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Abstract

Language Models (LMs) are increasingly chal-
lenging the dominance of domain-specific mod-
els, such as Graph Neural Networks (GNN5s)
and Graph Transformers (GTs), in graph learn-
ing tasks. Following this trend, we propose
a novel approach that empowers off-the-shelf
LMs to achieve performance comparable to
state-of-the-art (SOTA) GNNSs on node classifi-
cation tasks, without any architectural modifica-
tion. By preserving the LM’s original architec-
ture, our approach retains a key benefit of LM
instruction tuning: the ability to jointly train
on diverse datasets, fostering greater flexibility
and efficiency. To achieve this, we introduce
two key augmentation strategies: (1) enrich-
ing LMs’ input using topological and semantic
retrieval methods, providing richer contextual
information, and (2) guiding the LMs’ classifi-
cation process through a lightweight GNN clas-
sifier that effectively prunes class candidates.
Experiments on real-world datasets show that
backbone Flan-T5 LMs equipped with these
augmentation strategies outperform SOTA text-
output node classifiers and are comparable to
top-performing vector-output node classifiers.
By bridging the gap between specialized node
classifiers and general LMs, this work paves the
way for more versatile and widely applicable
graph learning models. We will open-source
the code upon publication.

1 Introduction

There is a growing trend of utilizing Language
Models (LMs) for machine learning tasks across
diverse domains. This approach has shown tremen-
dous promise in areas such as vision (Desai and
Johnson, 2021), audio (Mittal et al., 2021), and
multimodal learning (Alayrac et al., 2022). In
graph learning, recent efforts have begun to ex-
plore the capabilities of LMs in understanding and
processing graph structures. (Wang et al., 2023)
showed that LMs can detect node connectivity and

identify cycles, while (Fatemi et al., 2024) ex-
plored LMs’ ability to evaluate graph scale and
identify connected components. Furthermore, In-
structGLM (Ye et al., 2023) and LLaGA (Chen
et al., 2024b) achieved state-of-the-art (SOTA) per-
formance in text-output node classifiers on Text-
Attributed Graphs (TAG) (Zhang et al., 2024a),
whose nodes have textual features.

However, both InstructGLM and LLaGA suffer
from a fundamental limitation that compromises
the generality of the backbone LM. Specifically,
InstructGLM expands the LM’s vocabulary by cre-
ating a unique token for each node, whose token
embeddings are topology-aware node embeddings.
It comes at the cost of incompatibility with two im-
portant use cases: (1) multi-task learning on diverse
datasets, a common strategy for training Founda-
tional Models (Wei et al., 2022; Chung et al., 2024),
and (2) certain personalized LM fine-tuning ser-
vices (Li et al., 2024b) that restrict access to the
backbone model architecture/code!. LLaGA uses
a shared text encoder and a projector to overcome
the first limitation but still bears inflexibility when
deploying different LMs and cannot be applied to
LMs without code/architecture access. The above
discussion raises a crucial question: How can off-
the-shelf, text-to-text instruction-tuned LMs (Raffel
et al., 2020) achieve competitive performance in
node classification tasks without architectural mod-
ifications?

In stark contrast to (Huang et al., 2023), which
suggests that LMs may only interpret graph struc-
tures in prompts as contextual paragraphs, our work
presents a more optimistic outlook. We aim to over-
come this inherent limitation by augmenting the
LMs’ input while preserving their original architec-
ture. Our proposed model, AUGLM (Aumented
Graph Language Model), leverages two key aug-
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mentation strategies to enhance the LM’s ability to
process graph data:

* Relevant Node Retrieval: In contrast to In-
structGLM, which relies on multi-hop ego
networks akin to message-passing GNNs for
structure-aware contextualization, AUGLM
draws inspiration from Graph Transform-
ers (GTs) (Min et al., 2022) and Retrieval-
Augmented Generation (RAG) (Lewis et al.,
2020; Guu et al., 2020). This enables the
LM to access long-range structural and se-
mantic information about the target node. We
propose two complementary approaches to
achieve this: (1) topological retrieval, and (2)
prototypical semantic retrieval.

* Candidate Label Pruning: To improve LMs’
understanding of graph data while maintain-
ing their text-to-text architecture, we convey
the guidance from a specialist model, a pre-
trained lightweight GNN, to the input of LMs
via narrowing down the candidate labels. This
allows LMs to focus on discerning between
closely related candidates, ultimately enhanc-
ing the performance.

We extensively evaluate our approach on four real-
world TAGs, showing the effectiveness of AUGLM.
The results indicate that (1) backbone LMs aug-
mented with AUGLM consistently outperform
SOTA text-output classifiers while also matching or
surpassing the performance of SOTA vector-output
classifiers, and (2) AUGLM can be jointly trained
on multiple TAGs without performance degrada-
tion. These findings represent a crucial step to-
wards bridging the gap between task-specific node
classifiers and more general, fine-tuned LMs, high-
lighting the potential for a unified model excelling
in multiple tasks.

2 Related Work

LMs for graphs. Recent studies have explored
the ability of LMs to understand graph topology by
investigating problems such as graph substructure
recall (Wang et al., 2024), circle and connectivity
detection (Wang et al., 2023; Perozzi et al., 2024),
node/edge counting (Perozzi et al., 2024), spatial-
temporal problems on dynamic graphs (Zhang
et al., 2024b). Notably, (Fatemi et al., 2024) found
that the text presentation of graph data impacts
LMs’ performance across various tasks, highlight-
ing the importance of graph-to-text transformation.
Building on these findings, several studies have

explored tasks on TAGs, including node classifica-
tion (Ye et al., 2023; Zhao et al., 2023b; Li et al.,
2024a; Qin et al., 2023), link prediction (Bran-
non et al., 2023; Tan et al., 2024), transfer learn-
ing (Tang et al., 2024), and graph reasoning (Jin
et al., 2024). (Chen et al., 2023) presents a sys-
tematic summary on existing solutions in two cate-
gories: LLMs-as-Enhancer and LLMs-as-Predictor.
Furthermore, (Zhang, 2023) proposed Graph-
ToolFormer, a framework that enhances LMs with
graph reasoning API tools. GIANT (Chien et al.,
2022) and GLEM (Zhao et al., 2023a) utilize the
interaction between graph data and LMs for better
graph representations. TAPE (He et al., 2024) lever-
ages an LLLM to augment the textual features and
then fine-tunes two LMs for graph representation.
Retrieval-augmented generation (RAG) (Lewis
et al., 2020; Karpukhin et al., 2020) enhances
LMs by granting them access to external knowl-
edge (Hashimoto et al., 2018). This technique in-
volves retrieving relevant documents from a large
corpus and conditioning the LM on the retrieved
knowledge. Building on this, REALM (Guu et al.,
2020) pretrains the retriever and generator end-to-
end. Subsequently, RETRO (Borgeaud et al., 2022)
scales RAG-enhanced autoregressive models to
large datasets. A crucial component of RAG’s suc-
cess is the objective function proposed by (Shi et al.,
2023), which enables the retriever to be trained
even with black-box LMs. HyDE (Yu et al., 2023)
uses hypothetical document generation to improve
retrieval in RAG systems. Furthermore, RAG has
extended to multimodal settings (Yasunaga et al.,
2023). Recently, GraphRAG (Edge et al., 2024)
has garnered significant attention; it constructs a
Knowledge Graph (KG) and then generates re-
sponses based on the summaries of communities
derived from KG. These advancements have sig-
nificantly improved generated text’s accuracy and
contextual relevance, solidifying RAG as a promis-
ing technique for various applications.

