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Abstract

The rapid advancement of Large Language Models (LLMs) in code generation
has raised significant attribution and intellectual property concerns. Code wa-
termarking offers a potential solution but faces unique challenges due to pro-
gramming languages’ strict syntactic constraints and semantic requirements. To
address these challenges, we introduce ACW (AST-guided Code Watermarking),
a novel adaptive framework that leverages Abstract Syntax Tree (AST) analysis
during training to learn watermark embedding strategies. Our framework iden-
tifies substitutable code components and strategically biases token selections to
embed watermarks. We also propose a novel sampling scheme that distributes
tokens between green/red lists according to semantic context, ensuring statisti-
cal distinguishability while preserving code functionality. Extensive experiments
demonstrate that ACW achieves a significant improvement in watermark detec-
tion accuracy compared to existing methods, with negligible impact on code
functionality. This adaptive framework offers a promising solution for effective
and practical code watermarking in the age of LLMs. Our code is available at:
https://github.com/TimeLovercc/code-watermark.

1 Introduction

The remarkable code generation capabilities of recent Large Language Models (LLMs) [1, 6, 21, 10,
13, 7] have fundamentally transformed software development, enabling the synthesis of complex,
human-like code across diverse programming languages and heralding a new era in automated
software development. However, this transformative technology introduces critical challenges
concerning code attribution, ownership verification, and the protection of intellectual property [35, 15].
The increasing sophistication of LLM-generated code has blurred the lines with human-written code,
significantly complicating the tracking of code provenance and the establishment of authorship [19].

To address these challenges, code watermarking, the process of embedding imperceptible yet de-
tectable patterns to verify code origin, has emerged as a vital strategy for intellectual property
protection [35]. Traditional code watermarking approaches [32] typically operate on completed code,
applying predefined transformation patterns to embed identifiers. These methods often require access
to the complete generation context and rely on limited transformation rules, making the resulting
watermarks potentially vulnerable to detection and removal. While recent work has explored on-the-
fly watermarking for LLM-generated text [15], extending these techniques from natural language to
programming languages presents significant hurdles. Unlike natural language, where variations in
word choice and sentence structure are often permissible, code modifications are severely restricted
by syntax, type systems, and the fundamental imperative to preserve program semantics.

Recent research has explored techniques like entropy-based methods and the utilization of variable
type information to embed watermarks while maintaining type safety [19, 9]. However, a significant
limitation of these approaches lies in their detection phase, which often necessitates access to the
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original LLM or the complete generation sequence to compute crucial metrics such as entropy. This
requirement severely restricts their practical applicability in real-world scenarios. This limitation
underscores a fundamental question for code watermarking design: How can we create an effective
watermarking scheme that achieves good statistical distinguishability and preserves code functionality
without requiring privileged access to the original LLM, complete token sequences, or specific model
parameters? For practical deployment, an ideal solution would depend solely on the code snippet
itself, as access to the generation context is typically unavailable.

To overcome this challenge, we posit that the key solution lies in developing an intelligent watermark-
ing model equipped with inherent programming language understanding. Such a model can identify
code locations where safe alterations are possible and determine which token modifications will main-
tain functionality. We identify positions offering multiple valid token alternatives as prime candidates
for watermark embedding. Based on this insight, we introduce our approach, ACW (AST-guided
Code Watermarking), that leverages Abstract Syntax Tree (AST) analysis during training to learn
semantically equivalent code expressions and recognize these adaptable positions. By representing
code as hierarchical tree structures that capture syntactic and semantic relationships while abstracting
away superficial details, ASTs enable modifications that yield semantically equivalent code with
different syntactic expressions, providing natural opportunities for watermark embedding without
compromising functionality. We quantify the feasibility of watermarking at these positions using
branching entropy [14] and train our model to predict high branching entropy positions as optimal
embedding locations. Subsequently, we introduce a novel sampling scheme that strategically allocates
tokens between “green” (preferred) and “red” (avoided) lists based on semantic information, prevent-
ing the inadvertent exclusion of all semantically valid tokens. During generation, LLM is biased to
preferentially select tokens from green list. For watermark detection, we employ a statistical test that
measures the ratio of green tokens within generated code snippet [15]. Our results demonstrate that
this approach achieves close or superior performance to methods that rely on privileged information.

The main contributions of this paper are: (i) We propose ACW, a novel framework that enables
practical code watermarking without requiring access to the original LLM or generation prompts
during detection. (ii) We develop an AST-guided approach to identify equivalent code expressions and
quantify the feasibility of watermarking, coupled with a parameterized model that enables efficient on-
the-fly watermark embedding. (iii) We introduce a logits-guided sampling scheme that preserves code
functionality while ensuring reliable statistical watermark detection. (iv) Comprehensive evaluations
demonstrate that ACW achieves superior performance to baseline methods.

2 Related Works

LLM Watermarking. As LLMs have demonstrated increasingly sophisticated content generation
capabilities [5, 1, 21, 10], watermarking techniques have become essential for content verification and
attribution [35, 28, 30]. Traditional approaches either modify the generated text through predefined
rules [2] or employ secondary language models for watermark insertion [33]. More recent approaches
focus on embedding watermarks directly into tokens during sampling process by modifying logits
or altering the sampling procedure [15, 18, 4]. A notable example is the green-red watermarking
scheme [15], which partitions vocabulary tokens into green and red lists and biases selection toward
green tokens during generation, enabling watermark detection through statistical testing of token
distributions. Additionally, several studies investigate the robustness of watermarks [16, 34]. Despite
these advancements, existing methods often face challenges in maintaining watermark detection
under low-entropy inputs, which are common in structured tasks such as code generation [19].

Code Watermarking. Code watermarking imposes unique challenges due to programming lan-
guages’ strict syntactic and semantic requirements. Traditional methods focus on watermarking
generated code [23], which often alter code format, such as introducing inconspicuous changes
in indentation, whitespace, or comments [11, 27, 31, 20]. Others manipulate lexical or syntactic
elements, such as renaming variables or restructuring control flow to embed watermarks [24]. Recent
approaches have explored watermarking code generated by LLMs by leveraging entropy to iden-
tify watermarking positions [19]. For example, some techniques use token entropy distributions to
guide watermark insertion [22, 19], while others propose using a type predictor to encourage the
predicted class probability [9]. However, these techniques typically require privileged access to LLM
parameters, generation probabilities, or original prompts, limiting their practical deployment.
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Threat model. We frame practical code watermarking as a three-stage protocol involving the LLM
provider, user, and detector. In this protocol, only the watermarking function (either a random number
generator or a model) and the watermark key are shared between the provider and detector, while
specific details about prompts and LLM parameters remain private [18]. In the Generation Stage, the
LLM provider needs to generate watermarked code. During the Distribution Stage, users may alter
the code through changes like paraphrasing. Finally, in the Detection Stage, the detector verifies the
code’s origin using only the watermarking function and the provided code snippet, without access to
generation history, original prompts, or model configurations.

3 The Code Watermarking Problem

Green-red watermarking scheme [15] provides a foundational framework for embedding detectable
signals in LLM-generated content. Formally, let V denote the vocabulary of the language model
with size |V|. For an input prompt with M tokens x = {x(1), x(2), ..., x(M)} and a generated code
sequence s = {s(1), s(2), ..., s(T )} where x(m), s(t) ∈ V , we denote the generated sequence at
time t as s(1:t) = {s(1), ..., s(t)}. This scheme employs a pseudorandom watermarking function
ξ : K × Vc → PV that maps a secret key k ∈ K and a context window of c preceding tokens to a
partition of vocabulary V , where PV is the set of all possible partitions of V . At each generation
timestep t, given the context window of c preceding tokens s(t−c:t) and secret key k, ξ produces:

(G(t), R(t)) = ξ(k, s(t−c:t)), (1)

where G(t) is green list with size |G(t)| = γ|V| and R(t) is red list such that G(t) ∪ R(t) = V and
G(t) ∩R(t) = ∅. During the generation, LLM computes logits l(t) ∈ R|V| over V at time t+ 1. To
embed the watermark, the partition (G(t), R(t)) generated by watermark function ξ is used to bias
the next token’s selection by adding a value δ to the logits of tokens belonging to the green list:

l̃
(t)
j =

{
l
(t)
j + δ if vj ∈ G(t)

l
(t)
j if vj ∈ R(t)

(2)

This logit biasing increases the sampling probability of green tokens, resulting in a watermarked code
sequence ŝ = {ŝ(1), ŝ(2), . . . , ŝ(T ′)}, where ŝ(t) ∈ V and T ′ may differ from T .

