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ABSTRACT

Scaling laws describe how language models improve with additional data, param-
eters, and compute. While widely used, they are typically measured on aggregate
test sets. Aggregate evaluations yield clean trends but average over heterogeneous
subpopulations, obscuring performance disparities. We introduce relative scal-
ing laws, which track how performance gaps between test distributions evolve
with scale rather than focusing solely on absolute error. Using 255 decoder-only
Transformers trained under matched-compute (IsoFLOP) budgets from 1018–1020
FLOPs on standard pretraining datasets, we find diverse trajectories: academic do-
mains on MMLU converge toward parity; regional English dialects shift depend-
ing on population size; and clusters of AI risk behaviours split, with capability-
and influence-related risks increasing during pretraining while adversarial risks
do not. These results show that although scaling improves overall performance,
it is not a universal equalizer. To support further study, we release all model
checkpoints from this work to enable practitioners to measure relative alongside
traditional scaling laws, in order to better prioritize robustness challenges in light
of the bitter lesson1.
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Figure 1: Relative scaling law case studies. Scaling compute has uneven effects (illustrated here
with models trained on DCLM (Li et al., 2024) from 1018–1020 FLOPs): (left) knowledge domains,
(center) English variation, and (right) AI risk behaviours. We propose relative scaling laws as a
method to measure which gaps close with scale and which persist or widen.

1 INTRODUCTION

Neural scaling laws show that language model error typically decreases as a power law with in-
creases in model size, data, and compute (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al.,
2022). These trends suggest that “bigger is better”, with only rare cases of inverse scaling (McKen-
zie et al., 2023; Sharma et al., 2024). However, because these laws average over heterogeneous test
distributions, the rate of improvement may not be uniform across subdomains (Magnusson et al.,
2024). In practice, gains from scale may favor some areas more than others, much as economic
growth can deliver uneven returns across groups and increase inequality (Piketty, 2015).

We introduce relative scaling laws to study this dimension of scaling effects. Whereas traditional
scaling laws describe absolute improvements, relative scaling laws quantify how performance gaps
between settings evolve with scale. This separates disparities at small scales – often shaped by con-
founding factors such as inherent data entropy — from differences in improvement rate, which more
directly capture the response to scale. The relative law is fit directly as a power law by regressing
the ratio of treatment to baseline error on compute. This procedure is no harder than fitting abso-
lute laws, but indicates whether gaps persist, narrow, or widen as compute increases. This provides

1All models to be released on HuggingFace upon publication to abide by anonymity constraints and file size
constraints in supplementary material.
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a concrete lens on distributional consequences of scaling model compute , with implications for
robustness, fairness, and risk.

To support such analyses, we train 255 decoder-only Transformers under matched-compute
(IsoFLOP) budgets from 1018 to 1020 FLOPs, consisting of 85 models on each of three pretrain-
ing datasets. Training under fixed compute ensures that comparisons reflect the tradeoff between
model size and data size, avoiding confounds that otherwise complicate scaling-law studies (Hoff-
mann et al., 2022; Besiroglu et al., 2024). The datasets span three distinct design philosophies—
permissively licensed corpora, filtered web data, and hybrid web+synthetic mixtures—so that we
can test whether scaling trends generalize across training data sources. We release the full model
suite, providing a resource analogous to Biderman et al. (2023) for downstream scaling-law evalua-
tion (Roberts et al., 2025; Hu et al., 2024).

Finally, we demonstrate the scope of relative scaling laws in three case studies. First, we analyze
MMLU (Hendrycks et al., 2021) sub-domains to measure how knowledge scales across academic
disciplines. Second, we evaluate robustness to English variation, testing generalization across re-
gional English using the International Corpus of English (ICE) (Greenbaum, 1996). Third, we assess
how relative risks emerge during pretraining using Anthropic’s AI risk evaluations from Perez et al.
(2023). Across all these settings, we fit both traditional and relative scaling laws.

