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ABSTRACT

Collaborative inference systems are designed to deploy high-performance mod-
els on resource-constrained edge devices by splitting the model into two parts,
deployed separately on the client device and the server. However, server-side
adversaries can still infer client’s private information from the latter part of the
model. Previous works rely on auxiliary data with matching labels and unlim-
ited queries to reconstruct inference data or determine sample membership. In
contrast, this paper introduces a novel threat called Model Theft and Inversion
Attacks (MTIA), targeting a more realistic and challenging scenario where adver-
saries often lack access to label-consistent datasets. Moreover, adversaries cannot
query the client device and have no knowledge of the client model’s architecture
or parameters. To address these challenges, we leverage transfer learning and
self-attention alignment to extract knowledge from the server model and align it
with the target task. This enables model recovery with performance comparable
to the original model while improving the reconstruction of high-fidelity private
data. Additionally, we propose an enhancement that uses reconstructed images to
further boost the recovered model’s performance. Extensive experiments across
various datasets and settings validate the effectiveness, robustness, and generaliz-
ability of our approach.

1 INTRODUCTION

With the advancement of Deep Neural Networks (DNN), an increasing number of models have
been deployed in various edge devices (Tekin et al., 2024), including healthcare (Yang et al., 2021),
autonomous driving (Wang et al., 2024) and biometric recognition (e.g., face, fingerprint, and palm-
print) (Sardar et al., 2024). Due to the limited computational resources of edge devices, pruned
or lightweight models are typically deployed. While this approach reduces computational burden,
it also limits the deployment of higher-accuracy models and the ability to handle more complex
tasks. To address this, researchers have proposed deploying models in a distributed manner across
the server and client devices (Vepakomma et al., 2018), which is called Collaborative Inference (CI)
(Li et al., 2018; Kang et al., 2017; Banitalebi-Dehkordi et al., 2021; Li et al., 2021). A common
approach is to partition the model into two parts: the front layers are deployed on client devices for
feature extraction, while the latter layers reside on the server for further processing. This strategy
not only enables the deployment of larger models but also reduces computational costs on client
devices. Additionally, by keeping data on the device without direct access by the server, it enhances
user privacy.

Current studies show that the server can reconstruct inference data from the intermediate features
sent by the client. However, they primarily focus on black-box and white-box scenarios (Zhang
et al., 2024; Liu et al., 2024; Yang et al., 2022; Li et al., 2023), where server attackers are typically
assumed to have unlimited query access to the client model or full access to its parameters. They
largely overlook a more common and realistic yet challenging scenario known as the query-free
setting (He et al., 2019; Chen et al., 2020), in which they are unable to perform effective attacks.

In practice, model inputs on the edge device are generated by offline users. For instance, if the
front model is used within a company and the server is managed by a third party (e.g., Google
Cloud), the service is accessible only to company employees. Since the server is not a valid user
and lacks physical access to the client, it cannot send arbitrary queries to the client model. The
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query-free setting is more challenging, as the server has access only to the latter half of the model
and possesses no knowledge of the client model’s architecture or parameters. Furthermore, in face
recognition tasks, the server adversary lacks access to a dataset with the same labels. Obtaining such
a dataset would be equivalent to acquiring detailed facial data of individuals, which is unrealistic and
raises ethical concerns. Since previous attacks rely on auxiliary data with matching labels, the label
inconsistency and query-free constraints limit their applicability.

To investigate privacy leakage under the challenging constraints of label inconsistency and query-
free setting, this paper proposes a new threat called Model Theft and Inversion Attacks (MTIA),
which aims to achieve two goals: recovering the client model functionality and reconstructing the
private training data. We first design a transfer-based method to extract hidden knowledge from the
server model and reconstruct the missing client model using a label-inconsistent auxiliary dataset.
Although the recovered model performs well on the auxiliary dataset, it initially lacks proper align-
ment with the target task. To address this, we introduce a bottom-up, layer-wise self-attention align-
ment strategy, enabling the front layers to adapt to and align with the latter layers via attention maps.
As a result, the recovered model achieves performance comparable to the full target model, leading
to severe model leakage. Empowered by successful model recovery, we introduce a more severe
threat—model inversion—to reconstruct private training data. We further propose an enhancement
strategy that leverages the reconstructed images as a substitute for the private dataset to fine-tune the
recovered model. We evaluate MTIA on two widely used facial datasets, CelebA and FaceScrub,
using different models. Experimental results show that MTIA significantly enhances information
extraction from deeper layers, improving model recovery performance from 0.13% to 77.05% on
CelebA and raising image reconstruction success from 4.13% to 84.79%. Extensive ablation studies
across model architectures, dataset sizes, defenses, and datasets further underscore the effectiveness,
robustness, and generalizability of our approach. Our contributions are as follows:

• We propose the first Model Theft and Inversion Attacks (MTIA) against collaborative in-
ference systems under label inconsistency and query-free settings, which are both more
realistic and challenging.

• We apply a two-step recovery method based on transfer learning and self-attention align-
ment, which extracts hidden information from deeper layers and achieves better alignment
for target tasks. This recovery significantly boosts the success of high-fidelity identity rev-
elation.

• We conduct comprehensive experiments and ablation studies to demonstrate that MTIA
achieves remarkable performance across various settings and datasets, further highlighting
its robustness and generalizability.

2 BACKGROUND AND RELATED WORK

2.1 COLLABORATIVE INFERENCE SYSTEMS

Machine learning models require substantial computational resources, making deployment on
resource-constrained edge devices challenging. To address this, a paradigm called Collaborative
Inference (CI) has been proposed (Li et al., 2018; Kang et al., 2017; Banitalebi-Dehkordi et al.,
2021; Li et al., 2021). CI splits the model into two parts: one deployed on the client device and the
other on a cloud server. The client model processes raw data and transmits intermediate features to
the server for further computation. This setup significantly reduces the computational burden on the
client, enabling the use of more powerful models in constrained environments. A related paradigm,
Split Learning (Vepakomma et al., 2018), is designed for collaborative training.

Although CI keeps user input local, the server can still infer private information from the server
model (Zhang et al., 2024; Liu et al., 2024; Yang et al., 2022; Li et al., 2023; He et al., 2019; Chen
et al., 2020). Chen et al. (Chen et al., 2020) and Zhang et al. (Zhang et al., 2024) focus on inferring
whether a sample belongs to the training data, while Yang et al. (Yang et al., 2022) and Li et al.
(Li et al., 2023) aim to reconstruct the inference data from intermediate features. In contrast to
these works, this paper investigates new threats—model theft and inversion attacks—under a more
realistic setting where the server faces label inconsistency and operates without the ability to query
the client.
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Figure 1: Overview of model theft and inversion attacks.

2.2 MODEL INVERSION ATTACKS

Model Inversion Attacks (MIAs) (Zhang et al., 2020; Yuan et al., 2023; Struppek et al., 2022; Qiu
et al., 2024) pose a particularly severe risk to training data privacy, aiming to reconstruct it by solving
an optimization problem in the input space x:

x∗ = argmin
x

Lcls(T (x), c), (1)

where c represents the target class, T denotes the target model, and Lcls refers to the classification
loss (e.g., cross-entropy). By minimizing the loss, the input x is optimized to resemble the training
data associated with label c.

3 METHOD

3.1 THREAT MODEL

Attack Scenario. Given a target model fT = {fC , fS} trained on private data Dpriv =
{Xpriv, Ypriv, c}, where c represents the number of classes, our attack targets model deployed in
a distributed manner across a client device (fC) and a server (fS). The server holds the latter m
layers, fS = {l1, ..., lm−1, l

c
m}, where the final layer is a fully connected layer producing c class

outputs. In this setup, the client processes user inputs x into intermediate features fC(x), which
are then uploaded to the server. The server further processes these intermediate features to generate
the final output fS(fC(x)), which is returned to the client. Crucially, model inputs are controlled
by real-world users, ensuring that the server cannot directly input data into the client. For example,
consider a scenario where the client is deployed within a company and the server is managed by a
third party. In this case, the server cannot upload data to the client model, as it is used exclusively
by company staff. This scenario is more realistic and presents a greater challenge.

