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ABSTRACT

Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and
OpenAI o1 series have achieved notable performance enhancements on complex
reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT).
However, a critical issue is their tendency to produce excessively verbose reasoning
processes, leading to the inefficiency problem. Existing literature on improving
efficiency mainly adheres to the before-reasoning paradigms such as prompting
and reasoning or fine-tuning and reasoning, but ignores the promising direction
of directly encouraging the model to speak concisely by intervening during the
generation of reasoning. In order to fill the blank, we propose a framework
dubbed ConciseHint, which continuously encourages the reasoning model to speak
concisely by injecting learnable hints (manually designed or learned on concise
data) during the generation of the reasoning. Besides, ConciseHint is adaptive to the
complexity of the query by adaptively adjusting the hint intensity, which ensures
it will not undermine model performance. Experiments on the state-of-the-art
LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method
can effectively produce concise reasoning while maintaining the performance well.
Moreover, we show that ConciseHint is flexible and can be seamlessly integrated
with existing methods to further push the upper bound of the efficiency.

1 INTRODUCTION

Reasoning ability is significant for large language models (LLMs) (Liu et al., 2024; Yang et al., 2024;
Grattafiori et al., 2024; Hurst et al., 2024; Ouyang et al., 2022) to execute effectively across a wide
range of complex tasks (Zhao et al., 2023; Chang et al., 2024; Qu et al., 2025; Hao et al., 2023; Wei
et al., 2022), including arithmetic reasoning, commonsense reasoning, etc. Chain of thought (Wei
et al., 2022; Kojima et al., 2022) (CoT) is the most popular manner to enhance the reasoning ability
for LLMs by explicitly generating intermediate reasoning steps. Recently, state-of-the-art reasoning
models (e.g., Gemini-2.5 (Deepmind, 2025), OpenAI-o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025)) have internalized the chain-of-thought paradigm instead of few-shot (Wei et al., 2022)
or zero-shot prompting (Kojima et al., 2022).

Although large reasoning models (LRMs) with CoT demonstrate remarkable performance, a critical
limitation lies in the inefficiency of their reasoning process (Qu et al., 2025; Liu et al., 2025; Sui
et al., 2025; Feng et al., 2025; Han et al., 2024). Typically, the output of reasoning models consists of
far more tokens compared to common LLMs, due to the detailed and usually verbose intermediate
reasoning steps, leading to substantial computational costs and high inference latency. For example,
LRMs usually present unnecessary coherence tokens (Su et al., 2025) or perform redundant self-
checks (Qu et al., 2025; Fu et al., 2025).

To improve the efficiency by making the reasoning model speak more concisely, mainstream methods
follow the two paradigms: (i) Prompting in the input stage: Adding extra control prompts (Renze &
Guven, 2024; Han et al., 2024; Lee et al., 2025; Aytes et al., 2025) like “Be concise.” to the model at
the input stage, and then perform the reasoning. (2) Finetune-and-use: Internalizing the conciseness
by optimizing the model with supervised fine-tuning (SFT) (Xia et al., 2025; Munkhbat et al., 2025;
Ma et al., 2025) or reinforcement learning (RL) (Shen et al., 2025; Luo et al., 2025), and then perform
the reasoning. They don’t directly intervene during the reasoning stage when the model generates
tokens one by one. Therefore, an orthogonal and largely unexplored question arises: Is it possible
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Query: A robe takes 2 bolts of blue fiber and half that much white fiber.  How many bolts in total does it take?

Control prompt Input

LRMs

In-reasoning
Intervention

Model Optimization
(SFT/RL)

Before 
reasoning

Optimization
(Previous)

Input

ConciseHint:
(Ours)

Original Reasoning (2266 tokens)

Verbose and slow…

⨁

Or
LRMs

Efficient!

Okay, let me try to figure out this problem. So, the question is about how many bolts of fiber are needed for a robe <omitted>
Wait, let me make sure I didn‘t misinterpret the question. The problem says “half that much white fiber”   <omitted>
Wait, is there anything else I need to consider? Let me check again. The “that much” refers to the blue fiber  <omitted>
Wait, the question is asking for how many bolts in total does it take. So, answer is 3. But let me check again  <omitted>
Wait, maybe “half that much” is half of the total? But that would be different. Let me think. If the total is 2 bolts <omitted>
</think> <Conclusion> The final answer is \boxed{3}.

Short reasoning (701 tokens)
Okay,                 let me try to figure out this problem. So, the question is
<omitted>
Wait, let me check                if there's another possible interpretation 
<omitted>
</think> <Conclusion> The final answer is \boxed{3}.

hint

hint

Short reasoning (1201 tokens)
Okay, let me try to figure out this problem. So, the question is about
<omitted>
Wait, let me check that interpretation. If that refers to the blue fiber
<omitted>

Wait, let me check again. Maybe the problem is trying to trick me? 
<omitted>
</think> <Conclusion> The final answer is \boxed{3}.

hint (learnable) hint

Inject hint

Figure 1: Previous works mainly enhance conciseness before the actual reasoning (i.e., adding the
control prompt or optimizing the model via SFT/RL), while we focus on intervening during the
reasoning process to encourage conciseness, i.e., in-reasoning intervention. ConciseHint achieves
this goal by continuously injecting learnable hints during the generation.

to guide the reasoning model to speak more concisely by intervening during the generation of the
intermediate reasoning steps? We point out two key points needed to answer this question: one is to
design an approach to enable effective intervention during reasoning, and the other is to select an
optimal intensity of intervention adaptively to the complexity of a given query.

