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Summary
Multinomial Logistic Bandits have recently attracted much attention due to their ability

to model problems with multiple outcomes. In the multinomial model, each decision is as-
sociated with many possible outcomes, modeled using a multinomial logit function. Several
recent works on multinomial logistic bandits have simultaneously achieved optimal regret and
computational efficiency. However, motivated by real-world challenges and practicality, there
is a need to develop algorithms with limited adaptivity, wherein we are allowed M policy up-
dates only. To address these challenges, we present two algorithms, B-MNL-CB and RS-MNL,
that operate in the batched and rarely-switching paradigms, respectively. The batched setting
involves choosing the M policy update rounds at the start of the algorithm, while the rarely-
switching setting can choose these M policy update rounds in an adaptive fashion. Our first
algorithm, B-MNL-CB extends the notion of distributional optimal designs to the multinomial
setting and achieves Õ(

→
T ) regret assuming the contexts are generated stochastically when

presented with !(log log T ) update rounds. Our second algorithm, RS-MNL works with ad-
versarially generated contexts and can achieve Õ(

→
T ) regret with Õ(log T ) policy updates.

Further, diverse experiments demonstrate that our algorithms (with a fixed number of policy
updates) are extremely competitive to several state-of-the-art baselines (which update their pol-
icy every round), showcasing the applicability of our algorithms in various practical scenarios.

Contribution(s)
1. We present an algorithm, B-MNL-CB, that achieves an optimal O(

→
T ) regret with

!(log log T ) batches in the batched setting. Moreover, the leading term of the regret is
independent of ω, an instance-dependent non-linearity parameter.
Context: In the batched setting, the policy-update rounds are fixed. Gao et al. (2019b)
showed that having !(log log T ) batches is necessary to achieve the optimal minimax re-
gret. Our algorithm, B-MNL-CB, uses the idea of distributional optimal designs, introduced
in Ruan et al. (2021) and the scaling techniques used to learn the designs in Sawarni et al.
(2024), and naturally extends the idea of distributional optimal designs to the multinomial
logit setting. Achieving a ω↑ independent regret is important because Amani & Thram-
poulidis (2021) showed that ω scales exponentially in several instance parameters and hence,
can increase the regret significantly.

2. We present a rarely-switching algorithm RS-MNLthat achieves an optimal O(
→
T regret

(with a ω↑free leading term) requiring O(log T ) switches (policy updates) rounds
Context: In the rarely-switching setting, the policy update (switch) rounds are adaptively
chosen during the course of the algorithm. The need for the update is decided based on a
switching criterion similar to the one in Abbasi-Yadkori et al. (2011). While the algorithm
bears similarities to the rarely-switching algorithm presented in Sawarni et al. (2024), an
alternate regret decomposition method allows us to get rid of the warm-up criterion, which
helps reduce the number of switches from O(log2 T ) to O(log T ). Further, we also get rid
of the successive elimination method of choosing an arm in Sawarni et al. (2024) and replace
it with the simpler UCB-maximization rule of Abbasi-Yadkori et al. (2011), resulting in a
more efficient runtime for the algorithm.
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Abstract

Multinomial Logistic Bandits have recently attracted much attention due to their ability1
to model problems with multiple outcomes. In the multinomial model, each decision is2
associated with many possible outcomes, modeled using a multinomial logit function.3
Several recent works on multinomial logistic bandits have simultaneously achieved op-4
timal regret and computational efficiency. However, motivated by real-world challenges5
and practicality, there is a need to develop algorithms with limited adaptivity, wherein6
we are allowed M policy updates only. To address these challenges, we present two7
algorithms, B-MNL-CB and RS-MNL, that operate in the batched and rarely-switching8
paradigms, respectively. The batched setting involves choosing the M policy update9
rounds at the start of the algorithm, while the rarely-switching setting can choose these10
M policy update rounds in an adaptive fashion. Our first algorithm, B-MNL-CB extends11
the notion of distributional optimal designs to the multinomial setting and achieves12
Õ(

→
T ) regret assuming the contexts are generated stochastically when presented with13

!(log log T ) update rounds. Our second algorithm, RS-MNL works with adversari-14
ally generated contexts and can achieve Õ(

→
T ) regret with Õ(log T ) policy updates.15

Further, diverse experiments demonstrate that our algorithms (with a fixed number of16
policy updates) are extremely competitive to several state-of-the-art baselines (which17
update their policy every round), showcasing the applicability of our algorithms in var-18
ious practical scenarios.19

1 Introduction and Prior Works20

Contextual Bandits help incorporate additional information that a learner may have with the standard21
Multi-Armed Bandit (MAB) setting. In this setting, at each round, the learner is presented with a22
set of arms and is expected to choose an arm. She is also presented with a context vector that helps23
guide the decisions she makes. For each decision, the learner receives a reward, which is generated24
using a hidden optimal parameter. The goal of the learner is to minimize her cumulative regret (or25
equivalently, maximize her cumulative reward), over a specified number of rounds T . Contextual26
Bandits have long been studied under various notions of reward models and settings. For instance,27
one of the simplest models is to assume that the expected reward is a linear function of the arms and28
the hidden parameter (Abbasi-Yadkori et al., 2011; Auer, 2003; Chu et al., 2011). This was later29
extended to non-linear settings such as the logistic (Faury et al., 2020; Abeille et al., 2021; Faury30
et al., 2022), generalized linear setting Filippi et al. (2010); Li et al. (2017), and the multinomial31
setting (Amani & Thrampoulidis, 2021; Zhang & Sugiyama, 2023). In this work, we specifically32
focus on the multinomial setting that can model problems with multiple outcomes, which makes this33
setting incredibly useful in the fields of machine and reinforcement learning, as well as, in real life.34