Contributions. Our contributions combine conceptual, resource, and empirical components:

1. Relative scaling framework. We formalize relative scaling laws, which separate initial
disparities from differences in improvement rate. Formulated as a power law, relative scal-
ing provides a clear diagnostic of which distributions benefit the most from scaling.

2. Open-source scaling suite. We train and release 255 decoder-only Transformers under
IsoFLOP budgets from 1018–1020 FLOPs across three corpora—COMMONPILE (Kandpal
et al., 2025), DCLM BASELINE (Li et al., 2024), and NEMOTRON-CC (Su et al., 2025).
The suite enables reproducible study of both traditional and relative scaling laws.

3. Empirical case studies. We apply relative scaling laws to three domains: academic knowl-
edge (Massively Multitask Language Understanding benchmark; MMLU), linguistic varia-
tion (International Corpus of English; ICE), and AI risk (Anthropic Advanced AI Risk). To-
gether, these studies show a range of relative scaling effects highlighting the non-uniformity
of scale’s impacts on distributional robustness.

2 RELATIVE SCALING LAWS

Relative scaling laws follow directly from the assumptions of classical scaling laws. Absolute error
E is assumed to decrease as a power law in scale F (e.g., FLOPs, tokens, or parameters),

E(F ) = αF−β ,

with α > 0 as the initial error level and β ≥ 0 as the rate of improvement with scale (Kaplan et al.,
2020). These constants are empirically fit based on sample populations of training runs.

In order to relativize performance gains, we compare two conditions: a baseline (the reference, here
the most favored under current practice) and a treatment of interest. Their relative error G is

G(F ) =
Etreatment(F )

Ebaseline(F )
= γF∆β

where γ = αtreatment/αbaseline captures the initial disparity and ∆β = βbaseline−βtreatment the difference
in improvement rates. If ∆β < 0, the treatment improves faster and the gap narrows; if ∆β > 0, it
improves more slowly and the gap widens; if ∆β = 0, the gap remains constant2.

This form parallels the subgroup laws of Rolf et al. (2021), who model subgroup loss as a mixture
of power-law terms for in-group and total data. Our formulation is looser — we do not require
subgroup allocations — but the sign of ∆β still forecasts whether gaps shrink or persist. While
relative loss can correspond to small absolute differences at low loss, small absolute loss gaps can

2In this work, we only interpret the slope if the sign is significant at P < 0.05 by a bootstrap significance
test. We recommend this as a best practice for interpreting ∆β.
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Figure 2: Compute-optimal scaling and downstream forecasting. Left: For each FLOP budget,
we sweep token and model size to select the compute-optimal token count. Middle: Along these
compute-optimal points, we estimate how task or subgroup loss scales as a function of compute.
Right: We show this loss correlates tightly with accuracy sigmoidally, allowing loss to serve as a
proxy for downstream progress while measuring effects at reduced scale.

lead to large differences in downstream utility for large scale models (Wei et al., 2022; Du et al.,
2024) which motivates this scale-invariant metric rather than absolute disparity (Yeh et al., 2024)3.

Note that relative scaling laws inherit the assumptions of the absolute form: approximately log-
linear behavior, a sufficient range of scales, and consistent evaluation with relatively low variance
from factors other than scale. If these assumptions break down, estimates of ∆β may be unstable.
Similar to traditional scaling laws, they are therefore best treated as empirical diagnostics, with clear
advantages over evaluation at a single scale, rather than fundamental laws.

3 RELATIVE SCALING LAW FOUNDATIONS

To study relative scaling, we need a robust foundation for training and evaluation. This section
outlines how we construct compute-controlled model families and design evaluation protocols that
yield predictable, interpretable scaling curves. Together, these provide the basis on which both
traditional and relative scaling laws can be fit and trusted to forecast downstream performance.