3 Preliminaries

We use the following notation conventions: bold
lower-case letters (e.g,. x) denote column vectors,
bold upper-case letters (e.g., X) denote matrices,
and calligraphic upper-case letters (e.g., X') denote
sets. We use [-] and [, -] to index vectors and matri-
ces, respectively.

We study the node classification problem on
TAGs where each node is associated with textual



attributes. A TAG with n nodes is represented as
G=WV,ET), where V = {v;}I"_; denotes a set
of nodes, and & = {e;;}}';_; is a set of edges
where e;; = 1 indicates that nodes v; and v; are
connected; otherwise, e;; = 0. 7 = {¢;}] indi-
cates the set of node textual attributes. The edges
can also be represented by an adjacency matrix
A € {0,1}"™", where A[i,j] = 1 if and only
if e;; = 1. The training and test node labels are
denoted by V = Virain U Veest = {¥i}i—, Where
each label y; belongs to one of the C' classes, i.e.,
y; € {1,...,C},Vi. In the semi-supervised set-
ting studied in this paper, the graph structure and
training labels V, £, T, Virain are accessible, and
the goal is to predict the labels of test nodes Viest-
Personalized PageRank (PPR) (Page, 1999; Jeh
and Widom, 2003) ranks all the nodes according to
their relevance to a given query node. Specifically,
given the adjacency matrix A, the PPR scores r; €
R™ for all nodes concerning the query node v; are
computed iteratively as:

r; < (1 — Oz)AI‘i + aq; (D)

where o € (0, 1) is the teleport probability, q; €
{0,1}™ is a one-hot vector whose i-th entry is 1,
A = AD! is the normalized adjacency matrix,
and D is the degree matrix. Once r; converges, the
top- K relevant nodes concerning the query node v;
can be identified as follows:

PPR(v;, K) = {v; : ;[j] € topK(ri)} (2)

Language models (LMs). We employ autoregres-
sive LMs that predict the next token z; based on the
input sequence t and the context of previously gen-
erated tokens z;.;—1. The probability of generating
a sequence z given the input ¢ is:

||
pv(z[t) = [ [ pom(zilt, 2161 3)
i=1
Retrieval-augmented generation (RAG) (Lewis
et al., 2020; Guu et al., 2020) first retrieves a query
t-relevant text d* from an external corpus D via a
similarity function s4:

d* = argmax sy(d, 1) 4)
deD

5¢ 1s typically implemented as a dual-encoder ar-
chitecture (Bromley et al., 1993):

s4(d,t) = (Encodery(d),Encodery(t)) (5)

Once d* is retrieved, it is fed into the LM together
with the query ¢: ppv(z|d*, t) for generation.

4 Method

We explore the application of LMs to node classifi-
cation by reformulating it as a text-to-text task (Raf-
fel et al., 2020). Our method employs carefully
designed prompt templates and augmentation tech-
niques to transform graph and ground truth labels
into text pairs, enabling LMs to process and be
fine-tuned without modifying their underlying ar-
chitecture.

As shown in Figure 1, AUGLM fundamentally
differs from InstructGLM (Ye et al., 2023) and
LLaGA (Chen et al., 2024b), the current SOTA
LM node classifiers. While all three methods uti-
lize prompt templates to transform input graphs
into text, InstructGLM and LLaGA explicitly en-
code node features into the LM’s token embed-
dings which can be categorized as soft prompt-
ing (Lester et al., 2021). In contrast, our approach
provides a data augmentation-based framework
without modifying LM’s text-to-text architecture,
enabling our model to retain the versatility of the
original LM. The following section first details the
augmentation techniques developed by this paper
and then introduces the templates to incorporate all
the augmented textual features.

4.1 Retrieval-based aggregation

General LMs are not designed to process graph data
directly. To overcome this, a common approach is
to employ prompt templates to transform graphs
and associated tasks into text that LMs can under-
stand. For instance, for the Cora (Sen et al., 2008)
literature citation graph, a typical template (Huang
et al., 2023; Ye et al., 2023) for node classification,
as shown in Figure 2a, consists of three main com-
ponents: (1) a short task description, (2) the target
node’s textual features, e.g., its title and abstract,
and (3) textual features from relevant nodes.

The success of the message-passing GNNs high-
lights the importance of the aggregation operation,
whose typical example is the mean pooling of in-
termediate node embeddings. A similar spirit is
followed for the LM-based classifiers, whose key
design is the selection of relevant nodes. Exist-
ing works (Huang et al., 2023; Ye et al., 2023)
select one/multi-hop neighbors as relevant nodes,
but we posit that this approach is suboptimal for
two reasons. Firstly, not all immediate or extended
neighbors are relevant to the target node, which
can introduce noise and degrade model perfor-
mance. Secondly, incorporating multi-hop neigh-



Dense embeddings

g :g Temglate [] D g E Temglate Text U D
Encoder (m text) Augmentation (|n text)

(a) InstructGLM and LLaGA. (b) AUGLM (ours).

Figure 1: Comparison of pipelines between the existing LM-based node classifiers and our approach, AUGLM.
Unlike InstructGLM and LLaGA, which explicitly encodes graph information into token embeddings as a form of
soft prompting, AUGLM maintains the original text-to-text framework of the off-the-shelf LM, offering greater

generality and flexibility.

/{ Model input ~N

Please classify the following paper based
on the provided information.

Title: {target node’s title}
Content: {target node’s abstract}
Related papers: {relevant nodes’ titles}

N J

/{ Model input ~

Please classify the following paper into
{pruned label candidates} based on the
provided information.

Title: {target node’s title}

Content: {target node’s abstract}

Related papers: {retrieved nodes’ titles from
PPR retrieval and/or semantic retrieval}

(N

Model output
{ground truth label} }

J
Model output
{ground truth label} j

(a) A typical graph-to-text template.