Though significant progress has been made in designing algorithms for the contextual setting, the35
algorithms do not demonstrate a lot of applicability. There has been growing interest in constraining36
the budget available for algorithmic updates. This limited adaptivity setting is crucial in real-world37
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applications, where frequent updates can hinder parallelism and large-scale deployment. Addition-38
ally, practical and computational constraints may make it infeasible to make policy updates at every39
time step. For example, in clinical trials (Group et al., 1997), the treatments made available to the40
patients cannot be changed with every patient. Thus, the updates are made after administering the41
treatment to a group of patients, observing the effects and outcomes, and then updating the treatment.42
We observe a similar tendency in online advertising and recommendations, where it is difficult to43
update the policy at each round due to resource constraints. A recent line of work (Ruan et al., 2021;44
Sawarni et al., 2024) has introduced algorithms for contextual bandits in the linear and generalized45
linear settings, respectively. They introduce algorithms for two different settings: the batched set-46
ting, wherein the policy update rounds are fixed at the start of the algorithm, and the rarely-switching47
algorithm, wherein the policy update rounds are decided in an adaptive fashion. Since multinomial48
logistic bandits are not generalized linear models, it is not clear if the algorithms developed in past49
works would apply in this setting. Hence, the major focus of this work is to develop algorithms with50
limited adaptivity for the multinomial setting. We now list our contributions:51

52

1.1 Contributions53

• We propose a new algorithm B-MNL-CB, which operates in the batched setting where the con-54
texts are generated stochastically. The algorithm achieves Õ(

→
T ) regret with high probability,55

with !(log log T ) policy updates. In order to accommodate time-varying contexts, we adapt the56
recently introduced concept of distributional optimal designs (Ruan et al., 2021) to the multinomial57
logistic setting. This is done by introducing a new scaling technique to counter the non-linearity58
associated with the reward function. Note that the leading term of the regret bound is free of the59
instance-dependent non-linearity parameter ω, which can scale exponentially with the instance60
parameters (refer to Section 2 for more details).61

• Our second algorithm, RS-MNL operates in the rarely-switching setting, where the contexts are62
generated adversarially. The algorithm achieves Õ(

→
T ) regret while performing Õ(log T ) policy63

updates, each determined by a simple switching criterion. Further, our algorithm does not require a64
warmup switching criterion, unlike the rarely-switching algorithm in Sawarni et al. (2024), which65
helps in reducing the number of switches from Õ(log2 T ) to Õ(log T ).66

• We conduct extensive experiments to demonstrate the performance of our rarely-switching al-67
gorithm RS-MNL. Across a wide range of randomly selected instances, our algorithm achieves68
regret comparable to, and often better than, several logistic and multinomial logistic state-of-the-69
art baseline algorithms. Our algorithm manages to do so with a limited number of policy updates70
as compared to the baselines, which perform an update at each time round. We also empirically71
validate that the number of switches made by our algorithm is Õ(log T ), which is in agreement72
with our theoretical results.73

1.2 Related works74

Amani & Thrampoulidis (2021) were one of the first ones to deal with multinomial logistic setting.75
They proposed an algorithm that achieved a regret bound of Õ(K

→
ωT ), where K is the number76

of outcomes and ω is the instance-dependent non-linearity parameter (defined in Section 2). This77
was further improved by Zhang & Sugiyama (2023), who proposed a computationally efficient algo-78
rithm with a regret bound of Õ(

→
T ), thus achieving ω↑free bounds (the leading term is free of ω).79

However, both of these algorithms face challenges in real-world deployment due to infrastructural80
and practical constraints associated with updating the policy at every round.81

Thus, the limited adaptivity framework was introduced to combat this challenge, wherein the al-82
gorithm could only undergo a limited number of policy switches. This framework consists of two83
paradigms: the first being the Batched Setting, where the batch lengths are predetermined and was84
first studied by Gao et al. (2019a), who showed that !(log log T ) batches are necessary to obtain85
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optimal minimax regret. The second setting is the Rarely Switching Setting, first introduced by86
Abbasi-Yadkori et al. (2011), where batch lengths are determined adaptively, based on a switching87
criterion, such as the determinant doubling switching criteria used by Abbasi-Yadkori et al. (2011).88

In the contextual setting, Ruan et al. (2021) used optimal designs to study the case where the arm89
sets themselves were generated stochastically, providing a bound of Õ(d log d

→
T ) for the batched90

setting. This idea was then extended to the generalized linear setting by Sawarni et al. (2024),91
who proposed algorithms that could achieve ω↑free regret in both the batched and rarely-switching92
settings. However to the best of our knowledge, the limited adaptivity framework has not yet been93
explored in the multinomial case. We extend the results of Sawarni et al. (2024) and Ruan et al.94
(2021) to the multinomial setting in the batched setting while preserving the regret bound of Zhang95
& Sugiyama (2023) in the first-order term. In the rarely-switching setting, we further build upon the96
work of Abbasi-Yadkori et al. (2011) and Sawarni et al. (2024) to adapt it for the multinomial case,97
maintaining the regret bound of Zhang & Sugiyama (2023) while also improving computational98
efficiency by reducing the total number of switches.99