3.1 ISOFLOP MODEL TRAINING

We train models using the Qwen 3 architecture (Yang et al., 2025) under fixed compute (IsoFLOP)
budgets ranging from 1018 to 1020 FLOPs. While IsoFLOPs are not strictly necessary for scaling
laws, prior work (DeepSeek-AI et al., 2024; Grattafiori et al., 2024; Roberts et al., 2025) has argued
that the IsoFLOP-based approach from Hoffmann et al. (2022), shown on the left in Figure 2, is
more stable and therefore less exposed to reproducibility issues than alternative formulations from
Hoffmann et al. (2022) which regress on a larger number of terms at once (Besiroglu et al., 2024).

Scaling models should be trained such that performance variance is primarily explained by compute,
model size, and data size. Without consistent hyperparameter tuning, scaling outcomes can be
meaningfully confounded (Porian et al., 2025). Since a full grid search is infeasible, we generalize
a tuned configuration (Wen et al., 2025) using heuristic reparameterizations.

Our approach follows two principles: (i) hyperparameters should be explicit functions of model
width and FLOP budget; and (ii) training should be stable across runs, since instabilities such as
loss spikes would introduce noise into scaling comparisons. We cover the full range of reparameter-
izations for both architectural and optimizer hyperparameters in Appendix A.

Training Data. We train models with the same configuration across three datasets to reflect differ-
ent pretraining data distributions. COMMONPILE (Kandpal et al., 2025) includes only permissively
licensed data, downsampling non-permissive web sources in favor of public domain and openly li-
censed material. In contrast, the DCLM BASELINE (Li et al., 2024) is drawn entirely from web
crawl data but filtered and deduplicated to isolate a high-quality subset. Finally, NEMOTRON-
CC (Su et al., 2025) combines large-scale real web data with synthetic rephrasings, representing

3Beyond test-distribution disparities, relative scaling can be used to compare modeling methods; see App. B.
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a hybrid of natural and synthetic text. Comparing scaling behavior across these settings enables
assessments of the role of training data in relative scaling results.

3.2 EVALUATION PROTOCOLS FOR SCALING LAW ANALYSIS

Reliable scaling law evaluation requires careful elicitation design. Pretraining loss typically follows
predictable power laws (Kaplan et al., 2020; Hoffmann et al., 2022), but downstream metrics be-
have inconsistently: some report smooth scaling in aggregate (Gadre et al., 2024), while others find
erratic task-specific trends (Lourie et al., 2025). We find these discrepancies arise largely from eval-
uation choices — especially prompt formats and metric definitions — which introduce thresholding
artifacts (Schaeffer et al., 2023) and surface form competition (Holtzman et al., 2022).

To address this, we first run ablations on prompt formats to identify consistent ones that yield smooth
scaling laws without diminishing accuracy. Then, following recent recommendations (Grattafiori
et al., 2024; Bhagia et al., 2025), we identify protocols that produce predictable loss curves and
reliable compute–loss correlations. In this section, we focus on MMLU (Hendrycks et al., 2021), a
widely used benchmark claimed to exhibit unpredictable emergence. Contrary to those claims, we
find that with suitable protocol, MMLU scales smoothly and loss correlates strongly with accuracy.4

3.2.1 PROMPT FORMATS

Evaluation of language models typically takes three forms: (i) open-ended generation or token
log-probabilities, (ii) multiple-choice question answering, and (iii) binary classification. Raw log-
probabilities scale smoothly by default, but hard metrics like accuracy or pass@1 suffer from thresh-
olding effects that obscure predictability (Schaeffer et al., 2023; 2025). Soft metrics such as condi-
tional log-probabilities reduce thresholding but are noisy due to surface form competition (Holtzman
et al., 2022). To obtain reliable scaling laws, evaluation must avoid both problems.

For standard language modeling, perplexity and log-likelihood curves remain smooth without inter-
vention (Magnusson et al., 2024). For binary classification, prior work constrains completions to
“yes/no” (Ganguli et al., 2023; Perez et al., 2022), eliminating surface form ambiguity.
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Figure 3: Prompt formatting drives scaling smoothness. Left:
Degree of variance explained by scale under different prompts.
Right: Accuracy differences between prompt variants and MCQ.