(b) Our template with augmented text.

Figure 2: Comparison of a typical graph-to-text template (a) and our template with augmented text features (b).
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Figure 3: A detailed pipeline of AUGLM. In the semantic retrieval module, rectangles denote the class prototypes.

bors can lead to "neighbor explosion" (Hamilton
etal., 2017; Chen et al., 2018; Fey et al., 2021), i.e.,
an exponentially-growing set of "relevant" nodes,
resulting in increased computational costs and even
leading to the out-of-memory issue. As a response,
two novel solutions, topological retrieval and pro-
totypical semantic retrieval, are proposed to effi-
ciently identify the most informative nodes for the
classification tasks.

Topological retrieval. PPR (Page, 1999; Jeh and
Widom, 2003) is leveraged for topological retrieval,
which has shown great effectiveness in conjunc-
tion with GNNs (Klicpera et al., 2019). The suc-

cess of PPR suggests that its retrieved neighbors
may provide more informative context than generic
one/multi-hop neighbors. Specifically, for a target
node v;, we select its top- K neighbors PPR(v;, K)
based on their PPR scores (Egs. (1) and (2), Sec-
tion 3). Then, the text features from the PPR neigh-
bors are concatenated as the PPR-retrieved text
tPPR = @y, eppR(v;, k) Uj> Where @ denotes text
concatenation.

It is worth noting that the classic PPR algo-
rithm is computationally expensive for large graphs
due to the matrix multiplication (Eq. (1)). How-
ever, efficient approximate solutions such as Ap-



proximatePR (Andersen et al., 2006), can be ap-
plied to mitigate this issue. Nevertheless, PPR is
a topology-based heuristic that inherently cannot
leverage textual features or supervision from down-
stream LMs. To enhance our framework’s semantic
awareness, we propose a complementary strategy
called prototypical semantic retrieval as follows.
Prototypical semantic retrieval. Our semantic
retrieval module draws inspiration from two popu-
lar techniques: (1) RAG (Lewis et al., 2020; Guu
et al., 2020), which retrieves external corpora, and
(2) Graph Transformers (Min et al., 2022), which
aggregate messages from distant nodes via inner
product-based attention weights. For node classifi-
cation, we treat the textual features of all nodes
except the target node as a surrogate "external cor-
pus." However, unlike typical question-answering
tasks, retrieving textual features from a single node
is often insufficient for accurate node classifica-
tion. To address this, we enhance the semantic
retrieval by retrieving prototypes, which capture
the essence of each class (Snell et al., 2017).

Prototypes (Biehl et al., 2016) are defined as
representative examples in classification problems.
To obtain prototypes, a lightweight GNN % is pre-
trained and generates a prediction vector for each
node: y; = GNNy(v;,G) € R® Vuv;. The pre-
diction confidence for each node v; is defined as:
Conf (v;) = max; y;[j]. The predicted class-c ex-
amples are V. = {v; : arg max; y;[j] = c} and
their confidence is Conf,. = {Conf (v;) : v; € V. }.
For each class c, the top-/V confident examples are
selected as prototypes:

P. = {vi cv; € Vo A Conf (v;) € topN (Confc)}
(6)

For all the classes, there are N x C prototypes:
P = Uce{l,...,c} ‘P.. To ensure every document in
the corpus D includes text features from multiple
nodes, D is constructed by concatenating the text
of each prototype’s PPR neighbors:

’D:{ ® tj:UiGP} @)
J>v; €PPR(v;,K)

Next, for each target node with its associated
text features fiarget, We compute the prototyp-
ically retrieved text using Eq. (4): tprotoe =
arg max ep S¢(d, trarget). In our experiments, we
may use tppR (from topological retrieval), or Zprot0,
or both by concatenation tppr @ proto. For sim-
plicity, we denote the final retrieved text as tyetyi-

4.2 Classifier guidance

Recent studies (Huang et al., 2023; Fatemi et al.,
2024; Chen et al., 2024a) highlighted main-
stream LMs’ limited understanding of graph topol-
ogy. While InstructGLM (Ye et al., 2023) and
LLaGA (Chen et al., 2024b) address this limitation
by incorporating topology-aware node embeddings
(e.g., from a pretrained or parameter-free GNN)
into the LM’s token embeddings, this approach ne-
cessitates modifications to the LM’s architecture.
We propose an alternative method that conveys
guidance from a pretrained GNN into the input
text of LMs, thereby preserving the LM’s original
architecture. Concretely, such guidance is to prune
the classification candidates.

We repurpose the pretrained GNN,;, from the pro-
totypical semantic retrieval module. For each node
v;, we identify and save the top-I predicted labels:

Li ={j:yilj] € topl (3:)} € {1,....,C} (8)

where I < (. For datasets in the experi-
ments, the IndexToLabel maps are available,
which map numerical labels to their correspond-
ing text. The pruned label candidates for
node v; can be presented as concatenated text:
tcandidates = Picr, IndexToLabel(i). The inte-
gration of pruned candidates into the template is
detailed in Section 4.3.

By focusing on a more relevant set of candi-
date labels, valuable topology-aware inductive bias
from the GNN is incorporated into the LM’s input,
thereby enhancing its node classification perfor-
mance without altering its architecture.

4.3 Opverall template

Our augmented training samples include three key
elements: (1) the target node’s text Zarget, (2) the
retrieved nodes’ text t,etri, and (3) the pruned la-
bel candidates t..ndidates- We collectively denote
these elements as tin = (ttarget7 tretris tcandidates)-
LM’s prediction probability for the target sequence
Ytarget 18 based on Eq. (3) whose input text ¢ is
tin and the output sequence z iS Yearget- Figure 2b
presents an exemplar template for the Cora dataset,
showcasing the integration of fiarget, Tretri, and
teandidates- The selection of the backbone LM will
be detailed in Section 5. Appendix C contains a
full list of templates. Note that we exclude the
"abstracts" of the retrieved nodes to prevent ex-
ceeding the maximum input length of most LMs.
We utilize only this template’s "model input" part
for evaluation.



4.4 Training

Our framework includes three parameterized mod-
ules that require training or fine-tuning: (1) GNNs
for generating prototypes and candidate label prun-
ing, as described in Sections 4.1 and 4.2, (2) the
encoder ¢ from the semantic retriever, defined in
Eq. 5, and (3) the backbone LM, utilized in Eq. 3.
The GNNs from Sections 4.1 and 4.2 can be shared,
and their training is independent of the other mod-
ules, which are supervised by ground truth labels.
This process is detailed in Appendix A.

