

000 001 002 003 004 005 MODEL THEFT AND INVERSION ATTACKS AGAINST 006 QUERY-FREE COLLABORATIVE INFERENCE SYSTEMS 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

Paper under double-blind review
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044

ABSTRACT

011 Collaborative inference systems are designed to deploy high-performance mod-
012 els on resource-constrained edge devices by splitting the model into two parts,
013 deployed separately on the client device and the server. However, server-side
014 adversaries can still infer client’s private information from the latter part of the
015 model. Previous works rely on auxiliary data with matching labels and unlim-
016 ited queries to reconstruct inference data or determine sample membership. In
017 contrast, this paper introduces a novel threat called Model Theft and Inversion
018 Attacks (MTIA), targeting a more realistic and challenging scenario where adver-
019 saries often lack access to label-consistent datasets. Moreover, adversaries cannot
020 query the client device and have no knowledge of the client model’s architecture
021 or parameters. To address these challenges, we leverage transfer learning and
022 self-attention alignment to extract knowledge from the server model and align it
023 with the target task. This enables model recovery with performance comparable
024 to the original model while improving the reconstruction of high-fidelity private
025 data. Additionally, we propose an enhancement that uses reconstructed images to
026 further boost the recovered model’s performance. Extensive experiments across
027 various datasets and settings validate the effectiveness, robustness, and generaliz-
028 ability of our approach.
029
030
031

1 INTRODUCTION

032 With the advancement of Deep Neural Networks (DNN), an increasing number of models have
033 been deployed in various edge devices (Tekin et al., 2024), including healthcare (Yang et al., 2021),
034 autonomous driving (Wang et al., 2024) and biometric recognition (e.g., face, fingerprint, and palm-
035 print) (Sardar et al., 2024). Due to the limited computational resources of edge devices, pruned
036 or lightweight models are typically deployed. While this approach reduces computational burden,
037 it also limits the deployment of higher-accuracy models and the ability to handle more complex
038 tasks. To address this, researchers have proposed deploying models in a distributed manner across
039 the server and client devices (Vepakomma et al., 2018), which is called Collaborative Inference (CI)
040 (Li et al., 2018; Kang et al., 2017; Banitalebi-Dehkordi et al., 2021; Li et al., 2021). A common
041 approach is to partition the model into two parts: the front layers are deployed on client devices for
042 feature extraction, while the latter layers reside on the server for further processing. This strategy
043 not only enables the deployment of larger models but also reduces computational costs on client
044 devices. Additionally, by keeping data on the device without direct access by the server, it enhances
045 user privacy.

046 Current studies show that the server can reconstruct inference data from the intermediate features
047 sent by the client. However, they primarily focus on black-box and white-box scenarios (Zhang
048 et al., 2024; Liu et al., 2024; Yang et al., 2022; Li et al., 2023), where server attackers are typically
049 assumed to have unlimited query access to the client model or full access to its parameters. They
050 largely overlook a more common and realistic yet challenging scenario known as the query-free
051 setting (He et al., 2019; Chen et al., 2020), in which they are unable to perform effective attacks.

052 In practice, model inputs on the edge device are generated by offline users. For instance, if the
053 front model is used within a company and the server is managed by a third party (e.g., Google
Cloud), the service is accessible only to company employees. Since the server is not a valid user
and lacks physical access to the client, it cannot send arbitrary queries to the client model. The

query-free setting is more challenging, as the server has access only to the latter half of the model and possesses no knowledge of the client model’s architecture or parameters. Furthermore, in face recognition tasks, the server adversary lacks access to a dataset with the same labels. Obtaining such a dataset would be equivalent to acquiring detailed facial data of individuals, which is unrealistic and raises ethical concerns. Since previous attacks rely on auxiliary data with matching labels, the label inconsistency and query-free constraints limit their applicability.

To investigate privacy leakage under the challenging constraints of label inconsistency and query-free setting, this paper proposes a new threat called Model Theft and Inversion Attacks (MTIA), which aims to achieve two goals: recovering the client model functionality and reconstructing the private training data. We first design a transfer-based method to extract hidden knowledge from the server model and reconstruct the missing client model using a label-inconsistent auxiliary dataset. Although the recovered model performs well on the auxiliary dataset, it initially lacks proper alignment with the target task. To address this, we introduce a bottom-up, layer-wise self-attention alignment strategy, enabling the front layers to adapt to and align with the latter layers via attention maps. As a result, the recovered model achieves performance comparable to the full target model, leading to severe model leakage. Empowered by successful model recovery, we introduce a more severe threat—model inversion—to reconstruct private training data. We further propose an enhancement strategy that leverages the reconstructed images as a substitute for the private dataset to fine-tune the recovered model. We evaluate MTIA on two widely used facial datasets, CelebA and FaceScrub, using different models. Experimental results show that MTIA significantly enhances information extraction from deeper layers, improving model recovery performance from 0.13% to 77.05% on CelebA and raising image reconstruction success from 4.13% to 84.79%. Extensive ablation studies across model architectures, dataset sizes, defenses, and datasets further underscore the effectiveness, robustness, and generalizability of our approach. Our contributions are as follows:

- We propose the first Model Theft and Inversion Attacks (MTIA) against collaborative inference systems under label inconsistency and query-free settings, which are both more realistic and challenging.
- We apply a two-step recovery method based on transfer learning and self-attention alignment, which extracts hidden information from deeper layers and achieves better alignment for target tasks. This recovery significantly boosts the success of high-fidelity identity revelation.
- We conduct comprehensive experiments and ablation studies to demonstrate that MTIA achieves remarkable performance across various settings and datasets, further highlighting its robustness and generalizability.

2 BACKGROUND AND RELATED WORK

2.1 COLLABORATIVE INFERENCE SYSTEMS

Machine learning models require substantial computational resources, making deployment on resource-constrained edge devices challenging. To address this, a paradigm called Collaborative Inference (CI) has been proposed (Li et al., 2018; Kang et al., 2017; Banitalebi-Dehkordi et al., 2021; Li et al., 2021). CI splits the model into two parts: one deployed on the client device and the other on a cloud server. The client model processes raw data and transmits intermediate features to the server for further computation. This setup significantly reduces the computational burden on the client, enabling the use of more powerful models in constrained environments. A related paradigm, Split Learning (Vepakomma et al., 2018), is designed for collaborative training.

Although CI keeps user input local, the server can still infer private information from the server model (Zhang et al., 2024; Liu et al., 2024; Yang et al., 2022; Li et al., 2023; He et al., 2019; Chen et al., 2020). Chen et al. (Chen et al., 2020) and Zhang et al. (Zhang et al., 2024) focus on inferring whether a sample belongs to the training data, while Yang et al. (Yang et al., 2022) and Li et al. (Li et al., 2023) aim to reconstruct the inference data from intermediate features. In contrast to these works, this paper investigates new threats—model theft and inversion attacks—under a more realistic setting where the server faces label inconsistency and operates without the ability to query the client.

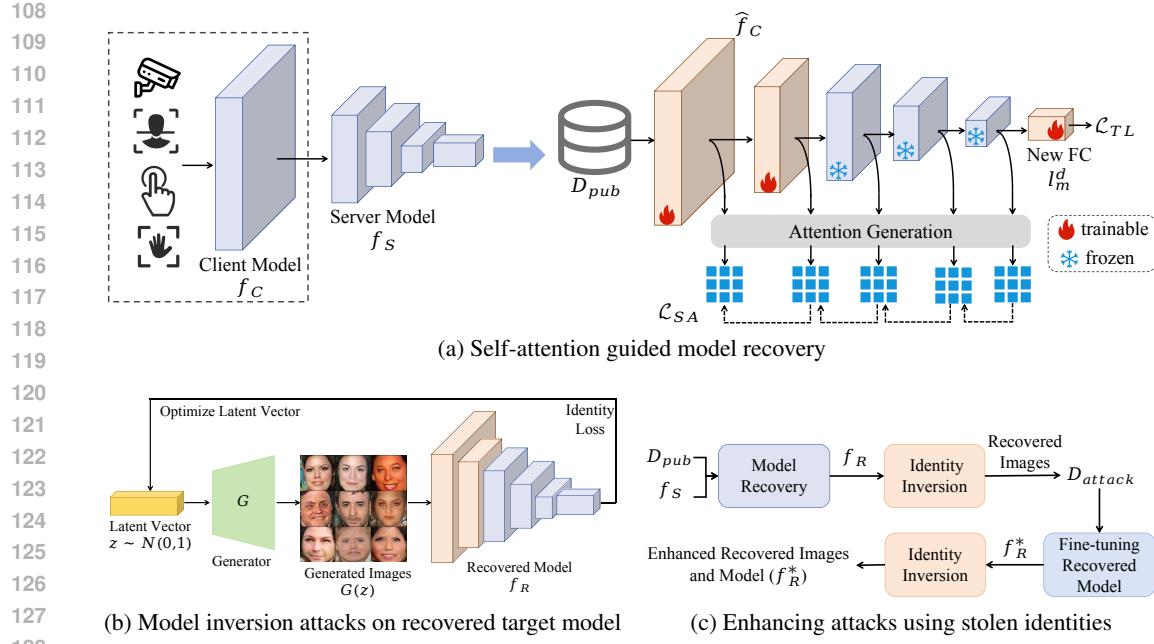


Figure 1: Overview of model theft and inversion attacks.

2.2 MODEL INVERSION ATTACKS

Model Inversion Attacks (MIAs) (Zhang et al., 2020; Yuan et al., 2023; Struppek et al., 2022; Qiu et al., 2024) pose a particularly severe risk to training data privacy, aiming to reconstruct it by solving an optimization problem in the input space x :

$$x^* = \arg \min_x \mathcal{L}_{cls}(T(x), c), \quad (1)$$

where c represents the target class, T denotes the target model, and \mathcal{L}_{cls} refers to the classification loss (e.g., cross-entropy). By minimizing the loss, the input x is optimized to resemble the training data associated with label c .

3 METHOD

3.1 THREAT MODEL

Attack Scenario. Given a target model $f_T = \{f_C, f_S\}$ trained on private data $D_{priv} = \{X_{priv}, Y_{priv}, c\}$, where c represents the number of classes, our attack targets model deployed in a distributed manner across a client device (f_C) and a server (f_S). The server holds the latter m layers, $f_S = \{l_1, \dots, l_{m-1}, l_m^c\}$, where the final layer is a fully connected layer producing c class outputs. In this setup, the client processes user inputs x into intermediate features $f_C(x)$, which are then uploaded to the server. The server further processes these intermediate features to generate the final output $f_S(f_C(x))$, which is returned to the client. Crucially, model inputs are controlled by real-world users, ensuring that the server cannot directly input data into the client. For example, consider a scenario where the client is deployed within a company and the server is managed by a third party. In this case, the server cannot upload data to the client model, as it is used exclusively by company staff. This scenario is more realistic and presents a greater challenge.

Adversary’s Goal. We consider an adversary, either an external entity that compromises the server or the server itself. The adversary has two primary objectives: (1) Model Leakage – Recover the client model’s functionality to reach performance close to that of the full target model f_T . (2) Data Leakage – Reconstruct the private training images utilized in the target model.

162 **Adversary’s Knowledge.** We consider a practical and realistic scenario where the adversary has
 163 access only to the server model and a public dataset $D_{pub} = \{X_{pub}, Y_{pub}, d\}$ containing d classes
 164 from the same domain as the training dataset. Importantly, the public dataset has no class overlap
 165 with the target training dataset, and both the number of classes ($c \neq d$) and their distribution differ.
 166 This constraint prevents the adversary from directly leveraging the public dataset to reconstruct the
 167 complete model. Furthermore, the adversary has no knowledge of the client model’s weights or
 168 architecture and cannot query the client.