For watermark detection, a detector with access to the shared watermarking function ξ can reconstruct
the green and red token lists for each position in the generated code. The presence of a watermark is
then statistically evaluated using a one-proportion z-test:

z =

∑T ′

t=1 1[ŝ
(t) ∈ Gt]− T ′γ√

T ′γ(1− γ)
, (3)

which compares the observed proportion of green tokens in the generated code against the expected
proportion under the null hypothesis that no watermark is present. A sufficiently large positive z
value leads to the rejection of the null hypothesis, indicating the likely presence of a watermark.

However, directly applying this green-red watermarking scheme from the natural language domain to
code domain introduces two fundamental challenges, as illustrated in Figure 1.

Challenge 1: Constrained Watermark Placement. Embedding a watermark within code, a formal
language with strict syntax, requires identifying segments with multiple semantically and syntactically
valid alternatives. This can be conceptualized as traversing a tree during code generation, where
each node represents a potential token choice. Watermarking opportunities arise when multiple valid
paths exist, allowing the selection of specific paths to encode information without compromising the
program’s functionality. Where valid syntactic and semantic paths are constrained, the language model
typically exhibits low entropy, frequently resulting in a near-deterministic single token selection.
Attempting to insert watermarks in such low-entropy regions risks introducing syntax errors or
altering the intended program behavior. Consider the following simplified example:

for(i=0;i<n; i++ ) sum += array[i]

Here, the token at the red position “)” is highly constrained by the preceding syntax, accepting only a
limited set of valid tokens. Conversely, the token at the blue position “sum” represents a more flexible
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def calculate_discount(price, is_member):
    if is_member == True:
        return price * 0.8
    return price
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def calculate_discount(price, is_member):
    if is_member == True:
        return price * 0.8
    return price

Challenge 1
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Key point: Selectively plant watermarks; 
Make vocabulary partitioning semantically aware.

Motivating Example

Figure 1: A motivating example illustrating the challenges of designing an effective code watermarking method,
and an overview of our three-stage AST-guided watermarking framework. Note that AST is only used for
training; after training, the WPN model directly handles watermark generation and detection.

choice, where multiple semantically equivalent variable names (e.g., “sum”, “total”, “result”)
could be used without affecting the program’s logic. An effective watermarking strategy should
prioritize the identification and utilization of these flexible positions, as they provide natural avenues
for embedding watermarks. In contrast, strict syntactic elements like parentheses or semicolons offer
minimal degrees of freedom for watermark insertion and should generally be avoided.

Challenge 2: Semantic Constraints of Vocabulary Partitioning. Existing Green-Red water-
marking schemes typically employ a random partitioning of the vocabulary into green (preferred)
and red (avoided) token sets. This approach disregards the inherent semantic constraint within a
programming language, potentially leading to scenarios where all semantically valid next tokens
are placed in the red list. Consider generating a loop in Python, where both for and while are
semantically valid options. A random token partitioning approach could inadvertently place both
for and while in red list, leaving only semantically inappropriate tokens like if, try, or def in
the green list. If the language model is then biased to select from the green list for watermarking, it
would be unable to generate a valid loop construct at all. Conversely, placing both for and while in
the green list introduces a different problem: the resulting watermarked code distribution becomes
statistically indistinguishable from unwatermarked code, where both loop constructs are naturally
utilized. Effective watermark detection relies on maintaining a statistically significant difference
between the distributions of watermarked and unwatermarked code.

4 AST-Guided Watermarking

4.1 Framework Overview

To address the core challenge of code watermarking, our AST-Guided Watermarking framework
introduces a model with learned programming language priors. This model identifies code locations
where alterations can be safely made without compromising functionality. Our proposed method,
ACW, integrates a plug-and-play Watermark Partitioning Network (WPN) with a logits-guided sam-
pling mechanism. The WPN employs a transformer-based architecture to dynamically generate logits
for green-red token partitioning and determine watermark placement based on minimal contextual
information. For the training of WPN, we utilize Abstract Syntax Tree (AST) analysis to identify
code positions offering multiple valid token alternatives. We then quantify their watermarking suit-
ability using branching entropy, which guides WPN to predict optimal insertion points. Furthermore,
to ensure sufficient statistical distinguishability, we propose a logits-guided sampling scheme that
strategically combines meaningful code structure and controlled randomness, achieving an improved
balance between code utility and watermark detectability. Our framework is depicted in Figure 1.

4.2 Watermark Partitioning Network

WPN forms the core of our method, intelligently determining both watermark positions and token
choices. Through its dual-head architecture, the network produces two outputs: a Logits head that
provides logits predictions lp (distinct from LLM logits l) used to partition vocabulary into green and
red tokens, and a Switch head gp that identifies positions for watermark insertion.
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Instead of using a pseudorandom partition function ξ that directly maps the context window and key
to vocabulary partitions, we implement ξ through our WPN and logits-guided sampling scheme. Our
approach extends the watermarking function in Equation 1 through a two-step process:

lp, gp = WPN(s(t−c,t)), (4)
(Gt, Rt) = sample(lp, k), (5)

where the logits output lp ∈ R|V | provides scores over the vocabulary for token partitioning, and the
switch output gp ∈ [0, 1] indicates the probability of watermark insertion at the current position. This
probability is then compared against a threshold α to make a binary decision regarding watermark
embedding. By learning dynamic partitioning decisions while maintaining the standard green-red
watermarking pipeline, the WPN model serves as a practical plug-and-play solution that requires no
additional input beyond the green-red watermarking scheme in [15].

4.3 AST-Guided Training

To effectively train the Watermark Partitioning Network (WPN) model, we begin by generating
diverse and semantically equivalent code variations. We first represent code snippets from a dataset
as Abstract Syntax Trees (ASTs) because ASTs capture the essential logical relationships and
computational flow, allowing us to identify and apply functionality-preserving modifications at a
deeper level. We then perform transformations directly on these ASTs before converting them
back into code expressions. This process yields a collection of structurally diverse but functionally
equivalent samples. Our transformations include identifier manipulation (e.g., sum → total),
control flow transformations (e.g., converting for-loops to while loops or list comprehensions), and
expression handling (e.g., transforming nested conditionals). These AST-level transformations,
detailed in Appendix B, provide high-quality training data necessary for the WPN model to recognize
watermark positions and token selections. Next, we explain the loss functions used to train WPN.

To train the switch probability gp, we process the generated code variants by segmenting them into
n-grams compatible with the WPN’s input context window. Each n-gram consists of a (pi, ti) pair,
where the context prefix pi contains a context window of c tokens followed by a single continuation
target token ti (note that within this subsection, t refers exclusively to the target token). This
segmentation process yields N training pairs. We then group these n-grams based on their context
prefixes, aggregating the set of valid continuation tokens for each prefix as C(pi) = {ti,1, ..., ti,k}.
This step is crucial for identifying code positions with identical preceding context but multiple valid
subsequent token choices, which are ideal candidates for watermark insertion. We then quantify
the watermarking suitability of these positions using the branching entropy [14] of their valid
continuations. For each prefix pi, the branching entropy HAST(pi) is calculated as:

HAST(pi) = −
∑

t∈C(pi)

P (t|pi) log2 P (t|pi), (6)

where P (t|pi) represents the empirical probability of continuation t given prefix pi. This branching
entropy metric quantifies the degree of valid variation possible at each position, higher entropy values
indicate greater watermarking potential, as they represent positions with multiple valid alternatives.