In multiple-choice tasks like
MMLU, however, elicitation
formats have not been standard-
ized. Existing frameworks use
either MCQ with letter labels
or continuation form (CF) (Gu
et al., 2025; Biderman et al.,
2024), and sometimes both.
MCQ scores accuracy but yields
poor loss predictability; CF
yields smoother loss but lower
accuracy. To address this, we
adopt a modified format which
includes labels and options as in
MCQ, but probabilities are computed over the full label+option strings. As shown in Figure 3,
this method balances predictability and accuracy: CF yields smoother loss curves but lower accu-
racy (R2 = 0.68, max 57.7%), while MCQ achieves high accuracy but poor loss predictability
(R2 = 0.28, max 82.0%). Our modified MCQ format achieves both (R2 = 0.61, max 81.3%),
preserving nearly the full accuracy of MCQ while recovering much of the predictability of CF5.

3.2.2 FORECASTING DOWNSTREAM TASK PERFORMANCE USING SCALING LAWS

While loss scales predictably, downstream accuracy often does not (Wei et al., 2022). Similar to
prior work measuring downstream capability scaling (Held et al., 2025; Ye et al., 2025; Schaeffer
et al., 2025), we therefore utilize loss as our primary metric of interest. However, reliable loss scaling
is only meaningful if it forecasts hard metrics such as accuracy.

4In App. C, we show that the same principles lead to reliable scaling for a variety of other tasks.
5All prompt formats are illustrated in detail in App. D
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Figure 4: Relative scaling laws across domains in MMLU. Columns show results for Common-
Pile, DCLM Baseline, and Nemotron. (a) Traditional scaling laws for bits per byte (BPB) scaling
across topic groups. (b) Relative scaling laws, normalized so that each curve is expressed relative to
the STEM scaling trend. Curves for STEM, humanities, social sciences, and miscellaneous domains
converge toward 0 as compute increases, indicating that domain disparities shrink with scale.

To establish this connection, we adopt the two-stage procedure of Grattafiori et al. (2024): first fit
compute-loss scaling on soft metrics, then map loss to accuracy via a calibration function (typically
linear or sigmoid). The first step is a true scaling law, using only compute-optimal runs from our
scaling suite. The second can be done observationally (Ruan et al., 2024), allowing us to compare
calibration functions against a variety of open-weights models.

Figure 2 shows the effectiveness of this two-step regression using our scaling suite and an internally
trained 8B model to fit regressions, with OLMo 2 (OLMo et al., 2025), Llama 3 (Grattafiori et al.,
2024), and Qwen 3 (Yang et al., 2025) serving as held-out data. Ultimately, we find that loss can be
predicted reliably as a function of compute within our internal models, and accuracy can be predicted
reliably as a function of loss across both internal and external models. This establishes accuracy as
a predictable function of compute at large scales, while allowing compute–loss scaling to serve as
the foundation for downstream scaling-law analysis at smaller scales.

4 CASE STUDIES OF RELATIVE SCALING

We demonstrate the scope of relative scaling laws through three case studies: knowledge domains
(MMLU), where performance converges across disciplines; regional language variation (Global
Englishes), where some regions converge, others diverge, and some remain unchanged; and AI risk
behaviours, where certain risks become less likely relative to others as scale increases. Together,
these case studies provide evidence of the diverse trajectories that relative scaling laws can reveal.

4.1 RELATIVE SCALING FOR KNOWLEDGE DOMAINS

Scaling laws are often interpreted to suggest that sufficiently large models might approach general
intelligence, particularly if error decreases across a wide set of tasks, including those not directly
emphasized in training. A central question for this perspective is whether all knowledge domains
scale equally well, or whether models become increasingly specialized in well-represented topics.