Adversary’s Goal. We consider an adversary, either an external entity that compromises the server
or the server itself. The adversary has two primary objectives: (1) Model Leakage – Recover the
client model’s functionality to reach performance close to that of the full target model fT . (2) Data
Leakage – Reconstruct the private training images utilized in the target model.

3
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Adversary’s Knowledge. We consider a practical and realistic scenario where the adversary has
access only to the server model and a public dataset Dpub = {Xpub, Ypub, d} containing d classes
from the same domain as the training dataset. Importantly, the public dataset has no class overlap
with the target training dataset, and both the number of classes (c ̸= d) and their distribution differ.
This constraint prevents the adversary from directly leveraging the public dataset to reconstruct the
complete model. Furthermore, the adversary has no knowledge of the client model’s weights or
architecture and cannot query the client.

3.2 SELF-ATTENTION GUIDED MODEL RECOVERY

Since Dpub has a different distribution from Dpriv, directly training a new model on Dpub or com-
bining it with fS is ineffective, as the training tasks differ. To address this, we propose a model
recovery method based on transfer learning and self-attention alignment to fully extract the knowl-
edge embedded in fS . The workflow as shown in Figure 1 (a), consists of the following two steps:

Step1: Transfer-based Model Completion. To fully leverage the information hidden in the deeper
layers, we first completes the model using a weight transfer learning approach. We initialize a new
feature extractor, f̂C , as a substitute for fC . Since the adversary lacks knowledge of the model’s
architecture, the architecture of f̂C differs from that of fC . However, f̂C cannot be directly combined
with fS because the last layer lcm in fS is mismatched with the class numbers of Dpub. To address
this, a new classification layer ldm is initialized, replacing the last layer in fS to form a new public
model: fP = {f̂C , f̂S = {l1, ..., lm−1, l

d
m}}. The public model is then trained on Dpub:

LTL = Lcls(f̂S(f̂C(Xpub)), Ypub) (2)

where Lcls denotes the classification loss. The layers from the server model {l1, ..., lm−1} remain
frozen, and only the newly initialized layers, f̂C and ldm, are trained.

Step2: Model Fine-tuning using Self-attention Alignment. Although we can complete the model
using Dpub, the feature extractor is trained specifically for Dpub, resulting in poor performance
on Dpriv . To better align the feature extractor with the target’s deeper layers and tasks, we adopt
Self-Attention Distillation (SAD) (Hou et al., 2019). SAD was originally proposed to enhance
the model’s representation learning through no teacher distillation; in this work, we adopt it as an
alignment mechanism, allowing the front layers to learn from the latter layers through attention
maps.

The attention maps are obtained by processing the output of a specific layer. We denote the output of
a layer as A ∈ RC×H×W , where C, H , and W represent the channel, height, and width, respectively.
To construct an attention mapping function, we define G(A) =

∑C
j=1 |Aj |2. This function is derived

by computing statistical properties across the channel dimension. The absolute value of each element
in the resulting attention map indicates its importance in determining the final output. We conduct a
bottom-up, layer-wise alignment that utilizes the attention maps of the deeper layers as supervision
for the shallower layers. The self-attention alignment loss, LSA, is defined as:

LSA(Ai, Ai+1) = ∥Φ(U (G(Ai)))− Φ (U (G(Ai+1)))∥2 (3)

G(A) =

C∑
j=1

|Aj |2, Φ(A) =
exp(A)∑

h,w

exp(Ah,w)
(4)

U(A)u,v =

H∑
i=1

W∑
j=1

Ai,j ·max(0, 1− |u′ − i|) ·max(0, 1− |v′ − j|) (5)

u′ =
u ·H
H ′ , v′ =

v ·W
W ′ (6)

where Ai denotes the output of the i-th layer. G is an attention mapping function. U denotes the
bilinear upsampling operation that resizes the attention map to a predefined resolution H ′×W ′. The
upsampling is computed based on bilinear interpolation weights derived from the relative positions
u′ and v′ mapped to the original spatial coordinates. Φ is a spatial softmax function applied over the
spatial domain to normalize the attention map into a probability distribution.
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The self-attention alignment loss LSA is computed between consecutive layers and from the penul-
timate layer’s output to the first layer. After alignment, the adversary replaces the last layer ldm
in fP = {f̂C , f̂S = {l1, ..., lm−1, l

d
m}} with the original classification layer lcm, forming the final

recovered target model: fR = {f̂C , fS = {l1, ..., lm−1, l
c
m}}.

3.3 INVERSION-BASED IDENTITY RECONSTRUCTION

After recovering the target model, which performs well on the private data Dpriv , we can apply
white-box MIAs on the recovered model fR to reveal private training data. The attack workflow is
shown in Figure 1 (b). The adversary can leverage the public dataset Dpub to train a GAN (Yuan
et al., 2023) or utilize a pretrained StyleGAN (Struppek et al., 2022) for the attack. The images
generated by the GAN are denoted as G(z), where z ∼ N (0, 1) represents the latent vector. The
optimization process is formulated as:

z∗ = argmin
z

Lcls(fR(G(z)), yt), (7)

where yt is the target class, fR is the recovered model, and Lcls denotes the classification loss
(identity loss). The reconstructed images can be obtained as x∗ = G(z∗).

3.4 ENHANCING ATTACKS USING STOLEN IDENTITIES

After the inversion attacks, the adversary can obtain images for each identity. These reconstructed
images can be viewed as an approximate substitute for Dpriv . Consequently, the adversary can
create a new dataset Dattack using the reconstructed images and employ it to fine-tune the recovered
model, thereby enhancing its performance on Dpriv. This process is referred to as repeated attack.
The process of repeated MTIA (r-MTIA) is illustrated in Figure 1 (c). After obtaining an enhanced
recovered model f∗

R, the adversary can once again reconstruct the private training data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We choose the face classification task for our main experiments and utilize two widely
used datasets: CelebA (Liu et al., 2015) and FaceScrub (Ng & Winkler, 2014). CelebA consists of
202,599 face images from 10,177 identities. For our experiments, we select 30,027 images from
1,000 identities. FaceScrub contains 106,863 images of 530 individuals. We use the entire Face-
Scrub dataset. For both datasets, when one is designated as Dpriv , the other serves as Dpub, en-
suring that Dpriv and Dpub are distributed differently and have no overlap. All images are resized
to 224 × 224. We also conduct experiments on other datasets, more details can be found in the
Appendix D.

Models. We employ two different model architectures: MobileNetV2 (Sandler et al., 2018) and
ResNet-50 (He et al., 2016). Since the adversary lacks knowledge of the complete model architec-
tures, we use VGG blocks (consisting of two convolutional layers) (Simonyan, 2014). Notably, VGG
blocks differ significantly from the residual blocks in ResNet-50 and the inverted residual blocks in
MobileNetV2 in terms of channel dimensions and the number of layers. Refer to the Appendix E
for detailed architectural differences.