169
 170 **3.2 SELF-ATTENTION GUIDED MODEL RECOVERY**

171 Since D_{pub} has a different distribution from D_{priv} , directly training a new model on D_{pub} or com-
 172 bining it with f_S is ineffective, as the training tasks differ. To address this, we propose a model
 173 recovery method based on transfer learning and self-attention alignment to fully extract the knowl-
 174 edge embedded in f_S . The workflow as shown in Figure 1 (a), consists of the following two steps:
 175

176 **Step1: Transfer-based Model Completion.** To fully leverage the information hidden in the deeper
 177 layers, we first completes the model using a weight transfer learning approach. We initialize a new
 178 feature extractor, \hat{f}_C , as a substitute for f_C . Since the adversary lacks knowledge of the model’s
 179 architecture, the architecture of \hat{f}_C differs from that of f_C . However, \hat{f}_C cannot be directly combined
 180 with f_S because the last layer l_m^c in f_S is mismatched with the class numbers of D_{pub} . To address
 181 this, a new classification layer l_m^d is initialized, replacing the last layer in f_S to form a new public
 182 model: $f_P = \{\hat{f}_C, \hat{f}_S = \{l_1, \dots, l_{m-1}, l_m^d\}\}$. The public model is then trained on D_{pub} :

$$\mathcal{L}_{TL} = \mathcal{L}_{cls}(\hat{f}_S(\hat{f}_C(X_{pub})), Y_{pub}) \quad (2)$$

183 where \mathcal{L}_{cls} denotes the classification loss. The layers from the server model $\{l_1, \dots, l_{m-1}\}$ remain
 184 frozen, and only the newly initialized layers, \hat{f}_C and l_m^d , are trained.

185 **Step2: Model Fine-tuning using Self-attention Alignment.** Although we can complete the model
 186 using D_{pub} , the feature extractor is trained specifically for D_{pub} , resulting in poor performance
 187 on D_{priv} . To better align the feature extractor with the target’s deeper layers and tasks, we adopt
 188 Self-Attention Distillation (SAD) (Hou et al., 2019). SAD was originally proposed to enhance
 189 the model’s representation learning through no teacher distillation; in this work, we adopt it as an
 190 alignment mechanism, allowing the front layers to learn from the latter layers through attention
 191 maps.

192 The attention maps are obtained by processing the output of a specific layer. We denote the output of
 193 a layer as $A \in \mathbb{R}^{C \times H \times W}$, where C , H , and W represent the channel, height, and width, respectively.
 194 To construct an attention mapping function, we define $\mathcal{G}(A) = \sum_{j=1}^C |A^j|^2$. This function is derived
 195 by computing statistical properties across the channel dimension. The absolute value of each element
 196 in the resulting attention map indicates its importance in determining the final output. We conduct a
 197 bottom-up, layer-wise alignment that utilizes the attention maps of the deeper layers as supervision
 198 for the shallower layers. The self-attention alignment loss, \mathcal{L}_{SA} , is defined as:

$$\mathcal{L}_{SA}(A_i, A_{i+1}) = \|\Phi(\mathcal{U}(\mathcal{G}(A_i))) - \Phi(\mathcal{U}(\mathcal{G}(A_{i+1})))\|_2 \quad (3)$$

$$\mathcal{G}(A) = \sum_{j=1}^C |A^j|^2, \quad \Phi(A) = \frac{\exp(A)}{\sum_{h,w} \exp(A_{h,w})} \quad (4)$$

$$\mathcal{U}(A)_{u,v} = \sum_{i=1}^H \sum_{j=1}^W A_{i,j} \cdot \max(0, 1 - |u' - i|) \cdot \max(0, 1 - |v' - j|) \quad (5)$$

$$u' = \frac{u \cdot H}{H'}, \quad v' = \frac{v \cdot W}{W'} \quad (6)$$

201 where A_i denotes the output of the i -th layer. \mathcal{G} is an attention mapping function. \mathcal{U} denotes the
 202 bilinear upsampling operation that resizes the attention map to a predefined resolution $H' \times W'$. The
 203 upsampling is computed based on bilinear interpolation weights derived from the relative positions
 204 u' and v' mapped to the original spatial coordinates. Φ is a spatial softmax function applied over the
 205 spatial domain to normalize the attention map into a probability distribution.

216 The self-attention alignment loss \mathcal{L}_{SA} is computed between consecutive layers and from the penul-
 217 timate layer’s output to the first layer. After alignment, the adversary replaces the last layer l_m^d
 218 in $f_P = \{\hat{f}_C, \hat{f}_S = \{l_1, \dots, l_{m-1}, l_m^d\}\}$ with the original classification layer l_m^c , forming the final
 219 recovered target model: $f_R = \{\hat{f}_C, f_S = \{l_1, \dots, l_{m-1}, l_m^c\}\}$.
 220

221 3.3 INVERSION-BASED IDENTITY RECONSTRUCTION

223 After recovering the target model, which performs well on the private data D_{priv} , we can apply
 224 white-box MIAs on the recovered model f_R to reveal private training data. The attack workflow is
 225 shown in Figure 1 (b). The adversary can leverage the public dataset D_{pub} to train a GAN (Yuan
 226 et al., 2023) or utilize a pretrained StyleGAN (Struppek et al., 2022) for the attack. The images
 227 generated by the GAN are denoted as $G(z)$, where $z \sim \mathcal{N}(0, 1)$ represents the latent vector. The
 228 optimization process is formulated as:

$$229 \quad z^* = \arg \min_z \mathcal{L}_{cls}(f_R(G(z)), y_t), \quad (7)$$

231 where y_t is the target class, f_R is the recovered model, and \mathcal{L}_{cls} denotes the classification loss
 232 (identity loss). The reconstructed images can be obtained as $x^* = G(z^*)$.
 233

234 3.4 ENHANCING ATTACKS USING STOLEN IDENTITIES

236 After the inversion attacks, the adversary can obtain images for each identity. These reconstructed
 237 images can be viewed as an approximate substitute for D_{priv} . Consequently, the adversary can
 238 create a new dataset D_{attack} using the reconstructed images and employ it to fine-tune the recovered
 239 model, thereby enhancing its performance on D_{priv} . This process is referred to as *repeated attack*.
 240 The process of repeated MTIA (r-MTIA) is illustrated in Figure 1 (c). After obtaining an enhanced
 241 recovered model f_R^* , the adversary can once again reconstruct the private training data.
 242

243 4 EXPERIMENTS

245 4.1 EXPERIMENTAL SETUP

247 **Datasets.** We choose the face classification task for our main experiments and utilize two widely
 248 used datasets: CelebA (Liu et al., 2015) and FaceScrub (Ng & Winkler, 2014). CelebA consists of
 249 202,599 face images from 10,177 identities. For our experiments, we select 30,027 images from
 250 1,000 identities. FaceScrub contains 106,863 images of 530 individuals. We use the entire Face-
 251 Scrub dataset. For both datasets, when one is designated as D_{priv} , the other serves as D_{pub} , en-
 252 suring that D_{priv} and D_{pub} are distributed differently and have no overlap. All images are resized
 253 to 224×224 . We also conduct experiments on other datasets, more details can be found in the
 254 Appendix D.

255 **Models.** We employ two different model architectures: MobileNetV2 (Sandler et al., 2018) and
 256 ResNet-50 (He et al., 2016). Since the adversary lacks knowledge of the complete model architec-
 257 tures, we use VGG blocks (consisting of two convolutional layers) (Simonyan, 2014). Notably, VGG
 258 blocks differ significantly from the residual blocks in ResNet-50 and the inverted residual blocks in
 259 MobileNetV2 in terms of channel dimensions and the number of layers. Refer to the Appendix E
 260 for detailed architectural differences.

261 **Attacks and Defenses.** We select two white-box MIAs: PLGMI (Yuan et al., 2023) and PPA (Strup-
 262 pek et al., 2022). PLGMI utilizes a self-trained GAN, while PPA employs a StyleGAN pretrained
 263 on the FFHQ dataset (Karras et al., 2019). Additionally, we select three MIA defenses and five col-
 264 laborative inference defenses for evaluation: BiDO (Peng et al., 2022), NLS (Struppek et al., 2023),
 265 and TLDMI (Ho et al., 2024) for MIAs, and NoPeek (Vepakomma et al., 2020), Noise (Titcombe
 266 et al., 2021), Dropout (He et al., 2020), DISCO (Singh et al., 2021), and InfoScissors (Duan et al.,
 267 2024) for CI. Moreover, we also include Differential Privacy (DP) (Abadi et al., 2016), a widely
 268 used method for privacy protection. See Appendix C for more details and hyperparameters.

269 **Evaluation Metrics.** To evaluate the attack performance, we conducted both qualitative evaluation
 through visual inspection and quantitative evaluation using three metrics:

Table 1: Attack results across various datasets and models. \uparrow and \downarrow indicate that higher and lower scores, respectively, correspond to better attack performance.

Dataset	Method	MobileNetV2						ResNet-50					
		PLGMI		PPA		PLGMI		PPA					
		TestAcc \uparrow	AttAcc \uparrow	AttAcc \uparrow	FDist \downarrow	AttAcc \uparrow	FDist \downarrow	AttAcc \uparrow	AttAcc \uparrow	AttAcc \uparrow	AttAcc \uparrow	AttAcc \uparrow	FDist \downarrow
CelebA	Target	88.15	87.06 \pm 1.4	174.30	90.93 \pm 1.3	122.56	87.67	84.53 \pm 1.2	184.00	92.33 \pm 0.8	150.23		
	Pretrain	0.06	0.66 \pm 0.2	240.62	0.00 \pm 0.1	306.29	0.09	0.26 \pm 0.3	228.52	0.06 \pm 0.1	306.81		
	Pretrain-SA	8.95	29.33 \pm 1.0	213.21	10.13 \pm 0.1	226.79	0.87	0.66 \pm 0.2	205.89	0.73 \pm 0.4	263.84		
	TL	0.13	4.13 \pm 1.2	195.36	0.86 \pm 0.5	293.12	33.39	66.60 \pm 1.4	196.75	60.46 \pm 3.0	202.37		
	MTIA	77.05	84.79 \pm 1.4	177.86	72.93 \pm 2.2	149.47	68.32	63.53 \pm 0.8	192.21	65.73 \pm 1.3	183.87		
FaceScrub	r-MTIA	79.62	81.46 \pm 1.1	173.98	77.46 \pm 2.2	141.18	71.38	67.26 \pm 0.4	199.04	70.26 \pm 2.7	181.59		
	Target	93.48	97.06 \pm 0.8	142.47	94.66 \pm 1.1	121.85	93.96	94.59 \pm 1.6	143.01	96.33 \pm 0.5	136.68		
	Pretrain	0.02	1.99 \pm 0.4	197.59	0.20 \pm 0.2	269.66	0.18	0.26 \pm 0.3	202.56	0.13 \pm 0.1	295.18		
	Pretrain-SA	9.07	12.53 \pm 1.0	197.48	5.73 \pm 1.4	230.19	3.72	0.40 \pm 0.1	196.34	1.33 \pm 0.3	253.89		
	TL	0.29	20.39 \pm 2.7	185.00	1.26 \pm 0.5	267.47	58.86	87.06 \pm 1.3	167.83	78.46 \pm 1.9	175.95		
UTKFace	MTIA	88.37	93.00 \pm 0.8	141.31	84.86 \pm 2.0	134.25	85.93	89.06 \pm 1.2	153.10	83.99 \pm 2.0	152.03		
	r-MTIA	90.07	95.53 \pm 0.8	126.39	89.26 \pm 0.9	129.89	86.55	89.46 \pm 0.6	158.73	87.00 \pm 1.9	150.23		

- *Test Accuracy (TestAcc)*. Test accuracy is used to evaluate the performance of the recovered model on D_{priv} . A higher test accuracy indicates greater functional similarity, which suggests a higher degree of model theft.
- *Attack Accuracy (AttAcc)*. We employ an evaluation model to classify the reconstructed images, measuring inversion attack accuracy. This model is trained on the same D_{priv} but uses a different architecture. High accuracy indicates a successful attack and potential private information leakage. We use InceptionV3 (Szegedy et al., 2016) as the evaluation model.
- *Feature Distance (FDist)*. It is evaluated using the penultimate layer outputs of the evaluation model. We measure the l_2 distance between the reconstructed image and the nearest private image with the same label. A lower feature distance indicates a closer semantic similarity.

Baselines. As this is the first work addressing model and identity theft in such a limited setting, we evaluate two baselines for comparison:

- *Pretrain*: A new model is trained using D_{pub} without utilizing f_S . The front layers of this new model are then combined with f_S to form the recovered model.
- *Transfer Learning (TL)*(He et al., 2019; Chen et al., 2020): The model is completed by freezing f_S and training the remaining layers using D_{pub} (Step1).