To fill the blank, we propose ConciseHint, which performs intervention during the generation of
reasoning, encouraging the model to speak concisely by injecting hints, as illustrated in Figure 1.
Specifically, ConciseHint continuously influences the reasoning by injecting the hint that can either
be a manually designed text (e.g., “make answer concise!”) or continuous embeddings learned on
a concise dataset. Both types of hints can encourage the subsequent token generation to be more
concise. Trained on concise data, the learned hint can capture concise patterns inherent in the data,
thereby further enhancing the efficiency over the manual hint. Besides, the controllability of the
reasoning length can be easily achieved by interpolating in the embedding space. Additionally,
ConciseHint adaptively adjust the injection intensity according to the complexity of the query, as
easy queries can usually tolerate a larger compression ratio of reasoning than complex ones. This
complexity-adaptive strategy facilitates a good efficiency-accuracy balance by employing a lower
hint intensity for complex queries and a higher intensity for easy ones. Moreover, ConciseHint
dynamically adjusts the position of the injection to ensure a good computing-accuracy balance.

To evaluate ConciseHint, we conduct experiments on the state-of-the-art large reasoning models
(DeepSeek-R1 (Guo et al., 2025) and Qwen-3 (Alibaba, 2025) series) with a range of benchmarks
(AIME24, GSM8K, and GPQA-Diamond) with varying complexity levels. Experimental results
indicate that our in-reasoning intervention framework can effectively improve the reasoning efficiency
while maintaining the model performance well. Moreover, they also demonstrate that ConciseHint
can serve as a flexible plugin that can be seamlessly integrated with existing methods to further
enhance the efficiency, effectively pushing the upper bound of the efficiency.

2 RELATED WORKS

2.1 REASONING MODELS AND THE INEFFICIENCY ISSUE

The emergence of chain-of-thought (Wei et al., 2022; Kojima et al., 2022) endowed LLMs with
powerful reasoning ability through explicitly generating intermediate reasoning steps. Initially,
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vanilla LLMs such as GPT-4o (Hurst et al., 2024) and PaLM (Chowdhery et al., 2023) can obtain the
enhanced reasoning ability by few-shot (Wei et al., 2022) or zero-shot (Kojima et al., 2022) prompting.
Recently, large reasoning models such as Gemini-2.5 (Deepmind, 2025), OpenAI-o1 (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) have internalized the reasoning ability by supervised
fine-tuning (SFT) and reinforcement learning (RL), no longer needing manual prompting. While
demonstrating superior performance compared to common LLMs, reasoning models incur high
computational costs due to the detailed and usually verbose reasoning process (Qu et al., 2025;
Zhao et al., 2023; Chang et al., 2024), leading to inefficiency in reasoning. For example, substantial
works point out that reasoning models usually overthink simple queries (Qu et al., 2025; Chen et al.,
2024; Shen et al., 2025), generate verbose multiple rounds of self-check (Qu et al., 2025; Fu et al.,
2025), and allocate a substantial proportion of tokens to support textual coherence (Su et al., 2025)
rather than the core reasoning advancement. These sorts of inefficiency issues result in the waste of
computational resources and energy.

2.2 EFFICIENT METHODS FOR REASONING MODELS

Recently, researchers have paid attention to alleviating the inefficiency of large reasoning models.
Existing methods can be roughly divided into three groups (Qu et al., 2025), i.e., training-free
methods, SFT-based methods, and RL-based methods. SFT-based methods either fine-tune the
reasoning model to internalize the concise reasoning patterns on the curated concise datasets (Xia
et al., 2025; Munkhbat et al., 2025), or replace explicit token generation in the reasoning process
by predicting answers based on internal latent representations (Deng et al., 2024; Hao et al., 2024).
RL-based methods usually incorporate the length constraint into the reward function to encourage
conciseness (Shen et al., 2025; Luo et al., 2025), or teach the model “when to think” (Huang et al.,
2025; Fang et al., 2025; Zhang et al., 2025). In contrast, training-free methods do not involve training,
which is easy to use and can serve as a plug-in. For example, prompt-based methods (Renze &
Guven, 2024; Han et al., 2024; Aytes et al., 2025) add control prompts to the user input to encourage
answering concisely. Early exit methods (Fu et al., 2025; Yang et al., 2025) terminate the thinking in
advance when meeting certain confidence conditions.

The previous literature mainly conforms to the paradigm of prompting or optimizing the model before
using it to perform reasoning generation, and does not dynamically intervene in the model during
the token generation for reasoning to make it speak more concisely. In this work, we aim to explore
whether we can enhance the conciseness by continuously exerting influence during the reasoning.