Attacks and Defenses. We select two white-box MIAs: PLGMI (Yuan et al., 2023) and PPA (Strup-
pek et al., 2022). PLGMI utilizes a self-trained GAN, while PPA employs a StyleGAN pretrained
on the FFHQ dataset (Karras et al., 2019). Additionally, we select three MIA defenses and five col-
laborative inference defenses for evaluation: BiDO (Peng et al., 2022), NLS (Struppek et al., 2023),
and TLDMI (Ho et al., 2024) for MIAs, and NoPeek (Vepakomma et al., 2020), Noise (Titcombe
et al., 2021), Dropout (He et al., 2020), DISCO (Singh et al., 2021), and InfoScissors (Duan et al.,
2024) for CI. Moreover, we also include Differential Privacy (DP) (Abadi et al., 2016), a widely
used method for privacy protection. See Appendix C for more details and hyperparameters.

Evaluation Metrics. To evaluate the attack performance, we conducted both qualitative evaluation
through visual inspection and quantitative evaluation using three metrics:

5
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Table 1: Attack results across various datasets and models. ↑ and ↓ indicate that higher and lower
scores, respectively, correspond to better attack performance.

Dataset Method
MobileNetV2 ResNet-50

TestAcc ↑ PLGMI PPA TestAcc ↑ PLGMI PPA
AttAcc ↑ FDist ↓ AttAcc ↑ FDist ↓ AttAcc ↑ FDist ↓ AttAcc ↑ FDist ↓

CelebA

Target 88.15 87.06±1.4 174.30 90.93±1.3 122.56 87.67 84.53±1.2 184.00 92.33±0.8 150.23

Pretrain 0.06 0.66±0.2 240.62 0.00±0.1 306.29 0.09 0.26±0.3 228.52 0.06±0.1 306.81
Pretrain-SA 8.95 29.33±1.0 213.21 10.13±0.1 226.79 0.87 0.66±0.2 205.89 0.73±0.4 263.84

TL 0.13 4.13±1.2 195.36 0.86±0.5 293.12 33.39 66.60±1.4 196.75 60.46±3.0 202.37
MTIA 77.05 84.79±1.4 177.86 72.93±2.2 149.47 68.32 63.53±0.8 192.21 65.73±1.3 183.87

r-MTIA 79.62 81.46±1.1 173.98 77.46±2.2 141.18 71.38 67.26±0.4 199.04 70.26±2.7 181.59

FaceScrub

Target 93.48 97.06±0.8 142.47 94.66±1.1 121.85 93.96 94.59±1.6 143.01 96.33±0.5 136.68

Pretrain 0.02 1.99±0.4 197.59 0.20±0.2 269.66 0.18 0.26±0.3 202.56 0.13±0.1 295.18
Pretrain-SA 9.07 12.53±1.0 197.48 5.73±1.4 230.19 3.72 0.40±0.1 196.34 1.33±0.3 253.89

TL 0.29 20.39±2.7 185.00 1.26±0.5 267.47 58.86 87.06±1.3 167.83 78.46±1.9 175.95
MTIA 88.37 93.00±0.8 141.31 84.86±2.0 134.25 85.93 89.06±1.2 153.10 83.99±2.0 152.03

r-MTIA 90.07 95.53±0.8 126.39 89.26±0.9 129.89 86.55 89.46±0.6 158.73 87.00±1.9 150.23

• Test Accuracy (TestAcc). Test accuracy is used to evaluate the performance of the recov-
ered model on Dpriv . A higher test accuracy indicates greater functional similarity, which
suggests a higher degree of model theft.

• Attack Accuracy (AttAcc). We employ an evaluation model to classify the reconstructed
images, measuring inversion attack accuracy. This model is trained on the same Dpriv

but uses a different architecture. High accuracy indicates a successful attack and potential
private information leakage. We use InceptionV3 (Szegedy et al., 2016) as the evaluation
model.

• Feature Distance (FDist). It is evaluated using the penultimate layer outputs of the evalu-
ation model. We measure the l2 distance between the reconstructed image and the nearest
private image with the same label. A lower feature distance indicates a closer semantic
similarity.

Baselines. As this is the first work addressing model and identity theft in such a limited setting, we
evaluate two baselines for comparison:

• Pretrain: A new model is trained using Dpub without utilizing fS . The front layers of this
new model are then combined with fS to form the recovered model.

• Transfer Learning (TL)(He et al., 2019; Chen et al., 2020): The model is completed by
freezing fS and training the remaining layers using Dpub (Step1).

We further add self-attention alignment (Step2) to both baselines, yielding Pretrain-SA and MTIA
(ours), to highlight the impact of the two key steps. Implementation details and hyperparameters are
provided in the Appendix D.

4.2 MAIN RESULTS

Comparison with baselines. Table 1 presents the MTIA results when the server is missing one
block. Pretrain fails with near-zero accuracy, and even with self-attention alignment (Pretrain-
SA), performance remains below 10%. TL yields just 0.13% and 0.29% accuracy on MobileNetV2,
but improves to 33.39% and 58.86% on ResNet-50, benefiting from deeper layer knowledge. Our
method, MTIA, significantly outperforms baselines, achieving 77.05% on CelebA and 88.37% on
FaceScrub, which are closer to the target model’s 88.15% and 93.48%. This demonstrates the superi-
ority of MTIA’s two-step knowledge extraction and alignment. Poor model recovery by the baselines
leads to failed image reconstruction. However, MTIA boosts image reconstruction, achieving high
attack success rates of 84.79% on CelebA and 93.00% on FaceScrub. The visual comparison in Fig-
ure 2 further highlights these results. Baseline methods produce unrecognizable images or entirely
incorrect identities, whereas MTIA reconstructs images with greater detail and higher quality. This
improvement is attributed to the effective model recovery enabled by MTIA.

Effectiveness of repeated MTIA. We collect the reconstructed images from PPA on MTIA as the
attack dataset Dattack for fine-tuning. As shown in Table 1, r-MTIA further enhances the perfor-
mance of the recovered model, increasing accuracy from 77.05% to 79.62% on CelebA and from

6
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Figure 2: Identity inversion results on MobileNetV2. “Target” refers to the reconstructed images of
the target model.

(a) Pretrain (b) Pretrain-SA (c) TL (d) MTIA (ours) (e) Target

Figure 3: T-SNE visualization on CelebA and MobileNetV2.

88.37% to 90.07% on FaceScrub. Correspondingly, identity revelation attacks also improve. The r-
MTIA step can be repeated multiple times, but a single repetition is sufficient. Additional repetitions
increase computational cost and time, while yielding diminishing performance gains.

Effectiveness of two steps in MTIA. Using only transfer learning (TL, Step 1) fails on Mo-
bileNetV2 and gives moderate results on ResNet-50. Using only self-attention alignment (Pretrain-
SA, Step 2) provides small improvements but better task alignment. This is evident in Figure 2,
where the reconstructions from Pretrain-SA show some similarity to the ground truth, particularly
in hairstyle and the presence of glasses. When combined (MTIA), model recovery performs best,
capturing finer details more accurately.

4.3 MODEL SIMILARITY ANALYSIS

To analyze how the model recovered by MTIA behaves like the target model, we use Loss-Rank Cor-
relation (LRC) (Kaya & Dumitras, 2021) to quantify model similarity and t-SNE (Van der Maaten
& Hinton, 2008) for feature space visualization. The LRC score is computed as the Spearman’s
rank correlation coefficient (Spearman, 1904) between the loss values of two models evaluated on
the same dataset. The LRC is defined as:

LRC =
cov(rank(L1), rank(L2))

σrank(L1) · σrank(L2)
(8)

where L1 and L2 are the loss vectors from two models, rank(·) denotes the rank transformation of
the loss vector, and cov and σ denote covariance and standard deviation.

The LRC score ranges from -1 to 1, with a higher value indicating greater similarity. As shown in
Table 2, the model recovered by MTIA achieves a high score across both models, indicating strong
similarity at the model level. As shown in Figure 3, the t-SNE plot also reveals greater similarity

7
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Figure 4: Test accuracy of fR with different missing
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Figure 6: Test accuracy of fR when using dif-
ferent public dataset size on MobileNetV2.
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Figure 7: Test accuracy of fR when using dif-
ferent architectures.

and clearer class boundaries, reflecting closer alignment with the target model at the feature level.
The analysis demonstrates the strong success of the model recovered by MTIA.