We further add self-attention alignment (Step2) to both baselines, yielding Pretrain-SA and MTIA (ours), to highlight the impact of the two key steps. Implementation details and hyperparameters are provided in the Appendix D.

4.2 MAIN RESULTS

Comparison with baselines. Table 1 presents the MTIA results when the server is missing one block. *Pretrain* fails with near-zero accuracy, and even with self-attention alignment (*Pretrain-SA*), performance remains below 10%. *TL* yields just 0.13% and 0.29% accuracy on MobileNetV2, but improves to 33.39% and 58.86% on ResNet-50, benefiting from deeper layer knowledge. Our method, MTIA, significantly outperforms baselines, achieving 77.05% on CelebA and 88.37% on FaceScrub, which are closer to the target model’s 88.15% and 93.48%. This demonstrates the superiority of MTIA’s two-step knowledge extraction and alignment. Poor model recovery by the baselines leads to failed image reconstruction. However, MTIA boosts image reconstruction, achieving high attack success rates of 84.79% on CelebA and 93.00% on FaceScrub. The visual comparison in Figure 2 further highlights these results. Baseline methods produce unrecognizable images or entirely incorrect identities, whereas MTIA reconstructs images with greater detail and higher quality. This improvement is attributed to the effective model recovery enabled by MTIA.

Effectiveness of repeated MTIA. We collect the reconstructed images from PPA on MTIA as the attack dataset D_{attack} for fine-tuning. As shown in Table 1, r-MTIA further enhances the performance of the recovered model, increasing accuracy from 77.05% to 79.62% on CelebA and from

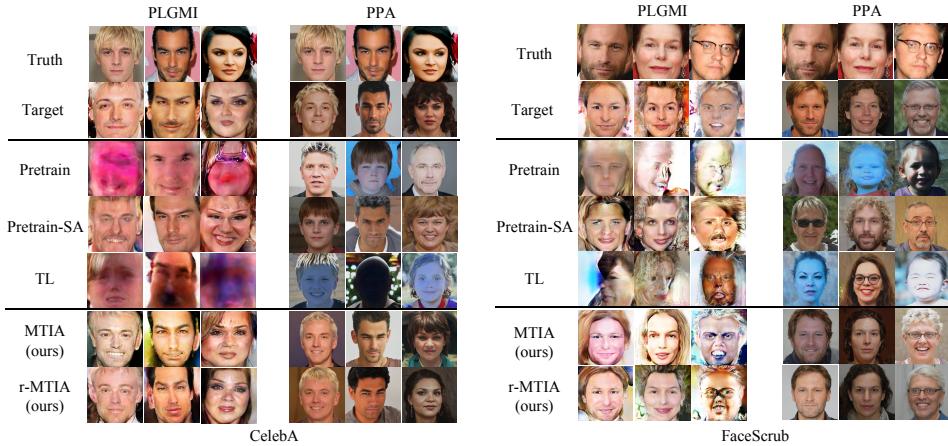


Figure 2: Identity inversion results on MobileNetV2. “Target” refers to the reconstructed images of the target model.

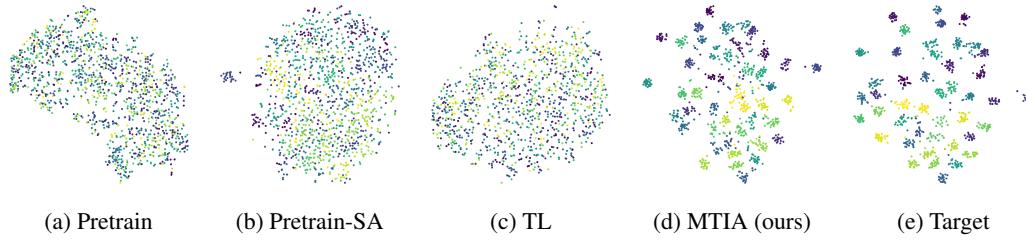


Figure 3: T-SNE visualization on CelebA and MobileNetV2.

88.37% to 90.07% on FaceScrub. Correspondingly, identity revelation attacks also improve. The r-MTIA step can be repeated multiple times, but a single repetition is sufficient. Additional repetitions increase computational cost and time, while yielding diminishing performance gains.

Effectiveness of two steps in MTIA. Using only transfer learning (*TL*, Step 1) fails on MobileNetV2 and gives moderate results on ResNet-50. Using only self-attention alignment (*Pretrain-SA*, Step 2) provides small improvements but better task alignment. This is evident in Figure 2, where the reconstructions from *Pretrain-SA* show some similarity to the ground truth, particularly in hairstyle and the presence of glasses. When combined (MTIA), model recovery performs best, capturing finer details more accurately.

4.3 MODEL SIMILARITY ANALYSIS

To analyze how the model recovered by MTIA behaves like the target model, we use Loss-Rank Correlation (LRC) (Kaya & Dumitras, 2021) to quantify model similarity and t-SNE (Van der Maaten & Hinton, 2008) for feature space visualization. The LRC score is computed as the Spearman’s rank correlation coefficient (Spearman, 1904) between the loss values of two models evaluated on the same dataset. The LRC is defined as:

$$LRC = \frac{\text{cov}(\text{rank}(L_1), \text{rank}(L_2))}{\sigma_{\text{rank}(L_1)} \cdot \sigma_{\text{rank}(L_2)}} \quad (8)$$

where L_1 and L_2 are the loss vectors from two models, $\text{rank}(\cdot)$ denotes the rank transformation of the loss vector, and cov and σ denote covariance and standard deviation.

The LRC score ranges from -1 to 1, with a higher value indicating greater similarity. As shown in Table 2, the model recovered by MTIA achieves a high score across both models, indicating strong similarity at the model level. As shown in Figure 3, the t-SNE plot also reveals greater similarity

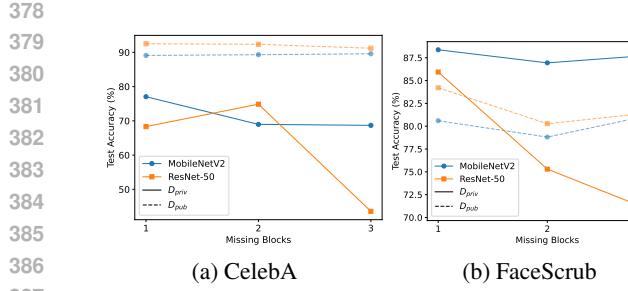


Figure 4: Test accuracy of f_R with different missing blocks.

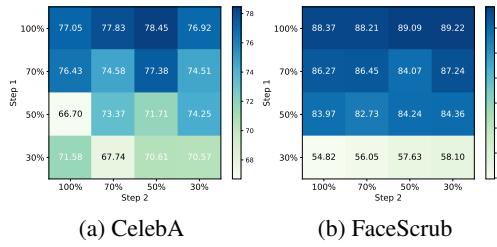


Figure 6: Test accuracy of f_R when using different public dataset size on MobileNetV2.

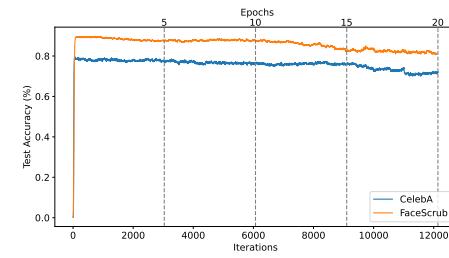


Figure 5: Test accuracy of f_R on D_{priv} when fine-tuning 20 epochs in Step 2 on MobileNetV2.

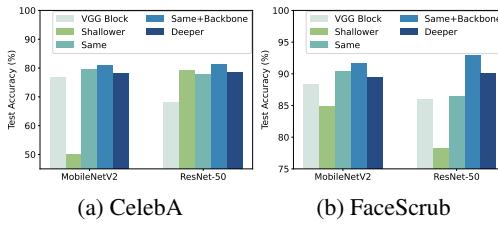


Figure 7: Test accuracy of f_R when using different architectures.

and clearer class boundaries, reflecting closer alignment with the target model at the feature level. The analysis demonstrates the strong success of the model recovered by MTIA.

4.4 ABLATION STUDY

Effect of different missing blocks in f_S . As the server model may have more missing blocks, the server needs to recover a larger portion of the model. To assess performance, we report the model’s accuracy on both D_{priv} and D_{pub} , replacing the last fully connected layer accordingly. As shown in Figure 4, when more blocks are missing, accuracy on D_{pub} remains nearly unchanged, but the recovered model’s performance gradually decreases. This indicates that there is little correlation between performance on D_{priv} and D_{pub} . For ResNet-50, the decline is more significant than MobileNetV2. For ResNet-50, the decline is more significant than MobileNetV2. Because a higher number of missing blocks reduces the available information in f_S and increases the architectural differences, making recovery more challenging.

Effect of fine-tuning epochs. We further analyze the effect of fine-tuning epochs in self-attention alignment (Step 2). We fine-tune for 20 epochs using MobileNetV2 and report test accuracy on D_{priv} at each iteration, as shown in Figure 5. During fine-tuning, test accuracy gradually improves and reaches its peak. However, with additional fine-tuning, performance begins to fluctuate and slowly declines. Thus, fine-tuning for 5 epochs is sufficient for Step 2.

Effect of public dataset size for two steps. We conduct additional experiments using three portions of public dataset: 70%, 50%, and 30% of the original D_{pub} , as shown in Figure 6. When the dataset size is reduced for Step 1 of MTIA, the performance of the recovered model slightly decreases. The performance drops to 58.1% for FaceScrub only when using 30% of the dataset, as this limited data makes it challenging to extract meaningful features and achieve accurate classification. For Step 2 of MTIA, reducing the dataset size has nearly no effect on the attack performance. This may be because sufficient hidden information has already been extracted during Step 1, allowing the model’s knowledge to be aligned effectively in Step 2.

Table 2: LRC score on CelebA.

Method	MobileNetV2	ResNet-50
Pretrain	-0.161	-0.360
Pretrain-SA	-0.130	-0.218
TL	-0.169	0.236
MTIA (ours)	0.831	0.738

432 Table 3: Attack results against MIA defenses.
433

Defense	Hyperparams	Method	Test-Acc \uparrow	PPA Att-Acc \uparrow
w/o	-	Target MTIA	88.15 77.05	90.93 \pm 1.3 72.93 \pm 2.2
BiDO	(0.05, 0.5)	Target MTIA	86.98 71.84	87.93 \pm 0.6 70.59 \pm 1.4
NLS	-0.005	Target MTIA	87.31 69.35	74.59 \pm 2.4 55.59 \pm 3.6
TLDMI	0.5	Target MTIA	84.71 66.89	78.20 \pm 1.5 55.73 \pm 1.2
DP	0.01	Target MTIA	83.44 56.57	81.80 \pm 1.8 51.39 \pm 3.2

434 Table 4: Attack results against CI defenses.
435

Defense	Hyperparams	Method	Test-Acc \uparrow	PPA Att-Acc \uparrow
NoPeek	0.7	Target MTIA	87.83 77.76	92.59 \pm 1.5 79.33 \pm 3.5
Noise	10	Target MTIA	84.71 72.10	84.73 \pm 1.5 77.46 \pm 1.7
Dropout	0.5	Target MTIA	84.22 75.52	90.93 \pm 1.6 73.26 \pm 2.8
DISCO	(0.8, 0.5)	Target MTIA	86.85 76.56	75.59 \pm 1.1 77.20 \pm 2.5
InfoScissors	0.5	Target MTIA	88.58 72.00	91.39 \pm 0.7 72.13 \pm 2.2

436 Table 5: Attack results on other datasets. “Pre” stands for “Pretrain”.
437

Task	D_{priv}	D_{pub}	Target	Pre	Pre-SA	TL	MTIA
Face Classification	CelebA CelebA	CelebA (different ID) AI-Face (synthetic) (Lin et al., 2025)	88.15 88.15	0.03 0.09	11.26 2.44	0.13 0.09	76.80 52.73
Fingerprint Classification	UareU (Neurotechnology, 2007)	FVC2004 (Maltoni et al., 2009)	98.52	1.47	17.64	1.47	71.32
Palmprint Classification	PCE (Jin et al., 2024)	PCE (different ID)	100.00	0.26	23.79	1.44	97.83
Object Classification	Imagenette (Howard, 2019) Imagewoof (Howard, 2019)	Imagewoof Imagenette	95.75 87.38	10.06 5.64	42.41 21.30	13.34 5.64	82.52 51.41