The Switch head is then trained to automatically identify these promising watermark positions by
minimizing the binary cross-entropy loss between gp and ground truth decisions D(pi):

Lswitch = −
N∑
i=1

[
D(pi) log(gp) + (1−D(pi)) log(1− gp)

]
. (7)

Here, D(pi) is a binary indicator function that equals 1 for context prefixes pi with high branching
entropy (HAST(pi) > τ ) and 0 otherwise, where τ is a threshold. Training gp to recognize these high
branching entropy positions enables automatic identification of effective watermark locations.

To ensure semantic validity in the vocabulary partitioning, we train the Logits head of WPN to
produce contextually appropriate token-level scores lp through supervised next-token prediction.
For each code segment (pi, ti), the logits output lp is transformed into token probabilities using the
softmax function, and we minimize the negative log-likelihood loss:

Llogits = −
N∑
i=1

logPWPN(ti|pi), (8)
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where PWPN(ti|pi) = softmax(lp)ti represents the probability of token ti predicted by WPN given
the prefix pi. This training objective enables the WPN model to assign higher probabilities to tokens
that maintain program semantics and align with natural coding patterns. We combine this semantic
learning objective with the watermark position identification objective as the complete objective:

Ltotal = Lswitch + λLlogits, (9)

where λ is a hyperparameter that balances the relative contribution of semantic learning versus water-
mark position identification. This dual objective ensures that the WPN model can effectively learn
both to identify suitable watermark insertion positions through Lswitch and to generate semantically
meaningful logits for vocabulary partitioning through Llogits simultaneously.

For scenarios with limited training data, we propose additional enhancement techniques. Specifically,
we can leverage knowledge distillation from source LLMs to improve the logits training and comple-
ment our AST-based branching entropy with LLM-derived entropy. These techniques, along with a
detailed analysis of limitations of using pre-trained LLMs, are elaborated upon in Appendix C.

4.4 Logits-Guided Sampling Strategy

Building upon the trained WPN model described in Equation (4), we now introduce the second crucial
component of our framework: the logits-guided sampling mechanism, as outlined in Equation (5). Our
central insight is to strategically distribute semantically related tokens—those exhibiting similar logits
values predicted by the WPN—between the green and red lists. This approach aims to simultaneously
preserve code functionality by ensuring that semantically equivalent alternatives remain available
during the generation process, while also maintaining the statistical distinguishability necessary for
reliable watermark detection. For simplicity, we first consider the case green list ratio γ = 0.5. We
also extend the method to γ = m

n where m,n ∈ N+ and m < n in Appendix D.1. Formally, let
l
(t)
p ∈ R|V| be the logits vector output by the WPN at timestep t. We define σt as a permutation sorts

the vocabulary tokens based on their corresponding logits in descending order:

l
(t)
p,σt(1)

≥ l
(t)
p,σt(2)

≥ · · · ≥ l
(t)
p,σt(|V|). (10)

After sorting the vocabulary tokens according to their WPN-predicted logits, we first pair ad-
jacent tokens in the sorted sequence, creating semantically similar pairs (vσt(2i−1), vσt(2i)) for
i ∈ {1, . . . , ⌊|V|/2⌋}, where v ∈ V is a token in the vocabulary. This pairing strategy is designed to
group tokens with comparable semantic relevance together for the subsequent distribution process. To
determine the specific assignment of each pair, we generate pseudorandom bits using a Pseudorandom
Function (PRF): bi = fPRF(k, t, i) ∈ {0, 1} for i ∈ {1, . . . , ⌈|V|/2⌉}, where k is the secret key, t is
the current timestep, and i is the index of the token pair. We then use these cryptographically secure
random bits to assign each token pair to the green list Gt or red list Rt:

(vσt(2i−1), vσt(2i)) 7→
{
(Gt, Rt) if bi = 1

(Rt, Gt) if bi = 0
(11)

For vocabularies with an odd number of tokens, the final unpaired token vσt(|V|) is handled separately,
assigned to Gt if b⌈|V|/2⌉ = 1 and to Rt otherwise. Following the standard logit biasing approach
outlined in Equation (2), we apply the watermarking bias δ to LLM’s generation logits, increasing
the probabilities of tokens in green list while leaving the probabilities of tokens in red list unchanged:

l̃
(t)
j =

{
l
(t)
j + δ if vj ∈ Gt

l
(t)
j if vj ∈ Rt

(12)

This integrated approach, leveraging both semantic awareness through WPN-predicted logits and
randomness through the PRF, enables natural and functional code generation with effective watermark
embedding. By systematically distributing semantically similar tokens across the green and red
lists, our paired assignment strategy preserves functional alternatives during code generation while
maintaining sufficient statistical patterns for reliable watermark detection.

4.5 Watermark Detection

For watermark detection, we adopt the statistical hypothesis testing framework from [15] but with
selective testing. Given a code snippet suspected of containing a watermark, we first reconstruct
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Table 1: Performance (%) comparison of text detection methods. † indicates methods requiring oracle LLM and
prompt access. Practical watermarks operate without such access. Bold: best performance per category.

Category Dataset HumanEval MBPP

Method Pass@1 Pass@10 AUROC TPR Pass@1 Pass@10 AUROC TPR

No Watermark Base 65.42 79.17 - - 43.35 51.65 - -

Post-hoc Methods

logp(x) 65.42 79.17 47.59 4.27 43.35 51.65 47.77 6.40
LogRank 65.42 79.17 47.66 1.82 43.35 51.65 48.76 7.80
DetectGPT 65.42 79.17 51.12 9.15 43.35 51.65 46.15 3.60
GPTZero 65.42 79.17 52.00 5.50 43.35 51.65 41.10 2.80

Oracle Watermarks
SWEET† 61.77 75.45 83.10 42.68 41.01 48.35 84.40 32.00
ACW-s† 64.13 76.39 93.38 61.87 40.64 48.33 88.91 54.80

Practical Watermarks
WLLM 58.05 70.35 70.17 20.73 39.66 47.22 76.44 27.80
EXP-edit 49.09 83.06 66.50 25.61 35.25 58.08 51.37 10.0
ACW 64.02 79.22 84.43 45.12 41.32 51.98 81.18 44.20

the green-red token partitions and switch probabilities using WPN and sampling scheme from
Equations (4) and (5). We only perform detection at positions where gp exceeds a threshold α,
indicating likely watermark insertion points. For these selected positions, we detect watermarks

through the test in Equation (3):z =
∑

t∈Ŝ 1[ŝ
(t)∈Gt]−|Ŝ|γ√

|Ŝ|γ(1−γ)
, where Ŝ is the set of tokens whose gp > α.

4.6 Theoretical Analysis
We theoretically evaluate our model’s effectiveness through two main aspects. First, we prove that
our logits-guided sampling scheme guarantees a balanced probability distribution between the green
and red token lists in the case of the green list ratio γ = m

n where m,n ∈ N+ and m < n. Second,
we demonstrate our model’s ability to preserve code functionality by analyzing utility loss when
top-k tokens are not selected. Detailed analysis can be found in Appendix D.

5 Experiments
Evaluation Overview. We evaluate ACW across three key dimensions: (i) code functionality, (ii)
watermark detectability, and (iii) robustness. Our experiments primarily use two strong open-
source models OpenCoder-1.5B-Instruct [12] and DeepSeek-Coder-1.3B-instruct and four
programming languages. Larger model OpenCoder-8B-Instruct is also evaluated.
Evaluation Setup. We evaluate on HumanEval [6] and MBPP [3] benchmarks for Python code
generation, and HumanEvalPack [26] for other programming language testing. Experiments on
DeepSeek-Coder [10] are in Appendix F.1. Performance is assessed using Pass@k metric [6] for
code functionality and AUROC and TPR@5%FPR for watermark detection. We compare against post-
hoc detection methods including logp(x), LogRank [8], DetectGPT [25], and GPTZero [29], as well
as active watermarking approaches like WLLM [15] and EXP-edit [18] (not green-red watermarking).
We also include SWEET [19] as a reference baseline, though it requires access to the original LLM.
Implementation Details. For all experiments, we maintain consistent watermarking budget pa-
rameters δ = 2.0, γ = 0.5 to ensure fair comparisons. Note that these parameters serve as fixed
constraints for our model and are not hyperparameters subject to tuning. During code generation,
we employ nucleus sampling with parameters p = 0.95 and temperature T = 0.2, following the
setup in [19]. Our primary model, representing the practical scenario without access to the LLM
and original prompts, is denoted as ACW. To illustrate the effectiveness of our logits-guided sampling
scheme, we introduce a variant, ACW-s, without using WPN. Similar to SWEET, ACW-s requires access
to the original prompts and the LLM. Comprehensive implementation details regarding datasets,
evaluation metrics, baseline models, and the ACW-s variant can be found in Appendix E.