4.4 ABLATION STUDY

Table 2: LRC score on CelebA.

Method MobileNetV2 ResNet-50
Pretrain -0.161 -0.360

Pretrain-SA -0.130 -0.218
TL -0.169 0.236

MTIA (ours) 0.831 0.738

Effect of different missing blocks in fS . As the server model
may have more missing blocks, the server needs to recover a
larger portion of the model. To assess performance, we re-
port the model’s accuracy on both Dpriv and Dpub, replac-
ing the last fully connected layer accordingly. As shown in
Figure 4, when more blocks are missing, accuracy on Dpub

remains nearly unchanged, but the recovered model’s perfor-
mance gradually decreases. This indicates that there is lit-
tle correlation between performance on Dpriv and Dpub. For
ResNet-50, the decline is more significant than MobileNetV2. Because a higher number of missing
blocks reduces the available information in fS and increases the architectural differences, making
recovery more challenging.

Effect of fine-tuning epochs. We further analyze the effect of fine-tuning epochs in self-attention
alignment (Step 2). We fine-tune for 20 epochs using MobileNetV2 and report test accuracy on
Dpriv at each iteration, as shown in Figure 5. During fine-tuning, test accuracy gradually improves
and reaches its peak. However, with additional fine-tuning, performance begins to fluctuate and
slowly declines. Thus, fine-tuning for 5 epochs is sufficient for Step 2.

Effect of public dataset size for two steps. We conduct additional experiments using three portions
of public dataset: 70%, 50%, and 30% of the original Dpub, as shown in Figure 6. When the dataset
size is reduced for Step 1 of MTIA, the performance of the recovered model slightly decreases. The
performance drops to 58.1% for FaceScrub only when using 30% of the dataset, as this limited data
makes it challenging to extract meaningful features and achieve accurate classification. For Step
2 of MTIA, reducing the dataset size has nearly no effect on the attack performance. This may be
because sufficient hidden information has already been extracted during Step 1, allowing the model’s
knowledge to be aligned effectively in Step 2.
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Table 3: Attack results against MIA defenses.

Defense Hyperparams Method Test-Acc ↑ PPA Att-Acc ↑

w/o - Target 88.15 90.93±1.3
MTIA 77.05 72.93±2.2

BiDO (0.05, 0.5) Target 86.98 87.93±0.6
MTIA 71.84 70.59±1.4

NLS -0.005 Target 87.31 74.59±2.4
MTIA 69.35 55.59±3.6

TLDMI 0.5 Target 84.71 78.20±1.5
MTIA 66.89 55.73±1.2

DP 0.01 Target 83.44 81.80±1.8
MTIA 56.57 51.39±3.2

Table 4: Attack results against CI defenses.

Defense Hyperparams Method Test-Acc ↑ PPA Att-Acc ↑

NoPeek 0.7 Target 87.83 92.59±1.5
MTIA 77.76 79.33±3.5

Noise 10 Target 84.71 84.73±1.5
MTIA 72.10 77.46±1.7

Dropout 0.5 Target 84.22 90.93±1.6
MTIA 75.52 73.26±2.8

DISCO (0.8, 0.5) Target 86.85 75.59±1.1
MTIA 76.56 77.20±2.5

InfoScissors 0.5 Target 88.58 91.39±0.7
MTIA 72.00 72.13±2.2

Table 5: Attack results on other datasets. “Pre” stands for “Pretrain”.

Task Dpriv Dpub Target Pre Pre-SA TL MTIA

Face Classification CelebA CelebA (different ID) 88.15 0.03 11.26 0.13 76.80
CelebA AI-Face (synthetic) (Lin et al., 2025) 88.15 0.09 2.44 0.09 52.73

Fingerprint Classification UareU (Neurotechnology, 2007) FVC2004 (Maltoni et al., 2009) 98.52 1.47 17.64 1.47 71.32
Palmprint Classification PCE (Jin et al., 2024) PCE (different ID) 100.00 0.26 23.79 1.44 97.83

Object Classification Imagenette (Howard, 2019) Imagewoof 95.75 10.06 42.41 13.34 82.52
Imagewoof (Howard, 2019) Imagenette 87.38 5.64 21.30 5.64 51.41

Effect of recovered model architectures. Since the adversary has access to the server model,
they can infer potential model architectures and use the same type of building blocks. We consider
three additional architectures using the same type of blocks: with (1) shallower, (2) same, and
(3) deeper blocks. For the same architectures, a key point is that frameworks like PyTorch offer
popular models with ImageNet-pretrained weights (e.g., torchvision.models (PyTorch, 2023; Deng
et al., 2009)), which many users adopt as backbones. This means an adversary could download
the same pretrained weights as the target model, making recovery easier. As shown in Figure 7,
using the same or deeper blocks improves recovery accuracy due to greater similarity to the target
model than the VGG block. In contrast, shallower blocks cause notable degradation, as their shallow
front layers fail to extract meaningful features. Moreover, knowing the pretrained backbone allows
the adversary to achieve the best recovery performance. Our experiments show that architecture
choice has limited impact on recovery, as adversaries can compensate with deeper models. More
importantly, these findings highlight that using a pretrained backbone increases privacy risks.

Effect of defenses. We evaluate MIA and CI defenses on CelebA using MobileNetV2, with results
presented in Table 3 and 4. Compared to the model recovery performance on an undefended model
(77.05%), these defenses reduce MTIA effectiveness to 56.57% – 77.76%, which in turn further
impacts identity reconstruction. However, these defenses are still not highly effective against MTIA,
as a model with nearly 60% accuracy can still lead to significant privacy leakage.

Effect on other dataset. We test MTIA on various datasets and tasks; more details are provided in
the Appendix D. The results are shown in Table 5. For CelebA, even when using data from different
identities and a synthetic dataset, MTIA still successfully recovers model functionality. Additionally,
for fingerprint, palmprint, and object classification tasks, MTIA achieves attack performance that
surpasses the baselines. These results further demonstrate the effectiveness and generalizability of
our approach.

Effect on other models. We evaluate MTIA on MaxViT (Tu et al., 2022) in Table 13 in Appendix
F.9, demonstrating its feasibility on more complex transformer-based architectures.

5 CONCLUSION

This paper proposes MTIA, the first model theft and inversion attacks under label inconsistency
and query-free settings in collaborative inference. The server adversary uses transfer learning and
self-attention alignment to recover the client model, and reconstruct its training data.
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ETHICS STATEMENT

All experiments in this work were conducted within controlled research environments. The datasets
employed are publicly available, open-source, and were used strictly in accordance with their re-
spective licenses. The proposed attack was never executed on real-world systems; it is studied
exclusively for academic and research purposes. Our intention is not to harm or exploit any system
or individual but rather to raise awareness of potential privacy risks and to promote the development
of stronger privacy-preserving techniques.

REPRODUCIBILITY STATEMENT

All experiments are conducted on a Linux server with CUDA 11.8, Python 3.10, PyTorch 2.0.1,
Torchvision 0.15.2, and two NVIDIA GeForce RTX 4090 GPUs. The detailed data processing steps
and hyperparameters of MTIA are provided in Appendix D. The hyperparameters of MIA attacks
and defenses are listed in Appendix C. The source code is available at https://anonymous.
4open.science/r/MTIA-C2FC.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used LLMs such as ChatGPT for polishing the writing and checking grammar, without
employing them for any other purpose.