2 Preliminaries100

Notations: We denote all vectors with bold lower case letters, matrices with bold upper case letters,101
and sets with upper case calligraphic symbols. We write M ↭ 0, if matrix M is positive semi-102
definite (p.s.d). For a p.s.d matrix M , we define the norm of a vector x with respect to M as103

||x||
M

=
→

x
T
Mx and the spectral norm of M as ||M ||2 =

√
εmax

(
M

T
M

)
where εmax (M)104

denotes the maximum eigenvalue of M . We denote the set {1, . . . , N} as [N ]. The standard Tensor105
or Kronecker Product between two vectors a = (a1, . . . , am)

T and b = (b1, . . . , bn)
T is given by106

a↓ b = (a1b1, . . . , a1bn, a2b1, . . . , a2bn, . . . , amb1, . . . , ambn)
T . Finally, we use ”(X) to denote107

the set of all probability distributions over X .108

Multinomial Logistic Bandits: In the Multinomial Logistic Bandit Setting, at each round t, the109
learner is presented with a set of arms Xt, and is expected to choose an arm xt ↔ Xt. Based on110
the learner’s choice, the environment provides an outcome yt ↔ [K] ↗ {0}1. While choosing the111
arm at round t, the learner can utilize all prior information, which can be encoded in the filtration112
Ft = ϑ (F0,x1, y1, . . . ,xt→1, yt→1), where F0 represents any prior information the learner had113
before starting the algorithm. The probability distribution over these K + 1 outcomes is modeled114
using a multinomial logit function as follows:115

P {yt = i | xt,Ft} =






exp
(
x

T
t ω

→
i

)

1+
K∑

j=1
exp

(
x

T
t ω

→
j

) 1 ↘ i ↘ K

1

1+
K∑

j=1
exp

(
x

T
t ω

→
j

) i = 0

where ω
ω =

(
ω
ω
1
T
, . . . ,ω

ω
K

T
)T

↔ RdK comprises the hidden optimal parameter vectors associated116
with each of the K outcomes. Based on the outcome yt, the learner receives a reward ϖyt ≃ 0. It117
is standard to set ϖ0 = 0. We assume that the reward vector ϖ = (ϖ1, . . . , ϖK)

T

is fixed and known.118
We assume that ||ωω

||2 ↘ S, ||ε||2 ↘ R, and ||x||2 ↘ 1, for all x ↔ Xt, where R and S are fixed and119
known beforehand. Note that when K = 1, the problem reduces to the binary logistic setting. For120
simplicity, we denote the probability of the ith outcome P {yt = i | xt,Ft} as zi(xt,ω

ω) and denote121
the probability vector over the K outcomes as z(xt,ω

ω) = (z1(xt,ω
ω), . . . , zK(xt,ω

ω))
T

. Then, it122
is easy to see that the expected reward of the learner at round t is given by ε

T
z(xt,ω

ω). The goal123
of the learner is to choose an arm xt, t ↔ [T ] so as to minimize her regret, which can have different124
formulations based on the problem setting:125

1The outcome 0 indicates no outcome
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1. Stochastic Contextual setting : In this setting, at each time step, the feasible action sets are126
sampled from the same (unknown) distribution D. Thus, the learner wishes to minimize her127
expected cumulative regret which is given by128

R(T ) = E
[

T∑

t=1

[
max
x↑Xt

ε
T
z(x,ωω)↑ ε

T
z(xt,ω

ω)

]]

Here, the expectation is over the distribution of the arm set D and the randomness inherently129
present in the algorithm. In this setting, we assume that only M (fixed beforehand) policy updates130
can be made and the rounds at which these updates can happen need to be decided prior to starting131
the algorithm.132

2. Adversarial Contextual setting : In this setting, there are no assumptions made on how the feature133
vectors of the arms are generated. Thus, allowed M policy updates, the algorithm can dynami-134
cally choose when to make the updates during the course of the algorithm and does not have to135
decide them in the beginning. These dynamic updates are based on a simple switching criterion136
similar to the one presented in Abbasi-Yadkori et al. (2011). In this setting, the learner wishes to137
minimize her cumulative regret given by138

R(T ) =
T∑

t=1

[
max
x↑Xt

ε
T
z(x,ωω)↑ ε

T
z(xt,ω

ω)

]

Discussion on the Instance-Dependent Non-Linearity Parameter ω: Several works on the binary139
logistic model and generalized linear model (Filippi et al., 2010; Faury et al., 2020) as well as140
the multinomial logistic model (Amani & Thrampoulidis, 2021; Zhang & Sugiyama, 2023) have141
mentioned the importance of an instance dependent, non-linearity parameter ω, and have stressed142
on the need to obtain regret guarantees independent of ω (at least in the leading term). In Section 2,143
Faury et al. (2020), it was highlighted that that ω can grow exponentially in the instance parameters144
such as S and therefore regret proportional to ω could be detrimental when these parameters are145
large. ω was first defined for the binary logistic reward model setting Filippi et al. (2010). A natural146
extension to the multinomial logit setting was recently proposed in Amani & Thrampoulidis (2021).147
We use the same definition as Amani & Thrampoulidis (2021), i.e.,148

ω = sup


1

εmin(A(x,ω))
: x ↔ X1 ↗ . . . ↗ XT ,ω ↔ #



where A(x,ω) = ⇐z(x,ω) = diag(z(x,ω))↑z(x,ω)z(x,ω)
T , is the gradient of the link function149

z. In Section 3 of Amani & Thrampoulidis (2021), the authors show that ω in the multinomial setting150
also scales exponentially with the diameter of the parameter and action sets. We direct the reader to151
Section 3 of Amani & Thrampoulidis (2021) for a more elaborate discussion on the importance of152
ω in the multinomial setting.153