One of the standard LM’s losses, the average
token-wise negative log-likelihood (NLL), is used.
For a target node, the loss is:

LN1L (pLM (ytarget |tin)a ytarget) 9

To train the semantic retriever, we employ a
distribution-matching loss. For a given target
node’s text fiarget, its retrieval probability for a
prototype text ¢ € D is:

es¢ (t’ttarget)
Zt’ED esqh (t/ ,ttarget)

Next, an empirical distribution supervised by the
LM is:

Do (t ‘ ttarget) = (10)

ePLM (Utarget|tin)

D t|t =
pLM( | rargets ytarget) Zt/ED epLM (ytarget‘t;n)

1D

where t;, = (ttargeta t, tcandidates) and tﬁn =
(ttarget, t', teandidates)- This distribution represents
the normalized importance of each prototype
text ¢ € D based on the LM’s likelihood of gener-
ating the ground truth text y,.¢cc. We use pry
to distinguish this distribution from the generation
probability in Eq. (3).

The distribution matching loss is the Kullback-
Leibler (KL) divergence between the retrieval and
the LM-supervised distributions:

KL (Sg (ﬁLM ( |ttargeta ytarget)) ||p¢(' ‘ttarget))
(12)

This loss aims to align the retrieval probability of
each prototype text t € D with its importance in
facilitating the LM’s generation of the label text
Ytarget fOr the target node. The stop gradient opera-
tor sg ensures that the loss Eq. (12) only updates
the semantic retriever ¢ but keeps the LM’s pa-
rameters 6 frozen. This objective has been used

by previous works (Shi et al., 2023; Izacard et al.,
2023) without thorough analysis. We provide an
in-depth examination of its properties and implica-
tions in Appendix B.

Notably, Eq. (11) requires |D| inferences of the
LM due to the denominator. However, the LM is
fine-tuned via the NLL loss, Eq. (9), only for the
most relevant prototype, arg max cp S¢(d, target)-
Consequently, each update step involves |D| for-
ward passes but only one backpropagation. To
reduce the computational overhead associated with
|D| inferences, we can use a sampling strategy: se-
lecting the top-M samples to form a retrieval mini-
batch Dy = {t : t € topM,cpse(t’, trarget) }- By
replacing D with Dy, in Egs. (10) and (11), the re-
trieval and the LM-supervised distributions can be
computed "in-batch", reducing the inference times
from |D| to M.

Algorithm 1 (Appendix D) outlines a step-by-
step process for fine-tuning AUGLM, processing
one training node per step. This procedure can be
readily extended to mini-batch settings.

4.5 Model complexity

AUGLM consists of three parameterized modules:
(1) a GNN 1, (2) the semantic retriever ¢, and
(3) the backbone LM 6. Notably, 1) and ¢ are
lightweight, whose number of parameters is only
1/30 to 1/3 of the number of LM 6 parameters.
Compared to the SOTA InstructGLM (Ye et al.,
2023), AUGLM has an additional module ¢, result-
ing in a slightly increased number of parameters.
For training, the GNN ¢ can be pretrained, and
the PPR scores can be precomputed. The training
of 0 relies on the retrieved text from ¢, while the
training of ¢ requires prv (- |ttarget, Ytarget ), Which
is obtained through forward inference of 6. Im-
portantly, computational graphs (used for gradient
computation) of # and ¢ are independent. When
training ¢, the stop gradient operator sg ensures 6
has no gradient. As a result, the cost of backpropa-
gation is close to the sum of the cost for updating
the LM 6 and the semantic encoder ¢, separately.

4.6 Discussion on the flexibility of AUGLM

We noticed that LLaGA (Chen et al., 2024b) im-
proves the generality of soft prompting-based so-
lutions by a shared text encoder and a projector.
Here, we compare the flexibility and generality of
LLaGA and our proposed AUGLM to illustrate our
unique contribution better.



¢ LlaGA can achieve 0-shot transfer learning,
e.g., training on the Cora dataset and testing
on the Amazon dataset. However, LLaGA
cannot switch the LM seamlessly because
it requires modifying the LM’s code and ar-
chitecture, e.g., including its graph encoder’s
output into the LM’s token embeddings. The
application of LLaGA is also limited if there
is no access to the LM’s architecture or code.

* Our AUGLM cannot achieve O-shot transfer
learning because we need a trained GNN to
provide reliable label candidates for text input
augmentation. However, thanks to such a data
augmentation paradigm, AUGLM can switch
the LM seamlessly as long as the LM works
in a text-to-text manner.

5 Experiments

This section introduces the experimental setups,
baseline methods, effectiveness studies, ablation
studies, and multi-task training. Efficiency and
hyperparameter studies are in the Appendix.

5.1 Setup

Following (He et al., 2024; Ye et al., 2023), we
evaluate our approach on four benchmark datasets:
Cora (Sen et al., 2008), Pubmed (Sen et al., 2008),
ogbn-arxiv (Hu et al., 2020), and a subset of ogbn-
products (Hu et al., 2020; He et al., 2024). The
dataset statistics are in Table 5.

Our implementation employs two pretrained all-
MiniLM-L6-v2 models (Wang et al., 2020) as the
the semantic retriever ¢ (Eq. (5)) and the text en-
coder for GNN v (Eq. (13)). We set the PPR tele-
port probability o = 0.1. We employ a 3-layer
GraphSAGE (Hamilton et al., 2017) with a hidden
dimension of 256 as 1. Our hyperparameters in-
clude K = 5 PPR neighbors, N = 10 prototypes,
and M = 8 samples for LM inference. The num-
ber of label candidates [ is searched from {2, 3}.
Flan-T5-small/base/large (Chung et al., 2022) are
used as the backbone LM 6 with templates detailed
in Section C.

5.2 Comparison with state-of-the-arts

This section presents the comparison between
AUGLM and SOTA baselines. We categorize
models into two groups: (1) vector-output mod-
els which output a vector with dimension equal to
the number of classes, and (2) text-output mod-
els, whose output is text. Specifically, results

from GCN (Kipf and Welling, 2017), BernNet (He
et al.,, 2021a), FAGCN (Bo et al., 2021), GC-
NII (Chen et al., 2020), ACM-GCN (Luan et al.,
2022), GLEM (Zhao et al., 2023a)+RevGAT, In-
structGLM (Ye et al., 2023) and LLaGA (Chen
et al., 2024b) are reported according to the leader-
boards (detailed in Appendix) and their papers. The
results for TAPE+RevGAT, GIANT (Chien et al.,
2022)+RevGAT (Li et al., 2021), GIANT+GCN,
DeBERTa (He et al., 2021b), and ChatGPT3.5 are
reported from (He et al., 2024). All models are (at
least partially) fine-tuned on the training set except
ChatGPT-3.5. Mean and standard deviation over 5
runs are reported. For text-output models, accuracy
is evaluated by checking whether the model’s gen-
erated text matches the ground truth text exactly.
Table 1 presents a comparison between AUGLM
and SOTAs. AUGLM consistently outperforms In-
structGLM and LLaGA, achieving new SOTA per-
formance among text-output node classifiers. No-
tably, this superior performance is achieved without
modifying any LMs’ architecture, demonstrating
the effectiveness of our approach. Furthermore,
AUGLM exhibits competitive performance com-
pared to the best vector-output models. Specif-
ically, on Cora, Pubmed, and ogbn-arxiv datasets,
AUGLM performs closely to that of the SOTA
vector-output models. Furthermore, on the ogbn-
products dataset, AUGLM surpasses the perfor-
mance of the best vector-output model, TAPE.