B COLLABORATIVE INFERENCE SYSTEMS

Figure 8 illustrates the framework of Collaborative Inference systems (CI). CI splits the model into
two parts: one deployed on the client device and the other on a cloud server. The client model
processes raw data and transmits intermediate features to the server for further computation. The
server then returns the results to the client user. This setup reduces the computational burden on the
client while preserving user privacy. In the query-free setting (He et al., 2019; Chen et al., 2020), the
client device is deployed within the company, and the server model is held by a third-party cloud.
For example, in a facial recognition attendance system for employees, the system operates offline
daily, with the cloud only processing data sent by the client. Consequently, the server cannot query
the client, as the client device is located within the company premises.

Client Model

Server Model Prediction 
Outputs

Company Cloud Server

Results
Return to Client

Figure 8: Collaborative Inference Systems.

This setting is more difficult to attack. The client-provided instances are not controllable by the
server, which may lead to situations where no instances are sent, such as when the client device is
offline or shut down. The attacker cannot freely issue queries and can only passively wait for in-
coming instances. The attacker does not have access to the original private inputs, which makes the
received intermediate features difficult to exploit. In non-query-free methods, the attacker can send
auxiliary data to the client and obtain corresponding intermediate features to learn the feature–input
mapping or steal the client model through feature distillation. Therefore, in the non-query-free set-
ting, the attacker can access substantially more information. In the query-free setting, the available
information is limited, and the instances may also be insufficient.

C MODEL INVERSION ATTACKS AND DEFENSES

C.1 WORKFLOW OF MIAS

Model Inversion Attacks (MIAs) aim to reconstruct sensitive training data from the target model.
MIAs can be formulated as an optimization problem in the input space x:

x∗ = argmin
x

Lcls(T (x), c), (9)

where c represents the target class, T denotes the target model, and Lcls refers to the classification
loss function (e.g., cross-entropy loss). By minimizing the classification loss of T , the input x
is optimized to resemble the training data associated with label c, potentially revealing sensitive
features such as the face of the individual corresponding to class c.
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With the application of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Miyato
& Koyama, 2018), the images generated by attackers are no longer random but are instead produced
through GANs. Moreover, attackers can leverage components such as the GAN discriminator to
further enhance the realism of the generated images. The basic attack workflow is shown in Figure
9. This process can be formally expressed as:

z∗ = argmin
z

Lcls(T (G(z)), c) + Lprior(G(z)), (10)

Where z is the latent code of the GAN, G is the generator, and Lprior represents the loss from the
discriminator.

z ~ N(0,1)
Latent 
Vector Generator Generated

Images

Target Model

Discriminator

Optimize

�

D
ℒ�����

ℒ���

Figure 9: Basic workflow of Model Inversion Attacks.

C.2 ATTACKS

The first MIA was introduced by Fredrikson et al. (Fredrikson et al., 2014; 2015), leveraging gra-
dient descent optimization in the image space. However, the vast size of the image space made
optimization challenging, often resulting in unrecognizable reconstructed images. To overcome this
limitation, Zhang et al. (Zhang et al., 2020) proposed Generative Model Inversion (GMI), which
utilizes a GAN to constrain the optimization space and synthesize high-quality reconstructed sam-
ples. More recently, advanced variants of GMI have been developed to enhance attack performance
under diverse attacker capabilities (Chen et al., 2021; Wang et al., 2021; Struppek et al., 2022; An
et al., 2022; Nguyen et al., 2023; Yuan et al., 2023; Qiu et al., 2024; Peng et al., 2024; Han et al.,
2023; Li et al., 2025; Kahla et al., 2022; Nguyen et al., 2024).

PLGMI (Yuan et al., 2023). PLGMI uses pseudo labels to narrow the search space and conduct a
more independent latent search process. PLGMI first selects the best matching n images for each
identity from public data, then uses these images to train a conditional GAN (Miyato & Koyama,
2018), which better guides the direction of the generated images. In the attack phase, PLGMI
designs a max-margin loss to address the gradient vanishing problem.

Hyperparameters. We set n = 30 for the top-n selection strategy. To train the GAN, we use the
Adam optimizer with a learning rate of 0.0002, a batch size of 64, and β = (0, 0.9), training for
150,000 iterations. During the attack, we use the Adam optimizer with a learning rate of 0.1, and
initialize z for 5 times and optimize each round for 600 iterations.

PPA (Struppek et al., 2022). PPA leverages pre-trained StyleGANs on image priors with large
distributional shifts. The attack consists of three phases: sampling, optimization, and selection. In
the sampling phase, PPA generates a large pool of latent vectors and selects some vectors for each
identity that achieves the highest accuracy on the target model. Then, in the optimization phase,
PPA optimizes each latent vector under random transformations and employs a Poincaré loss to
address the gradient vanishing problem. Finally, in the selection phase, PPA filters out poor results
by evaluating various transformed versions of each corresponding image on the target model and
selecting the average best results.

Hyperparameters. In the sampling phase, we initially sampled 5,000 latent vectors z and then
selected the top 20 candidates with the highest prediction scores. During the optimization phase, we
employed the Adam optimizer with a learning rate of 0.005, a batch size of 30, and β = (0.1, 0.1),
training for 100 iterations. Finally, in the selection phase, we select 5 samples with the highest
average prediction scores for each target.
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In other settings, attackers may only have access to the model’s prediction outputs rather than its
full parameters. Based on the type of outputs available, these settings can be further classified into
black-box (soft label) (An et al., 2022; Han et al., 2023) and label-only (hard label) scenarios (Kahla
et al., 2022; Nguyen et al., 2024). In the black-box setting, MIRROR (An et al., 2022) employs
a genetic algorithm for gradient-free optimization, while RLBMI (Han et al., 2023) formulates the
latent space search as a Markov decision process and solves it using reinforcement learning. In the
label-only setting, BREPMI (Kahla et al., 2022) introduces an algorithm that pushes samples away
from the decision boundary and closer to the class centroid. LOKT (Nguyen et al., 2024) transfers
knowledge from the target model to surrogate models using hard-label distillation, then performs
white-box attacks on the surrogate models.

C.3 DEFENSES

BiDO (Peng et al., 2022). BiDO utilizes a bilateral dependency optimization strategy to minimize
the dependency d(z, x) between the latent representations z and the inputs x while maximizing
the dependency d(z, y) between the latent representations z and the label y. For the dependency
measure, BiDO uses constrained covariance (COCO) (Gretton et al., 2005b) or the Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005a). It has been noted that BiDO-HSIC has better
defense performance than BiDO-COCO. We choose BiDO-HSIC and use λx and λy to control
d(z, x) and d(z, y) separately.

NLS (Struppek et al., 2023). Negative Label Smoothing (NLS) converts hard labels into soft
labels by incorporating a negative smoothing factor λ into the cross-entropy loss, which affects
the optimization process in MIAs.

TLDMI (Ho et al., 2024). TLDMI utilizes a model pretrained on public datasets and transfers the
earlier layers to the target model. The transferred layers are frozen, and only the later layers are
trained on the private dataset. According to their analysis, the earlier layers are more vulnerable to
MIAs; thus, TLDMI helps reduce the private information encoded in the model. We define the ratio
of transferred and frozen parameters as the hyperparameter λ.

Differential Privacy (Abadi et al., 2016). Differential Privacy (DP) was initially introduced to
provide privacy guarantees for algorithms operating on aggregate databases (Dwork, 2006; Dwork
et al., 2014). It was later adapted to deep learning through Differentially Private Stochastic Gradient
Descent (DP-SGD) (Abadi et al., 2016). To limit the influence of a single sample on model updates
and prevent excessive information leakage, DP-SGD first computes the l2-norm of each sample’s
gradient and clips it if it exceeds a predefined threshold. We set this threshold to 1. To further
enhance privacy, even if an attacker gains access to the model parameters, they should not be able
to accurately infer specific training samples. To achieve this, random perturbations drawn from
Gaussian noise are added during gradient updates. We define the noise ratio as the hyperparameter
λ.