438 **Effect of recovered model architectures.** Since the adversary has access to the server model, they can infer potential model architectures and use the same type of building blocks. We consider 439 three additional architectures using the same type of blocks: with (1) shallower, (2) same, and 440 (3) deeper blocks. For the same architectures, a key point is that frameworks like PyTorch offer 441 popular models with ImageNet-pretrained weights (e.g., `torchvision.models` (PyTorch, 2023; Deng 442 et al., 2009)), which many users adopt as backbones. This means an adversary could download 443 the same pretrained weights as the target model, making recovery easier. As shown in Figure 7, 444 using the same or deeper blocks improves recovery accuracy due to greater similarity to the target 445 model than the VGG block. In contrast, shallower blocks cause notable degradation, as their shallow 446 front layers fail to extract meaningful features. Moreover, knowing the pretrained backbone allows 447 the adversary to achieve the best recovery performance. Our experiments show that architecture 448 choice has limited impact on recovery, as adversaries can compensate with deeper models. More 449 importantly, these findings highlight that using a pretrained backbone increases privacy risks.
450

451 **Effect of defenses.** We evaluate MIA and CI defenses on CelebA using MobileNetV2, with results 452 presented in Table 3 and 4. Compared to the model recovery performance on an undefended model 453 (77.05%), these defenses reduce MTIA effectiveness to 56.57% – 77.76%, which in turn further 454 impacts identity reconstruction. However, these defenses are still not highly effective against MTIA, 455 as a model with nearly 60% accuracy can still lead to significant privacy leakage.
456

457 **Effect on other dataset.** We test MTIA on various datasets and tasks; more details are provided in 458 the Appendix D. The results are shown in Table 5. For CelebA, even when using data from different 459 identities and a synthetic dataset, MTIA still successfully recovers model functionality. Additionally, 460 for fingerprint, palmprint, and object classification tasks, MTIA achieves attack performance that 461 surpasses the baselines. These results further demonstrate the effectiveness and generalizability of 462 our approach.
463

464 **Effect on other models.** We evaluate MTIA on MaxViT (Tu et al., 2022) in Table 13 in Appendix 465 F.9, demonstrating its feasibility on more complex transformer-based architectures.
466

481 5 CONCLUSION

482 This paper proposes MTIA, the first model theft and inversion attacks under label inconsistency 483 and query-free settings in collaborative inference. The server adversary uses transfer learning and 484 self-attention alignment to recover the client model, and reconstruct its training data.
485

486 ETHICS STATEMENT
487488 All experiments in this work were conducted within controlled research environments. The datasets
489 employed are publicly available, open-source, and were used strictly in accordance with their re-
490 spective licenses. The proposed attack was never executed on real-world systems; it is studied
491 exclusively for academic and research purposes. Our intention is not to harm or exploit any system
492 or individual but rather to raise awareness of potential privacy risks and to promote the development
493 of stronger privacy-preserving techniques.
494495 REPRODUCIBILITY STATEMENT
496497 All experiments are conducted on a Linux server with CUDA 11.8, Python 3.10, PyTorch 2.0.1,
498 Torchvision 0.15.2, and two NVIDIA GeForce RTX 4090 GPUs. The detailed data processing steps
499 and hyperparameters of MTIA are provided in Appendix D. The hyperparameters of MIA attacks
500 and defenses are listed in Appendix C. The source code is available at <https://anonymous.4open.science/r/MTIA-C2FC>.
501502 REFERENCES
503504 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
505 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
506 conference on computer and communications security, pp. 308–318, 2016.507 Shengwei An, Guanhong Tao, Qiuling Xu, Yingqi Liu, Guangyu Shen, Yuan Yao, Jingwei Xu,
508 and Xiangyu Zhang. Mirror: Model inversion for deep learning network with high fidelity. In
509 *Proceedings of the 29th Network and Distributed System Security Symposium*, 2022.510 Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and Yong Zhang. Auto-
511 split: A general framework of collaborative edge-cloud ai. In *Proceedings of the 27th ACM*
512 *SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 2543–2553, 2021.513 Hanxiao Chen, Hongwei Li, Guishan Dong, Meng Hao, Guowen Xu, Xiaoming Huang, and Zhe
514 Liu. Practical membership inference attack against collaborative inference in industrial iot. *IEEE*
515 *Transactions on Industrial Informatics*, 18(1):477–487, 2020.516 Si Chen, Mostafa Kahla, Ruoxi Jia, and Guo-Jun Qi. Knowledge-enriched distributional model
517 inversion attacks. In *Proceedings of the IEEE/CVF international conference on computer vision*,
518 pp. 16178–16187, 2021.519 Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. *The*
520 *annals of probability*, pp. 146–158, 1975.521 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
522 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
523 pp. 248–255. Ieee, 2009.524 Lin Duan, Jingwei Sun, Jinyuan Jia, Yiran Chen, and Maria Gorlatova. Reimagining mutual infor-
525 mation for enhanced defense against data leakage in collaborative inference. *Advances in Neural*
526 *Information Processing Systems*, 37:44479–44500, 2024.527 Cynthia Dwork. Differential privacy. In *Automata, Languages and Programming: 33rd Interna-
528 tional Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II 33*, pp.
529 1–12. Springer, 2006.530 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations*
531 *and Trends® in Theoretical Computer Science*, 9(3–4):211–407, 2014.532 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
533 dence information and basic countermeasures. In *Proceedings of the 22nd ACM SIGSAC confer-
534 ence on computer and communications security*, pp. 1322–1333, 2015.

540 Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas Ristenpart.
 541 Privacy in pharmacogenetics: An {End-to-End} case study of personalized warfarin dosing. In
 542 *23rd USENIX security symposium (USENIX Security 14)*, pp. 17–32, 2014.

543

544 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 545 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
 546 *processing systems*, 27, 2014.

547

548 Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
 549 pendence with hilbert-schmidt norms. In *International conference on algorithmic learning theory*,
 550 pp. 63–77. Springer, 2005a.

551

552 Arthur Gretton, Ralf Herbrich, Alexander Smola, Olivier Bousquet, Bernhard Schölkopf, and Aapo
 553 Hyvärinen. Kernel methods for measuring independence. *Journal of Machine Learning Research*,
 554 6(12), 2005b.

555

556 Gyojin Han, Jaehyun Choi, Haeil Lee, and Junmo Kim. Reinforcement learning-based black-box
 557 model inversion attacks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 558 *Pattern Recognition*, pp. 20504–20513, 2023.

559

560 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 561 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 562 770–778, 2016.

563

564 Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative in-
 565 ference. In *Proceedings of the 35th Annual Computer Security Applications Conference*, pp.
 566 148–162, 2019.

567

568 Zecheng He, Tianwei Zhang, and Ruby B Lee. Attacking and protecting data privacy in edge–cloud
 569 collaborative inference systems. *IEEE Internet of Things Journal*, 8(12):9706–9716, 2020.

570

571 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 572 *preprint arXiv:1503.02531*, 2015.

573

574 Sy-Tuyen Ho, Koh Jun Hao, Keshigeyan Chandrasegaran, Ngoc-Bao Nguyen, and Ngai-Man Che-
 575 ung. Model inversion robustness: Can transfer learning help? In *Proceedings of the IEEE/CVF*
 576 *Conference on Computer Vision and Pattern Recognition*, pp. 12183–12193, 2024.

577

578 Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy. Learning lightweight lane detection
 579 cnns by self attention distillation. In *Proceedings of the IEEE/CVF international conference on*
 580 *computer vision*, pp. 1013–1021, 2019.

581

582 Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March
 583 2019. URL <https://github.com/fastai/imagenette>.

584

585 Jonghu Jeong, Minyong Cho, Philipp Benz, and Tae-hoon Kim. Noisy adversarial representation
 586 learning for effective and efficient image obfuscation. In *Uncertainty in Artificial Intelligence*,
 587 pp. 953–962. PMLR, 2023.

588

589 Jianlong Jin, Lei Shen, Ruixin Zhang, Chenglong Zhao, Ge Jin, Jingyun Zhang, Shouhong Ding,
 590 Yang Zhao, and Wei Jia. Pce-palm: Palm crease energy based two-stage realistic pseudo-
 591 palmprint generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 592 ume 38, pp. 2616–2624, 2024.

593

594 Mostafa Kahla, Si Chen, Hoang Anh Just, and Ruoxi Jia. Label-only model inversion attacks via
 595 boundary repulsion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 596 *recognition*, pp. 15045–15053, 2022.

597

598 Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia
 599 Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. *ACM*
 600 *SIGARCH Computer Architecture News*, 45(1):615–629, 2017.

594 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 595 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 596 *recognition*, pp. 4401–4410, 2019.

597

598 Yigitcan Kaya and Tudor Dumitras. When does data augmentation help with membership inference
 599 attacks? In *International conference on machine learning*, pp. 5345–5355. PMLR, 2021.

600

601 Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao, and Xiaobing Feng. Auto-tuning
 602 neural network quantization framework for collaborative inference between the cloud and edge. In
 603 *Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference*
 604 *on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part I 27*, pp.
 605 402–411. Springer, 2018.

606

607 Min Li, Yu Li, Ye Tian, Li Jiang, and Qiang Xu. Appealnet: An efficient and highly-accurate
 608 edge/cloud collaborative architecture for dnn inference. In *2021 58th ACM/IEEE Design Au-*
 609 *tomation Conference (DAC)*, pp. 409–414. IEEE, 2021.

610

611 Ziang Li, Mengda Yang, Yaxin Liu, Juan Wang, Hongxin Hu, Wenzhe Yi, and Xiaoyang Xu. Gan
 612 you see me? enhanced data reconstruction attacks against split inference. *Advances in Neural*
 613 *Information Processing Systems*, 36:54554–54566, 2023.

614

615 Ziang Li, Hongguang Zhang, Juan Wang, Meihui Chen, Hongxin Hu, Wenzhe Yi, Xiaoyang Xu,
 616 Mengda Yang, and Chenjun Ma. From head to tail: Efficient black-box model inversion attack via
 617 long-tailed learning. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 618 pp. 29288–29298, 2025.

619

620 Li Lin, Santosh Santosh, Mingyang Wu, Xin Wang, and Shu Hu. Ai-face: A million-scale demo-
 621 graphically annotated ai-generated face dataset and fairness benchmark. In *Proceedings of the*
 622 *Computer Vision and Pattern Recognition Conference*, pp. 3503–3515, 2025.

623

624 Chao Liu, Boxi Chen, Wei Shao, Chris Zhang, Kelvin KL Wong, and Yi Zhang. Unraveling attacks
 625 to machine learning-based iot systems: A survey and the open libraries behind them. *IEEE*
 626 *Internet of Things Journal*, 2024.

627

628 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 629 In *Proceedings of the IEEE international conference on computer vision*, pp. 3730–3738, 2015.

630

631 Davide Maltoni, Dario Maio, Anil K Jain, et al. *Handbook of fingerprint recognition*, volume 2.
 632 Springer, 2009.

633

634 Takeru Miyato and Masanori Koyama. cgans with projection discriminator. *arXiv preprint*
 635 *arXiv:1802.05637*, 2018.

636

637 Neurotechnology. Neurotechnology uareu dataset. [https://www.neurotechnology.com/](https://www.neurotechnology.com/download.html#databases)
 638 download.html#databases, 2007.

639

640 Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In *2014*
 641 *IEEE international conference on image processing (ICIP)*, pp. 343–347. IEEE, 2014.

642

643 Bao-Ngoc Nguyen, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Man Che-
 644 ung. Label-only model inversion attacks via knowledge transfer. *Advances in Neural Information*
 645 *Processing Systems*, 36, 2024.

646

647 Ngoc-Bao Nguyen, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Cheung. Re-
 648 thinking model inversion attacks against deep neural networks. In *Proceedings of the IEEE/CVF*
 649 *Conference on Computer Vision and Pattern Recognition*, pp. 16384–16393, 2023.

650

651 Biometric Systems Lab (University of Bologna). Fvc2004: the third international fingerprint verifi-
 652 cation competition. <http://bias.csr.unibo.it/fvc2004/>, 2003.