3 THE PROPOSED CONCISEHINT FRAMEWORK

In this section, we elaborate on our proposed ConciseHint that encourages models to speak concisely
by continuously and adaptively exerting influence on the reasoning process. ConciseHint injects
learnable hints into the reasoning process to enhance efficiency. To avoid excessive intervention in
complex queries while maintaining intensive intervention for easy queries, ConciseHint adaptively
controls the injection intensity, ensuring it is negatively correlated with the complexity. To avoid
compromising accuracy and achieve computational savings, ConciseHint dynamically determines the
injection position, from head to tail progressively. Both manual and learned hints can encourage the
subsequent reasoning to be more concise. Even though the manual hint (denoted as ConciseHint) can
already achieve significant efficiency improvement in a training-free way, the learned hint trained
on concise data (denoted as ConciseHint-T) can further enhance the efficiency by capturing concise
patterns inherent in the data. Controllability of the reasoning length can be easily achieved by
interpolating in the embedding space. The overall framework is presented in Figure 2.

ConciseHint continuously injects the hint in a complexity-adaptive way. Specifically, ConciseHint
continuously injects the hint like “make answer concise!” in the reasoning process. For instance, if
the original text is “Okay, let me try to figure out this problem. The problem says a robe takes 2 bolts
of blue fiber and half that much white fiber” will be modified to “Okay, make answer concise! let me
try to figure out this problem. The problem says a robe takes 2 bolts of blue fiber and half that much
white fiber”. Injecting the hint can encourage the following reasoning to be more concise. However, a
critical problem is how to select an optimal injection intensity for a given query. An excessively high
injection intensity will harm the accuracy, particularly for complex queries, while a low intensity will
decrease the efficiency improvement (see Table 3 in the ablation study). We propose to tackle this
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hint
“make answer concise!”

manually 
designing

Manually design hint

Learn hint embeddings 
on concise data

1140 tokens2266 tokensNo hint

concise 
reasoning data

Inject hint

concise data
with hints

Construct data

hint
initial

 hint embeddings

hint-tuning 
with NTP

hint
learned 

hint embeddings

Efficiency

Efficiency

LRMsQuery
Input

ConciseHint
Generate
𝜏!	tokens

Original generated text T

Inject concise hint

T[0:p] T[p: 𝜏%-1]

Continue to 
generate

Finish 
reasoning

hint learnable concise hint

hint

The reasoning process 
with ConciseHint

𝜏%=𝛼 + 𝛽 ' 𝑙%
complexity adaptive

Plug-and-play

No ConciseHint

𝛾=0

1140 
tokens

680
tokens
𝛾=1

Efficient Learnable Controllable

From no hint to manual and learned hints

Figure 2: The illustration of ConciseHint(-T) framework. Upon obtaining τk, the LRM generates
the next τk tokens, injects the hint, and updates lk and τk in sequence, repeating this cycle until the
reasoning is finished. The corresponding pseudo-code is shown in Algorithm 1. There are two ways
of obtaining the hint. Firstly, we can manually design the text with expertise and prior knowledge.
Secondly, we can train the hint embeddings on concise reasoning data with SFT in a Next-token
Prediction (NTP) way, which can further enhance the efficiency and acquire the controllability.

problem from a complexity-adaptive perspective. We model the control of the injection intensity as
the selection of the injection interval, i.e., the number of tokens between two adjacent injections. We
propose a complexity-adaptive and dynamic interval control mechanism, formulated as follows:

τk = α+ β · lk, α > 0, β > 0, (1)

where τk is the current injection interval. lk denotes the current length of the reasoning process, i.e.,
the number of current output tokens, which serves as a complexity indicator herein. α is the basic
length of the injection interval, and β is a positive coefficient to control the strength of adaptivity.
Every time τk is obtained, the model will generate the next τk tokens, inject the hint, and update lk
and τk in sequence. This cycle is repeated until the reasoning process is completed. The injection
interval τk is a linear function of the current length, which indicates that the hint interval will increase
with the current reasoning length. Here, we hold a prior that the reasoning length of a query is
approximately positively correlated with its complexity (Muennighoff et al., 2025; Lee et al., 2025),
and the intuitive assumption that easy queries can tolerate a larger compression ratio than complex
ones. When the current length lk is small, the injection interval is set to a small value, resulting
in a higher hint intensity. The reasoning of easy queries will complete in a short length, such as
hundreds of tokens, so their average hint intensity is high, ensuring a high level of conciseness. If the
length continues to increase, it will indicate that this query should be complex rather than easy, so
Equation (1) accordingly relieves the hint intensity by increasing the injection interval τk, avoiding
excessive hinting that harms the accuracy. This adaptive strategy avoids manually setting the injection
interval based on precise estimation of the complexity, as it is usually intractable.