NoPeek (Vepakomma et al., 2020). NoPeek is a widely used defense method in CI that measures
and reduces the correlation between intermediate features and the input, thereby preventing server
adversaries from reconstructing the original input data. The loss function for this method is defined
as follows:

L = α ·DCOR(Xpriv, fC(Xpriv))

+ (1− α) · TASK(Ypriv, fS(fC(Xpriv))) (11)
where DCOR represents the distance correlation metric, and TASK denotes the classification loss
between the true label and the model’s prediction. By jointly minimizing this loss, a better trade-off
can be achieved between preserving input data privacy and maintaining model utility.

Noise (Titcombe et al., 2021). Titcombe et al. (Titcombe et al., 2021) proposed a defense approach
that adds Laplacian noise directly to the intermediate features before transmission to the server,
aiming to hinder input reconstruction. This added randomness increases the difficulty for adversaries
to infer the mapping between the intermediate features and the original input. In our implementation,
we set the noise mean to 0 and control its variance using λ.

Dropout (He et al., 2020). Dropout randomly disables a subset of neurons during the forward pass,
stochastically altering the activation patterns of intermediate representations. We control the dropout
probability using λ.
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DISCO (Singh et al., 2021). DISCO learns a dynamic, data-driven pruning filter to selectively
obfuscate sensitive information in the feature space. It monitors an attacker and learns the optimal
pruning strategy to defend against it. We set the pruning rate to λ and balance the main task loss and
the monitored adversarial loss with weights of 0.5 each.

InfoScissors (Duan et al., 2024). InfoScissors reduces the mutual information between a model’s
intermediate features and both the input and predictions. Since predictions are held by the server in
this paper, we focus solely on minimizing the mutual information between the intermediate features
and the input. The mutual information loss is controlled by the parameter α.

D DATASETS

CelebA (different ID). We select another 2,504 images from 234 different identities for this dataset,
with no overlap with the private CelebA dataset used in the main experiments.

AI-Face (Lin et al., 2025) is the first million-scale, demographically annotated AI-generated face
image dataset, including real faces, deepfake video frames, and faces generated by 10 GANs and 8
diffusion models. We select 20,000 images generated by Latent Diffusion (Rombach et al., 2022).
We choose intersectional classification (gender and skin tone) with 6 classes: 0-(Female, Light),
1-(Female, Medium), 2-(Female, Dark), 3-(Male, Light), 4-(Male, Medium), 5-(Male, Dark).

Hyperparameters. For the main experiments and the aforementioned face dataset, we use the same
hyperparameters. All the images are resized to 224×224. For training the target models, we use the
Adam optimizer with a batch size of 128 and a learning rate of 0.001. The models are trained for
100 epochs on CelebA and 50 epochs on FaceScrub. For Step1, we use a batch size of 64, a learning
rate of 0.001, and train for 100 epochs. For Step2 and r-MTIA, we fine-tune the recovered model
with a batch size of 64, a learning rate of 0.0001, and only 5 epochs.

Neurotechnology UareU (Neurotechnology, 2007) is a fingerprint dataset distributed by Neurotech-
nology, containing 65 fingers, each with 8 impressions.

FVC2004 (Maltoni et al., 2009; of Bologna), 2003) is a fingerprint dataset introduced in the Third
International Fingerprint Verification Competition. It consists of four databases, with a total of 40
fingers, each having 8 impressions.

Hyperparameters. For fingerprint recognition, we use Neurotechnology UareU as Dpriv and
FVC2004 as Dpub. The images are resized to 224 × 224 and trained on the MobileNetV2 model.
For the target model, we train for 20 epochs with a batch size of 8 and a learning rate of 0.001. For
MTIA Step 1, we train for 70 epochs with a batch size of 8 and a learning rate of 0.001. In MTIA
Step 2, we train for 5 epochs with a batch size of 8 and a learning rate of 0.0001.

PCE-SynthPalm-1.6M (Jin et al., 2024; PCE-SynthPalm-1.6M, 2024) is a synthetic palmprint
dataset designed to address the lack of large-scale datasets in palmprint recognition research. It
includes 1.6 million palmprint images spanning 50,000 subjects.

Hyperparameters. For palmprint recognition, we select 50 identities from the PCE-SynthPalm-
1.6M dataset as Dpriv and another 100 identities as Dpub. The images are resized to 224× 224 and
trained on the MobileNetV2 model. For the target model, we train for 20 epochs with a batch size
of 32 and a learning rate of 0.001. For MTIA Step 1, we train for 30 epochs with a batch size of 32
and a learning rate of 0.001. In MTIA Step 2, we train for 5 epochs with a batch size of 32 and a
learning rate of 0.0001.

Imagenette (Howard, 2019) is a curated subset of ImageNet (Deng et al., 2009), consisting of 10
easily distinguishable classes: tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, and parachute. It contains a total of 13,394 images.

Imagewoof (Howard, 2019) is a subset of ImageNet (Deng et al., 2009) comprising 10 dog breeds
that are more challenging to classify due to their visual similarity. It contains a total of 12,954
images. The included breeds are: Australian Terrier, Border Terrier, Samoyed, Beagle, Shih Tzu,
English Foxhound, Rhodesian Ridgeback, Dingo, Golden Retriever, and Old English Sheepdog.

Hyperparameters. For both datasets, the images are resized to 224 × 224 and trained on the Mo-
bileNetV2 model. For the target model, we train for 20 epochs with a batch size of 128 and a
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learning rate of 0.001. For MTIA Step 1, we train for 50 epochs with a batch size of 128 and a
learning rate of 0.001. In MTIA Step 2, we train for 5 epochs with a batch size of 128 and a learning
rate of 0.0001.

E MODELS

Both MobileNetV2 and ResNet-50 are composed of three parts: an initial convolutional layer, mul-
tiple blocks, and a final classification layer. The initial convolutional layer processes the input image
and maps the three RGB channels into multiple feature channels. In MobileNetV2, it consists of a
3×3 convolution, a batch normalization layer, and a ReLU activation. In ResNet-50, it consists of
a 7×7 convolution, batch normalization, a ReLU activation, and a max-pooling layer. In our main
experimental setup, the initial convolutional layer and the first block (an inverted residual block for
MobileNetV2 and a residual block for ResNet-50) are deployed on the client, while the remain-
ing blocks are deployed on the server. When the split point moves deeper, additional blocks are
shifted to the client. For the attacker, a VGG block is used as a substitute for the client models. The
architectures of the VGG block, inverted residual block, and residual block are shown in Figure 10.

The VGG block consists of two convolutional layers with a kernel size of 3× 3. Each convolutional
layer is followed by a batch normalization layer and a ReLU activation function. At the end of the
VGG block, a max-pooling layer is used for dimensionality reduction.

The inverted residual block in MobileNetV2 consists of convolutional layers with two different
kernel sizes: 1×1 and 3×3. Specifically, it follows a dimension expansion-first approach, followed
by dimension reduction. It first applies a 1 × 1 pointwise convolution to expand the number of
input channels, followed by a 3 × 3 depthwise separable convolution to extract features. Finally,
another 1× 1 pointwise convolution compresses the number of channels back to the original count.
The inverted residual block uses ReLU6 as the activation function, which restricts the output values
between 0 and 6. Additionally, a skip connection is employed to add the inputs and outputs of the
block.

