7

gamma=0.8
gamma=0.9

Gamma Values
gamma=0 (ConciseHint)
gamma=0.6
gamma=0.7

gamma=0.8
gamma=0.9

gamma=1 (ConciseHint-T) gamma=1 (ConciseHint-T)

gamma=1 (ConciseHint-T)

o)
©
<)

0| #
742 805 898 996
Token Number

10 15,
1165 1237 10141 10516 11029 11628 1185 3776

Token Number

3973 41734279 879

Token Number

5105

(a) GSMSK (b) AIME24 (¢) GPQA-Diamond
Figure 3: Controllability curves obtained by adjusting v on Qwen3-1.7B. Different scattered points

represent different v values.

Figure 3 shows the controllability results by adjusting v in Equation (4). On all datasets, a higher v
value always leads to lower token usage. Additionally, it shows that shorter reasoning chains can
sometimes achieve higher accuracy, indicating that a longer reasoning chain does not necessarily lead

to better performance (Ma et al., 2025).

Table 3: The ablation study on the selection of the injection interval of ConciseHint.

Model Dataset Inject. interval ~ Accuracy% Token usage
Ours (adaptive) 69.67 9996
AIME24 Fixed 64 61.67 9941
Qwen3-8B Fixed 128 66.67 9757
Ours (adaptive) 95.51 935
GSM8K Fixed 64 95.65 908
Fixed 128 95.45 933
Ours (adaptive) 67.00 9255
AIME24 Fixed 64 45.33 6598
Qwen3-4B Fixed 128 63.33 9036
Ours (adaptive) 94.75 839
GSM8K Fixed 64 93.42 763
Fixed 128 94.44 835

4.3 ABLATION STUDIES

Through ablation studies, we demonstrate the necessity of adaptively controlling the injection intensity
based on the complexity (Equation (1)), and the necessity of dynamically determining the position of
hint injection (Equation (3)). We also present corresponding cases to make it clearer.

The necessity of adaptively controlling the injection intensity. Recall that our method continuously
scales up the injection interval to make it positively correlated with the current length. This strategy
avoids excessive intervention in complex problems while ensuring a high intensity of intervention
in easy problems. We use Table 3 to quantitatively demonstrate it, where “Fixed” denotes that the
injection interval is set to the fixed value, and the injection intensity is inversely proportional to the
interval. We conduct experiments on AIME24 and GSM8K, as their complexity levels differ a lot.
From the results, we can conclude that a high intensity of hint injection impairs the performance
of complex queries, but has little effect on simple queries. For example, using the fixed interval
of 64 significantly decreases the accuracy of Qwen3-4B from 67.00 to 45.33 on AIME?24, but on
the GSMB8K, the accuracy loss is minor. And it decreases the accuracy of Qwen3-8B from 69.67 to
61.67 on AIME24, but it would even slightly improve the accuracy from 95.51 to 95.65 on GSM8K.
Therefore, to avoid performance degradation, it is necessary to relieve the injection intensity for
complex queries. In the circumstances where we can know the approximate complexity of a given
query in advance, we can just set a larger fixed interval for those complex queries. For example, we
know the AIME?24 is a challenging benchmark. However, it is intractable to precisely measure the
complexity of a wild query, and we do not want to turn it into a hyper-parameter selection problem.

Under review as a conference paper at ICLR 2026

Table 4: The ablation study on the selection of the injection position of ConciseHint. The prefilling
ratio denotes the ratio of tokens to be prefilled after hint injection.

Model Dataset Inject. postion Accuracy% Token usage Prefilling ratio%
Our Dynamic 55.56 3880 0.0 to 0.8 (dynamic)
. At the tail 42.93 1321 0.0
Qwen3-8B GPQA-Diamond 1 o pigdle 55.05 4443 0.5
At the head 58.95 3798 1.0

Therefore, adaptively adjusting the interval using our Equation (1) is essential, as it can automatically
adapt to different levels of complexity.

The necessity of dynamically determining the position of hint injection. We discuss the influence
of the selection of the injection position. Recall that as the reasoning proceeds, our method dynami-
cally moves the injection position from the head towards the tail, to avoid accuracy degradation and
save computing. We compare our method to three fixed position selection strategies, i.e., injecting at
the tail, in the middle, and at the head. The experimental results in Table 4 indicate that the closer
the fixed position is to the head, the better the accuracy it achieves. Specifically, injecting at the tail
induces a significant accuracy degradation, from 55.25 to 43.03. Injecting in the middle achieves
a comparable accuracy to ours, but causes the rise of token usage. Moreover, although injecting
at the head slightly improves the accuracy, it increases the computing a lot due to the 100% token
prefilling. Therefore, to avoid both accuracy degradation and computing increase, our dynamic
position selection is essential. Appendix A.2 elaborates on the analysis of prefilling costs, and shows
the extra costs of our method are negligible.