5.1 Main Results on Code Functionality and Watermark Detection Performance

We first present experiments evaluating ACW’s performance on code functionality and watermark
detection with HumanEval and MBPP in Table 1, 2 and 3.
Post-hoc Methods vs. Watermarking Methods. Post-hoc detection methods, including logp(x),
LogRank, DetectGPT, and GPTZero, demonstrate poor discriminative performance, achieving near-
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Table 2: Performance (%) comparison of different text detection methods on multiple programming languages
using HumanEvalPack dataset. † indicates methods requiring oracle LLM and prompt access. Practical
watermarks operate without such access. Bold: best performance per category.

Category Dataset Java C++ JS

Method Pass@1 AUROC TPR Pass@1 AUROC TPR Pass@1 AUROC TPR

No Watermark Base 29.15 N/A N/A 49.11 N/A N/A 55.37 N/A N/A

Post-hoc Methods

logp(x) 29.15 17.57 1.22 49.11 65.44 18.90 55.37 51.55 5.49
LogRank 29.15 17.71 1.22 49.11 68.02 23.17 55.37 50.62 6.10
DetectGPT 29.15 22.71 3.66 49.11 76.94 41.46 55.37 55.41 10.37
GPTZero 29.15 52.10 8.50 49.11 51.40 12.80 55.37 33.20 4.90

Oracle Watermarks
SWEET† 26.19 68.80 27.44 40.64 86.20 43.90 53.68 86.01 50.61
ACW-s† 23.66 71.43 32.32 42.23 96.10 88.42 47.16 94.79 85.37

Practical Watermarks
WLLM 24.02 42.27 6.10 44.27 65.13 21.19 47.81 81.64 37.20
EXP-edit 29.85 71.58 12.81 49.39 68.47 18.29 56.59 57.68 6.71
ACW 32.19 71.70 14.63 47.04 91.03 60.98 56.33 76.94 22.56

random or worse-than-random AUROC: 47.59–52.00% on HumanEval and 41.10–48.76% on MBPP.
In contrast, watermarking approaches achieve significantly better detection performance with AUROC
ranging from 66.50% to 84.43% on HumanEval and 51.37% to 81.18% on MBPP while maintaining
reasonable code functionality with Pass@1 scores ranging from 1% to 16% lower than base model.
Practical Watermarks vs. Oracle Watermarks. Oracle methods (SWEET and ACW-s) have the
advantage of access to the original LLM and prompts during detection. While these methods demon-
strate strong detection capabilities with AUROC ranging from 83.10% to 93.38% on HumanEval and
84.40% to 88.91% on MBPP, practical watermarks like ACW maintain competitive detection perfor-
mance without requiring oracle access. This shows, with good design, that effective watermarking
can be achieved even without privileged access to prompt information and model information.
ACW Performance. Without oracle access, ACW demonstrates robust performance across most
metrics. It exhibits minimal code quality degradation, with Pass@1 scores falling just 1 to 2% below
the base model: 64.02% on HumanEval and 41.32% on MBPP. Simultaneously, it enables effective
detection with AUROC values of 84.43% and 81.18%. This positions ACW as the leading practical
watermarking solution, matching and exceeding the performance of the oracle method SWEET.

Table 3: Performance metrics (%) for
OpenCoder-8B-Instruct model.

Dataset Performance Metrics

Method Pass@1 AUROC TPR

Base 72.04 - -

SWEET 74.73 83.76 48.17
ACW-s 75.80 92.47 59.24

WLLM 71.79 65.90 16.46
EXP-edit 73.50 54.21 7.45
ACW 71.90 81.22 39.26

Scalability to Larger Models. Our WPN’s portability
allows plug-and-play application to larger models (same
tokenizer). That means we can directly use a trained
WPN for OpenCoder-8B-Instruct watermarking. Table 3
shows the performance on OpenCoder-8B-Instruct, where
ACW achieves superior detection (AUROC: 81.22%, TPR:
39.26%) while maintaining functionality (Pass@1: 71.90%,
just 0.14% below base). This significantly outperforms other
practical watermarks like WLLM and EXP-edit. Notably, our
oracle-based ACW-s exceeds SWEET across all metrics.
Cross-Language Performance. As shown in Table 2, ACW
demonstrates strong cross-language capabilities across Java,
C++, and JavaScript. For Java, our method not only outper-
forms all practical watermarks with the highest AUROC (71.70%) and TPR (14.63%), but also
achieves superior code functionality with Pass@1 (32.19%) exceeding even the base model. On C++
code, ACW achieves near-state-of-the-art functionality (Pass@1: 47.04% vs. base: 49.11%) while
delivering exceptional detection performance (AUROC: 91.03%, TPR: 60.98%), significantly outper-
forming other practical watermarks. For JavaScript, our approach maintains competitive functionality
(Pass@1: 56.33%) with strong detection metrics. These results demonstrate ACW’s language-agnostic
nature, highlighting its practical utility across multiple programming paradigms in production.

5.2 Robustness Analysis
We evaluate our watermarking method’s robustness against two types of attacks on HumanEval
dataset: DIPPER paraphrase attacks [17] and variable renaming attacks. DIPPER implements
semantic-preserving paraphrasing to evade detection for AI-generated text. We design the renaming
attack following [19] by modifying variable and function names to simulate real-world scenario.
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Table 4: Comparison of different bias δ.
Delta Method Pass@1 Pass@10 AUROC TPR

δ = 2 ACW 70.75 83.82 80.00 30.00
δ = 3 ACW 61.50 80.57 85.13 45.00

Table 5: Robustness evaluation (%) under code modifi-
cation attacks. Bold values indicate best performance.

Attack Metric WLLM EXP-edit ACW

Original AUROC 70.17 66.50 84.43
TPR 20.73 25.61 45.12

DIPPER AUROC 55.92 51.21 59.12
TPR 12.81 8.54 13.41

Rename AUROC 70.91 62.02 72.76
TPR 20.12 9.76 31.71

Table 5 shows our method’s superior robustness compared to existing approaches. On unmodified
code, we achieve the best performance across all detection metrics. Under DIPPER attacks, while
detection performance decreases across all approaches, our method maintains better detection capabil-
ities with AUROC of 59.12% and TPR of 13.41%. For renaming attacks, our approach demonstrates
stronger resilience with TPR of 31.71% while achieving competitive AUROC of 72.76% compared
to WLLM’s 70.91%. Our performance consistently outperforms all methods under code modifications.

5.3 Model Analysis and Ablation Studies

Model Analysis. The performance gains observed in Table 1 are attributed to three key architectural
design choices. The initial step involved the transition from WLLM to SWEET, where the introduction
of selective watermarking played a crucial role. Subsequently, the evolution from SWEET to ACW-s
implemented our novel logits-guided sampling scheme, with both enhancements demonstrating
significant empirical improvements. While SWEET and ACW-s show promising results under controlled
conditions, their practical deployment is limited due to their reliance on privileged information. To
overcome this limitation, our proposed ACW incorporates AST-guided analysis within the WPN,
achieving further improvements through a learning-based approach that does not require such access.

Selective Watermarking. Figure 3 illustrates the impact of threshold α. When α = 0, all tokens
are eligible for watermarking. As α increases, Pass@1 improves because fewer tokens are modified.
AUROC initially rises then falls, reflecting a trade-off in short code snippets (typically <100 tokens).
This occurs because higher α values increase the proportion of watermarked tokens while reducing
the total number of detection opportunities, creating an inverse U-shaped performance curve.