The residual block in ResNet-50 also consists of convolutional layers with two different kernel sizes
but differs from the inverted residual block. It employs a 1×1 convolution for dimension reduction,
followed by a 3×3 convolution for feature extraction, and finally another 1×1 convolution to expand
the dimensions. This structure, known as the bottleneck design, features larger dimensions at both
ends and a smaller dimension in the middle, effectively reducing computational complexity. The
residual block includes a skip connection that directly adds the input to the output passing through
two convolutional layers, facilitating gradient propagation. Unlike the inverted residual block, a
ReLU activation function is applied after the skip connection.

Conv2d(3*3)

BatchNorm

ReLU

(1) VGG Block (2) Inverted Residual Block (3) Residual Block (Bottleneck)

MaxPool2d

Input Channel=32

32
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Figure 10: Architectures of three different blocks.
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F ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL DEFENSES

We evaluate our attack against two stronger defense mechanisms under various hyperparameters:
Noisy ARL (Jeong et al., 2023) and CEM (Xia et al., 2025). Since CEM needs to be combined with
other defenses, we pair it with NoPeek (Vepakomma et al., 2020), Dropout (He et al., 2020), and
Noisy ARL (Jeong et al., 2023). The results are shown in Table 6. MTIA remains effective against
both defenses, improving the recovered model accuracy from 57.03% to 75.06% and the inversion
attack accuracy from 59.33% to 79.53%.

Table 6: Attack results against additional defenses.

Defense Hyperparams Method Test-Acc ↑ PPA Att-Acc ↑

w/o - Target 88.15 90.93±1.3
MTIA 77.05 72.93±2.2

Norsy ARL

(2, 0.01) Target 88.09 92.00±0.2
MTIA 75.06 79.53±2.2

(5, 0.01) Target 83.76 82.26±2.0
MTIA 68.94 72.93±1.2

(10, 0.01) Target 82.59 71.60±1.1
MTIA 64.90 67.26±3.4

NoPeek CEM

(0.01, 1, 0.5) Target 83.57 85.73±1.1
MTIA 66.73 71.53±1.6

(0.01, 1, 0.7) Target 80.93 82.53±1.3
MTIA 57.03 59.33±2.1

Dropout CEM

(0.01, 1, 0.3) Target 84.71 88.13±1.9
MTIA 68.32 69.73±1.4

(0.01, 1, 0.5) Target 81.39 86.73±2.0
MTIA 71.48 71.20±0.9

Norsy ARL CEM

(1.0, 10, 0.01) Target 85.29 86.19±1.1
MTIA 65.91 68.80±1.6

(5.0, 10, 0.01) Target 83.34 81.06±1.7
MTIA 64.25 71.33±1.3
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F.2 COMPUTATIONAL OVERHEAD

We calculate the computational overhead of each step to better illustrate the attack process, as shown
in Table 7. Training details can be found in Appendix C and Appendix D. For MTIA, Step 1 com-
pletes the model weights through transfer learning, Step 2 fine-tunes the model via self-attention
alignment, and the inversion attack reconstructs the images. r-MTIA adds a fine-tuning process us-
ing the reconstructed images and a second inversion (if needed). Step 1 requires more time than
training the target model, while Step 2 incurs only a small computational cost. The inversion step is
time-consuming because the latent space of the GAN must be optimized hundreds of times for each
identity. For r-MTIA, the fine-tuning cost is low, and most of the computation is spent on inver-
sion. Therefore, repeating the attack more than once is unnecessary due to its high computational
cost, as the reconstructed results already achieve high accuracy and additional repetitions yield only
diminishing gains.

Table 7: Computational overhead (GPU hours) of different processes: MTIA involves Step 1, Step 2,
and inversion, while r-MTIA involves Step 1, Step 2, inversion, fine-tuning, and a second inversion.

Dataset Model Target Model
Training

Attack Step Total Attack Time
Step1 Step2 Inversion Fine-tuning MTIA r-MTIA

CelebA MobileNetV2 7.68 11.21 0.09 19.92 0.38 31.22 51.52
ResNet-50 8.46 12.46 0.13 23.57 0.39 36.16 60.12

FaceScrub MobileNetV2 5.44 8.80 0.09 10.55 0.22 19.44 30.21
ResNet-50 5.74 9.14 0.12 12.65 0.22 21.91 34.78

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.3 SELF-ATTENTION ALIGNMENT LAYERS

To evaluate the impact of using different layers for self-attention alignment, we experiment with
four portions of the early layers: 100%, 50%, 30%, and 10%. These portions indicate the number
of layers counted from the first layer relative to the total number of layers. The recovered model
accuracy is shown in Figure 11. Using fewer layers for alignment slightly reduces performance and
slows convergence, while also lowering the computational cost.

0 20 40 60 80 100
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Te

st
 A

cc
ur

ac
y 

(%
)

100%
50%
30%
10%

Figure 11: Test accuracy of the recovered model using different portions of self-attention alignment
layers.
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F.4 OVERLAPPING ANALYSIS BETWEEN CELEBA AND FACESCRUB

To analyze the overlapping IDs between CelebA and FaceScrub, we trained MobileNetV2 and
ResNet-50 models on each dataset, resulting in four models in total. We then performed cross veri-
fication by feeding CelebA images into the FaceScrub-trained models and vice versa, and recorded
the predicted labels for each ID. For each ID, we identified the most frequently predicted label and
computed its proportion among all predictions for that ID as the match ratio. We calculated the av-
erage match ratio across the four models and report the results in Figure 12. IDs with a match ratio
above 0.5 were identified as overlapping, yielding 22 such cases. The images of these overlapping
IDs are shown in Table 8. The identified 22 IDs indeed correspond to the same individuals, while
those with match ratios below 0.5 are visually similar but not the same person.

Figure 12: Average match ratio for overlaped predictions of four models.

Table 8: The corresponding image of the overlaped IDs between CelebA and FaceScrub.

Match Ratio > 0.5

CelebA

365 712 958 895 262 715 943 96 364 629 462

FaceScrub

308 96 367 358 295 348 365 284 307 338 318

CelebA

523 658 161 214 531 33 51 385 20 918 953

FaceScrub

321 340 35 292 80 10 273 312 266 490 366

Match Ratio < 0.5

CelebA

345 529 195 242 886

FaceScrub

509 163 283 31 120
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F.5 ATTACK RESULTS USING DIFFERENT CELEBA IDENTITY

The overlapping IDs are few, only 2.2% in CelebA and 4.1% in FaceScrub, and they are associated
with different labels. This label mismatch can disrupt classification during our attack, as images
of the same identity are assigned different labels. To fully eliminate this overlap, we conduct two
new experiments. Our target model is trained on CelebA using 1000 IDs, and we select another 234
CelebA IDs as our public dataset for attacks, forming a non-overlapping set. We also remove the
22 overlapping IDs identified in the FaceScrub dataset in Section F.4 and re-evaluate on this cleaned
dataset. The results are shown in Table 9. MTIA remains effective on both new public datasets,
successfully restoring model functionality and reconstructing images. Compared to the original
results on the full FaceScrub dataset reported in the main paper, the performance decreases only
slightly—from 77.05% to 76.80%/74.78% for MobileNetV2 and from 71.39% to 61.45%/71.22%
for ResNet-50.

Table 9: Attack results using different datasets. ↑ and ↓ indicate that higher and lower scores,
respectively, correspond to better attack performance.