5.3 Ablation study

To evaluate the contribution of each key compo-
nent in AUGLM, we conducted an ablation study
on three crucial modules: (1) topological retrieval,
(2) semantic retrieval, and (3) candidate label prun-
ing. In this subsection, Flan-T5-small is used.
The results in Table 2 demonstrate that each mod-
ule consistently improves performance across all
datasets. Notably, our analysis reveals that the rel-
ative importance of each component varies across
different datasets. For instance, candidate label
pruning greatly impacts performance for the Cora
dataset, whereas its effect is less pronounced for
the ogbn-products dataset. This variation in com-
ponent importance underscores the adaptability of
our approach, which can effectively accommodate
diverse datasets with different characteristics.

5.4 Multi-task training

One of the key advantages of pure text-to-text in-
struction tuning is that a single model can be trained



Table 1: Accuracy (%) comparison between AUGLM and existing SOTA models. The best-performing vector-

output and text-output models on each dataset are highlighted in blue and red, respectively.

Method Cora Pubmed ogbn-arxiv ogbn-products
GCN 87.78+096 88.90+032 73.60+0.18 75.64+021
GraphSAGE 86.51+236 89.08+028 73.88+0.33 76.04+0.25
BernNet 88.52+095 88.48+041 — -

é FAGCN 88.85+136 89.98+052 — -

‘é’ GCNII 88.98+133 89.80+052 72.74+0.16 -

é ACM-GCN 89.75+116 91.441059 — -

g GLEM + RevGAT 88.56+060 94.71+020 76.97+0.19 -

»  GIANT + RevGAT 83.53+038 85.02+048 75.90+0.19 71.89+030
GIANT + GCN 84.23+053 84.19+050 73.29+0.10 69.77+0.42
DeBERTa 76.06+378  94.94+046 73.61+0.04 72.97+023
TAPE + RevGAT 92.90+3.07 96.18+053 77.50+0.12 82.34+0.36
ChatGPT-3.5 67.90 93.42 73.40 74.40

é InstructGLM 90.77+052  94.62+0.13  75.70+0.12 -

§ LLaGA 89.85 95.06 76.66 -

% AUGLM (T5-small) | 91.14+055 94.80+015 75.39+021 81.73+0.08

& AUGLM (T5-base) | 91.24+046 95.03+035 76.80+0.14 81.91+0.11
AUGLM (T5-large) | 91.51+026 95.16+018 76.00+0.23 82.90+0.10

Table 2: Ablation study results (accuracy %). T, S, and
L denote topological retrieval, semantic retrieval, and
label pruning, respectively. | indicates accuracy drop
compared to the full model (T+S+L).

Model \ Cora Pubmed ogbn-arxiv ogbn-products
T+S 85.52 45620  94.40 (yoaoy 7291 (248)  79.83 (11.90)
T+L 87.27 w3sn  94.32 qoasy  73.79 is0)  81.05 os68)
S+L 90.25 (1089  94.26 (os4o  73.46 (193 79.06 (2.67)
T+S+L | 91.14 94.80 75.39 81.73

Table 3: Joint vs. separate training (accuracy %).

Training ‘ Cora Pubmed ogbn-arxiv ogbn-products

91.52 94.52 74.87 82.29
91.14 94.80 75.39 81.73

Joint
Separate

on multiple tasks with the same input-output for-
mat. To verify this, AUGLM with Flan-T5-small is
jointly trained on diverse datasets: Cora, Pubmed,
ogbn-arxiv, and ogbn-products. The results in Ta-
ble 3 show that the jointly trained model achieves
performance comparable to models trained sep-
arately on each individual dataset. We observe
that on some datasets, such as Cora and ogbn-
products, the jointly trained model even outper-
forms its dataset-specific counterparts.

These findings suggest that our approach can
effectively handle multiple graph datasets us-
ing a single model, without incurring great perfor-
mance losses compared to models trained individu-
ally. This capability is crucial for efficient model
deployment when dealing with diverse graphs. In

contrast, other approaches, such as InstructGLM,
require the addition of a large token dictionary to
accommodate all nodes in the joint dataset, which
hinders their ability to achieve similar generality.
Moreover, most vector-output models, including
TAPE, are limited by their predefined input-output
dimensions, making them inflexible and unable to
handle multiple datasets.

6 Conclusion

We introduce a novel framework AUGLM for node
classification on TAGs via text-to-text instruction-
tuning. Our approach is built upon two key innova-
tions: (1) topological and semantic retrieval of rele-
vant nodes and (2) a lightweight GNN textual guid-
ance. Extensive experimental results demonstrated
(1) the effectiveness of our framework, which con-
sistently outperformed the best text-output node
classifiers while achieving performance compara-
ble to SOTA vector-output node classifiers, and (2)
the flexibility of AUGLM , which can be jointly
trained over multiple datasets without performance
drop. These findings suggest a promising direction
for harnessing the power of LMs in graph learning
tasks.



7 Limitations

One limitation of this work is the need for man-
ual definition of prompt templates in Table 4. A
promising direction for future research is to de-
velop methods for automatically searching for op-
timal templates in a data-driven manner. Another
limitation is the requirement for pretraining a GNN
1) on each dataset, which stems from the inherent
challenges of language models in understanding
graph data and limits our model to be adapted to
zero-shot learning scenarios. Addressing this limi-
tation by developing more powerful language mod-
els capable of handling graph data is a challenging
yet impactful area of future work, which can lead to
instruction-tuning only, highly generalizable graph
foundation models.

8 Broader Impact

This paper presents work that aims to advance the
fields of language models (LMs) and graph ma-
chine learning (GML). Thus, the broader societal
impact of this research aligns with prior work in
both LMs and GML.