In Figure 4, to examine this question we evaluate scaling laws for MMLU. Panel (a) shows the
expected pattern: loss decreases smoothly with compute across STEM, Humanities, Miscellaneous,
and Social Sciences for all three training datasets (CommonPile, DCLM Baseline, Nemotron). For
example, in the Nemotron run, STEM loss falls from 2.45 at 1018 FLOPs to 1.56 at 1020, while
Humanities drops from 3.16 to an expected 1.61. Each domain follows the familiar log-linear trend.
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Figure 5: Relative scaling of written Global Englishes. Columns show results for CommonPile,
DCLM Baseline, and Nemotron. (a) Traditional scaling laws for bits per byte (bpb) vs. compute. (b)
Relative scaling laws as bpb differences from U.S. English (dashed line). (c) Correlation between
relative scaling slopes and English-speaking internet users at the time the International Corpus of
English was collected. Regions with larger online English-speaking populations scale faster.

Panel (b) provides the relative perspective by plotting loss change against STEM. Here we see clear
signs of convergence. When trained on the CommonPile, which heavily samples academic work
from many disciplines as well as public legal documents, all other subjects have far higher loss than
STEM at 1018 FLOPs (−29% Humanities, −16% Social Science, −19% Misc.), but all converge to
within 5% of STEM performance at 1020 FLOPs.

By comparison, the two web-focused corpora show distinct initial biases towards Misc. (which
includes health and business) and away from the Humanities (which includes law and philosophy),
but the same trend towards convergence. Under the DCLM Baseline, Humanities, Social Sciences,
and Misc. begin −21%, −8%, and −4% below STEM, narrowing to −12%, −2%, and parity by
1020 FLOPs; under Nemotron-CC, the gaps shrink from −21.0%, −9%, and −8% to −4.0% for
Humanities and parity for both others. These trajectories are consistent with expectations based on
the domain biases of each corpus: web scrapes only contain sparse sound legal and philosophical
material compared to the public data from the Common Pile.

Notably, as models scale, performance imbalances diminish regardless of the underlying training
distributions, and all domains converge towards similar performance. These results highlight that
while pointwise comparisons at small scales could suggest models are disproportionately STEM-
focused, both traditional and relative scaling laws indicate that domain disparities on MMLU are
subject to the bitter lesson: with enough compute, the gap narrows naturally.

4.2 RELATIVE SCALING FOR LANGUAGE VARIATION

Generalization to new user populations is another key distribution shift. In multilingual settings,
performance tracks pretraining representation, with family-level sampling ratios predicting cross-
entropy across scales (He et al., 2024). Within-language variation, previously studied in Rae et al.
(2022), is subtler due to transfer and interference. We evaluate with the International Corpus of

6
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English (ICE) (Greenbaum, 1996), which includes ∼1M words per variety (500 texts of ∼2,000
words) spanning spoken and written registers under consistent national sampling from speakers
with high-school or higher levels of education. We restrict to the written component because the
U.S. spoken subset is unavailable.

Figure 5 shows that absolute performance rises for all dialects, yet gaps with U.S. English persist.
Unlike MMLU, relative scaling slopes vary in sign. Across training corpora, disparity vs. U.S.
English decreases for Canada (+0.3–0.5% per 10× FLOPs), is roughly flat for Singapore (0–0.1%),
and increases for Sri Lanka (−0.5–−0.9%) and Nigeria (−0.3–−0.8%). Even regions with similar
initial accuracy can diverge: for the CommonPile, Nigeria and Singapore start within one point of
eachother, but by 1020 FLOPs Singapore is ≈ −2% while Nigeria is ≈ −5%.