653

654 PCE-SynthPalm-1.6M. Pce-synthpalm-1.6m. [https://www.kaggle.com/datasets/](https://www.kaggle.com/datasets/ma7555/pce-synthpalm-1-6m)
 655 ma7555/pce-synthpalm-1-6m, 2024.

648 Xiong Peng, Feng Liu, Jingfeng Zhang, Long Lan, Junjie Ye, Tongliang Liu, and Bo Han. Bilateral
 649 dependency optimization: Defending against model-inversion attacks. In *Proceedings of the 28th*
 650 *ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1358–1367, 2022.

651 Xiong Peng, Bo Han, Feng Liu, Tongliang Liu, and Mingyuan Zhou. Pseudo-private data guided
 652 model inversion attacks. *Advances in Neural Information Processing Systems*, 37:33338–33375,
 653 2024.

654 PyTorch. Pytorch models and pre-trained weights. <https://pytorch.org/vision/stable/models.html>, 2023.

655 Yixiang Qiu, Hao Fang, Hongyao Yu, Bin Chen, MeiKang Qiu, and Shu-Tao Xia. A closer look at
 656 gan priors: Exploiting intermediate features for enhanced model inversion attacks. In *European*
 657 *Conference on Computer Vision*, pp. 109–126. Springer, 2024.

658 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 659 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 660 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

661 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 662 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on*
 663 *computer vision and pattern recognition*, pp. 4510–4520, 2018.

664 Alamgir Sardar, Sayed Umer, Ranjeet Kumar Rout, Kshira Sagar Sahoo, and Amir H Gandomi.
 665 Enhanced biometric template protection schemes for securing face recognition in iot environment.
 666 *IEEE Internet of Things Journal*, 2024.

667 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 668 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 669 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 670 2017.

671 Karen Simonyan. Very deep convolutional networks for large-scale image recognition. *arXiv*
 672 *preprint arXiv:1409.1556*, 2014.

673 Abhishek Singh, Ayush Chopra, Ethan Garza, Emily Zhang, Praneeth Vepakomma, Vivek Sharma,
 674 and Ramesh Raskar. Disco: Dynamic and invariant sensitive channel obfuscation for deep neural
 675 networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 676 *nition*, pp. 12125–12135, 2021.

677 C Spearman. The proof and measurement of association between two things. *The American Journal*
 678 *of Psychology*, 15(1):72–101, 1904.

679 Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correira, Antonia Adler, and Kristian
 680 Kersting. Plug & play attacks: Towards robust and flexible model inversion attacks. In *Inter-*
 681 *national Conference on Machine Learning*, pp. 20522–20545. PMLR, 2022.

682 Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Be careful what you smooth for:
 683 Label smoothing can be a privacy shield but also a catalyst for model inversion attacks. In *The*
 684 *Twelfth International Conference on Learning Representations*, 2023.

685 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 686 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*
 687 *computer vision and pattern recognition*, pp. 2818–2826, 2016.

688 Nazli Tekin, Ahmet Aris, Abbas Acar, Selcuk Uluagac, and Vehbi Cagri Gungor. A review of
 689 on-device machine learning for iot: An energy perspective. *Ad Hoc Networks*, 153:103348, 2024.

690 Tom Titcombe, Adam J Hall, Pavlos Papadopoulos, and Daniele Romanini. Practical defences
 691 against model inversion attacks for split neural networks. *arXiv preprint arXiv:2104.05743*, 2021.

692 Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
 693 Li. Maxvit: Multi-axis vision transformer. In *European conference on computer vision*, pp. 459–
 694 479. Springer, 2022.

702 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 703 *learning research*, 9(11), 2008.

704

705 Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
 706 Distributed deep learning without sharing raw patient data. *arXiv preprint arXiv:1812.00564*,
 707 2018.

708 Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar. Nopeek: Information
 709 leakage reduction to share activations in distributed deep learning. In *2020 International Conference*
 710 *on Data Mining Workshops (ICDMW)*, pp. 933–942. IEEE, 2020.

711

712 Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, and Alireza Makhzani. Variational
 713 model inversion attacks. *Advances in Neural Information Processing Systems*, 34:9706–9719,
 714 2021.

715 Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, and Jiwen Lu. Drivedreamer:
 716 Towards real-world-drive world models for autonomous driving. In *European Conference on*
 717 *Computer Vision*, pp. 55–72. Springer, 2024.

718

719 Song Xia, Yi Yu, Wenhan Yang, Meiwen Ding, Zhuo Chen, Ling-Yu Duan, Alex C Kot, and Xudong
 720 Jiang. Theoretical insights in model inversion robustness and conditional entropy maximization
 721 for collaborative inference systems. In *Proceedings of the Computer Vision and Pattern Recog-*
 722 *nition Conference*, pp. 8753–8763, 2025.

723

724 LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning
 725 with convolutional networks. In *International conference on machine learning*, pp. 2825–2834.
 726 PMLR, 2018.

727

728 Mengda Yang, Ziang Li, Juan Wang, Hongxin Hu, Ao Ren, Xiaoyang Xu, and Wenzhe Yi. Measur-
 729 ing data reconstruction defenses in collaborative inference systems. *Advances in Neural Informa-*
 730 *tion Processing Systems*, 35:12855–12867, 2022.

731

732 Zheming Yang, Bing Liang, and Wen Ji. An intelligent end–edge–cloud architecture for visual
 733 iot-assisted healthcare systems. *IEEE internet of things journal*, 8(23):16779–16786, 2021.

734

735 Xiaojian Yuan, Kejiang Chen, Jie Zhang, Weiming Zhang, Nenghai Yu, and Yang Zhang. Pseudo
 736 label-guided model inversion attack via conditional generative adversarial network. In *Proceed-
 737 ings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 3349–3357, 2023.

738

739 Xianglong Zhang, Huanle Zhang, Guoming Zhang, Yanni Yang, Feng Li, Lisheng Fan, Zhijian
 740 Huang, Xiuzhen Cheng, and Pengfei Hu. Membership inference attacks against incremental
 741 learning in iot devices. *IEEE Transactions on Mobile Computing*, 2024.

742

743

744

745

746

747

748

749

750

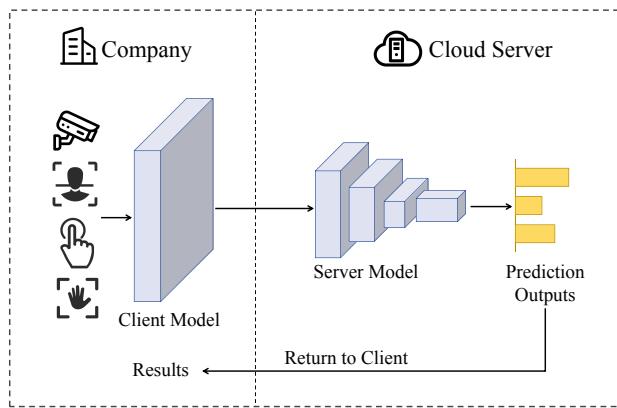
751

752

753

754

755

756 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
757758 We only used LLMs such as ChatGPT for polishing the writing and checking grammar, without
759 employing them for any other purpose.
760761 B COLLABORATIVE INFERENCE SYSTEMS
762763 Figure 8 illustrates the framework of Collaborative Inference systems (CI). CI splits the model into
764 two parts: one deployed on the client device and the other on a cloud server. The client model
765 processes raw data and transmits intermediate features to the server for further computation. The
766 server then returns the results to the client user. This setup reduces the computational burden on the
767 client while preserving user privacy. In the query-free setting (He et al., 2019; Chen et al., 2020), the
768 client device is deployed within the company, and the server model is held by a third-party cloud.
769 For example, in a facial recognition attendance system for employees, the system operates offline
770 daily, with the cloud only processing data sent by the client. Consequently, the server cannot query
771 the client, as the client device is located within the company premises.
772786 Figure 8: Collaborative Inference Systems.
787788 This setting is more difficult to attack. The client-provided instances are not controllable by the
789 server, which may lead to situations where no instances are sent, such as when the client device is
790 offline or shut down. The attacker cannot freely issue queries and can only passively wait for in-
791 coming instances. The attacker does not have access to the original private inputs, which makes the
792 received intermediate features difficult to exploit. In non-query-free methods, the attacker can send
793 auxiliary data to the client and obtain corresponding intermediate features to learn the feature–input
794 mapping or steal the client model through feature distillation. Therefore, in the non-query-free set-
795 ting, the attacker can access substantially more information. In the query-free setting, the available
796 information is limited, and the instances may also be insufficient.
797798 C MODEL INVERSION ATTACKS AND DEFENSES
799

800 C.1 WORKFLOW OF MIAs

802 Model Inversion Attacks (MIAs) aim to reconstruct sensitive training data from the target model.
803 MIAs can be formulated as an optimization problem in the input space x :
804

805
$$x^* = \arg \min_x \mathcal{L}_{cls}(T(x), c), \quad (9)$$

806

807 where c represents the target class, T denotes the target model, and \mathcal{L}_{cls} refers to the classification
808 loss function (e.g., cross-entropy loss). By minimizing the classification loss of T , the input x
809 is optimized to resemble the training data associated with label c , potentially revealing sensitive
features such as the face of the individual corresponding to class c .

With the application of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Miyato & Koyama, 2018), the images generated by attackers are no longer random but are instead produced through GANs. Moreover, attackers can leverage components such as the GAN discriminator to further enhance the realism of the generated images. The basic attack workflow is shown in Figure 9. This process can be formally expressed as:

$$z^* = \arg \min_z \mathcal{L}_{cls}(T(G(z)), c) + \mathcal{L}_{prior}(G(z)), \quad (10)$$

Where z is the latent code of the GAN, G is the generator, and \mathcal{L}_{prior} represents the loss from the discriminator.

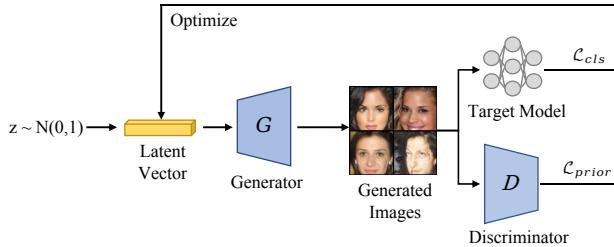


Figure 9: Basic workflow of Model Inversion Attacks.

C.2 ATTACKS

The first MIA was introduced by Fredrikson *et al.* (Fredrikson et al., 2014; 2015), leveraging gradient descent optimization in the image space. However, the vast size of the image space made optimization challenging, often resulting in unrecognizable reconstructed images. To overcome this limitation, Zhang *et al.* (Zhang et al., 2020) proposed Generative Model Inversion (GMI), which utilizes a GAN to constrain the optimization space and synthesize high-quality reconstructed samples. More recently, advanced variants of GMI have been developed to enhance attack performance under diverse attacker capabilities (Chen et al., 2021; Wang et al., 2021; Struppek et al., 2022; An et al., 2022; Nguyen et al., 2023; Yuan et al., 2023; Qiu et al., 2024; Peng et al., 2024; Han et al., 2023; Li et al., 2025; Kahla et al., 2022; Nguyen et al., 2024).

PLGMI (Yuan et al., 2023). PLGMI uses pseudo labels to narrow the search space and conduct a more independent latent search process. PLGMI first selects the best matching n images for each identity from public data, then uses these images to train a conditional GAN (Miyato & Koyama, 2018), which better guides the direction of the generated images. In the attack phase, PLGMI designs a max-margin loss to address the gradient vanishing problem.

Hyperparameters. We set $n = 30$ for the top- n selection strategy. To train the GAN, we use the Adam optimizer with a learning rate of 0.0002, a batch size of 64, and $\beta = (0, 0.9)$, training for 150,000 iterations. During the attack, we use the Adam optimizer with a learning rate of 0.1, and initialize z for 5 times and optimize each round for 600 iterations.

PPA (Struppek et al., 2022). PPA leverages pre-trained StyleGANs on image priors with large distributional shifts. The attack consists of three phases: sampling, optimization, and selection. In the sampling phase, PPA generates a large pool of latent vectors and selects some vectors for each identity that achieves the highest accuracy on the target model. Then, in the optimization phase, PPA optimizes each latent vector under random transformations and employs a Poincaré loss to address the gradient vanishing problem. Finally, in the selection phase, PPA filters out poor results by evaluating various transformed versions of each corresponding image on the target model and selecting the average best results.