While our proposed approach does not target any
specific high-stakes application domain, it may be
adopted in settings such as recommendation sys-
tems and social network analysis. As such, down-
stream uses could inherit ethical considerations,
including privacy, fairness, and potential misuse.
Mitigating such issues is an open challenge shared
by the broader community, and we encourage fu-
ture work to evaluate fairness, robustness, and inter-
pretability as these models are adopted for critical
tasks.
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Appendix

This appendix is organized as follows

¢ Section A: introduction of the architecture and
training of GNNs used in this paper.

» Section B: interpretation of the distribution
matching loss.

* Section C: templates used in this paper for
node classification.

* Section D: the training algorithm of AUGLM.

¢ Section E: detailed dataset statistics and their
leaderboards.

» Section F: hyperparameters and pretrained
backbone models.

* Section G: additional experiments.

— Section G.1: additional efficiency stud-
ies.

— Section G.2: additional experiments on
the backbone GNN selections, topologi-
cal and semantic retrievers, and the PPR
steps.

— Section G.3 additional experiments on
the link prediction tasks.

¢ Section 7: limitations and future work.

A Architecture and Training of the
Graph Neural Network ¢

In our setting, semi-supervised node classification
problem, V., €, T, Virain are accessible during train-
ing. Since Graph Neural Networks (GNNs) are
not inherently capable of processing textual fea-
tures, a pretrained text encoder is used to generate
d-dimensional dense embeddings for each node

Encodery, (t;) = hgo) eRIViel,...,n (13)

In our implementation, the text encoder is all-
MiniLM-L6-v2, a member of the sentence trans-
formers. Subsequently, we apply a standard graph
neural network, GraphSAGE (Hamilton et al.,
2017), whose iterative architecture is

hgl) =0 (MEAN(MessageJ ‘W(l)> (14)

Message, = {hgl_l)} U {hgl_l) : (vi,v5) € €}
(15)

where o) is the activation function and W) ¢
R¥*4 ig the learnable parameter of each layer.
For an L-layer network, in the last layer, (%) is
Softmax and W) e R4%¢ o that hz(»L) e Re
is the prediction vector. The typical loss used
for training the GNN is negative log-likelihood
ENLL(hEL) , ;) for all the nodes in the training set
Virain- The complete set of trainable parameters is
denoted as ¢ = {11} U {WWO}L .

B Interpretation of the distribution
matching loss

We recap the objective function. For notation
brevity, we use t; to denote the input target node
with its pruned candidates: (tiarget, tcandidates):

KL(prm(-[ti i) [lpg (-[t:)) (16)

where the stop gradient operator is removed if we
only compute gradient with respect to ¢ and

e5¢(tirts) .
po(tilti) = W (17)
~ ePLM (yiltssty)
prv(tjlts, vi) = (18)

ZkeM ePLm (¥ilti tr)

For notation brevity, we replace ), p with >
if there is no ambiguity. Then

In(;n KL(ﬁLM(“tz‘ayi)Hptb("ti)) (19)

& m(;n—Zﬁm(?f\ti,yz‘)log[m(z\ti)] (20)

~ 65¢(Z7ti)
Z—XZ:PLM(ZViayi)lOg W (21)

= puu(z[ti, yi) log (Z 65"’('2/’“))

= Bunlzlti, yi)sp(2, 1) (22)
(e
= > Pun(zlti, vi)ss(z, i) (23)

z



Hence,

S, e EIVsy (2, ;)
Zz’ eSo(2'5t)

VKL = )

= Pzt yi) Vsg(z, ) (24)
= Z (P (2[ti) — Pun(2[ti, yi))
- Vsg(z,t;) (25)
_ Z < pLM ‘tzayz)>

12y
-p¢(z\ti)Vs¢(z,ti) (26)

27

After changing the notation back from ), to

> _t,ep> We have

VKL — Z <1 _ P gt| :Z/x))

ATttt

P (t[ti) Visg(ts, 1)

whose rationale is that if the LM’s feedback

greatly prefers the neighbor v; (and its asso-

ciated text ¢;), larger than its probability to be

retrieved by the retriever (i.e., % > 1),

g1t

then the similarity score between ¢; and ¢; will

increase, i.e., improve the probability of ¢; to be

retrieved.

C Templates

Table 4 presents templates used in this paper.

We design the "Citation" template for the Cora,

Pubmed, and ogbn-arxiv datasets and the "Ama-

zon" template for the ogbn-products dataset.
Drawing inspiration from the findings of (He

et al., 2024), who demonstrated the efficacy of po-

sitioning the title after the main content for cer-

tain datasets, we have also introduced two addi-

tional template variations: "Citation, Title Last"
and "Amazon, Title Last."

D Algorithm

A step-by-step process for fine-tuning AUGLM,
processing one training node per step, is presented
in Algorithm 1. This procedure can be readily
extended to mini-batch settings.

E Dataset Statistics

We present the detailed statistics of datasets used
in this paper in Table 5.
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Algorithm 1 Training procedure for AUGLM

1: Input:

(1) A graph G =
bels ytrain;

(2) initialized backbone LM 6,

(3) initialized semantic encoder ¢;

(4) initialized GNN 1.
Preprocessing:

(1) Pretrain GNN ) on (G, Virain)-

(2) Generate prototypes and their text via
Egs. (6) and (7).

(3) Generate pruned label candidates for
each node via Eq. (8).

(V,&,T) and training la-

3: while 0 and ¢ not converged do

4: Sample node v; ~ V with text ¢;.

5: Retrieve relevant nodes’ text tyetri; via:
topological retrieval (Eq. (2)) and/or
semantic retrieval (Eq. (4)).

6: Construct prompt with ¢;, tyerii, and

Lcandidates,; (from Preprocessing step (3)),
based on the template (e.g., Figure 2b).
Update 6 based on Eq. (9).
Compute py(-|t;) via Eq. (10).
Perform LM inference |D| times for:
{prm(yilti, t) brep and prov(-[ti, i)-
Update ¢ based on Eq. (12).
end while

10:
11:

All the baseline methods’ performance on the
Cora, Pubmed, and ogbn-arxiv is reported from the
public leaderboards 23* and their published papers.

The ogbn-products dataset used in this paper is
a subset of the original ogbn-products dataset (Hu
et al., 2020) from TAPE (He et al., 2024). We
follow the settings in TAPE and report baseline
methods’ performance from the TAPE (He et al.,
2024) paper.

F Selected Hyperparameters

We report the hyperparameter used for every
dataset in Table 6. As mentioned in the main
content, we use two pretrained all-MiniLM-L6-
v2 models as the dual encoder and the Flan-T5-
small/base/large models as the backbone; they are

2https://paperswithcode.com/sota/
node-classification-on-cora-60-20-20-random

3https://paperswithcode.com/sota/
node-classification-on-pubmed-60-20-20-random

4https://ogb.stanford.edu/docs/leader_
nodeprop/


https://paperswithcode.com/sota/node-classification-on-cora-60-20-20-random
https://paperswithcode.com/sota/node-classification-on-cora-60-20-20-random
https://paperswithcode.com/sota/node-classification-on-pubmed-60-20-20-random
https://paperswithcode.com/sota/node-classification-on-pubmed-60-20-20-random
https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/

Table 4: Templates used for all datasets.