The selection of the hyperparameters α and β. α should be set to a small value to ensure
conciseness for easy queries, as they can tolerate high injection intensity. Empirical results show the
performance is not sensitive to β, as long as it is not excessively small. Detailed ablation study and
discussion about α and β can be found in Appendix A.1. In all our experiments, we fixed α to 128 (a
small value) and β to 0.2 to avoid manual hyper-parameter tuning, and we find it always works well
for various models and benchmarks.
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The dynamic selection strategy for the hint injection position. Another problem is how to select
the position to inject the hint. Let T denote the original generated text whose length is τk, p denote
the position of injection, and Thint denote the hint. Then, the modified text after hint injection will
be:

T ′ = T [0 : p] + Thint + T [p : τk − 1], p ∈ [0, τk − 1]. (2)

We reveal two rules about the selection of injection position p: (i) p should not be too close to τk − 1
to avoid accuracy degradation. Concretely, if p is very close to τk − 1, the injected hint will approach
the tail of the generated text. In this case, we observe that the subsequent generation will soon
terminate the thinking or just lazily repeat the text generated after the last hint (see case studies in
Appendix A.3), which significantly undermines accuracy, as shown in Table 4. (ii) p should not be
too close to 0. Although injecting the hint into the head solves the accuracy degradation problem,
it introduces extra computing costs caused by prefilling the text between the injection position and
the end, i.e., T [p : τk − 1]. Therefore, to ensure a good computing-efficiency balance, we propose a
dynamic selection strategy for the position p, formulated as follows:

p = τk ∗min( (τk − α)/1024, 0.8 ), (3)

where τk is the current injection interval and α is the basic injection interval length, the same as
those in Equation (1). During the early reasoning, τk is small, so the injection position is close to the
head, not suffering from the aforementioned accuracy degradation. As the reasoning proceeds, τk
becomes larger, the injection position moves towards the tail to save prefilling costs. Meanwhile, we
restrict the maximum position to τk · 0.8 to prevent it from being too close to the tail, avoiding the
accuracy degradation. The detailed theoretical and empirical analysis for injection costs can be found
at Appendix A.2, which indicates that the extra costs of our strategy are negligible.

Algorithm 1 The proposed ConciseHint algorithm.

1: Input: input prompt P and model M . hint Thint, basic interval length α, and coefficient β.
2: τk = α, lk = 0. Ok = P ▷ Initialize injection interval, current length, and current output.
3: while True do
4: T , finish reason = client.completions.create(model= M , prompt= Ok, max token len= τk ) ▷

Call model generation.
5: p = τk ∗min( (τk − α)/1024, 0.8 ) ▷ Compute the injection position.
6: T ′ = T [0 : p] + Thint + T [p : τk − 1], p ∈ [0, τk − 1]. ▷ Inject the hint.
7: Ok = Ok + T ′ ▷ Update current output.
8: lk = lk + τk ▷ Update current length.
9: τk = α+ β · lk ▷ Update injection inverval.

10: if finish reason is Stop then break
11: end if
12: end while
13: Return Ok ▷ Get the overall answer.

ConciseHint-T: training the embeddings of hint on concise reasoning data to learn concise pat-
terns. Even though the training-free ConciseHint effectively improves the efficiency, further training
the hint embeddings can bring additional token reduction. Concretely, firstly, we prepare a dataset
consisting of questions and corresponding concise reasoning responses. Next, we construct modified
reasoning responses by injecting hint embeddings to be trained into the original responses at a fixed
interval. We initialize the hint embeddings as the embeddings of our manually designed hint (Eori)
used in ConciseHint. Finally, we conduct supervised fine-tuning (like Prompt Tuning (Lester et al.,
2021)) on the questions and corresponding modified responses, following the next-token prediction
paradigm, and obtain the optimized hint embeddings Eoptim. We expect the hint embeddings to
learn the inherent concise patterns in the concise reasoning responses. Then, ConciseHint-T uses
the optimized hint embeddings and thus further reduces token usage. Moreover, we observe that we
can control the token usage through the interpolation between the initial hint embeddings and the
optimized embeddings. The interpolation embeddings can be derived from:
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Einterp = γ ∗Eoptim + (1− γ) ∗Eori, γ ∈ [0, 1] (4)

Controllability can be achieved by adjusting γ, where a higher value usually leads to less token
usage. γ = 1 denotes our ConciseHint-T, while γ = 0 is ConciseHint.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We validate our method on three commonly-used benchmarks for large reasoning
models, i.e., GSM8K (Cobbe et al., 2021), AIME24 (Committees, 2024), and GPQA-Diamond (Rein
et al., 2024). GSM8K(Grade School Math 8K) consists of more than 8,000 high-quality quality
linguistically diverse grade school math word problems. We use the test split containing 1,319
problems. AIME24 consists of 30 mathematical problems from the 2024 American Invitational
Mathematics Examination (AIME24), a renowned high school math competition recognized for
its difficult and thought-provoking problems. GPQA-diamond consists of 198 high-quality and
challenging multiple-choice questions written by domain experts in biology, physics, and chemistry.

Models. We evaluate our method on the state-of-the-art open-source large reasoning models including
Qwen3-8B, Qwen3-4B, Qwen3-1.7B (Alibaba, 2025), and DeepSeek-R1-14B (Guo et al., 2025),
which deliver remarkable advancements in tackling a wide range of reasoning tasks.

Baselines. The basic baseline is the original reasoning without any efficiency technique. Besides,
we include four representative efficient methods as baselines. Specifically, BeConcise (Renze &
Guven, 2024) is a commonly-used prompting-based method that appends a prompt of “Be concise”
to the input to encourage answering concisely. Besides, we obtain a stronger prompting method by
adding “Please adaptively control the answer length based on the query’s complexity. The lower
the complexity, the more concise your answer should be”. We denote it as “Prompt” for simplicity.
Moreover, we include the early-exit method Deer (Yang et al., 2025), which terminates the reasoning
when the model is confident enough. We also include NoWait (Wang et al., 2025), which prohibits
transition tokens like “wait” and “alternatively” to obtain more efficient self-reflections.