Dpriv Dpub Method
MobileNetV2 ResNet-50

TestAcc ↑ PPA TestAcc ↑ PPA
AttAcc ↑ FDist ↓ AttAcc ↑ FDist ↓

CelebA

CelebA
(Different 234 ID)

Target 88.15 90.93±1.3 122.56 87.67 92.33±0.8 150.23

Pretrain 0.03 0.13±0.1 278.92 0.09 0.06±0.1 299.69
Pretrain-SA 11.26 13.86±1.7 218.47 2.34 2.53±0.7 250.48

TL 0.13 0.86±0.3 260.46 0.68 26.26±1.7 242.60
MTIA 76.80 73.60±2.5 144.66 61.45 71.73±0.6 168.10

FaceScrub
(22 Overlap Removed)

Target 88.15 90.93±1.3 122.56 87.67 92.33±0.8 150.23

Pretrain 0.01 0.13±0.1 275.66 0.09 0.13±0.1 296.66
Pretrain-SA 4.03 4.60±1.4 245.61 3.71 3.33±0.5 249.16

TL 0.48 2.93±0.8 254.32 29.98 53.33±1.6 209.91
MTIA 74.78 71.26±1.5 148.26 71.22 75.13±2.0 172.19
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F.6 ANALYSIS OF LAYER ATTENTION

We visualize the attention maps of the MobileNetV2 model trained on CelebA using Grad-CAM
Selvaraju et al. (2017), from the first layer to the last, as shown in Figure 13. The first two maps in
the top row correspond to the client model. For the target model, shallow layers focus on fine-grained
details such as hair and nose, while deeper layers attend to broader, less detailed regions. Attention
patterns between neighboring layers are similar and show smooth, continuous transitions. With TL,
the early-layer attention becomes inconsistent with the originals, and the inter-layer relations be-
come less coherent, causing deviations that grow cumulatively with depth. In contrast, self-attention
alignment preserves continuity across layers, enabling more accurate feature extraction.

(a) Target

(b) TL

(c) MTIA (ours)

Figure 13: Attention maps of MobileNetV2 trained on CelebA, from the first layer to the last layer.
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F.7 FINE-TUNING OF R-MTIA

The repeated MTIA (r-MTIA) uses reconstructed images to fine-tune the recovered model and en-
hance its classification performance. Since the reconstructed images may be distorted or imperfect
and may not resemble the real identities, several fine-tuning strategies are employed to mitigate the
risk of error accumulation as follows:

• None: The model is directly fine-tuned using all reconstructed images.
• Image Filtering: We adopt the same methods as in PPA (Struppek et al., 2022), applying

random image transformations (such as RandomResizedCrop and RandomHorizontalFlip)
to the reconstructed images. Images that still receive high prediction scores after trans-
formations are selected as the final fine-tuning dataset. This step filters out adversarial
examples and low-similarity images.

• Layer Freezing: Parameters belonging to the original server model are frozen, and only the
recovered part is fine-tuned.

• L2-SP: An L2 penalty at the starting point (L2-SP) (Xuhong et al., 2018) is applied
during fine-tuning to prevent the parameters from deviating excessively from their ini-
tial values. Denoting the recovered model parameters as θr, the penalty is computed as:
lsp = ||θ∗r − θr| |22.

The experimental results are shown in Table 10. Simply using all reconstructed images for fine-
tuning can slightly enhance model performance. Applying image filtering further improves perfor-
mance on CelebA, while the improvement on FaceScrub is less pronounced. This may be because
the quality of reconstructed images for FaceScrub is higher than for CelebA, making filtering imper-
fect images more beneficial for CelebA. Layer Freezing and L2-SP also provide notable improve-
ments for CelebA but are less effective for FaceScrub.

Table 10: Accuracy of different fine-tuning methods by r-MTIA.

Dataset Model MTIA
Accuracy

r-MTIA Accuracy

None Image Filtering Image Filtering
+ Layer Freezing

Image Filtering
+ L2-SP

CelebA MobileNetV2 77.05 78.91 (+1.86) 79.62 (+2.57) 80.54 (+3.49) 79.43 (+2.38)
ResNet-50 68.32 69.17 (+0.85) 71.38 (+3.06) 70.73 (+2.41) 71.02 (+2.70)

FaceScrub MobileNetV2 88.37 90.05 (+1.68) 90.07 (+1.70) 89.72 (+1.35) 89.72 (+1.35)
ResNet-50 85.93 87.32 (+1.39) 86.55 (+0.62) 85.56 (-0.37) 85.84 (-0.09)
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F.8 ATTACK RESULTS WITH QUERY ACCESS

If the attacker has query access to the client model, they can recover it through a distillation-based
approach. We consider two types of distillation methods as follows:

• Feature Distillation (FD): The attacker queries the client model with the public dataset
(Xpub) to obtain the intermediate features (fC(Xpub)) and minimizes the discrepancy be-
tween these features and those produced by the substitute client (f̂C(Xpub)). The loss is
computed as:

LFD =
∥∥∥fC(Xpub)− f̂C(Xpub)

∥∥∥2
2

(12)

• Knowledge Distillation (KD): The attacker queries both the client model and the server
model with the public dataset (Xpub) to obtain the final outputs (fS(fC(Xpub))). The
attacker then minimizes the Kullback–Leibler divergence (KL) Csiszár (1975) between
these outputs and those produced by the substitute client and server, (fS(f̂C(Xpub))). This
loss, commonly known as Knowledge Distillation (KD) Hinton et al. (2015), is computed
as:

yC = Softmax(fS(fC(Xpub))) (13)

ŷC = Softmax(fS(f̂C(Xpub))) (14)
LKD = KL(yC ||ŷC) (15)

We evaluate the model-recovery performance of FD and KD in Table 11. Given query access, an
adversary can submit an unlimited number of inputs to the client model and obtain either the inter-
mediate features or the final model outputs. With these signals, the adversary is able to reconstruct
the entire model with high fidelity, resulting in a highly accurate recovery.

Table 11: Attack results with query access.

Dataset Method TestAcc ↑
MobileNetV2 ResNet-50

CelebA
Target 88.15 87.67

FD 74.77 84.53
KD 76.98 84.01

FaceScrub
Target 93.48 93.96

FD 88.09 93.02
KD 89.59 92.84
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F.9 OTHER ADDITIONAL RESULTS

Additional identity inversion results are presented in Figure 14.

Additional LRC scores on FaceScrub are shown in Table 12.

Additional feature visualization by t-SNE is shown in Fig 15, 16 and 17.

Results of MTIA on MaxViT (Tu et al., 2022) model are shown in Table 13.

Target

PLGMI PPA

Pretrain

Pretrain-SA

TL

MTIA 
(ours)

r-MTIA
(ours)

Truth

Target

Pretrain

Pretrain-SA

TL

MTIA
(ours)

r-MTIA
(ours)

Truth

PLGMI PPA

CelebA FaceScrub

Figure 14: Identity inversion results on ResNet-50. “Truth” refers to the ground truth images of the
target identity. “Target” refers to the reconstructed images of the whole target model.

Table 12: LRC score on FaceScrub.

Method MobileNetV2 ResNet-50
Pretrain -0.144 -0.056

Pretrain-SA 0.289 0.012
TL -0.046 0.609

MTIA (ours) 0.862 0.758

Table 13: Attack results on MaxViT.

Dataset Method Test-Acc ↑ PPA
Att-Acc ↑ Feat-Dist ↓

CelebA Target 87.54 71.79±1.8 143.77
MTIA (ours) 72.65 59.66±2.8 156.26

FaceScrub Target 94.75 83.33±2.4 130.59
MTIA (ours) 85.75 66.79±3.1 142.62

(a) Pretrain (b) Pretrain-SA (c) TL (d) MTIA (ours) (e) Target

Figure 15: Feature visualization by t-SNE on CelebA and ResNet-50.
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(a) Pretrain (b) Pretrain-SA (c) TL (d) MTIA (ours) (e) Target

Figure 16: Feature visualization by t-SNE on FaceScrub and MobileNetV2.

(a) Pretrain (b) Pretrain-SA (c) TL (d) MTIA (ours) (e) Target

Figure 17: Feature visualization by t-SNE on FaceScrub and ResNet-50.
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