Context Window Size. Figure 2 shows that increasing context size improves code functionality
while creating a U-shaped pattern in watermark detection. This occurs because larger contexts reduce
watermarking opportunities in fixed-length outputs but enable more sophisticated watermarking
decisions. The optimal size balances detection performance with computational efficiency.

Watermarking Budget. We maintain δ = 2 throughout our main evaluation as a fixed condition for
fair comparison across methods, not as a hyperparameter to tune. Table 4 demonstrates that increasing
this watermark budget shifts the performance trade-off toward enhanced detection capabilities.

6 Conclusion
This paper introduces a novel adaptive code watermarking framework that addresses fundamental
challenges in protecting and attributing LLM-generated code in practical scenarios. The framework’s
core innovation, the Watermark Partitioning Network (WPN), leverages AST analysis to identify suit-
able watermark insertion points and determine semantically equivalent token substitutions, enabling
watermark embedding while preserving code functionality. We also use logits-guided sampling to
incorporate semantic information while maintaining statistical distinguishability, ensuring reliable
watermark detection. Extensive experiments demonstrate that the framework achieves significant
improvements in watermark detection in practical settings.
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A Watermark Generation and Detection Algorithm of ACW

A.1 Watermark Generation

Algorithm 1 presents our watermark generation process. The algorithm embeds watermarks into code
sequences while preserving their functionality. It takes as input a prompt x, watermark key k, context
window size c, and watermarking hyperparameters including green list ratio γ and bias δ that control
the strength and detectability of the embedded watermark.

At each timestep t, the Watermark Partitioning Network (WPN) processes the context window s(t−c:t)

to compute logits output lp ∈ R|V| and switch probability gp ∈ [0, 1]. The switch probability, derived
from AST-guided analysis, determines whether the current position presents a suitable opportunity
for watermark insertion.

When gp exceeds threshold α, the algorithm employs our logits-guided sampling strategy to partition
tokens into green and red sets while preserving semantic relationships. This strategy first sorts tokens
by their logit values to identify semantically related groups. It then uses the pseudorandom function
with key k to generate deterministic but unpredictable assignments for token pairs, ensuring balanced
distribution of similar tokens between lists. The watermark bias δ is applied to green list tokens,
modifying the logits distribution before token selection through any sampling scheme such as nucleus
sampling, top-k sampling, or temperature sampling.

For positions where gp ≤ α, the algorithm proceeds with standard sampling from the original logit
distribution without watermarking modifications. This selective application ensures watermarks are
only embedded at positions where the code’s semantic structure offers sufficient flexibility, helping
maintain overall code quality and functionality.

The algorithm maintains a consistent interface with existing code generation pipelines while incorpo-
rating our key innovations: AST-guided position selection and semantically-aware token partitioning.
This design enables effective watermark embedding while preserving code functionality and main-
taining natural generation patterns.

Algorithm 1 AST-Guided Watermark Generation

1: Input: Code prompt x, watermark key k, context size c, green ratio γ, bias δ, switch probability
threshold α

2: s← {} {Initialize output sequence}
3: for t = 1 to |s| do
4: ctx← s(t−c:t) {Extract context window}
5: lp, gp ←WPN(ctx) {Get logits and gate prob}
6: if gp > α then
7: lsorted ← sort_descending(lp) {Sort logits}
8: (G(t), R(t))← logits_guided_sampling(lsorted, k, γ) {partition}
9: l̃← l + δ · 1G(t) {Apply green list bias}

10: pt ← softmax(l̃) {Convert to probabilities}
11: else
12: pt ← softmax(l) {Original probabilities}
13: end if
14: s(t) ← llm_decoding(pt) {LLM decoding}
15: s← s ∪ {s(t)} {Append generated token}
16: end for
17: Output: Watermarked code sequence s

A.2 Watermark Detection

Algorithm 2 details our statistical watermark detection procedure. Following the framework of [15],
we employ hypothesis testing with a key modification - testing is performed selectively only at
positions likely to contain watermarks. Given a code sequence s, the detector first reconstructs the
vocabulary partitions and switch probabilities using the same WPN model and watermark key k from
generation.
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At each position, WPN processes the context window to compute logits lp and switch probability
gp. Statistical testing is performed only at positions where gp > α, which are recorded in set
S′. For these selected positions, the detector reconstructs the green-red token partitions using our
logits-guided strategy and maintains counts of green token occurrences. The detection employs a
one-sided hypothesis test using the z-statistic:

z =

∑
t∈S′ 1[s′(t) ∈ Gt]− |S′|γ√

|S′|γ(1− γ)
(13)

The underlying distribution is binomial due to the binary nature of token assignments (green or red).
The null hypothesis (no watermark) assumes green tokens appear with probability γ. A watermark is
detected when the z-score exceeds the threshold corresponding to significance level α. If insufficient
positions are available for reliable testing (|S′| < min_tokens), the detector returns insufficient data
rather than making an unreliable determination.

Crucially, this detection procedure requires only the WPN model and watermark key k, eliminating
dependence on original LLMs or generation prompts. This enables practical deployment in scenarios
where such privileged information is unavailable.

Algorithm 2 Statistical Watermark Detection

1: Input: Code sequence s, watermark key k, context size c, green ratio γ, switch probability
threshold α

2: gcount ← 0 {Count of tokens in green list}
3: S′ ← {}
4: for t = 1 to |S| do
5: ctx← s(t−c:t) {Extract context window}
6: lp, gp ←WPN(ctx) {Get logits and gate prob}
7: if gp > α then
8: lsorted ← sort_descending(lp) {Sort logits}
9: (Gt, Rt)← logits_guided_sampling(lsorted, k, γ) {Reconstruct partition}

10: if s(t) ∈ Gt then
11: gcount ← gcount + 1
12: end if
13: S′ ← S′ ∪ {t}
14: end if
15: end for
16: z ← gcount/|S′|−γ√

γ(1−γ)/|S|
{Compute z-statistic}

17: Output: Detection result (z > Φ−1(1− α)) and confidence score z

B Code Transformations

Our framework implements several categories of AST transformations that preserve program se-
mantics while modifying code structure. Each transformation type targets specific AST nodes and
applies well-defined rules to generate equivalent but structurally different code. Through these
transformations, detailed in Table 6, we systematically identify positions in the code where multiple
semantically equivalent alternatives can exist.

B.1 Identifier Manipulation

The VariableRenamer transformer systematically modifies identifiers while preserving scope rules
and name resolution integrity. It supports multiple naming conventions and styles, transforming
between forms like total_sum and totalSum while maintaining proper variable binding. This
transformer carefully tracks scope information to ensure that renamed variables maintain their
original relationships and access patterns. The name obfuscation component provides systematic
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identifier changes, transforming function names like calculate_total() to computeSum() while
preserving the underlying program structure.

B.2 Control Flow Transformations

Control flow transformations operate on program structure through multiple specialized components.
The loop structure transformer handles conversions between equivalent iteration constructs, such
as transforming for i in range(n) into while loops with explicit counters. The comprehension
conversion component provides transformations between list comprehensions and their equivalent
explicit loop forms, converting expressions like [x for x in lst] to list(map(lambda x: x,
lst)). Additionally, the iteration form transformer implements alternative patterns for sequence
traversal, supporting conversions between direct element iteration and index-based access patterns.

B.3 Expression Handling

Expression-level transformations modify computational logic while maintaining semantic equivalence
through three specialized transformers. The unary operations component simplifies single-operand
expressions, eliminating redundant operations like double negations. The boolean logic transformer
implements equivalence rules for logical expressions, converting between different forms of com-
pound conditions while preserving their evaluation semantics. The arithmetic expression component
handles mathematical expression restructuring, supporting transformations like distributive property
application (x = a * (b + c) to x = a*b + a*c) while maintaining computational correctness.

Each transformer implements a visitor pattern to traverse the AST and applies its transformations
while maintaining program correctness. The abstract visitor interface ensures consistent traversal
behavior across all transformers while allowing specialized transformation logic for each node type.
These transformations can be composed to create more complex code modifications while preserving
the original program semantics, enabling sophisticated program analysis and optimization techniques.
Our empirical evaluation demonstrates that these transformations maintain program correctness
across a diverse test suite while significantly increasing code coverage and testing effectiveness.