Hyperparameters. In the sampling phase, we initially sampled 5,000 latent vectors z and then selected the top 20 candidates with the highest prediction scores. During the optimization phase, we employed the Adam optimizer with a learning rate of 0.005, a batch size of 30, and $\beta = (0.1, 0.1)$, training for 100 iterations. Finally, in the selection phase, we select 5 samples with the highest average prediction scores for each target.

864 In other settings, attackers may only have access to the model’s prediction outputs rather than its
 865 full parameters. Based on the type of outputs available, these settings can be further classified into
 866 black-box (soft label) (An et al., 2022; Han et al., 2023) and label-only (hard label) scenarios (Kahla
 867 et al., 2022; Nguyen et al., 2024). In the black-box setting, MIRROR (An et al., 2022) employs
 868 a genetic algorithm for gradient-free optimization, while RLBMI (Han et al., 2023) formulates the
 869 latent space search as a Markov decision process and solves it using reinforcement learning. In the
 870 label-only setting, BREPMI (Kahla et al., 2022) introduces an algorithm that pushes samples away
 871 from the decision boundary and closer to the class centroid. LOKT (Nguyen et al., 2024) transfers
 872 knowledge from the target model to surrogate models using hard-label distillation, then performs
 873 white-box attacks on the surrogate models.

874 C.3 DEFENSES

875 **BiDO (Peng et al., 2022).** BiDO utilizes a bilateral dependency optimization strategy to minimize
 876 the dependency $d(z, x)$ between the latent representations z and the inputs x while maximizing
 877 the dependency $d(z, y)$ between the latent representations z and the label y . For the dependency
 878 measure, BiDO uses constrained covariance (COCO) (Gretton et al., 2005b) or the Hilbert-Schmidt
 879 independence criterion (HSIC) (Gretton et al., 2005a). It has been noted that BiDO-HSIC has better
 880 defense performance than BiDO-COCO. We choose BiDO-HSIC and use λ_x and λ_y to control
 881 $d(z, x)$ and $d(z, y)$ separately.

882 **NLS (Struppek et al., 2023).** Negative Label Smoothing (NLS) converts hard labels into soft
 883 labels by incorporating a negative smoothing factor λ into the cross-entropy loss, which affects
 884 the optimization process in MIAs.

885 **TLDMI (Ho et al., 2024).** TLDMI utilizes a model pretrained on public datasets and transfers the
 886 earlier layers to the target model. The transferred layers are frozen, and only the later layers are
 887 trained on the private dataset. According to their analysis, the earlier layers are more vulnerable to
 888 MIAs; thus, TLDMI helps reduce the private information encoded in the model. We define the ratio
 889 of transferred and frozen parameters as the hyperparameter λ .

890 **Differential Privacy (Abadi et al., 2016).** Differential Privacy (DP) was initially introduced to
 891 provide privacy guarantees for algorithms operating on aggregate databases (Dwork, 2006; Dwork
 892 et al., 2014). It was later adapted to deep learning through Differentially Private Stochastic Gradient
 893 Descent (DP-SGD) (Abadi et al., 2016). To limit the influence of a single sample on model updates
 894 and prevent excessive information leakage, DP-SGD first computes the l_2 -norm of each sample’s
 895 gradient and clips it if it exceeds a predefined threshold. We set this threshold to 1. To further
 896 enhance privacy, even if an attacker gains access to the model parameters, they should not be able
 897 to accurately infer specific training samples. To achieve this, random perturbations drawn from
 898 Gaussian noise are added during gradient updates. We define the noise ratio as the hyperparameter
 899 λ .

900 **NoPeek (Vepakomma et al., 2020).** NoPeek is a widely used defense method in CI that measures
 901 and reduces the correlation between intermediate features and the input, thereby preventing server
 902 adversaries from reconstructing the original input data. The loss function for this method is defined
 903 as follows:

$$904 \mathcal{L} = \alpha \cdot DCOR(X_{priv}, f_C(X_{priv})) \\ 905 + (1 - \alpha) \cdot TASK(Y_{priv}, f_S(f_C(X_{priv}))) \quad (11)$$

906 where $DCOR$ represents the distance correlation metric, and $TASK$ denotes the classification loss
 907 between the true label and the model’s prediction. By jointly minimizing this loss, a better trade-off
 908 can be achieved between preserving input data privacy and maintaining model utility.

909 **Noise (Titcombe et al., 2021).** Titcombe et al. (Titcombe et al., 2021) proposed a defense approach
 910 that adds Laplacian noise directly to the intermediate features before transmission to the server,
 911 aiming to hinder input reconstruction. This added randomness increases the difficulty for adversaries
 912 to infer the mapping between the intermediate features and the original input. In our implementation,
 913 we set the noise mean to 0 and control its variance using λ .

914 **Dropout (He et al., 2020).** Dropout randomly disables a subset of neurons during the forward pass,
 915 stochastically altering the activation patterns of intermediate representations. We control the dropout
 916 probability using λ .

918 **DISCO (Singh et al., 2021).** DISCO learns a dynamic, data-driven pruning filter to selectively
 919 obfuscate sensitive information in the feature space. It monitors an attacker and learns the optimal
 920 pruning strategy to defend against it. We set the pruning rate to λ and balance the main task loss and
 921 the monitored adversarial loss with weights of 0.5 each.

922 **InfoScissors (Duan et al., 2024).** InfoScissors reduces the mutual information between a model’s
 923 intermediate features and both the input and predictions. Since predictions are held by the server in
 924 this paper, we focus solely on minimizing the mutual information between the intermediate features
 925 and the input. The mutual information loss is controlled by the parameter α .

927 D DATASETS

930 **CelebA (different ID).** We select another 2,504 images from 234 different identities for this dataset,
 931 with no overlap with the private CelebA dataset used in the main experiments.

932 **AI-Face (Lin et al., 2025)** is the first million-scale, demographically annotated AI-generated face
 933 image dataset, including real faces, deepfake video frames, and faces generated by 10 GANs and 8
 934 diffusion models. We select 20,000 images generated by Latent Diffusion (Rombach et al., 2022).
 935 We choose intersectional classification (gender and skin tone) with 6 classes: 0-(Female, Light),
 936 1-(Female, Medium), 2-(Female, Dark), 3-(Male, Light), 4-(Male, Medium), 5-(Male, Dark).

937 **Hyperparameters.** For the main experiments and the aforementioned face dataset, we use the same
 938 hyperparameters. All the images are resized to 224×224 . For training the target models, we use the
 939 Adam optimizer with a batch size of 128 and a learning rate of 0.001. The models are trained for
 940 100 epochs on CelebA and 50 epochs on FaceScrub. For Step1, we use a batch size of 64, a learning
 941 rate of 0.001, and train for 100 epochs. For Step2 and r-MTIA, we fine-tune the recovered model
 942 with a batch size of 64, a learning rate of 0.0001, and only 5 epochs.

943 **Neurotechnology UareU** (Neurotechnology, 2007) is a fingerprint dataset distributed by Neurotech-
 944 nology, containing 65 fingers, each with 8 impressions.

946 **FVC2004** (Maltoni et al., 2009; of Bologna), 2003) is a fingerprint dataset introduced in the Third
 947 International Fingerprint Verification Competition. It consists of four databases, with a total of 40
 948 fingers, each having 8 impressions.

949 **Hyperparameters.** For fingerprint recognition, we use Neurotechnology UareU as D_{priv} and
 950 FVC2004 as D_{pub} . The images are resized to 224×224 and trained on the MobileNetV2 model.
 951 For the target model, we train for 20 epochs with a batch size of 8 and a learning rate of 0.001. For
 952 MTIA Step 1, we train for 70 epochs with a batch size of 8 and a learning rate of 0.001. In MTIA
 953 Step 2, we train for 5 epochs with a batch size of 8 and a learning rate of 0.0001.

954 **PCE-SynthPalm-1.6M** (Jin et al., 2024; PCE-SynthPalm-1.6M, 2024) is a synthetic palmprint
 955 dataset designed to address the lack of large-scale datasets in palmprint recognition research. It
 956 includes 1.6 million palmprint images spanning 50,000 subjects.

957 **Hyperparameters.** For palmprint recognition, we select 50 identities from the PCE-SynthPalm-
 958 1.6M dataset as D_{priv} and another 100 identities as D_{pub} . The images are resized to 224×224 and
 959 trained on the MobileNetV2 model. For the target model, we train for 20 epochs with a batch size
 960 of 32 and a learning rate of 0.001. For MTIA Step 1, we train for 30 epochs with a batch size of 32
 961 and a learning rate of 0.001. In MTIA Step 2, we train for 5 epochs with a batch size of 32 and a
 962 learning rate of 0.0001.

963 **Imagenette (Howard, 2019)** is a curated subset of ImageNet (Deng et al., 2009), consisting of 10
 964 easily distinguishable classes: tench, English springer, cassette player, chain saw, church, French
 965 horn, garbage truck, gas pump, golf ball, and parachute. It contains a total of 13,394 images.

966 **Imagewoof (Howard, 2019)** is a subset of ImageNet (Deng et al., 2009) comprising 10 dog breeds
 967 that are more challenging to classify due to their visual similarity. It contains a total of 12,954
 968 images. The included breeds are: Australian Terrier, Border Terrier, Samoyed, Beagle, Shih Tzu,
 969 English Foxhound, Rhodesian Ridgeback, Dingo, Golden Retriever, and Old English Sheepdog.

971 **Hyperparameters.** For both datasets, the images are resized to 224×224 and trained on the Mo-
 972 bileNetV2 model. For the target model, we train for 20 epochs with a batch size of 128 and a

learning rate of 0.001. For MTIA Step 1, we train for 50 epochs with a batch size of 128 and a learning rate of 0.001. In MTIA Step 2, we train for 5 epochs with a batch size of 128 and a learning rate of 0.0001.

E MODELS

Both MobileNetV2 and ResNet-50 are composed of three parts: an initial convolutional layer, multiple blocks, and a final classification layer. The initial convolutional layer processes the input image and maps the three RGB channels into multiple feature channels. In MobileNetV2, it consists of a 3×3 convolution, a batch normalization layer, and a ReLU activation. In ResNet-50, it consists of a 7×7 convolution, batch normalization, a ReLU activation, and a max-pooling layer. In our main experimental setup, the initial convolutional layer and the first block (an inverted residual block for MobileNetV2 and a residual block for ResNet-50) are deployed on the client, while the remaining blocks are deployed on the server. When the split point moves deeper, additional blocks are shifted to the client. For the attacker, a VGG block is used as a substitute for the client models. The architectures of the VGG block, inverted residual block, and residual block are shown in Figure 10.

The VGG block consists of two convolutional layers with a kernel size of 3×3 . Each convolutional layer is followed by a batch normalization layer and a ReLU activation function. At the end of the VGG block, a max-pooling layer is used for dimensionality reduction.

The inverted residual block in MobileNetV2 consists of convolutional layers with two different kernel sizes: 1×1 and 3×3 . Specifically, it follows a dimension expansion-first approach, followed by dimension reduction. It first applies a 1×1 pointwise convolution to expand the number of input channels, followed by a 3×3 depthwise separable convolution to extract features. Finally, another 1×1 pointwise convolution compresses the number of channels back to the original count. The inverted residual block uses ReLU6 as the activation function, which restricts the output values between 0 and 6. Additionally, a skip connection is employed to add the inputs and outputs of the block.

The residual block in ResNet-50 also consists of convolutional layers with two different kernel sizes but differs from the inverted residual block. It employs a 1×1 convolution for dimension reduction, followed by a 3×3 convolution for feature extraction, and finally another 1×1 convolution to expand the dimensions. This structure, known as the bottleneck design, features larger dimensions at both ends and a smaller dimension in the middle, effectively reducing computational complexity. The residual block includes a skip connection that directly adds the input to the output passing through two convolutional layers, facilitating gradient propagation. Unlike the inverted residual block, a ReLU activation function is applied after the skip connection.