Optimal Design policies: Optimal Experimental Designs are concerned with efficiently selecting154
the best data points so as to minimize the variance (or equivalently, maximize the information) of155
estimated parameters. For a set of points X and some distribution ϱ defined on X , The information156
matrix is defined as the inverse of the variance matrix Ex↓εxx

T . Several criteria are used to max-157
imize the information, some of which are A-Criterion (minimize trace of the information matrix),158
E-Criterion (maximize the minimum eigenvalue of the information matrix), and D-Criterion (maxi-159
mize the determinant of the information matrix). One of the popular criteria used in bandit literature160
is the G-Optimal Design, which aims to minimize the maximum variance of the arms chosen.161

Definition 2.1. G-Optimal Design: For a set X ⇒ Rd, the G-Optimal design ϱG(X ) is the solution162
to the following optimization problem:163

min
ε↑!(X )

max
x↑X

⇑x⇑V (ε)↑1 where V (ϱ) =
∑

x↑X
ϱ(x)xx

T
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The General Equivalence Theorem of G and D-Optimal designs (Kiefer & Wolfowitz, 1960; Lat-164
timore & Szepesvári, 2020) establishes an equivalence between the G-Optimal and D-Optimal de-165
signs and show that the maximum variance is bounded above by d, the dimensionality of the arm166
sets. However, this notion of optimal designs can only be applied to fixed arm sets. In light of this,167
Ruan et al. (2021) introduced Distributional Optimal Designs for arm sets that are stochastically168
generated from an unknown distribution D. In the linear setting, they show that using G-optimal de-169
signs directly for stochastically generated arm sets achieves O(d


log(d)) regret (Theorem 2 Ruan170

et al. (2021)) and were able to reduce the regret by a factor of O(
→
d) using their novel distributional171

optimal design (Theorem 6, Ruan et al. (2021)). They define the distributional optimal design as172
a uniform distribution over the G-Optimal Design and the Mixed-Softmax policy which is defined173
below:174

Definition 2.2. Softmax and Mixed-Softmax Policy:(Definition 3, Ruan et al. (2021)) The softmax
policy ϱ

S
M

(X ), for a fixed ς, with respect to a positive semi-definite matrix M is defined as:

ϱ
S
M

(X ) = xi if i ⇓ softmaxϑ(x
T

1Mx1, . . . ,x
T

NMxN )

where the softmax function (parametrized by ς) is given by:

softmaxϑ(s1, . . . sN ) = i with probability
s
ϑ
iN

j=1 s
ϑ
j

Now given a set M = (pi,Mi)ni=1 such that pi ≃ 0 and
n

i=1 pi = 1, the mixed-softmax policy is175
defined as follows:176

ϱ(X ) =


ϱG(X ) with probability 1

2

ϱ
S
Mi

(X ) with probability pi

2

(1)

The mixed-softmax policy is learned using the CoreLearning algorithm (Algorithm 3, Ruan et al.177
(2021)) which returns the distributional G-Optimal design given the set of context vectors S and a ε178
value. Sawarni et al. (2024) introduced the concept of scaled context vectors in order to use distribu-179
tional optimal designs for generalized linear bandit models in the batched setting. In this paper, we180
propose an extension of this idea in the multinomial logit setting by introducing directionally scaled181
sets. These sets are used to learn the design policy utilized in the batched algorithm.182

3 B-MNL-CB183

Algorithm 1 B-MNL-CB
1: Input: M , ε, S, T
2: Initialize {Tm}

M
m=1 as per 2, ε =

→
Kd log T , and policy ϱ0 as G-OPTIMAL DESIGN

3: for batches φ = 1 to M do
4: for each round t ↔ Tϖ do
5: Observe arm set Xt

6: for j = 1 to φ ↑ 1 do
7: Update arm set Xt ⇔ ULj(Xt) (defined in 6)
8: end for
9: Sample xt ⇓ ϱϖ→1(Xt) and obtain outcome yt along with the corresponding reward ϖyt

10: end for
11: Equally divide Tϖ into two sets C and D

12: Compute ω̂ϖ ⇔ argmin

s↑C

↼(ω,xs, ys), Hϖ = εI +

s↑C

A(xt,ω̂ω)↔xtx
T
t

Bω(xt)
, and ϱϖ using

Algorithm 2 with the inputs (φ, {Xt}t↑D)
13: end for

In this section, we present our first algorithm B-MNL-CB,. We first introduce the algorithm and184
walk the reader through a step-by-step detailed explanation. We then mention a few salient remarks185
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about our algorithm. Finally, we present the regret guarantee for our algorithm, provide a proof186
sketch for the same, and guide the reader to the full proof in the Appendix.187

B-MNL-CB builds upon BATCHLINUCB-DG (Algorithm 5, Ruan et al. (2021)) and B-GLinCB188
(Algorithm 1, Sawarni et al. (2024)). This algorithm operates in the stochastic contextual setting189
(described in Section 2) within the batched paradigm. In this paradigm, the rounds at which the190
policy updates occur are fixed beforehand. We will refer to all the rounds between two consecutive191
policy updates as a batch. The horizon is divided into M = O(log log T ) disjoint batches denoted192
by {Tϖ}