Table 6: Summary of AST Transformations for Code Watermarking
Category Transformation Description Example

Identifier Manipulation Variable Re-
namer

Scope-aware variable re-
naming

total_sum

and name resolution totalSum

Name Obfusca-
tion

Systematic identifier
changes

calculate_total()

preserving scope rules computeSum()

Control Flow

Loop Structure Loop type conversion for i in range(n)
and optimization i = 0; while i < n

Comprehension List/generator expression [x for x in lst]
Conversion transformations list(map(lambda x: x,

lst))

Iteration Form Alternative iteration for x in lst
patterns for i in range(len(lst)):

x = lst[i]

Expression Handling

Unary Opera-
tions

Simplification of single not not x

operand expressions x

Boolean Logic Logical equivalence if x and y
transformations if not (not x or not y)

Arithmetic Expression simplification x = a * (b + c)
Expression and restructuring x = a*b + a*c
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C Advanced Training Techniques for Limited Data Scenarios

In scenarios with limited training code, we can enhance our AST-guided watermarking framework
by leveraging large language models (LLMs) as supplementary knowledge sources. This section
details practical implementation approaches and discusses considerations for using LLMs with our
watermarking framework.

C.1 Knowledge Distillation from LLMs

To improve the semantic capabilities of our WPN model, we employ knowledge distillation from
pre-trained LLMs. For each context prefix pi in our training data, we obtain the logits distribution
lLLM from a teacher LLM and incorporate this knowledge through an additional distillation loss term:

Ldistill = KL(softmax(lLLM/T ) ∥ softmax(lp/T )) (14)

where T is a temperature parameter controlling the softness of the distributions. This approach
enables our WPN to inherit rich semantic understanding from larger models while maintaining its
lightweight architecture. Our experiments show that incorporating this distillation loss improves code
quality by 15% compared to training solely on limited code examples.

C.2 Hybrid Entropy Estimation

We augment our AST-based branching entropy metrics with token-level uncertainty from LLM
predictions to create a more robust indicator for potential watermark positions:

Hhybrid(pi) = α ·HAST(pi) + (1− α) ·HLLM(pi) (15)

where HLLM(pi) = −
∑

t∈V PLLM(t|pi) log2 PLLM(t|pi) represents the entropy of the LLM’s next-
token prediction distribution, and α ∈ [0, 1] is a weighting parameter. This hybrid approach provides
more reliable watermarking position identification, especially for programming languages or code
patterns with limited representation in our training data.

C.3 Limitations of Using LLMs as WPN

While using a pre-trained LLM directly as the WPN model is conceptually possible, several practical
limitations make this approach suboptimal. In summary, using LLMs as watermarking processors
would require tens to hundreds of times more computational resources while achieving only about
half the performance of our specialized WPN model.

Computational efficiency is a primary concern, as large-scale LLMs with billions of parameters
introduce significant processing latency compared to our specialized WPN. Context length mismatch
presents additional challenges—LLMs excel with extended contexts (thousands of tokens), while
our WPN intentionally operates with minimal contextual information (few tokens), resulting in
performance degradation for short watermarking contexts. Entropy prediction calibration poses
another issue, as LLMs produce poorly calibrated uncertainty estimates for short contexts, particularly
at document beginnings, with LLM entropy values correlating with watermarking potential at
substantially lower rates than our trained WPN. Finally, from a parameter efficiency perspective, our
purpose-built WPN contains orders of magnitude fewer parameters while maintaining task-appropriate
performance, making it a more practical solution for real-time watermarking applications.

D Analysis and Proofs

Our theoretical analysis establishes two key properties of the ACW framework:

• Statistical Balance: We show that our sampling strategy maintains the required statistical
properties for watermark detection while respecting semantic relationships between tokens.

• Code Quality Preservation: We demonstrate that our logits-guided token partitioning
strategy better preserves code utility compared to random partitioning approaches.
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D.1 Sampling Balance

A key theoretical question is whether our logits-guided sampling strategy can maintain the statistical
properties needed for reliable watermark detection while preserving semantic relationships between
tokens. We first prove that our basic pairwise sampling approach maintains equal probabilities
between green and red lists, then extend this to arbitrary rational ratios.

Theorem D.1 (Sampling Balance). Let pLLM(·|x, s[1:t]) be the original LLM probability distribution
at time t, and let l(t) be the logits. Under our logits-guided sampling strategy with γ = 1

2 , despite
the correlation between l(t) and pLLM, the expected probability of sampling from green list and red
list remains equal:

Evi∼pLLM [P(vi ∈ Gt)] = Evi∼pLLM [P(vi ∈ Rt)] =
1

2
(16)

where the expectation is taken over the LLM’s original distribution.

Proof. Let σt be the permutation that sorts l(t) in descending order. For any adjacent pair in the
sorted sequence (vσt(2i−1), vσt(2i)), our logits-guided strategy assigns them to different lists with
equal probability:

P(vσt(2i−1) ∈ Gt) = P(bi = 1) =
1

2
(17)

P(vσt(2i) ∈ Gt) = P(bi = 0) =
1

2
(18)

For any token vi, let r(vi) = σ−1
t (i) be its rank in the sorted sequence. The token’s assignment

probability depends only on:

P(vi ∈ Gt) =

{
1
2 if r(vi) ≤ |V| − 1

P(b⌈|V|/2⌉ = 1) = 1
2 if r(vi) = |V|

(19)

Therefore, for any token vi, regardless of its logits value or original probability:

P(vi ∈ Gt) = P(vi ∈ Rt) =
1

2
(20)

This holds even when integrating over the LLM’s distribution:

Evi∼pLLM [P(vi ∈ Gt)] =
∑
vi∈V

pLLM(vi|x, s[1:t]) ·
1

2
=

1

2
(21)

The same holds for the red list, proving that our sampling strategy maintains equal expected probabil-
ities despite the correlation between l(t) and pLLM.

This theorem establishes that our sampling strategy achieves the fundamental balance needed for
watermark detection - equal probabilities between green and red lists - while still respecting semantic
relationships through the logits-guided ordering. However, practical applications often require
different proportions between green and red lists to optimize the tradeoff between detectability and
generation quality. We therefore extend our analysis to handle arbitrary rational ratios:

Theorem D.2 (General Sampling Balance). Let pLLM(·|x, s[1:t]) be the original LLM probability
distribution at time t, and let l(t) be the logits. For any green list ratio γ = m

n where m,n ∈ N+ and
m < n, under a generalized logits-guided n-wise sampling strategy:

Evi∼pLLM [P(vi ∈ Gt)] = γ (22)

Evi∼pLLM [P(vi ∈ Rt)] = 1− γ (23)

where the expectation is taken over the LLM’s original distribution.
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Proof. Let σt be the permutation that sorts l(t) in descending order. We extend our pair-wise
sampling to n-wise sampling:

1) First, we group tokens into blocks of size n:

Bj = (vσt(jn+1), vσt(jn+2), ..., vσt(jn+n)) (24)

where j ∈ {0, 1, ..., ⌊|V|/n⌋ − 1}
2) For each block Bj , we generate a random permutation πj using PRF:

πj = fPRF(k, t, j) (25)

where πj is uniformly sampled from the set of permutations of {1, 2, ..., n}
3) Within each block Bj , we assign the first m tokens according to πj to Gt and the remaining n-m
tokens to Rt:

vσt(jn+i) ∈
{
Gt if πj(i) ≤ m

Rt if πj(i) > m
(26)

4) For the remaining tokens (when |V| is not divisible by n), let r = |V| mod n. We handle these r
tokens similarly with a final permutation πf and assign ⌊rm/n⌋ tokens to Gt.

For any token vi in a complete block:

P(vi ∈ Gt) =
m

n
= γ (27)

This holds because each position in the n-wise block has equal probability of being mapped to any of
the n positions by the random permutation πj , and exactly m positions are assigned to Gt.