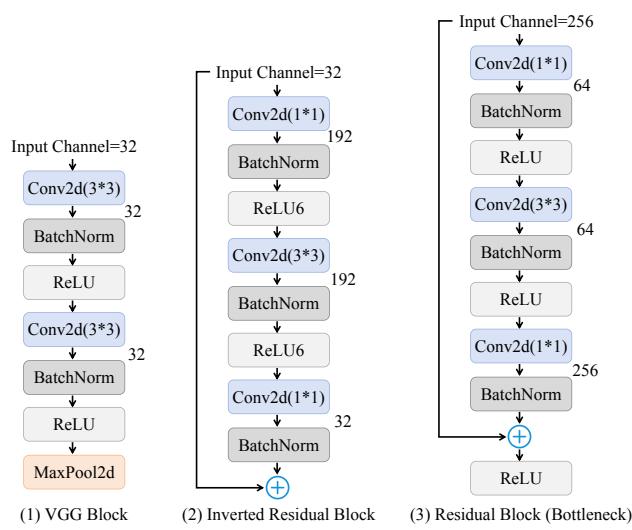


Figure 10: Architectures of three different blocks.

1026 **F ADDITIONAL EXPERIMENTS**
10271028 **F.1 ADDITIONAL DEFENSES**
10291030 We evaluate our attack against two stronger defense mechanisms under various hyperparameters:
1031 Noisy_ARL (Jeong et al., 2023) and CEM (Xia et al., 2025). Since CEM needs to be combined with
1032 other defenses, we pair it with NoPeek (Vepakomma et al., 2020), Dropout (He et al., 2020), and
1033 Noisy_ARL (Jeong et al., 2023). The results are shown in Table 6. MTIA remains effective against
1034 both defenses, improving the recovered model accuracy from 57.03% to 75.06% and the inversion
1035 attack accuracy from 59.33% to 79.53%.1036 Table 6: Attack results against additional defenses.
1037

1038 Defense	1039 Hyperparams	1040 Method	1041 Test-Acc \uparrow	1042 PPA Att-Acc \uparrow
1043 w/o	1044 -	1045 Target	1046 88.15	1047 90.93 ± 1.3
		1048 MTIA	1049 77.05	1050 72.93 ± 2.2
	(2, 0.01)	1051 Target	1052 88.09	1053 92.00 ± 0.2
		1054 MTIA	1055 75.06	1056 79.53 ± 2.2
1057 Norsy_ARL	(5, 0.01)	1058 Target	1059 83.76	1060 82.26 ± 2.0
		1061 MTIA	1062 68.94	1063 72.93 ± 1.2
	(10, 0.01)	1064 Target	1065 82.59	1066 71.60 ± 1.1
		1067 MTIA	1068 64.90	1069 67.26 ± 3.4
1070 NoPeek_CEM	(0.01, 1, 0.5)	1071 Target	1072 83.57	1073 85.73 ± 1.1
		1074 MTIA	1075 66.73	1076 71.53 ± 1.6
	(0.01, 1, 0.7)	1077 Target	1078 80.93	1079 82.53 ± 1.3
		1080 MTIA	1081 57.03	1082 59.33 ± 2.1
1083 Dropout_CEM	(0.01, 1, 0.3)	1084 Target	1085 84.71	1086 88.13 ± 1.9
		1087 MTIA	1088 68.32	1089 69.73 ± 1.4
	(0.01, 1, 0.5)	1090 Target	1091 81.39	1092 86.73 ± 2.0
		1093 MTIA	1094 71.48	1095 71.20 ± 0.9
1096 Norsy_ARL_CEM	(1.0, 10, 0.01)	1097 Target	1098 85.29	1099 86.19 ± 1.1
		1100 MTIA	1101 65.91	1102 68.80 ± 1.6
	(5.0, 10, 0.01)	1103 Target	1104 83.34	1105 81.06 ± 1.7
		1106 MTIA	1107 64.25	1108 71.33 ± 1.3

1080
1081

F.2 COMPUTATIONAL OVERHEAD

1082 We calculate the computational overhead of each step to better illustrate the attack process, as shown
 1083 in Table 7. Training details can be found in Appendix C and Appendix D. For MTIA, Step 1 completes
 1084 the model weights through transfer learning, Step 2 fine-tunes the model via self-attention
 1085 alignment, and the inversion attack reconstructs the images. r-MTIA adds a fine-tuning process us-
 1086 ing the reconstructed images and a second inversion (if needed). Step 1 requires more time than
 1087 training the target model, while Step 2 incurs only a small computational cost. The inversion step is
 1088 time-consuming because the latent space of the GAN must be optimized hundreds of times for each
 1089 identity. For r-MTIA, the fine-tuning cost is low, and most of the computation is spent on inver-
 1090 sion. Therefore, repeating the attack more than once is unnecessary due to its high computational
 1091 cost, as the reconstructed results already achieve high accuracy and additional repetitions yield only
 1092 diminishing gains.

1093 Table 7: Computational overhead (GPU hours) of different processes: MTIA involves Step 1, Step 2,
 1094 and inversion, while r-MTIA involves Step 1, Step 2, inversion, fine-tuning, and a second inversion.

Dataset	Model	Target Model Training	Attack Step				Total Attack Time	
			Step1	Step2	Inversion	Fine-tuning	MTIA	r-MTIA
CelebA	MobileNetV2	7.68	11.21	0.09	19.92	0.38	31.22	51.52
	ResNet-50	8.46	12.46	0.13	23.57	0.39	36.16	60.12
FaceScrub	MobileNetV2	5.44	8.80	0.09	10.55	0.22	19.44	30.21
	ResNet-50	5.74	9.14	0.12	12.65	0.22	21.91	34.78

1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134
1135

F.3 SELF-ATTENTION ALIGNMENT LAYERS

1136
1137
1138
1139
1140

To evaluate the impact of using different layers for self-attention alignment, we experiment with four portions of the early layers: 100%, 50%, 30%, and 10%. These portions indicate the number of layers counted from the first layer relative to the total number of layers. The recovered model accuracy is shown in Figure 11. Using fewer layers for alignment slightly reduces performance and slows convergence, while also lowering the computational cost.

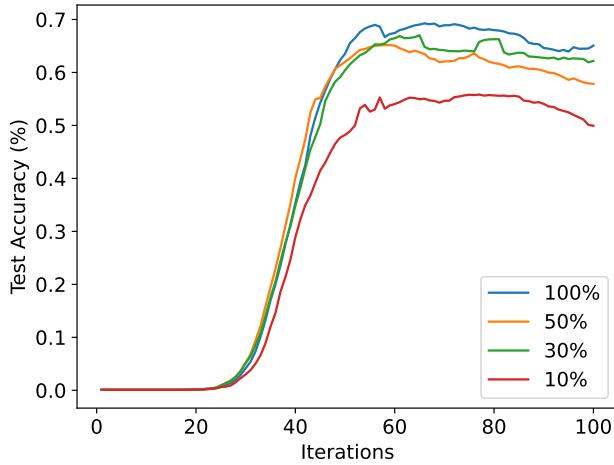
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

Figure 11: Test accuracy of the recovered model using different portions of self-attention alignment layers.

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189

F.4 OVERLAPPING ANALYSIS BETWEEN CELEBA AND FACESCRUB

1190
1191
1192
1193
1194
1195
1196
1197
1198

To analyze the overlapping IDs between CelebA and FaceScrub, we trained MobileNetV2 and ResNet-50 models on each dataset, resulting in four models in total. We then performed cross verification by feeding CelebA images into the FaceScrub-trained models and vice versa, and recorded the predicted labels for each ID. For each ID, we identified the most frequently predicted label and computed its proportion among all predictions for that ID as the match ratio. We calculated the average match ratio across the four models and report the results in Figure 12. IDs with a match ratio above 0.5 were identified as overlapping, yielding 22 such cases. The images of these overlapping IDs are shown in Table 8. The identified 22 IDs indeed correspond to the same individuals, while those with match ratios below 0.5 are visually similar but not the same person.

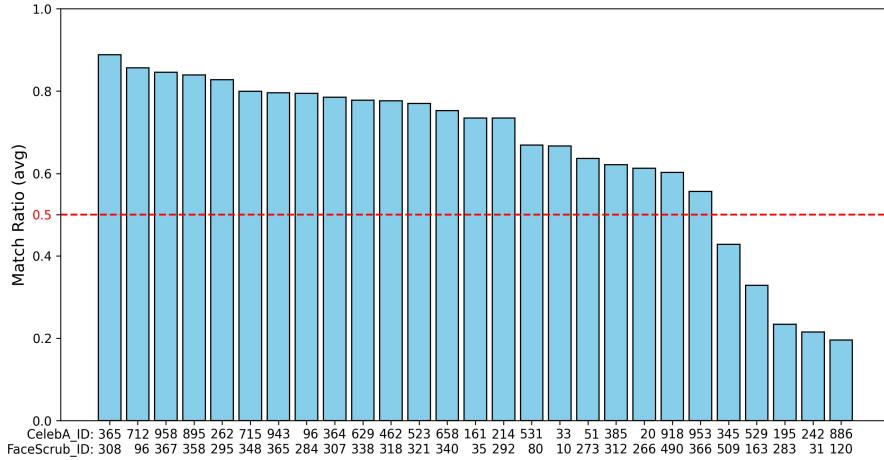
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
12131214
1215

Figure 12: Average match ratio for overlaped predictions of four models.

1216
1217
1218

Table 8: The corresponding image of the overlaped IDs between CelebA and FaceScrub.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Match Ratio > 0.5												
CelebA												
	365	712	958	895	262	715	943	96	364	629	462	
FaceScrub												
	308	96	367	358	295	348	365	284	307	338	318	
CelebA												
	523	658	161	214	531	33	51	385	20	918	953	
FaceScrub												
	321	340	35	292	80	10	273	312	266	490	366	
Match Ratio < 0.5												
CelebA												
	345	529	195	242	886							
FaceScrub												
	509	163	283	31	120							

1242
1243

F.5 ATTACK RESULTS USING DIFFERENT CELEBA IDENTITY

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

The overlapping IDs are few, only 2.2% in CelebA and 4.1% in FaceScrub, and they are associated with different labels. This label mismatch can disrupt classification during our attack, as images of the same identity are assigned different labels. To fully eliminate this overlap, we conduct two new experiments. Our target model is trained on CelebA using 1000 IDs, and we select another 234 CelebA IDs as our public dataset for attacks, forming a non-overlapping set. We also remove the 22 overlapping IDs identified in the FaceScrub dataset in Section F.4 and re-evaluate on this cleaned dataset. The results are shown in Table 9. MTIA remains effective on both new public datasets, successfully restoring model functionality and reconstructing images. Compared to the original results on the full FaceScrub dataset reported in the main paper, the performance decreases only slightly—from 77.05% to 76.80%/74.78% for MobileNetV2 and from 71.39% to 61.45%/71.22% for ResNet-50.

1255
1256

Table 9: Attack results using different datasets. \uparrow and \downarrow indicate that higher and lower scores, respectively, correspond to better attack performance.