M
ϖ=1, and the lengths of the batches are denoted by ↽ϖ = |Tϖ |. Next, we describe the steps193

of Algorithm 1. The input to B-MNL-CB is the number of batches M , the fixed (known) reward194
vector ε, the known upper bound on ||ω

ω
||2, i.e., S, and the total number of rounds T . In Step 2, we195

initialize ε to
→
Kd log T and set the batch lengths {↽ϖ}

M
ϖ=1 as per the rule mentioned in 2.196

↽ϖ = T
1→2↑ω

(2)

In Steps 4-13, we iterate over all batches φ ↔ [M ] and rounds t ↔ Tϖ . During batch φ and round197
t ↔ Tϖ , first, in Step 5, we obtain the set of feasible arms Xt at round t. Then in Steps 6-8, we iterate198
over all the previous batches j ↔ [φ ↑ 1] to prune Xt and retain only a subset of it via a successive199
elimination procedure described next.200

3.1 Successive Elimination201

For each prior batch j ↔ [φ↑ 1], we compute an upper confidence bound UCB(j,x,ε) and a lower202
confidence bound LCB(j,x,ε) as follows,203

UCB(j,x,ε) = ε
T
ω̂j + ⇀1(j,x,ε) + ⇀2(j,x,ε) (3)

204
LCB(j,x,ε) = ε

T
ω̂j ↑ ⇀1(j,x,ε)↑ ⇀2(j,x,ε) (4)

where the bonus terms ⇀1(j,x,ε) and ⇀2(j,x,ε) are defined as,205

⇀1(j,x,ε) = ⇁(ε)⇑H
→ 1

2
j (I↓x)A(x, ω̂j)ε⇑2, ⇀2(j,x,ε) = 3⇁(ε)2⇑ε⇑2⇑(I↓x

T
)H

→ 1
2

j ⇑
2
2 (5)

with θj and Hj being estimators (computed during Steps 11,12 at the end of batch j) of the true206
parameter vector ωω and an optimal batch-level Hessian matrix H

ω
j . We provide more details on207

these in Section 3.2. In Step 7, for batch j, we eliminate a subset of Xt using the upper and lower208
confidence bounds just defined. In particular, we eliminate all x ↔ Xt for which UCB(j,x,ε) ↘209
maxx↓ LCB(j,x↗

,ε). Thus, in Step 7, Xt is updated to ULj(X ), defined as,210

ULj(X ) = X \


x ↔ X : UCB(j,x,ε) ↘ max

y↑X
LCB(j,y,ε)


(6)

Following these successive eliminations for all prior batches j ↔ [φ ↑ 1], in Step 9, we choose an211
arm xt by sampling (from the remaining arms) according to a policy computed (using Algorithm212
2) at the end of batch φ ↑ 1. The environment then provides the outcome yt and the corresponding213
reward ϖyt . We provide details of the policy computation (Algorithm 2) in Section 3.3. After all214
rounds in batch φ (i.e. Tϖ) are complete, in Step 11, we partition these rounds equally into two sets215
C and D. The set C is used to define a batch-level Hessian matrix H

ω
ϖ and to compute an estimator216

θϖ of θω and a matrix Hϖ that estimates (a scaled version of) Hω
ϖ as follows.217

3.2 Batch Level Hessian and Parameter Estimation218

Using set C, for batch φ, we define a batch level Hessian matrix H
ω
ϖ = εI +


t↑C A(xt,ω

ω) ↓219
xtx

T

t . Since ω
ω is unknown, we maintain an online proxy to estimate H

ω
ϖ by calculating a scaled220

6



Achieving Limited Adaptivity for Multinomial Logistic Bandits

Hessian matrix Hϖ = εI +


t↑C
A(xt,ω̂ω)
Bω(x)

↓ xtx
T

t . Here, Bϖ(x) is a normalizing factor which is221
obtained using the self-concordance properties of the link function and is given by:222

Bϖ(x) = exp
(→

6min

⇁(ε)

→
ω ||x||

V
↑1
ω


, 2S

)
(7)

where ⇁(ε) = O(
→
Kd log T ) is the confidence radius for the permissible set of ω and Vϖ is the223

design matrix given by Vϖ = εI +


t↑C xtx
T

t . Using the self-concordance results, we can show224
that Hϖ ↫ H

ω
ϖ . We also use the set C to update the estimator ω̂ϖ , which is done by minimizing the225

negative log likelihood

t↑C

↼(ω,xt, yt), where ↼(ω,x, y) is defined as,226

↼(ω,x, y) = ↑

K∑

i=1

{y = i} log
1

zi(x,ω)
+

ε

2
⇑ω⇑

2
2 (8)

Next, we explain how the policy is updated to ϱϖ at the end of batch φ using the rounds in set D.227

3.3 Policy calculation228

Algorithm 2 Distributional Optimal Design for MNL bandits

1: Input Batch φ and collection of arm sets S = {Xt : t ↔ D}

2: Create the sets {Fi(S,φ)}Ki=1 as defined in Equation 9
3: Compute the distributional optimal design policy ϱi for each of the sets Fi(S,φ)
4: Compute the distributional optimal design policy ϱ0 for the set S