These patterns lead to unstable orderings, so today’s lowest-performing regions may not be the most
urgent under scaling. For the CommonPile, Singapore begins below Nigeria but crosses at 6× 1019

FLOPs; in DCLM, Canada and Sri Lanka cross at 3 × 1019 FLOPs. These shifts are overlooked
by point estimates, highlighting the importance of modeling scaling trends for forecasting subgroup
disparities.
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Figure 6: Model and Data Scal-
ing in Isolation. Model size scal-
ing at ∼ 500M training tokens
(top) and token scaling for a 40M
parameter model (bottom).

We also find evidence in support of Rolf et al. (2021), which
hypothesizes that subgroup representation in training data pri-
marily affects scaling terms. While the BPB intercepts show
no clear correlation with prevalence, countries with larger esti-
mated online English-speaking populations — such as Canada
and Singapore — have neutral or positive relative scaling
slopes and those with smaller populations at the time ICE
was collected — such as Sri Lanka and Nigeria — have
negative relative scaling slopes. Across all 10 ICE corpora,
slope–prevalence correlation is robust across training datasets
(Pearson R = 0.82–0.84, p < 0.005), corresponding to a 0.3–
0.4% relative error slope improvement per ten-fold increase in
speaker population.

In contrast to our compute-optimal results, the prior work
studying how scale impacts robustness to language varia-
tion (Rae et al., 2022) looked only at parameter scaling in iso-
lation. We revisit these analyses in Figure 6, evaluating rel-
ative scaling laws for both parameter and data scaling in iso-
lation. When scaling model size at a fixed 10B-token budget,
relative performance shifts similarly to compute-optimal scal-
ing. By contrast, when scaling training tokens at a fixed archi-
tecture, the lines remain almost perfectly parallel: all regions
improve together, but their ordering relative to U.S. English
is unchanged. This indicates that model-size scaling drives
the observed shifts in relative performance, while data scaling
leaves relative performance largely unchanged.

4.3 RELATIVE SCALING FOR AI RISK

Anthropic’s model-written evaluations include 154 datasets representing low-level AI risk be-
haviours (Perez et al., 2023). Due to the large number of individual tasks, we measure relative
scaling for high-level risk clusters: Self-Improvement (baseline), Influence, Self-Replication, Schem-
ing, and Incorrigibility6. In this case, risk likelihood corresponds to the average probability that a
model assigns to responses aligned with a risky behaviour.

Panel (a) of Figure 7 shows risk likelihood of compute-optimal models. Three clusters—Self-
Improvement, Influence, and Self-Replication—scale, as expected, with positive slopes. Scheming
and Incorrigibility, by contrast, do not emerge with scale: in CommonPile they are essentially flat
(slopes +0.00 and −0.03 pp [percentage points] per order of magnitude of compute), in DCLM
they regress more clearly (−0.06 and −0.29), and in Nemotron Incorrigibility falls (−0.39 pp per
order of magnitude) while Scheming is again flat (+0.02 pp per order of magnitude). Thus, models

6We provide our full mapping of low-level behaviours from Perez et al. (2023) to high-level risks in App. E
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(a) Traditional Scaling Law
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Figure 7: Relative scaling laws for AI risk clusters. Columns show results for CommonPile,
DCLM Baseline, and Nemotron. (a) Compute-optimal likelihood (lower loss → more likely) (b)
Relative scaling vs. Self-Improvement. Self-Improvement, Influence, and Self-Replication become
more likely with compute, while Scheming and Incorrigibility largely do not.

increasingly validate statements associated with capability- and influence-related risks, but not those
associated with adversarial risks.

By normalizing to the Self-Improvement baseline in Panel (b), we see more consistent trends. Across
all training datasets, Scheming and Incorrigibility become less likely relative to other risks, while
Influence and Self-Replication stay near parity with Self-Improvement. This reveals a consistent
two-way split between risks tied to capability and influence versus those tied to adversarial tenden-
cies. The training data distribution, however, sharpens these effects. In CommonPile, only mild gaps
emerge; in web-heavy corpora, capability- and influence-related risks increase at a much faster rate.