1257

D_{priv}	D_{pub}	Method	MobileNetV2			ResNet-50		
			TestAcc \uparrow	PPA		TestAcc \uparrow	PPA	
		Target	88.15	90.93 \pm 1.3	122.56	87.67	92.33 \pm 0.8	150.23
CelebA (Different 234 ID)		Pretrain	0.03	0.13 \pm 0.1	278.92	0.09	0.06 \pm 0.1	299.69
		Pretrain-SA	11.26	13.86 \pm 1.7	218.47	2.34	2.53 \pm 0.7	250.48
		TL	0.13	0.86 \pm 0.3	260.46	0.68	26.26 \pm 1.7	242.60
		MTIA	76.80	73.60\pm2.5	144.66	61.45	71.73\pm0.6	168.10
CelebA		Target	88.15	90.93 \pm 1.3	122.56	87.67	92.33 \pm 0.8	150.23
		Pretrain	0.01	0.13 \pm 0.1	275.66	0.09	0.13 \pm 0.1	296.66
		Pretrain-SA	4.03	4.60 \pm 1.4	245.61	3.71	3.33 \pm 0.5	249.16
		TL	0.48	2.93 \pm 0.8	254.32	29.98	53.33 \pm 1.6	209.91
		MTIA	74.78	71.26\pm1.5	148.26	71.22	75.13\pm2.0	172.19

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297

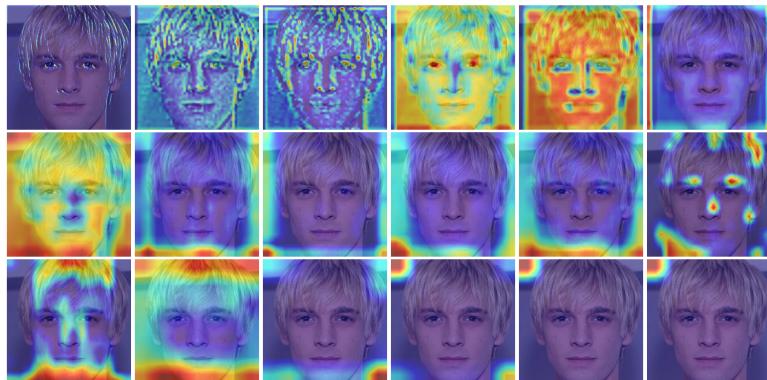
F.6 ANALYSIS OF LAYER ATTENTION

1298
1299
1300
1301
1302
1303
1304
1305

We visualize the attention maps of the MobileNetV2 model trained on CelebA using Grad-CAM Selvaraju et al. (2017), from the first layer to the last, as shown in Figure 13. The first two maps in the top row correspond to the client model. For the target model, shallow layers focus on fine-grained details such as hair and nose, while deeper layers attend to broader, less detailed regions. Attention patterns between neighboring layers are similar and show smooth, continuous transitions. With TL, the early-layer attention becomes inconsistent with the originals, and the inter-layer relations become less coherent, causing deviations that grow cumulatively with depth. In contrast, self-attention alignment preserves continuity across layers, enabling more accurate feature extraction.

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318

(a) Target

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332

(b) TL

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

(c) MTIA (ours)

1347
1348
1349

Figure 13: Attention maps of MobileNetV2 trained on CelebA, from the first layer to the last layer.

1350
1351

F.7 FINE-TUNING OF R-MTIA

1352
1353
1354
1355

The repeated MTIA (r-MTIA) uses reconstructed images to fine-tune the recovered model and enhance its classification performance. Since the reconstructed images may be distorted or imperfect and may not resemble the real identities, several fine-tuning strategies are employed to mitigate the risk of error accumulation as follows:

1356

- *None*: The model is directly fine-tuned using all reconstructed images.
- *Image Filtering*: We adopt the same methods as in PPA (Struppek et al., 2022), applying random image transformations (such as RandomResizedCrop and RandomHorizontalFlip) to the reconstructed images. Images that still receive high prediction scores after transformations are selected as the final fine-tuning dataset. This step filters out adversarial examples and low-similarity images.
- *Layer Freezing*: Parameters belonging to the original server model are frozen, and only the recovered part is fine-tuned.
- *L2-SP*: An L2 penalty at the starting point (L2-SP) (Xuhong et al., 2018) is applied during fine-tuning to prevent the parameters from deviating excessively from their initial values. Denoting the recovered model parameters as θ_r , the penalty is computed as: $l_{sp} = \|\theta_r^* - \theta_r\|_2^2$.

1369

The experimental results are shown in Table 10. Simply using all reconstructed images for fine-tuning can slightly enhance model performance. Applying image filtering further improves performance on CelebA, while the improvement on FaceScrub is less pronounced. This may be because the quality of reconstructed images for FaceScrub is higher than for CelebA, making filtering imperfect images more beneficial for CelebA. Layer Freezing and L2-SP also provide notable improvements for CelebA but are less effective for FaceScrub.

1375

Table 10: Accuracy of different fine-tuning methods by r-MTIA.

1377

Dataset	Model	MTIA Accuracy	r-MTIA Accuracy			
			None	Image Filtering	Image Filtering + Layer Freezing	Image Filtering + L2-SP
CelebA	MobileNetV2	77.05	78.91 (+1.86)	79.62 (+2.57)	80.54 (+3.49)	79.43 (+2.38)
	ResNet-50	68.32	69.17 (+0.85)	71.38 (+3.06)	70.73 (+2.41)	71.02 (+2.70)
FaceScrub	MobileNetV2	88.37	90.05 (+1.68)	90.07 (+1.70)	89.72 (+1.35)	89.72 (+1.35)
	ResNet-50	85.93	87.32 (+1.39)	86.55 (+0.62)	85.56 (-0.37)	85.84 (-0.09)

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405 F.8 ATTACK RESULTS WITH QUERY ACCESS1406
1407 If the attacker has query access to the client model, they can recover it through a distillation-based
1408 approach. We consider two types of distillation methods as follows:1409
1410 • *Feature Distillation (FD)*: The attacker queries the client model with the public dataset
1411 (X_{pub}) to obtain the intermediate features $(f_C(X_{pub}))$ and minimizes the discrepancy be-
1412 tween these features and those produced by the substitute client $(\hat{f}_C(X_{pub}))$. The loss is
1413 computed as:

1414
1415
$$\mathcal{L}_{FD} = \left\| f_C(X_{pub}) - \hat{f}_C(X_{pub}) \right\|_2^2 \quad (12)$$

1416
1417 • *Knowledge Distillation (KD)*: The attacker queries both the client model and the server
1418 model with the public dataset (X_{pub}) to obtain the final outputs $(f_S(f_C(X_{pub})))$. The
1419 attacker then minimizes the Kullback–Leibler divergence (KL) Csiszár (1975) between
1420 these outputs and those produced by the substitute client and server, $(f_S(\hat{f}_C(X_{pub})))$. This
1421 loss, commonly known as Knowledge Distillation (KD) Hinton et al. (2015), is computed
1422 as:

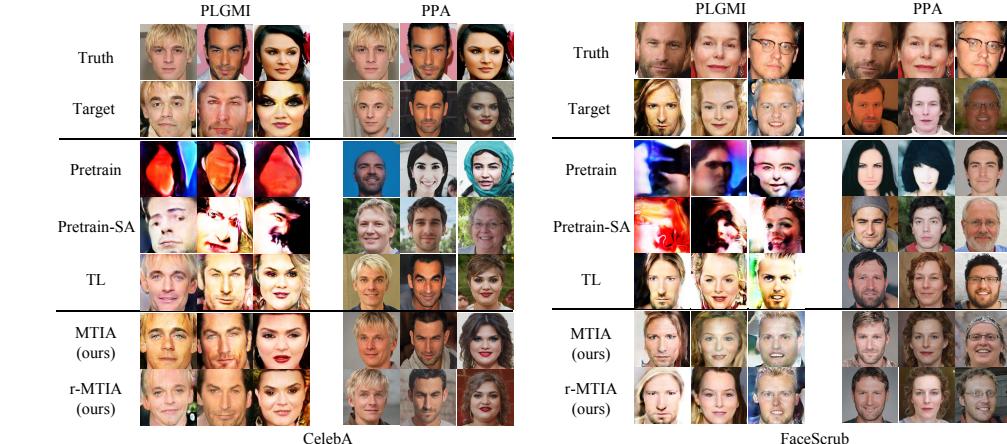
1423
1424
$$y_C = \text{Softmax}(f_S(f_C(X_{pub}))) \quad (13)$$

1425
1426
$$\hat{y}_C = \text{Softmax}(f_S(\hat{f}_C(X_{pub}))) \quad (14)$$

1427
1428
$$\mathcal{L}_{KD} = KL(y_C || \hat{y}_C) \quad (15)$$

1429
1430 We evaluate the model-recovery performance of FD and KD in Table 11. Given query access, an
1431 adversary can submit an unlimited number of inputs to the client model and obtain either the inter-
1432 mediate features or the final model outputs. With these signals, the adversary is able to reconstruct
1433 the entire model with high fidelity, resulting in a highly accurate recovery.1434
1435 Table 11: Attack results with query access.1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

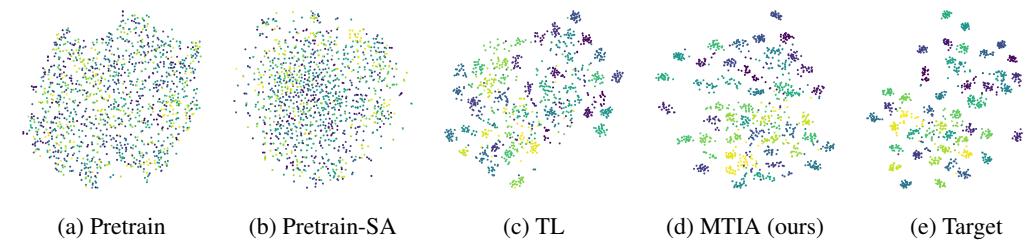
Dataset	Method	TestAcc \uparrow	
		MobileNetV2	ResNet-50
CelebA	Target	88.15	87.67
	FD	74.77	84.53
	KD	76.98	84.01
FaceScrub	Target	93.48	93.96
	FD	88.09	93.02
	KD	89.59	92.84

1458 F.9 OTHER ADDITIONAL RESULTS
14591460 Additional identity inversion results are presented in Figure 14.
14611462 Additional LRC scores on FaceScrub are shown in Table 12.
14631464 Additional feature visualization by t-SNE is shown in Fig 15, 16 and 17.
14651466 Results of MTIA on MaxViT (Tu et al., 2022) model are shown in Table 13.
14671480
1481 Figure 14: Identity inversion results on ResNet-50. “Truth” refers to the ground truth images of the
1482 target identity. “Target” refers to the reconstructed images of the whole target model.
14831484 Table 12: LRC score on FaceScrub.
1485

Method	MobileNetV2	ResNet-50
Pretrain	-0.144	-0.056
Pretrain-SA	0.289	0.012
TL	-0.046	0.609
MTIA (ours)	0.862	0.758

1486 Table 13: Attack results on MaxViT.
1487

Dataset	Method	Test-Acc \uparrow	PPA	
			Att-Acc \uparrow	Feat-Dist \downarrow
CelebA	Target	87.54	71.79 \pm 1.8	143.77
	MTIA (ours)	72.65	59.66 \pm 2.8	156.26
FaceScrub	Target	94.75	83.33 \pm 2.4	130.59
	MTIA (ours)	85.75	66.79 \pm 3.1	142.62

1502 Figure 15: Feature visualization by t-SNE on CelebA and ResNet-50.
1503

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527

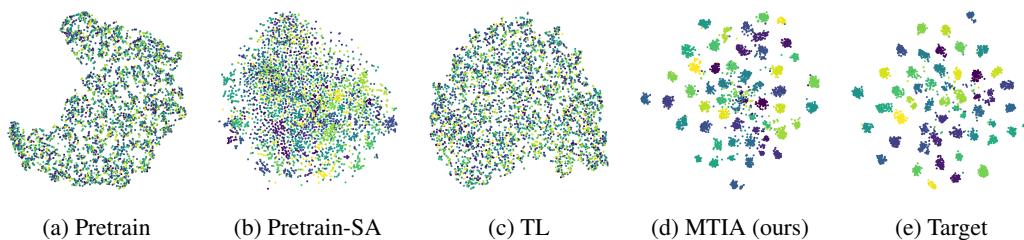


Figure 16: Feature visualization by t-SNE on FaceScrub and MobileNetV2.

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556

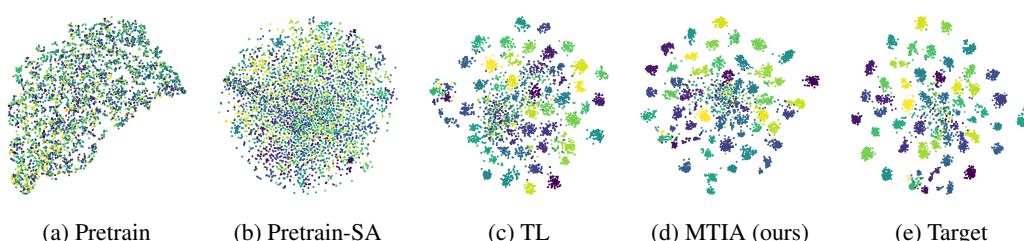


Figure 17: Feature visualization by t-SNE on FaceScrub and ResNet-50.

1557
1558
1559
1560
1561
1562
1563
1564
1565