4.4 'THE STATISTICS OF TRANSITION WORDS WHEN SPEAKING CONCISELY

The appearance of transition words (i.e., “Wait” and “Alternatively”) often marks the beginning of a
new thought step for self-reflection. To investigate the impact on the self-reflection, we compare the
average number of transition words and the average interval length between two words, presented
in Table 5. It indicates that our method reduces a large proportion of redundant transition words
(i.e., redundant thought steps), thereby promoting efficient self-reflections and making the overall
reasoning more concise.

Table 5: The statistics of transition words.

GSMSK | GPQA-Diamond
Model Method #Token # Transition words ~ Transition interval # Token # Transition words Transition interval
Qwen3-4B Ori. 2381 14.97 113.42 7388 59.92 102.05
en>- Ours (Ori) 1213 439 118.66 4099 32.08 95.55
Qwen3-8B Ori. 2382 14.05 115.77 8524 66.36 105.38
wens- Ours (Ori) 1489 5.50 126.91 5400 38.17 107.92

5 CONCLUSION

We propose an in-reasoning intervention framework dubbed ConciseHint to boost the efficient
reasoning of large reasoning models. Different from mainstream methods that try to enhance the
efficiency before the actual reasoning, we highlight a promising paradigm of performing intervention
during the generation of the reasoning to make it more concise. ConciseHint injects learnable
hints (manually designed or learned on the concise data) into the reasoning process to encourage
conciseness. To avoid accuracy degradation for complex queries due to excessive hints, ConciseHint
adaptively controls the injection intensity according to the complexity of the query. Besides, it
dynamically adjusts the injection position to achieve a good computing-accuracy balance. We
conduct experiments on GSM8K, AIME24, and GPQA-Diamond benchmarks with the state-of-the-
art reasoning models DeepSeek-R1 and Qwen3 series. The results demonstrate that ConciseHint
effectively improves the reasoning efficiency while maintaining the performance well, indicating that
the in-reasoning intervention is a promising direction for boosting reasoning efficiency. Moreover,
the results demonstrate that ConciseHint can serve as a flexible plugin that seamlessly integrates with
existing methods to further enhance efficiency.

Under review as a conference paper at ICLR 2026

REFERENCES
Alibaba. https://gwenlm.github.io/blog/gqwen3/, 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
transactions on intelligent systems and technology, 15(3):1-45, 2024.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

MAA Committees. https://artofproblemsolving.com/wiki/index.php/AIME_
Problems_and_Solutions., 2024.

Google Deepmind. https://storage.googleapis.com/model-cards/documents/
gemini-2.5-pro-preview.pdf, 2025.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step. arXiv preprint arXiv:2405.14838, 2024.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903, 2025.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In /CLR 2025 Workshop on
Foundation Models in the Wild, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R
Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting. arXiv
preprint arXiv:2505.18822, 2025.

10

https://qwenlm.github.io/blog/qwen3/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf

Under review as a conference paper at ICLR 2026

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199-22213, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought? a
token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045-3059, 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Yue Liu, Jiaying Wu, Yufei He, Hongcheng Gao, Hongyu Chen, Baolong Bi, Jiaheng Zhang, Zhiqi
Huang, and Bryan Hooi. Efficient inference for large reasoning models: A survey. arXiv preprint
arXiv:2503.23077, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqgiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun.
Self-training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730—
27744, 2022.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpga: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476-483. IEEE, 2024.

11

Under review as a conference paper at ICLR 2026

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models. arXiv
preprint arXiv:2503.04472, 2025.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419, 2025.

Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi Zhou.
Wait, we don’t need to” wait”! removing thinking tokens improves reasoning efficiency. arXiv
preprint arXiv:2506.08343, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,

Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ABLATION STUDY AND ANALYSIS OF HYPER-PARAMETERS

In the main experiments, we set a and (3 to 128 and 0.2, respectively, and find that it works well
across different benchmarks and models. Here, we demonstrate the principles behind this choice and
systematically investigate the influence of different values of our hyper-parameters e and g. Figure 4
shows the ablation results of 3, from which we can obtain the following observations:

* When § is greater than 0.2, the improvement in accuracy brought by further increasing beta
is not significant.

* When S is less than 0.1 (especially equal to 0), it will cause an obvious accuracy degradation
on difficult benchmarks (AIME24 and GPQA-Diamond).

It indicates the performance will not be sensitive to /3, as long as it is not excessively small. Therefore,
B should be greater than a certain threshold, e.g., > 0.2 in our settings. So, we set 5 to 0.2 in our
main experiments.