Template Name

Prompt Text

Citation
(Cora, Pubmed, ogbn-arxiv)

Please classify the following paper into {pruned label candidates} based on
the provided information\nTitle:
node’s abstract}\nRelated papers: {retrieved nodes’ titles}

{target node’s title}\nContent: {target

Citation, Title Last
(Cora, Pubmed, ogbn-arxiv)

papers

Please classify the following paper into {pruned label candidates} based
on the provided information\nContent:
: {retrieved nodes’ titles}\nTitle: {target node’s title}

{target node’s abstract}\nRelated

Amazon

(ogbn-products) the

Please classify

following Amazon
candidates} based on the provided
node’s title}\nDescription: {target node’s description}\nRelated products:
{retrieved nodes’ titles}

label
{target

product into {pruned
information\nProduct name:

Amazon, Title Last

(ogbn-products) the

Please classify

{target node’s title}

following Amazon
candidates} based on the provided information\nDescription: {target node’s
description}\nRelated products:

product into {pruned label

{retrieved nodes’ titles}\nProduct name:

Table 5: Dataset statistics.

Name # Nodes # Edges # Classes Split Strategy Evaluation Metric
Cora 2708 10556 7 Random 60/20/20%  Accuracy
Pubmed 19717 88 648 3 Random 60/20/20% Accuracy
ogbn-arxiv 169343 1166243 40  Given split Accuracy
ogbn-products 54025 198 663 47 Given split Accuracy
all publicly available’®. More detailed hyperparam- 401 —— Tsemall
eters will be released with the code upon publica- 30 A T5-base
tion. " —— T5-large
9 20 1
oy . —
G Additional Experiments 10-
G.1 Additional efficiency study 04
Memory usage. Memory usage is linear concern- 0 50 100 150 200 250 300
Iteration

ing batch size. We report the memory usage of
AUGLM with different backbone LMs in Table 7,
where we set the batch size to 1 and we found the
experimental results reasonable because more pow-
erful backbone LMs require more GPU memory.

Convergence curve. We train AUGLM with dif-
ferent backbone LMs: FLAN-T5-small/base/large
on the Cora dataset and plot their loss curves regard-
ing updating steps in Figure 4. In this experiment,
the batch size is 16. It shows that our proposed
AUGLM converges smoothly and quickly when
equipped with various LMs of different scales.

FLOPs. The floating point operations (FLOPs)
of AUGLM are studied. Specifically, the compu-

5https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2

6https://huggingface.co/docs/transformers/en/
model_doc/flan-t5
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Figure 4: Convergence curve of AUGLM.

tation of our AUGLM includes (1) precomputing
PPR neighbors for every node, (2) training and in-
ference of the semantic retriever ¢, and (3) training
and inference of the LM 6. Hence, the extra on-the-
fly computation cost is from the semantic retriever
¢ (all-MiniLM-L6-v2 in our experiments). We re-
port the FLOPs of the retriever and different LM
backbones in Table 8. The results show that (1) the
retriever only adds a tiny amount of FLOPs to the
backbone LMs and (2) our proposed AUGLM is
efficient.

Running time. The running time (both forward
and backpropagation) of the semantic retriever and
the backbone LMs on the Cora dataset is recorded.


https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/docs/transformers/en/model_doc/flan-t5
https://huggingface.co/docs/transformers/en/model_doc/flan-t5

Table 6: Selected hyperparameters for AUGLM across different datasets.

Hyperparameter Cora Pubmed ogbn-arxiv ogbn-products
# PPR neighbors 5 2 5 5

# Semantic neighbors 5 2 5 5
Prompt template Citation  Citation  Citation, Title Last Amazon

# Candidate labels 3 2 3 3

LM learning rate 1x107% 1x107* 1x107* 1x10*
Retriever learning rate | 1 x 107™° 1 x 107° 1x1073 1x1075
Weight decay 0 0 0 0

Table 7: GPU Memory usage (MB) with different LMs.

Model ‘ Memory
AUGLM (T5-small) 3098
AUGLM (T5-base) 6572
AUGLM (T5-large) 20308

Table 8: FLOPs comparison between different modules.

Module | FLOPs (10%)

Retriever 2.3
T5-small 71.7
T5-base 257.2
T5-large 845.4

Table 9: Running time (ms) of different modules.

Module ‘Forward Backprop

Retriever 14.7 6.1
T5-small 90.0 32.0
T5-base 104.4 66.6
T5-large 277.2 197.0

The batch size is 1. This experiment is tested on
an NVIDIA A100-SXM4-80GB. Table 9 shows
that the semantic retriever only adds very limited
on-the-fly computation overhead compared to the
LM, showing the efficiency of AUGLM.

G.2 Additional hyperparameter study

In this section, we study the model’s performance
with various hyperparameters.

Selection of the backbone GNN. Specifically,
we study the performance of AUGLM equipped
with different GNNs. we compared the perfor-
mance of AUGLM equipped with GraphSAGE
(used in the reported results) with the counterpart
equipped with GCN (Kipf and Welling, 2017). The
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comparison is in Table 10.

We observed that the performance is nearly iden-
tical between GCN and GraphSAGE. This can be
attributed to two factors: (1) the classification per-
formances of GCN and GraphSAGE are similar,
and (2) the GNN is used to generate prototypes and
prune candidate labels, which does not require a
highly powerful GNN for accurate classification.

Number of PPR retrieved nodes. Next, we ex-
amined the relationship between the model perfor-
mance and the number of nodes retrieved. In this
auxiliary experiment, we fixed the number of nodes
retrieved by semantic retrieval at 5 and varied the
number of nodes retrieved by PPR retrieval. The
results are reported in Table 11

Interestingly, we found that the model’s perfor-
mance remains relatively stable when the number
of PPR nodes is less than 15. However, the per-
formance degrades when too many nodes are re-
trieved (more than 15). A possible explanation
is that when the number of PPR nodes becomes
too large, every target node’s retrieved nodes be-
come similar (e.g., some hub nodes are retrieved
by most nodes), reducing the discriminativeness of
each target node. This phenomenon is reminiscent
of the "oversmoothing" problem (Li et al., 2018)
in GNNs, where a GNN with too many layers and
a large receptive field produces indistinguishable
latent representations for all the nodes.