Evaluation configurations. For all experiments, we set the temperature to 0.6 and top-p to 0.95,
which is recommended in the official documentation. We report the accuracy to measure model
performance. Following mainstream works, we report the average token usage, i.e., the average
number of tokens to answer a query, to measure the efficiency. The injected hints are also counted.
Each experiment is run multiple times, and we report the average results.

4.2 MAIN RESULTS.

ConciseHint results. Table 1 shows the main quantitative results of our experiments. Ori. denotes the
original reasoning process without any efficiency technique. Ours (baseline) denotes the combination
of our ConciseHint and the baseline method. For example, Ours (Ori) means applying ConciseHint
in the original reasoning. From the experimental results in Table 1, we can derive the following two
key conclusions:

(i) When individually applied, ConciseHint can effectively improve the reasoning efficiency,
which is comparable to strong baselines. Firstly, compared to the original reasoning (i.e., Ori.),
employing ConciseHint (i.e., Ours (Ori)) can effectively reduce the token usage while maintaining
the accuracy well. For example, on the GSM8K benchmark and Qwen3-4B, Ours (Ori) reduces
48.9% tokens from 2381 to 1213, with only an accuracy loss of 0.07. On the GPQA Diamond, it
reduces 44.5% tokens from 7388 to 4099, even with an accuracy rise of 0.91. Secondly, the efficiency
improvement of Ours (Ori) is comparable to these four efficiency baseline methods. For example, on
the GSM8K benchmark and Qwen3-4B, the token usage of Ours (Ori) is less than BeConcise (1597),
Prompt (1263), Deer (1405) and NoWait (1289). By continuously injecting concise hints, our method
effectively reduces the token usage.

(ii) When integrated, ConciseHint consistently and obviously enhances the reasoning efficiency
across all baseline methods, substantially raising the upper bound of efficiency. Let us focus on
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Table 1: ConciseHint results on GSM8K, AIME24, and GPQA-Diamond with Qwen3-4B, Qwen3-
8B, and Deepseek-R1-14B. Ori. denotes the original reasoning process. Besides, we also include
BeConcise (Renze & Guven, 2024), Prompt, Deer (Yang et al., 2025), and NoWait (Wang et al.,
2025) as baselines. Ours (baseline) denotes the combination of our ConciseHint and the baseline
method. We report the accuracy and average token usage. The lowest token usage is highlighted in
bold. The red and blue numbers show the token reduction percentage over the original reasoning and
the corresponding baseline method, respectively.

Model Method GSM8K AIME24 GPQA-Diamond

Accuracy% Token usage Accuracy% Token usage Accuracy% Token usage

Qwen3-4B

Ori. 94.81 2381 64.33 11634 51.82 7388
Ours (Ori) 94.74 1213-49%

-49% 66.67 10523-10%
-10% 52.73 4099-45%

-45%

BeConcise 94.60 1597 64.33 10929 53.74 6113
Prompt 94.56 1263 63.67 10755 52.93 5180
Ours (Prompt) 94.75 839-65%

-34% 67.00 9255-20%
-14% 51.72 3190-57%

-38%

Deer 94.78 1405 64.00 10149 53.23 6878
Ours (Deer) 94.31 841-65%

-40% 65.33 8410-28%
-17% 52.31 3925-47%

-43%

NoWait 94.33 1289 59.00 10053 52.12 5246
Ours (NoWait) 94.03 857-64%

-34% 58.33 8893-24%
-12% 51.31 2730-63%

-48%

Qwen3-8B

Ori. 95.86 2382 64.67 11725 57.58 8524
Ours (Ori) 95.53 1489-37%

-37% 67.33 11228-4%
-4% 57.68 5400-37%

-37%

BeConcise 95.78 1822 66.67 11371 57.17 7466
Prompt 95.72 1353 68.00 10693 57.58 6285
Ours (Prompt) 95.51 935-61%

-31% 69.67 9996-15%
-7% 55.56 3880-54%

-38%

Deer 95.62 1223 66.33 10298 55.45 7778
Ours (Deer) 95.22 907-62%

-26% 64.67 8843-25%
-14% 55.35 5306-38%

-32%

NoWait 95.38 1406 64.83 9936 56.67 6575
Ours (NoWait) 95.06 1030-57%

-27% 64.17 9457-19%
-5% 55.56 3860-55%

-41%

DeepSeek-R1-14B

Ori. 95.03 981 63.00 9210 56.06 5038
Ours (Ori) 94.87 713-27%

-27% 61.00 7623-17%
-17% 54.65 3715-26%

-26%

BeConcise 94.92 770 63.00 8521 55.96 4739
Prompt 94.18 627 64.67 7597 55.05 4120

the comparison between Ours (baseline) and the corresponding baseline method. For each baseline
method, applying ConciseHint obviously reduces the token usage while maintaining the accuracy
well. For example, on the GSM8K benchmark and Qwen3-4B, compared to Deer, Ours (Deer)
reduces 40.1% tokens from 1405 to 841. The overall reduction ratio against the original reasoning
rises to 65%. Compared to NoWait, Ours (NoWait) reduces 33.5% tokens from 1289 to 857. The
overall reduction ratio is 64%. The results validate the flexibility and compatibility of our approach,
enabling seamless integration with various existing methods.