95.50 1500 72 13000 58 5400
—e— Accuracy (%) —e— Accuracy (%) —e— Accuracy (%)
-= Num of Tokens

1450 70 5200

-= Num of Tokens

-®- Num of Tokens 12500

1400 ,, 5000 ,,

S
S

1350 & 4800
3
1150(

1300 i 4600
S

Num of Tokens

Accuracy (%)
2
Num of Token:

1250 § 11000 4400

1200 % 4200

10500

93.75 1150 60 4000
10000
93.50 1100 58 42 3800
00 01 02 03 04 05 06 0.7 08 0.0 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08

Value of Value of § Value of

(a) GSM8K (b) AIME24 (c) GPQA-Diamond

Figure 4: Ablation study of S on GSM8K, AIME24, and GPQA-Diamond with Qwen3-4B. The
black line denotes the accuracy of the original reasoning.

Table 6 shows the results of different v, from which we observe:

* A larger o generally induces a greater number of output tokens and a better accuracy.

» The impact of v on accuracy is more significant on difficult benchmarks (GPQA-Diamond)
than on simple benchmarks (GSM8K).

Therefore, to ensure conciseness on easy benchmarks, o should be set to a small value (e.g., 128
and 256). Besides, a should not be excessively small (e.g., 64 or less), aiming to obtain a good

accuracy-efficiency balance for difficult benchmarks.

Table 6: Ablation study of & on GSM8K and GPQA-Diamond with Qwen3-4B.

o GSM8K GPQA-Diamond
Acc (%) #Tokens Acc (%) #Tokens
64 94.78 1062 51.92 3920

128 94.74 1213 52.73 4099
256 94.74 1370 53.54 4347
512 94.81 1571 53.43 4675
1024 94.92 1851 53.74 4986

A.2 THEORETICAL AND EMPIRICAL ANALYSIS FOR INJECTION COSTS

The extra costs of injecting hint derive from the prefilling of tokens after the injection position. We
use Figure 5 to visualize this process. According to our ConciseHint algorithm (Algorithm 1), in
each iteration, we first generate the text 7" and meanwhile cache tokens in 7" (marked in green). Then,
we inject the hint into 7", which makes the cached KV values after the injection position invalid

13

Under review as a conference paper at ICLR 2026

_________ L <
(! Vi :)
5 s o s s R s before injection
3 inject ‘
EEEEEVA A B E after injection
1\ Thint J
‘ Y
Invalid KV cache after injection T'
@prefilling: A A M. HH = A A BE..EE
Thint T | = A cached tokensl
@decoding hint: A A hint [A non-cached |
generate
@decoding next T: = ~JAA - ‘ next T
Cost analysis for injection | relative injection costs = (1) - @)/ 3]

Figure 5: Visualization of cost analysis for hint injection. Green and orange represent cached and
non-cached tokens, respectively. The rectangles and triangles represent common and injected hint
tokens, respectively.

0.0025 +

0.0020 1

0.0015 1

tia t_rel

0.0010 4

0.0005 1

0.0000 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Injection Index

Figure 6: Empirical evaluation of the relative latency on AIME24 with Qwen3-4B. The x-axis
represents the injection index, and the y-axis represents the relative latency caused by this hint
injection. Injection index=N means that we have previously injected N-1 hints in this reasoning, and
the current one is the N-th hint.

End-to-end latency on GSM8K End-to-end latency on GPQA-Diamond
4.0 3000 16 9000
mmm Latency (s) = Latency (s)
357 5,3 S == Token Num 2500 1411364400 == Token Num 8000
5 7000
12 11116113

2000 o 6000 o
g 210 9.09 5180 El
A 50002,
1500 g & 8 7.27 4099 g
g g 4000
S S 6 ﬁ

1000 = 3000

4 2000

500 .
2 1000
" " " 0 0 " " " 0
Ori Beconcise Prompt Ours (Ori) Ours (Prompt) Ori Beconcise Prompt Ours (Ori) Ours (Prompt)
Methods Methods
(a) GSM8K (b) GPQA-Diamond

Figure 7: End-to-end latency of Qwen3-4B on GSM8K and GPQA-Diamond. The vLLM (Kwon
et al., 2023) library is employed to perform inference. The data is collected on NVIDIA RTX 6000
with a batch size of 64.