Therefore, for any token vi:

P(vi ∈ Gt) = γ +O(
1

|V|
) (28)

where the O( 1
|V| ) term accounts for the final incomplete block.

When taking expectation over the LLM distribution:

Evi∼pLLM [P(vi ∈ Gt)] =
∑
vi∈V

pLLM(vi|x, s[1:t]) · γ +O(
1

|V|
) = γ (29)

Since the assignment of tokens to Gt and Rt is complementary:

Evi∼pLLM [P(vi ∈ Rt)] = 1− γ (30)

This proves that our generalized n-wise sampling strategy maintains the desired green list ratio γ
while preserving the semantic grouping of tokens through the logits-guided sorting, regardless of the
correlation between l(t) and pLLM.

These theoretical guarantees demonstrate that our sampling approach provides robust statistical
foundations for watermark detection while maintaining the flexibility to adjust green-red ratios as
needed. The proofs rely only on the properties of our sampling strategy and are independent of the
specific language model or domain, showing that our method can be applied broadly across different
settings and tasks. The analysis suggests that we can achieve reliable watermark detection through
statistical testing since the sampling probabilities are precisely controlled, while the logits-guided
grouping preserves semantic relationships needed for high-quality code generation. This theoretical
framework provides a principled basis for the empirical improvements we observe in practice.

D.2 Code Quality Preservation

Code quality preservation is crucial when embedding watermarks in generated code. While water-
marking inevitably modifies the original model outputs, it is essential to minimize degradation in
functionality and quality. This section presents a theorem that formalizes how our logits-guided
partitioning strategy better preserves high-utility tokens compared to random partitioning. For clarity,
we focus on the case where γ = 1/2.
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Theorem D.3 (Code Utility Preservation). Let U(x, t) be a binary utility function indicating whether
a token x at position t belongs to the top-k tokens by logit value:

U(x, t) =

{
1, x ∈ Tk(t)

0, otherwise
(31)

where Tk(t) denotes the set of top-k tokens ranked by logits at position t. Assume we only sample
from the green list Gt with watermarking bias δ > 0. For k ≥ 2, ACW’s logits-guided partitioning
achieves perfect utility preservation while WLLM’s random partitioning incurs non-zero utility loss.

Proof. Under ACW’s logits-guided partitioning with k ≥ 2, tokens are paired by consecutive rank
and split between Gt and Rt. For each pair of tokens ranked (2i − 1, 2i) where i ≤ ⌊k/2⌋, the
higher-ranked token (2i− 1) is placed in Gt. Therefore:

Gt ∩ Tk(t) = {vi ∈ Tk(t) : rank(l(t)i) is odd and ≤ k} (32)

Since we sample only from Gt with watermarking bias δ > 0, and Gt contains only top-k tokens:

E[∆UACW] = P (sample x /∈ Tk(t)) = 0 (33)

For WLLM with random partitioning, the number of top-k tokens in Gt follows a hypergeometric
distribution. Since |V| ≫ k, there is a non-zero probability that Gt contains non-top-k tokens, and
when sampling from such tokens:

E[∆UWLLM] > 0 (34)

Therefore:

E[∆UACW] < E[∆UWLLM] (35)

E Implementation Details

E.1 Datasets

We evaluate on standard code generation benchmarks that span multiple programming languages and
tasks. The primary evaluation uses HumanEval [6] and MBPP [3], which provide comprehensive
Python programming challenges with associated test cases and reference implementations. To validate
our framework’s language-agnostic capabilities, we extend testing to HumanEvalPack [26], which
encompasses Java, C++, and Javascript implementations. Each dataset offers unique characteristics:
HumanEval focuses on algorithmic problems, MBPP targets practical programming tasks, and
HumanEvalPack enables cross-language evaluation. For WPN training, we generate solutions using
dataset-specific prompts and utilize these generated solutions as our training data.

E.2 Evaluation Metrics

Our main evaluation framework employs two complementary metric categories to assess both code
functionality and watermark effectiveness. Code functionality is quantified through the Pass@k
metric [6], which measures the probability of generating functionally correct code within k samples.
For watermark evaluation, we utilize AUROC (Area Under the Receiver Operating Characteristic)
and TPR (True Positive Rate) at a controlled 5% FPR (False Positive Rate).
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E.3 Baselines

We compare against two categories of methods: post-hoc detection and active watermarking. Post-
hoc detection methods preserve original generation and include zero-shot approaches: logp(x),
LogRank [8], DetectGPT [25], and GPTZero [29]. Active watermarking methods include WLLM [15]
and EXP-edit [18], which operate under the practical constraints outlined in Section 2. We also
include SWEET [19] as a reference, though comparisons are not fair since it requires access to the
original LLM and prompts for entropy calculation. We thoroughly tune the hyperparameters for each
baseline following their setup.

E.4 Model Design

Our model implements a transformer-based architecture optimized for code analysis and generation,
consisting of three main components: an embedding layer combining token and positional information,
a stack of transformer encoder layers, and a dual-purpose output layer. The embedding layer
concatenates learnable token embeddings (Wte) and position embeddings (Wpe), both with dimension
dmodel = 512, processed through a dropout layer with rate 0.2 to prevent overfitting. The position
embeddings support sequences up to a maximum length of 10 tokens, while the token embeddings’
dimension is determined by the target programming language’s vocabulary size. The transformer
encoder stack comprises 6 layers, each implementing multi-head self-attention with 8 attention heads,
following a pre-norm design that applies layer normalization before the attention and feed-forward
computations to enhance training stability. The feed-forward networks within each encoder layer
expand the representation to dimension 2048 before projecting back to dmodel, allowing for richer
feature extraction while maintaining computational efficiency. The output layer serves a dual purpose:
it generates token logits over the vocabulary space and produces switch predictions for watermark
placement, implemented through a final layer normalization followed by a linear projection to
dimension |V|+ 1, where |V| is the vocabulary size.

E.5 Computation Resources

The experiments are run on 2 Nvidia A100 GPUs with BF16 precision.

E.6 ACW-s

ACW-s adapts our framework to scenarios where additional information from the source LLM is
available, similar to the setting in [19]. While our WPN is designed as a plug-and-play solution
that operates without access to the original LLM or prompts, ACW-s leverages this additional
information when available to enhance watermarking effectiveness. The key insight is that we can
apply our logits-guided sampling strategy directly using the LLM’s logits distribution for token
partitioning, rather than relying on WPN’s learned approximation. In this setting, we maintain the
core principle of our logits-guided sampling scheme but substitute the source LLM’s token-level
logits in place of WPN-generated logits. The sampling procedure remains unchanged - we still sort
tokens by their logit values and assign semantically similar tokens (those with adjacent logit scores)
to different partitions using the PRF-generated bits. This approach preserves the key benefits of our
sampling strategy - maintaining semantic coherence while ensuring statistical distinguishability -
while benefiting from the LLM’s more precise token probability estimates. By leveraging the original
model’s understanding of token relationships and semantic patterns, ACW-s can achieve more natural
code generation while maintaining robust watermark detection.

E.7 DetectGPT

For the DetectGPT implementation, we used T5-3B as our model. Following the original DetectGPT
paper and SWEET [25, 19] , we set the span length to 2 words and applied masking to 20% of the
text. For each test, we generated 100 perturbations to ensure robust detection.
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E.8 SWEET

For the SWEET baseline implementation, we conducted a systematic hyperparameter search for the
entropy threshold, exploring values from 0.3 to 1.2 with increments of 0.3. Our experiments revealed
optimal performance with an entropy threshold of 1.2 for the HumanEval dataset and 0.3 for MBPP.

E.9 EXP-edit

We evaluate EXP-edit [18] following the methodology of [19]. In our experiments, we set
temperature=0.2 and top-p=0.95. We systematically explore block sizes (20 tokens), key sequence
lengths (100), resample sizes (50 runs), and edit distance thresholds (γ = 0.0). Through extensive
parameter tuning, we determine the optimal configuration: key length 100, block size 20, 50 sam-
pling runs, and detection threshold 0.1, which balances watermark detection reliability with code
functionality.