5: Return ϱ = 1
K+1

K
i=0

ϱi

To compute our final policy, we utilize distributional optimal design (See Section 2) introduced in229
Ruan et al. (2021). Recently, Sawarni et al. (2024) used distributional optimal designs to develop230
limited adaptivity algorithms for stochastic contextual bandits with generalized linear reward mod-231
els. A key step in their algorithm (Step 13 and Equation 4, Algorithm 1 in Sawarni et al. (2024))232
involves scaling the set of arm feature vectors (post-sequential elimination) using the derivative of233
the link function and a suitable normalization factor. Generalizing this idea to the MNL setting re-234

sults in a matrix X̃ = A(x,ω̂t)
1
2

Bω(x)
↓ x. Since the notion of distributional optimal designs introduced235

in Ruan et al. (2021) and used by Sawarni et al. (2024), applies only to vectors, in Algorithm 2, we236
construct several sets of vectors from X̃ and learn the optimal design for these sets.237

In Step 12 of Algorithm 1, we invoke this algorithm (Algorithm 2) with inputs as the batch number238
φ and the collection S of all the pruned arm sets Xt (Step 7, Algorithm 1) for rounds t ↔ D, i.e.239
S = {Xt : t ↔ D}. We then create K different sets Fi(S,φ) (i ↔ [K]), which comprises of the240
arms in each arm set scaled by the i

th column of the gradient matrix. In particular,241

Fi(S,φ) =


A(x, ωϖ)

1
2


Bϖ(x)

ei ↓ x : x ↔ X


: X ↔ S


(9)

where ei ↔ RK is the i
th standard basis vector. We calculate the distributional optimal design for242

each of the sets Fi(S,φ) using Algorithm 2 in Ruan et al. (2021). In such a case, it is easy to see that243
calculating the distributional optimal design over X̃ can be done by calculating the distributional244
optimal designs for each of the sets Fi(S,φ). We provide the proof for the same in Section 8.2.245
We also calculate the distributional optimal design over S . Finally, the policy returned is a convex246
combination (in this case, a uniform combination) over these K + 1 designs that were calculated.247

This completes our explanation of Algorithm 1. We provide a regret guarantee in Theorem 3.4.248
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Remark 3.1. Directly borrowing the scaling techniques introduced in Sawarni et al. (2024) for learn-249
ing distributional optimal designs in the multinomial setting results in the creation of a scaled matrix.250
Since the notion of distributional optimal design introduced in Ruan et al. (2021) applies only to vec-251
tors, Algorithm 2 scales the original context vectors into K different sets and then learns the optimal252
designs for each of them.253
Remark 3.2. Sawarni et al. (2024) introduces a warm-up round whose length is O(ω1/3). Since ω254
can scale exponentially with several instance-dependent parameters, the warm-up round can result255
in a long exploration phase. Using the regret decomposition in Zhang & Sugiyama (2023), we256
can eliminate the dependence on ω, resulting in ω↑free batch lengths, including the length of the257
warm-up round.258
Remark 3.3. While Zhang & Sugiyama (2023) introduced a novel method of regret decomposition259
into the error terms (refer 5), using the same decomposition in the limited adaptivity setting is not260
straightforward. Hence, with some additional insights, we incorporate their method into the batched261
setting while being able to match the leading term of their regret bound.262

Theorem 3.4. Let the number of batches M = O(log log T ), then, with a probability at least 1↑ 1
T 2 ,263

Algorithm 1 achieves a final regret bound of RT ↘ (R1 +R2) where264

R1 = Õ

(
RK

5
2 d


T log(Kd)

)

265

R2 = Õ


RK

4
d
2
T

1
4

S

(
e
3S log(Kd) +

→
ωd

)


266

Proof Sketch:267

We know that the expected regret during batch φ + 1 is given by:268

Rϖ+1 = E




∑

t↑ϖ

ε
T
(z(xω

t ,ω
ω)↑ z(xt,ω

ω))





where x
ω
t = argmax

x↑Xt

ε
T
z(x,ωω) is the best arm at round t and the expectation is taken over the269

distribution of the arm set D. Using ideas similar to Zhang & Sugiyama (2023), we can decompose270
the regret into271

R(T ) ↘ 4
∑

t↑ϖ


E
[
max
x↑Xt

⇀1(φ,x,ε)

]
+ E

[
max
x↑Xt

⇀2(φ,x,ε)

]

where ⇀1(φ,x,ε) and ⇀2(φ,x,ε) are as defined in 5. Now, we bound each of the terms separately272
using the new idea of distributional Optimal Designs introduced in Algorithm 2.273

Directly extending the ideas of Ruan et al. (2021) and Sawarni et al. (2024) to construct the distri-

butional optimal designs results in an attempt to learn the design for matrices X̃ϖ = A(x,ω̂ω)
1
2

Bω(x)
↓ x.

Hence, we create K different sets Fi(X ) for all i ↔ [K] (defined in 9), such that

X̃ϖX̃
T

ϖ =
K∑

i=1


A(x, ω̂ϖ)

1
2


Bϖ(x)

ei ↓ x


A(x, ω̂ϖ)

1
2


Bϖ(x)

ei ↓ x

T

Thus, learning the optimal design over X̃ is equivalent to creating a convex combination of the274
designs learned over Fi(X ) for all i ↔ [K]. This gives us a way of bounding the scaled Hessian275
matrix Hϖ by the scaled Hessian matrices Hi

ϖ constructed over Fi(X ) for all i ↔ [K]. We then use276
methods similar to Sawarni et al. (2024) and Ruan et al. (2021) to obtain the bound on the regret for277
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the φ + 1 batch as:278

Rϖ+1 ↘ CRK⇁
2(ε)