14

Under review as a conference paper at ICLR 2026

(marked in orange). So, when generating the next token, these KV values need to be recomputed,
like a prefilling stage. Let ¢, denote the latency of the prefilling stage. Based on Algorithm 1, the
number of tokens needing prefilling is 7, — p (for simplicity, we ignore the length of the hint, as
it is short). On the other hand, we also save time due to injecting tokens, as these tokens appear
immediately without token-by-token decoding, and they also account for the total number of tokens.
Let t4ec_nint denote the saving time. Therefore, the equivalent absolute latency caused by each hint
injection is: ¢jqt_abs = tpre — tdec_hint. As is well known, the prefilling is usually much faster than
token-by-token decoding. So, the values of t;,+ 4ps are usually low. Besides, a more meaningful
metric is the relative latency, i.e., tjq¢_rei = t’z:z::ﬂ , where tgec_text 1 the latency of generating the
text T in the subsequent iteration. ¢;,;_..; measures the proportion of extra latency w.r.t the original
generation latency. The relative latency is low, which is also because the decoding is more costly.

Empirical evaluation of the relative latency #;4;_r¢; 1S shown in Figure 6, which indicates the extra
costs of our ConciseHint are negligible (less than 0.3%).

Empirical end-to-end latency evaluations are presented in Figure 7, which demonstrates that our
method significantly reduces the actual reasoning latency. For example, on GSM8K, Ours (Ori)
reduces the latency from 3.23s to 1.68s, and Ours (Prompt) further reduces it to only 1.00s.

A.3 CASE STUDIES

We present case studies in Figure 8 to demonstrate the ablation studies more clearly, showing how
the injection intensity and position affect the reasoning. The upper panel shows a sample from
AIME?24 benchmark with Qwen3-4B when the injection interval is fixed to 64, leading to a high
hint intensity (corresponds to row 9 in Table 3). We can see that the model directly terminates the
output after generating “Rotation by 135° (3/8 of a full rotation)” and gives no final answer under
the intensive hint, resulting in a significant accuracy degradation. The lower panel shows a sample
from GPQA-Diamond benchmark with Qwen3-8B when the hint is injected at the tail (corresponds
to row 3 in Table 4). On the first query, the model suddenly ends the thinking after “Let me recall:
benzoquinone has two carbonyl groups”, and then gives its final answer, and this sort of insufficient
thinking will reduce the accuracy. On the second query, the model repeats the text between two
adjacent hints, i.e., “Step-by-step explanation: stepl... step2... step3”. The underlying reason lies
in the fact that generating tokens immediately following the hint predisposes the model to lazily
recycle textual outputs previously generated following the last hint, which will harm the performance.
Therefore, moving the injection position forward can alleviate this problem, which leaves enough
tokens after the hint to make the subsequent generation stable.

A.4 THE USE OF LARGE LANGUAGE MODELS

In this paper, including the main body and appendix, large language models are used solely to polish
writing, and only for a small portion of sentences.

15

Under review as a conference paper at ICLR 2026

Intensive hint for complex query

Q: Each vertex of a regular octagon is independently colored either red or blue with equal
probability. The probability that the octagon can then be rotated so that all of the blue vertices
end up at positions where there were originally red vertices is % where m and n are relatively
prime positive integers. What is m+n?

Reasoning: Okay, so | need to find the probability that, after coloring each vertex
of a regular octagon either red or blue... Then, express this probability as a reduced fraction
m/nand findm+n ... Wait, for example, if we have a rotation r with
orbit size k, then for each vertex in the orbit, if it is blue... The cycle structure is 2
cycles of length 4. Therefore, the number of colorings is (F_{3} + F_{5})*2 = (2 + 5)A2 = 722 = 49.
Rotation by 135° (3/8 of a full rotation) <directly end the output>

Position at the tail

Q: Compounds that have the same molecular formula but are different in their structural
arrangement are known as isomers... What is the correct option to this question?

Reasoning: Okay, let's tackle this question step by step... Let me recall: benzoquinone has two
carbonyl groups <end thinking and give the final answer> The correct answer is C.

Q: How many of the following compounds will exhibit optical activity?... What is the correct
option to this question?

Reasoning: Okay, let me try to figure out how many of these compounds exhibit optical
activity... Step-by-step explanation: stepl... step2... step3... Step-by-step
explanation: stepl... step2... step3... Step-by-step explanation: stepl... step2... step3...
<repeat the text between adjacent hints> The correct answer is D.

Figure 8: Case studies for using intensive hints for complex queries and injecting the hint at the tail
of the original text. Samples from AIME24 and GPQA-Diamond. The orange bar represents the
injected hints.

16

	Introduction
	Related Works
	Reasoning models and the inefficiency issue
	Efficient methods for reasoning models

	The Proposed ConciseHint Framework
	Experiments
	Experimental setup
	Main results.
	Ablation studies
	The statistics of transition words when speaking concisely

	Conclusion
	Appendix
	Ablation Study and Analysis of Hyper-parameters
	Theoretical and Empirical Analysis for Injection Costs
	Case studies
	The Use of Large Language Models