Table 2: ConciseHint-T (incorporating training) results on GSM8K, AIME24, and GPQA-Diamond
with Qwen3-1.7B. “Ours” and “Ours-T” denote our ConciseHint and ConciseHint-T, respectively.
The embeddings are learned on MixChain-Z-GSM8K.

Method GSM8K AIME24 GPQA-Diamond

Accuracy Token usage Accuracy Token usage Accuracy Token usage

Ori. 90.87 2458 39.33 13570 39.39 9223
Ours 90.04 1237 42.67 11859 37.37 5105

Ours-T (γ = 0.7) 90.19 996 39.00 11029 37.37 4279
Ours-T (γ = 1.0) 88.01 742 40.67 10223 35.05 3776

Incorporating hint training to further enhance the efficiency: ConciseHint-T results. We train
the hint embeddings on the MixChain-Z-GSM8K (Ma et al., 2025) dataset, which consists of concise
question-response pairs built on GSM8K training dataset. Table 2 shows the results of ConciseHint-T.
At γ = 0.7, ConciseHint-T achieves additional token reduction over ConciseHint while preserving
the accuracy. Increasing γ to 1 yields a more substantial reduction, even though at the cost of accuracy
degradation on GPQA Diamond. These results indicate that the trained embeddings have effectively
captured the concise patterns inherent in the concise reasoning data, thereby enhancing the efficiency
over the manually designed hint. Moreover, the results demonstrate that the learned embeddings
are not only effective on in-domain data (GSM8K) but also generalize well to out-of-domain data
(AIME24 and GPQA Diamond).
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Figure 3: Controllability curves obtained by adjusting γ on Qwen3-1.7B. Different scattered points
represent different γ values.

Figure 3 shows the controllability results by adjusting γ in Equation (4). On all datasets, a higher γ
value always leads to lower token usage. Additionally, it shows that shorter reasoning chains can
sometimes achieve higher accuracy, indicating that a longer reasoning chain does not necessarily lead
to better performance (Ma et al., 2025).

Table 3: The ablation study on the selection of the injection interval of ConciseHint.

Model Dataset Inject. interval Accuracy% Token usage

Qwen3-8B

AIME24
Ours (adaptive) 69.67 9996
Fixed 64 61.67 9941
Fixed 128 66.67 9757

GSM8K
Ours (adaptive) 95.51 935
Fixed 64 95.65 908
Fixed 128 95.45 933

Qwen3-4B

AIME24
Ours (adaptive) 67.00 9255
Fixed 64 45.33 6598
Fixed 128 63.33 9036

GSM8K
Ours (adaptive) 94.75 839
Fixed 64 93.42 763
Fixed 128 94.44 835

4.3 ABLATION STUDIES

Through ablation studies, we demonstrate the necessity of adaptively controlling the injection intensity
based on the complexity (Equation (1)), and the necessity of dynamically determining the position of
hint injection (Equation (3)). We also present corresponding cases to make it clearer.

The necessity of adaptively controlling the injection intensity. Recall that our method continuously
scales up the injection interval to make it positively correlated with the current length. This strategy
avoids excessive intervention in complex problems while ensuring a high intensity of intervention
in easy problems. We use Table 3 to quantitatively demonstrate it, where “Fixed” denotes that the
injection interval is set to the fixed value, and the injection intensity is inversely proportional to the
interval. We conduct experiments on AIME24 and GSM8K, as their complexity levels differ a lot.
From the results, we can conclude that a high intensity of hint injection impairs the performance
of complex queries, but has little effect on simple queries. For example, using the fixed interval
of 64 significantly decreases the accuracy of Qwen3-4B from 67.00 to 45.33 on AIME24, but on
the GSM8K, the accuracy loss is minor. And it decreases the accuracy of Qwen3-8B from 69.67 to
61.67 on AIME24, but it would even slightly improve the accuracy from 95.51 to 95.65 on GSM8K.
Therefore, to avoid performance degradation, it is necessary to relieve the injection intensity for
complex queries. In the circumstances where we can know the approximate complexity of a given
query in advance, we can just set a larger fixed interval for those complex queries. For example, we
know the AIME24 is a challenging benchmark. However, it is intractable to precisely measure the
complexity of a wild query, and we do not want to turn it into a hyper-parameter selection problem.

8
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Table 4: The ablation study on the selection of the injection position of ConciseHint. The prefilling
ratio denotes the ratio of tokens to be prefilled after hint injection.

Model Dataset Inject. postion Accuracy% Token usage Prefilling ratio%

Qwen3-8B GPQA-Diamond

Our Dynamic 55.56 3880 0.0 to 0.8 (dynamic)
At the tail 42.93 1321 0.0

In the middle 55.05 4443 0.5
At the head 58.95 3798 1.0

Therefore, adaptively adjusting the interval using our Equation (1) is essential, as it can automatically
adapt to different levels of complexity.