F Additional Evaluation Results

F.1 Evaluation with Alternative Language Models

Setup. To validate our framework’s generalizability, we evaluate using DeepSeek-Coder-1.3B-
instruct as the base model. We maintain consistent hyperparameters with our main experiments:
watermark budget parameters δ = 2.0 and γ = 0.5, nucleus sampling with p=0.95 and tempera-
ture=0.2. We test on both HumanEval and MBPP benchmarks to assess performance across different
code generation tasks and compare against both oracle methods requiring model access (SWEET,
ACW-s) and practical watermarking approaches (WLLM, EXP-edit).

Table 7: Performance comparison of different watermarking and detection methods on code generation tasks
using DeepSeek-Coder. Pass@k measures code quality, while AUROC and TPR@5%FPR evaluate watermark
detection. Methods marked with † require access to original LLM and prompts, making them impractical for
deployment.

Category Method HumanEval MBPP
Pass@1 Pass@10 AUROC TPR Pass@1 Pass@10 AUROC TPR

No Watermark Base 58.42 72.36 N/A N/A 39.41 48.83 N/A N/A

Post-hoc Methods

logp(x) 58.42 72.36 51.05 6.71 39.41 48.83 56.33 4.80
LogRank 58.42 72.36 50.14 4.88 39.41 48.83 56.95 19.20
DetectGPT 58.42 72.36 49.75 6.71 39.41 48.83 48.10 9.20
GPTZero 58.42 72.36 56.80 8.50 39.41 48.83 41.20 1.40

Oracle Methods
SWEET† 54.70 68.83 83.30 41.46 36.76 47.92 87.96 46.20
ACW-s† 59.54 63.38 91.51 63.42 40.67 46.65 91.60 47.80

Practical Watermarks
WLLM 52.81 69.96 69.93 25.00 33.07 46.23 83.40 44.00
EXP-edit 59.30 72.41 45.17 4.27 40.16 50.25 46.54 5.40
ACW 55.39 73.64 81.53 44.51 37.88 46.83 84.09 41.80

Results. Table 7 reveals several key findings across both benchmarks:

For HumanEval, ACW demonstrates strong performance in the practical watermark category, achiev-
ing an AUROC of 81.53% and TPR of 44.51%, significantly outperforming WLLM (AUROC
69.93%, TPR 25.00%) and EXP-edit (AUROC 45.17%, TPR 4.27%). While there is a modest
decrease in Pass@1 compared to the base model (55.39% vs 58.42%), our method maintains com-
petitive Pass@10 performance (73.64%), suggesting preserved code generation quality at higher
sampling temperatures.

On MBPP, ACW maintains robust watermark detection capabilities with an AUROC of 84.09% and
TPR of 41.80%, while achieving Pass@1 of 37.88% compared to the base model’s 39.41%. This
demonstrates a favorable trade-off between watermark robustness and functional correctness. Notably,
while EXP-edit shows slightly higher Pass@1 (40.16%), its detection metrics are substantially lower
(AUROC 46.54%, TPR 5.40%), indicating poor watermark reliability.
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When comparing to oracle methods, ACW-s shows superior performance across both benchmarks
(HumanEval: AUROC 91.51%, TPR 63.42%; MBPP: AUROC 91.60%, TPR 47.80%). This suggests
that access to model internal states can enhance our framework’s performance while maintaining its
fundamental advantages in semantic preservation.

These results demonstrate that our framework generalizes effectively to different language models
while maintaining a favorable balance between code functionality and watermark detectability. The
strong performance across both benchmarks validates our approach’s versatility and practical utility
in real-world applications.

G Security Discussion

Our watermarking security stems from the complexity of our model-based approach and its integration
with security keys through PRF. The WPN’s neural network architecture learns to generate partition
decisions based on code semantics and structure, making model extraction challenging through
its high-dimensional representations and semantic understanding. This model-based foundation
is reinforced by PRF randomization in our logits-guided sampling, making it computationally
intensive for attackers to predict or manipulate watermark patterns even with extensive observation of
watermarked outputs. Traditional approaches using only hash functions or fixed keys for partition
generation are vulnerable to statistical analysis attacks. However, our framework’s watermark patterns
emerge from the interaction between a trained model’s semantic understanding and PRF-generated
randomness, significantly raising the bar for potential attacks. An adversary would need to both
reverse-engineer our model’s complex decision process and obtain the secret key to successfully
forge or remove watermarks, providing robust protection for practical deployments.

H Watermarked Code Example

Table 8: Example of watermarked code generated by our framework compared to non-watermarked output. The
table shows multiple programming tasks with their respective outputs.

Humaneval 161: Swap Case or Reverse String

Prompt
def solve(s):

"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or
vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
"""

Continued on next page
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Table 8 – continued from previous page

Reference Solution def solve(s):
flg = 0
idx = 0
new_str = list(s)
for i in s:

if i.isalpha():
new_str[idx] = i.swapcase()
flg = 1

idx += 1
s = ""
for i in new_str:

s += i
if flg == 0:

return s[len(s)::-1]
return s

Unwatermarked
def solve(s):

if any(c.isalpha() for c in s):
s = s.swapcase()

else:
s = s[::-1]

return s

Watermarked
def solve(s):

if any(c.isalpha() for c in s):
return s.swapcase()

else:
return s[::-1]

Humaneval 56: Correct Bracketing

Prompt
def correct_bracketing(brackets: str):

""" brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding
closing bracket.

>>> correct_bracketing("<")
False
>>> correct_bracketing("<>")
True
>>> correct_bracketing("<<><>>")
True
>>> correct_bracketing("><<>")
False
"""

Reference Solution def correct_bracketing(brackets: str):
depth = 0
for b in brackets:

if b == "<":
depth += 1

else:
depth -= 1

if depth < 0:
return False

return depth == 0

Continued on next page
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Table 8 – continued from previous page

Unwatermarked
def correct_bracketing(brackets: str):

stack = []
for bracket in brackets:

if bracket == "<":
stack.append(bracket)

elif bracket == ">":
if not stack:

return False
stack.pop()

return len(stack) == 0

Watermarked
def correct_bracketing(brackets: str):

stack = []
for bracket in brackets:

if bracket == "<":
stack.append(bracket)

else:
if not stack:

return False
stack.pop()

if not stack:
return True

else:
return False

I Social Impact and Limitations

Our AST-guided code watermarking framework enhances transparency and accountability in
software development by enabling reliable detection of AI-generated code without requiring LLM
model access. Its impact spans the software industry, supporting intellectual property protection,
ensuring code provenance in collaborative environments, and preventing academic misconduct in
computer science education. As AI becomes more integrated into software development, effective
code watermarking will play a crucial role in fostering trust in AI coding tools by providing a practical
means to distinguish between human-written and AI-generated code while preserving functionality.

Despite these advantages, our approach has several limitations. The effectiveness varies across
programming languages with complex type systems or ambiguous grammar rules, and our method
remains vulnerable to sophisticated code transformation attacks. A potential negative societal impact
of our work is that watermarking technologies could potentially be misused for surveillance or to
unfairly restrict code sharing in open-source communities if deployed without appropriate ethical
guidelines. Future work should explore more robust watermarking techniques that can withstand
extensive code modifications while maintaining detection reliability across diverse programming
paradigms.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims match our experimental results in Section 5 and Appendix F,
with all contributions clearly stated in the introduction and supported by comprehensive
evaluations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations of our approach in Appendix I, including considerations
for edge cases in certain programming languages and potential challenges with extreme
code obfuscation techniques.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide complete theoretical analysis with full assumptions stated, and
detailed proofs are available in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose code and all experimental details including datasets, metrics,
baseline comparisons, and implementation details necessary to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the details in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance for our main results in Table 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide compute resource details in Appendix E.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully conforms to the NeurIPS Code of Ethics as it addresses
intellectual property protection and attribution for AI-generated code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both positive impacts (protecting intellectual property, attribution
of AI-generated code) and potential negative impacts Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite and credit all datasets and baseline methods used in our
experiments, with appropriate licenses noted in the Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new asserts.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects or data collection from individu-
als.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs as a component of our research methodology beyond
standard evaluation procedures.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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