→
ωd


e
3S
K

3/2

S


logKd log d+ C

→
ωd


↽ϖ+1

↽ϖ



+ CR⇁(ε)K2

d logKd


↽ϖ+1
→
↽ϖ



Finally, using the batch lengths defined in 2 and summing over all the M batches completes the279
proof. For the sake of brevity, we provide the complete proof in Section 8.280

4 RS-MNL281

Algorithm 3 RS-MNL
1: Inputs: ε, S, T

2: Initialize: H1 = εI , ↽ = 1, ε := d log(T/ϱ)
R2 , ⇁ := 25RS

3: for t = 1, . . . , T do
4: Observe arm set Xt

5: if det(Ht) > 2 det(Hς ) then
6: Set ↽ = t

7: Update ω̂ς ⇔ argmin
ω


s↑[t→1]

↼(ω,xs, ys) and Ht =


s↑[t→1]

A(xs,ω̂ς)
Bε (xs)

↓ xsx
T

s + εIKd

8: end if
9: Select xt = argmax

x↑Xt

UCB(t, ↽,x), observe yt, and update Ht+1 ⇔ Ht +
A(xt,ω̂ε )
Bε (xt)

↓xtx
T

t

10: end for

In this section, we present our second algorithm RS-MNL. We introduce the algorithm and explain282
the workings in a step-by-step fashion. We then mention a few salient remarks about our algorithm.283
We conclude with the regret guarantee of our algorithm, a proof sketch for the same, and for the284
sake of brevity, we provide the complete proof in the Appendix.285

Our second algorithm, RS-MNL (Algorithm 3) operates in the Adversarial Contextual setting. In286
this setting, there are no assumptions on the generation of the feature vectors. RS-MNL also limits287
the number of policy updates in a rarely-switching fashion, i.e, the rounds where these updates288
are made are decided dynamically, based on a simple switching criterion, similar to the one used289
in Abbasi-Yadkori et al. (2011). While the algorithm is based on RS-GLinCB in Sawarni et al.290
(2024), a unique regret decomposition method allows for the removal of the warmup criterion, in291
turn, helping in the reduction in the number of switches made by the algorithm from O(log2 T )292
to O(log T ). Further, we successfully remove the successive eliminations based on the previous293
confidence regions and replace the idea with the maximization of the Upper Confidence Bound of294
each arm. The inputs to the algorithm are ε, the fixed and known reward vector, S, the fixed and295
known upper bound on ⇑ω⇑2, and T , the number of rounds for which the algorithm is played. In296
Step 2 we initialize the scaled Hessian matrix H1 to I , ε to d log(T/ϱ)

R2 , and ⇁ to 25RS. Next, at297
every time round t ↔ [T ], we receive the arm set Xt in Step 4. During Steps 5-8, we check if the298
switching condition is met and update the policy accordingly.299

4.1 Switching Criterion and Policy Update:300

We use ↽ to keep track of the time step at which the policy was last changed during some round t. In301

Step 5, we evaluate if the determinant of the scaled Hessian matrix Ht = εI+


s↑[t→1]
A(xs,ω̂ω )
B(xs)

↓302

xsx
T

s has increased by a constant factor (in this case, 2) as compared to Hς . In case it is triggered,303
at Step 6 we set ↽ = t since t is now the most recent switching round. We then compute ω̂ς by304
minimizing the negative log likelihood


s↑[t→1] ↼(ω,xs, ys) (see 8 for definition of ↼(ω,xs, ys))305

9
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over all previous rounds s ↔ [t ↑ 1], and recompute the matrix Ht with respect to the newly306
calculated ω̂ς (Step 7). The switching criterion is similar to the one used in Abbasi-Yadkori et al.307
(2011) and helps to reduce the number of policy updates to O(log T ).308

4.2 Arm Selection:309

Next, in Step 9, we determine the arm xt to be played based on the Upper Confidence Bound (UCB).310
The upper confidence bound UCB(t, ↽,x) for an arm x ↔ Xt with respect to the previous switching311
round ↽(↘ t) is defined as:312

UCB(t, ↽,x) = ε
T
ω̂ς + ⇀1(t, ↽,x) + ⇀2(t, ↽,x) (10)

where the error terms ⇀1(t, ↽,x) and ⇀2(t, ↽,x) are defined as:313

⇀1(t, ↽,x) =
→
2⇁(δ)⇑H

→ 1
2

t (I ↓x)A(x, ω̂ς )ε⇑2, ⇀2(t, ↽,x) = 6R⇁(δ)2⇑(I ↓x
T
)H

→ 1
2

t ⇑
2
2 (11)

We then obtain the outcome yt, which is sampled from z(xt,ω
ω), and receives the corresponding314

reward ϖyt . The algorithm then updates the scaled Hessian matrix Ht+1. In Theorem 4.3, we315
provide the regret guarantee for RS-MNL.316
Remark 4.1. The goal of a rarely-switching algorithm is to reduce the number of policy updates317
(switches) that are done. Our algorithm successfully reduces the number of switches from O(log2 T )318
to O(log T ) due to the removal of the warm-up switching criterion. Additionally, the number of319
switches is independent of ω.320
Remark 4.2. Similar to the batched setting, using the regret decomposition method introduced in321
Zhang & Sugiyama (2023) in the rarely-switching paradigm is non-trivial. We manage to extend322
their results to match the leading term of their regret bound while performing a switch O(log T )323
times.324

Theorem 4.3. With probability ≃ 1↑δ, where δ ↔ (0, 1), Algorithm 3 achieves the following regret:325