The necessity of dynamically determining the position of hint injection. We discuss the influence
of the selection of the injection position. Recall that as the reasoning proceeds, our method dynami-
cally moves the injection position from the head towards the tail, to avoid accuracy degradation and
save computing. We compare our method to three fixed position selection strategies, i.e., injecting at
the tail, in the middle, and at the head. The experimental results in Table 4 indicate that the closer
the fixed position is to the head, the better the accuracy it achieves. Specifically, injecting at the tail
induces a significant accuracy degradation, from 55.25 to 43.03. Injecting in the middle achieves
a comparable accuracy to ours, but causes the rise of token usage. Moreover, although injecting
at the head slightly improves the accuracy, it increases the computing a lot due to the 100% token
prefilling. Therefore, to avoid both accuracy degradation and computing increase, our dynamic
position selection is essential. Appendix A.2 elaborates on the analysis of prefilling costs, and shows
the extra costs of our method are negligible.

4.4 THE STATISTICS OF TRANSITION WORDS WHEN SPEAKING CONCISELY

The appearance of transition words (i.e., “Wait” and “Alternatively”) often marks the beginning of a
new thought step for self-reflection. To investigate the impact on the self-reflection, we compare the
average number of transition words and the average interval length between two words, presented
in Table 5. It indicates that our method reduces a large proportion of redundant transition words
(i.e., redundant thought steps), thereby promoting efficient self-reflections and making the overall
reasoning more concise.

Table 5: The statistics of transition words.

GSM8K GPQA-Diamond
Model Method # Token # Transition words Transition interval # Token # Transition words Transition interval

Ori. 2381 14.97 113.42 7388 59.92 102.05Qwen3-4B Ours (Ori) 1213 4.39 118.66 4099 32.08 95.55

Ori. 2382 14.05 115.77 8524 66.36 105.38Qwen3-8B Ours (Ori) 1489 5.50 126.91 5400 38.17 107.92

5 CONCLUSION

We propose an in-reasoning intervention framework dubbed ConciseHint to boost the efficient
reasoning of large reasoning models. Different from mainstream methods that try to enhance the
efficiency before the actual reasoning, we highlight a promising paradigm of performing intervention
during the generation of the reasoning to make it more concise. ConciseHint injects learnable
hints (manually designed or learned on the concise data) into the reasoning process to encourage
conciseness. To avoid accuracy degradation for complex queries due to excessive hints, ConciseHint
adaptively controls the injection intensity according to the complexity of the query. Besides, it
dynamically adjusts the injection position to achieve a good computing-accuracy balance. We
conduct experiments on GSM8K, AIME24, and GPQA-Diamond benchmarks with the state-of-the-
art reasoning models DeepSeek-R1 and Qwen3 series. The results demonstrate that ConciseHint
effectively improves the reasoning efficiency while maintaining the performance well, indicating that
the in-reasoning intervention is a promising direction for boosting reasoning efficiency. Moreover,
the results demonstrate that ConciseHint can serve as a flexible plugin that seamlessly integrates with
existing methods to further enhance efficiency.
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A APPENDIX

A.1 ABLATION STUDY AND ANALYSIS OF HYPER-PARAMETERS

In the main experiments, we set α and β to 128 and 0.2, respectively, and find that it works well
across different benchmarks and models. Here, we demonstrate the principles behind this choice and
systematically investigate the influence of different values of our hyper-parameters α and β. Figure 4
shows the ablation results of β, from which we can obtain the following observations:

• When β is greater than 0.2, the improvement in accuracy brought by further increasing beta
is not significant.

• When β is less than 0.1 (especially equal to 0), it will cause an obvious accuracy degradation
on difficult benchmarks (AIME24 and GPQA-Diamond).

It indicates the performance will not be sensitive to β, as long as it is not excessively small. Therefore,
β should be greater than a certain threshold, e.g., ≥ 0.2 in our settings. So, we set β to 0.2 in our
main experiments.
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Figure 4: Ablation study of β on GSM8K, AIME24, and GPQA-Diamond with Qwen3-4B. The
black line denotes the accuracy of the original reasoning.

Table 6 shows the results of different α, from which we observe:

• A larger α generally induces a greater number of output tokens and a better accuracy.

• The impact of α on accuracy is more significant on difficult benchmarks (GPQA-Diamond)
than on simple benchmarks (GSM8K).

Therefore, to ensure conciseness on easy benchmarks, α should be set to a small value (e.g., 128
and 256). Besides, α should not be excessively small (e.g., 64 or less), aiming to obtain a good
accuracy-efficiency balance for difficult benchmarks.

Table 6: Ablation study of α on GSM8K and GPQA-Diamond with Qwen3-4B.