Other topological retrieval options. In this aux-
iliary experiment, we use the link predictor to re-
trieve relevant neighbors. Specifically, we trained
a graph autoencoder (GAE) (Kipf and Welling,
2016), a basic graph neural network-based link pre-
dictor, on the given graph. Then, we retrieved the
top-5 most confident neighbors from the recon-
structed graph to replace those obtained through
PPR retrieval. The results are presented in Table 12,



Table 10: Performance (accuracy %) comparison of AUGLM equipped with different GNNS.

Model ‘ Cora Pubmed ogbn-arxiv ogbn-products
GraphSAGE | 91.14 94.80 75.39 81.73
GCN 90.98 94.85 75.21 81.82

Table 11: Accuracy (%) of AUGLM on ogbn-arxiv
with different numbers of PPR-retrieved neighbors. The
best result is bolded.

# Neighbors ‘ Accuracy (%)

1 75.18
3 75.76
5 75.39
7 75.19
9 76.05
10 76.45
15 75.99
20 74.81
25 74.48

where Flan-T5-small is used as the backbone LM.
For better reference, we also provide a version
where PPR retrieval is replaced with retrieving
from 1-hop neighbors.

We observe that both 1-hop neighbor retrieval
and GAE perform worse than their PPR counter-
parts. A possible reason is that both 1-hop neigh-
bor retrieval and GAE are local retrieval methods,
whereas PPR can effectively capture the global
structure. Additionally, we note that GAE is trained
using a reconstruction loss, which means it tends to
assign high confidence to existing edges. In other
words, the neighbors retrieved by GAE would be
similar to those obtained through 1-hop neighbor
retrieval, except for some low-degree nodes.

Other semantic retrieval options. This addi-
tional experiment uses different semantic retriev-
ers to replace the prototype-based semantic re-
triever used in the proposed AUGLM. In detail,
the prototype-based semantic retrieval module is
replaced with a simple semantic retriever that se-
lects the most textually similar nodes via inner
product. Concretely, we use two pretrained mod-
els, (1) the original all-MiniLM-L6-v27 and (2) a
fine-tuned all-MiniLM-L6-v2 by SimTeG (Duan

7https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
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et al., 2023)%. The remaining modules, including
topological retrieval and classifier guidance, were
left intact, and FLAN-T5-small is used as the LM
backbone. The results are reported in Table 13.

We observe that the proposed prototype-based re-
triever is better than both the original all-MiniLM-
L6-v2-based retriever and the SimTeg-tuned simple
retriever. This is because:

1. The training objective of the SimTeG-tuned
retriever is to align the classification loss with
a GNN model (Duan et al., 2023), similar to
knowledge distillation (Hinton et al., 2015).
In other words, the SimTeG-tuned retriever
is a mixture of topological and semantic re-
trieval, as the GNN incorporates both topol-
ogy and node features. This means that its role
partially overlaps with that of the topological
PPR retriever.

. Our prototype-based retriever can retrieve tex-
tual features from multiple nodes, but the
other two cannot achieve this.

G.3 Additional link prediction experiments

The main task of this paper is on the node classifi-
cation task, but we conducted a preliminary exper-
iment to adapt our proposed AUGLM to the link
prediction task, further showcasing the generality
of the proposed AUGLM. A systematic study to
adapt AUGLM to link prediction tasks is interest-
ing, and we leave it as future work.

Link prediction can be viewed as a classification
task for a pair of nodes. For all modules, we made
the following adaptations:

1. We retained the topological PPR retrieval for
the input node pair.

2. We concatenated the text of the node pair as in-
put for the semantic retriever. The prototypes
used as the corpus of the semantic retriever
were still generated by a pre-trained GNN,
which is consistent with our approach for the
node classification task.

8https://huggingface.co/datasets/vermouthdky/
SimTeG/tree/main/ogbn-arxiv/all-MinilM-L6-v2/
main/cached_embs
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Table 12: Accuracy (%) of AUGLM with different topological retrieval techniques across datasets. The best result

for each dataset is bolded.

Retrieval Technique | Cora Pubmed ogbn-arxiv ogbn-products
1-hop neighbors 90.59 94.33 73.97 79.53
GAE 90.83 94.42 74.01 79.85
PPR neighbors 91.14 94.80 75.39 81.73

Table 13: Accuracy (%) of AUGLM with different semantic retrieval techniques across datasets. The best result for

each dataset is bolded.

Retrieval Technique ‘ Cora Pubmed ogbn-arxiv ogbn-products
Simple semantic retriever 90.68 94.37 74.46 81.21
SimTeG-tuned simple retriever | — — 74.70 —
Prototype-based retriever (ours) | 91.14 94.80 75.39 81.73

3. For classifier guidance, we utilized a pre-

Table 14: Accuracy (%) on the preliminary link predic-
tion task for the Cora dataset.

trained graph autoencoder (GAE), whose out-
put is the connection probability for every
node pair. We transformed the connection
probability into plain language based on the
following rules: (1) less than 0.2: "improba-
ble", (2) 0.2 to 0.4: "unlikely", (3) 0.4 to 0.6:
"maybe", (4) 0.6 to 0.8: "likely", and (5) more
than 0.8: "highly likely". The GAE’s predic-
tion (in plain language) was then incorporated

Method ‘ Accuracy
GAE 89.29
AUGLM (T5-small) | 93.59
AUGLM (T5-base) | 94.25

Cora dataset, following the settings from the bench-

into the following template.

4. The template we used is in the following for-
mat:
Please determine if the following two

papers are related or not.

Paper 1’s title: {Paper 1’s title}

Paper 1’s abstract: {Paper 1’s abstract}
Paper 1’s related works: <{Paper 1’s PPR
neighbors’ titles?}

Paper 2’s title: {Paper 2’s title}

Paper 2’s abstract: {Paper 2’s abstract}
Paper 2’s related works: {Paper 2’s PPR
neighbors’ titles}

Other related works:
nodes’ titles}

{Semantic retrieved

An expert link prediction model predicted
that the possibility of these two papers
being related is: {GAE’s prediction}

Do you think these two papers are related
or not?
Please answer Yes or No.

We conducted preliminary experiments on the

mark®. In this setup, 5% and 10% of edges were
removed for validation and testing, respectively.
Also, an equal number of non-connected node pairs
were used as negative samples. The accuracy re-
sults are reported in the following table.

Our key findings are as follows:

1. Our proposed AUGLM can indeed be effec-
tively adapted to link prediction tasks.

. By leveraging a classic link predictor (GAE),
our AUGLM achieves a significant perfor-
mance boost over the backbone predictor
GAE, which aligns with our observations in
node classification tasks.

9https://paperswithcode.com/paper‘/
variational-graph-auto-encoders
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