R(T ) ↘ CRK
3
2Sd log


T

δ


→

T + CRd
2
S

1
2 e

3S
ω

1
4K

2 log2

1

δ


T

1
4 + CRS

2
d
2 log2


T

δ


K

3
ωe

2S

326

Proof Sketch:327

The expression for total regret is given by328

R(T ) =
T∑

t=1

ε
T
(z(xω

t ,ω
ω)↑ z(xt,ω

ω))

where x
ω
t = argmax

x↑Xt

ε
T
z(x,ωω) is the best arm at any given round t. Using methods similar to329

Zhang & Sugiyama (2023), we can upper bound the regret as330

R(T ) ↘ 2
T∑

t=1

{⇀1(t, ↽,xt) + ⇀2(t, ↽,xt)}

where ⇀1(t, ↽,xt) and ⇀2(t, ↽,xt) are as defined in 11. We now wish to upper bound both the terms331
separately.332

Bounding ⇀1(t, ↽,xt) using a similar switching criterion in Abbasi-Yadkori et al. (2011) alongside333
the selection rule in our algorithm can result in an exponential dependency in S, which was cir-334
cumvented by Sawarni et al. (2024) using a warm-up criterion. However, this warm-up criterion335
increases the number of switches from O(log T ) to O(log2 T ). It also slows down the algorithm336
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(a) Regret vs. T : Logistic (K = 1) Setting (b) Regret vs. T : K = 3

Figure 1

due to the successive eliminations done at each round (similar to the ones in Algorithm 1). Our337
algorithm gets rid of the exponential dependency and the warm-up criterion by further decomposing338
⇀1(t, ↽,xt) in an alternate manner, resulting in an improved runtime as well as O(log T ) switches.339

We bound both ⇀1(t, ↽,xt) and ⇀2(t, ↽,xt) using an analysis similar to the one used for Theorem 8.9,340
where we attempt to upper bound the scaled Hessian matrix Ht using the scaled Hessian matrices341
calculated over the K different scaled sets introduced in 2 even though these sets do not explicitly342
appear anywhere in the algorithm. Combining the bounds on each of the error terms finishes the343
proof. For the sake of brevity, we provide the complete proof in Section 9 of the Appendix.344

5 Experiments345

Experiment 1 (R(T ) vs. T for the Logistic Setting): In this experiment, we compare our algorithm346
RS-MNL to several state-of-the-art contextual logistic bandit algorithms. We set the number of347
outcomes K to 1, which reduces the problem to the logistic setting, where we compare our algorithm348
to ada-OFU-ECOLog (Algorithm 2, Faury et al. (2022)), RS-GLinCB (Algorithm 2, Sawarni349
et al. (2024), OFUL-MLogB (Algorithm 2, Zhang & Sugiyama (2023)), and OFULog+ (Algorithm350
1, Lee et al. (2024)). The arm set X is randomly sampled from [↑1, 1]3 and the number of arms |X |351
is set to 10. We simulate ωω from [↑1, 1]3 and normalize it to a unit vector. We run all the algorithms352
for T = 20000 rounds and plot our results in Figure 1a. We can see that RS-MNL incurs lower regret353
than RS-GLinCB and OFUL-MLogB, while performing slightly worse than ada-OFU-ECOLog354
and OFULog+.355

Figure 2: Switches vs. T

Experiment 2 (R(T ) vs. T for K = 3): In this356
experiment, we compare our algorithm RS-MNL to357
OFUL-MLogB, the only algorithm to the best of our358
knowledge that achieves an optimal (ω↑free) regret while359
being computationally efficient. The arm set X is ran-360
domly sampled from [↑1, 1]3 and the number of arms361
|X | are fixed to 10. We simulate ω

ω from [↑1, 1]9 (since362
ω
ω
↔ RKd and normalize it to a unit vector. We run the363

algorithm for T = 20000 rounds and plot our results in364
Figure 1b. We can see that RS-MNL incurs lower regret365
than OFUL-MLogB.366

Experiment 3 (Number of Switches vs. T): In this ex-367
periment, we plot the number of switches RS-MNLmakes368
as a function of the number of rounds T . We assume that the instances are simulated in the same369
manner as Experiment 1 and Experiment 2. We vary the number of outcomes K in the set370
{1, . . . , 6} and average the number of switches made at each round t ↔ [T ] over 5 different in-371
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stances for each K. The results are shown in Figure 2, and we can see that the number of switches372
exhibits a logarithmic dependence with T . This is in agreement with Lemma 9.13, where we show373
that RS-MNL switches O(log T ) times.374

6 Conclusions and Future Work375

In this paper, we present two algorithms B-MNL-CB and RS-MNL, for the multinomial logit setting376
in the batched and rarely-switching paradigms, respectively. The batched setting involves fixing377
the policy update rounds at the start of the algorithm, while the rarely switching setting chooses378
the policy update rounds adaptively. Our first algorithm, B-MNL-CB manages to extend the notion379
of distributional optimal designs to the multinomial logit setting while being able to achieve an380
optimal regret of O(

→
T ) in !(log log T ) batches. Our second algorithm, RS-MNL, builds upon381

the previous rarely-switching algorithm in Sawarni et al. (2024) and obtains an optimal regret of382
O(

→
T ) while being able to reduce the number of switches to O(log T ) using alternate ways of383

regret decomposition. The regret of our algorithms scales with the number of outcomes K as K
4384

and K
3 respectively, which can be detrimental for problems with a large number of outcomes. We385

believe that this dependence on K can be further improved, which is an interesting future work.386
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