α
GSM8K GPQA-Diamond

Acc (%) # Tokens Acc (%) #Tokens

64 94.78 1062 51.92 3920
128 94.74 1213 52.73 4099
256 94.74 1370 53.54 4347
512 94.81 1571 53.43 4675
1024 94.92 1851 53.74 4986

A.2 THEORETICAL AND EMPIRICAL ANALYSIS FOR INJECTION COSTS

The extra costs of injecting hint derive from the prefilling of tokens after the injection position. We
use Figure 5 to visualize this process. According to our ConciseHint algorithm (Algorithm 1), in
each iteration, we first generate the text T and meanwhile cache tokens in T (marked in green). Then,
we inject the hint into T , which makes the cached KV values after the injection position invalid
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Figure 5: Visualization of cost analysis for hint injection. Green and orange represent cached and
non-cached tokens, respectively. The rectangles and triangles represent common and injected hint
tokens, respectively.
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represents the injection index, and the y-axis represents the relative latency caused by this hint
injection. Injection index=N means that we have previously injected N-1 hints in this reasoning, and
the current one is the N-th hint.
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Figure 7: End-to-end latency of Qwen3-4B on GSM8K and GPQA-Diamond. The vLLM (Kwon
et al., 2023) library is employed to perform inference. The data is collected on NVIDIA RTX 6000
with a batch size of 64.
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(marked in orange). So, when generating the next token, these KV values need to be recomputed,
like a prefilling stage. Let tpre denote the latency of the prefilling stage. Based on Algorithm 1, the
number of tokens needing prefilling is τk − p (for simplicity, we ignore the length of the hint, as
it is short). On the other hand, we also save time due to injecting tokens, as these tokens appear
immediately without token-by-token decoding, and they also account for the total number of tokens.
Let tdec hint denote the saving time. Therefore, the equivalent absolute latency caused by each hint
injection is: tlat abs = tpre − tdec hint. As is well known, the prefilling is usually much faster than
token-by-token decoding. So, the values of tlat abs are usually low. Besides, a more meaningful
metric is the relative latency, i.e., tlat rel =

tlat abs

tdec text
, where tdec text is the latency of generating the

text T in the subsequent iteration. tlat rel measures the proportion of extra latency w.r.t the original
generation latency. The relative latency is low, which is also because the decoding is more costly.

Empirical evaluation of the relative latency tlat rel is shown in Figure 6, which indicates the extra
costs of our ConciseHint are negligible (less than 0.3%).

Empirical end-to-end latency evaluations are presented in Figure 7, which demonstrates that our
method significantly reduces the actual reasoning latency. For example, on GSM8K, Ours (Ori)
reduces the latency from 3.23s to 1.68s, and Ours (Prompt) further reduces it to only 1.00s.

A.3 CASE STUDIES

We present case studies in Figure 8 to demonstrate the ablation studies more clearly, showing how
the injection intensity and position affect the reasoning. The upper panel shows a sample from
AIME24 benchmark with Qwen3-4B when the injection interval is fixed to 64, leading to a high
hint intensity (corresponds to row 9 in Table 3). We can see that the model directly terminates the
output after generating “Rotation by 135° (3/8 of a full rotation)” and gives no final answer under
the intensive hint, resulting in a significant accuracy degradation. The lower panel shows a sample
from GPQA-Diamond benchmark with Qwen3-8B when the hint is injected at the tail (corresponds
to row 3 in Table 4). On the first query, the model suddenly ends the thinking after “Let me recall:
benzoquinone has two carbonyl groups”, and then gives its final answer, and this sort of insufficient
thinking will reduce the accuracy. On the second query, the model repeats the text between two
adjacent hints, i.e., “Step-by-step explanation: step1... step2... step3”. The underlying reason lies
in the fact that generating tokens immediately following the hint predisposes the model to lazily
recycle textual outputs previously generated following the last hint, which will harm the performance.
Therefore, moving the injection position forward can alleviate this problem, which leaves enough
tokens after the hint to make the subsequent generation stable.

A.4 THE USE OF LARGE LANGUAGE MODELS

In this paper, including the main body and appendix, large language models are used solely to polish
writing, and only for a small portion of sentences.
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Q: Compounds that have the same molecular formula but are different in their structural 
arrangement are known as isomers… What is the correct option to this question?
Reasoning: Okay, let's tackle this question step by step… Let me recall: benzoquinone has two 
carbonyl groups                       <end thinking and give the final answer> The correct answer is C.

Q: How many of the following compounds will exhibit optical activity?… What is the correct 
option to this question?
Reasoning: Okay, let me try to figure out how many of these compounds exhibit optical 
activity…                      Step-by-step explanation: step1… step2… step3…                      Step-by-step 
explanation: step1… step2… step3…                      Step-by-step explanation: step1… step2… step3…
<repeat the text between adjacent hints>  The correct answer is D.

 

              

Position at the tail

hint

hint hint
hint

Q: Each vertex of a regular octagon is independently colored either red or blue with equal 
probability. The probability that the octagon can then be rotated so that all of the blue vertices 
end up at positions where there were originally red vertices is mn  where m and n are relatively 
prime positive integers. What is m+n?

Reasoning: Okay, so I need to find the probability that, after coloring each vertex 
of a regular octagon either red or blue…  Then, express this probability as a reduced fraction 
m/n and find m + n                       … Wait,                       for example, if we have a rotation r with 
orbit size k, then for each vertex in the orbit, if it is blue…                       The cycle structure is 2 
cycles of length 4. Therefore, the number of colorings is (F_{3} + F_{5})^2 = (2 + 5)^2 = 7^2 = 49. 
Rotation by 135° (3/8 of a full rotation) <directly end the output>

Intensive hint for complex query

hint

hint hint
hint

Figure 8: Case studies for using intensive hints for complex queries and injecting the hint at the tail
of the original text. Samples from AIME24 and GPQA-Diamond. The orange bar represents the
injected hints.
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