The split between capability- and influence-related risks and adversarial risks suggests that scale
only exacerbates some risks by default. Competence-driven patterns increase predictably, while
adversarial ones do not appear to emerge under pretraining. Relative scaling laws thus highlight
which risks require more urgent mitigation during pretraining and where additional pressures would
be necessary for adversarial risks to emerge.

5 RELATED WORK

Scaling Laws and Capability Forecasting. Foundational studies established that neural network
performance often follows predictable power-law trends with respect to model scale, dataset size,
and compute (Hestness et al., 2017; Kaplan et al., 2020). Later refinements emphasized model and
data size tradeoffs (Hoffmann et al., 2022). Follow-up work continues to refine these tradeoffs, both
through focused replications (Besiroglu et al., 2024; Porian et al., 2025). Using held-out pretraining
data, scaling laws are often used to tune hyperparameters such as data mixture (Ye et al., 2025; He
et al., 2024), vocabulary size (Tao et al., 2024), and others (Qin et al., 2025).

Beyond pretraining loss, scaling laws also often used to forecast downstream capabilities (Gadre
et al., 2024; Ruan et al., 2024). While there are a range of challenges in this task (Lourie et al., 2025;
Wei et al., 2022) we find, similar to prior work, that this is possible if carefully done (Schaeffer et al.,
2023; 2025; Snell et al., 2024). Openly released model suites and scaling experiments are core in
enabling such community analysis, as this type of forecasting can be done without retraining models.
Distinct from prior scaling suites, our models are separately trained along IsoFLOP curves, rather
than parameter scaling (Biderman et al., 2023), WSD forks (McLeish et al., 2025), or jointly scaled
ladders (Bhagia et al., 2025). Our paper complements this literature by studying relative scaling
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laws between downstream distributions and releasing a new large scale scaling suite to support both
this and future analyses.

Robustness and Generalization. Another line of related work is the study of robustness across
distributions. Benchmarks such as WILDS (Koh et al., 2021), HELM (Liang et al., 2023), and
Paloma (Magnusson et al., 2024) emphasize comparison between domains. At the subgroup level,
scaling theory shows that disparities can persist: differences in training allocation influence how
well subgroups benefit from scaling (Rolf et al., 2021). Together, these works demonstrate that dis-
tributional robustness does not uniformly improve with scale. Our work builds on these insights by
empirically measuring whether gaps between domains close, persist, or widen as compute increases
for both academic domains in MMLU and language variation within English.

Forecasting AI Risks. Our final case study engages with work on safety-relevant risks: a rapidly
expanding interest area studying how behaviours unaligned with human well-being emerge as model
capabilities in general are pursued. Prior work has argued there is evidence of deceptive statements
from LLMs across negotiation, gaming, and language modeling (Park et al., 2024), motivating sys-
tematic evaluations of manipulative behaviours (Greenblatt et al., 2024; Koorndijk, 2025; van der
Weij et al., 2025). Broader risk evaluations investigate agentic failure modes, including scheming
and oversight manipulation (Balesni et al., 2024; Lynch et al., 2025). Our work contributes to this
effort by evaluating how risk categories of interest scale relative to possibly desirable traits from
models, such as self-improvement, building upon scaling analysis of closed source models in Perez
et al. (2023).

6 CONCLUSION

We note three takeaways from this work with respect to our proposed notion of relative scaling. (1)
Relative scaling laws separate disparity from trajectory. By modeling both the initial gap and the
relative exponent, we measure whether scale narrows, preserves, or widens differences. This gives
a principled way to study how scale impacts distributional robustness. (2) Scale is not a uniform
solution to distributional robustness. Across case studies, we saw convergence on MMLU domains,
divergence across regional English varieties, and selective amplification of AI risk categories. This
shows that scale is neither a universal equalizer nor vice versa and should therefore be measured. (3)
Relative exponents can guide research investment. When gaps close, compute is well spent; when
gaps remain or widen, interventions are needed for robustness. This motivates measuring scaling
gaps, not only pointwise disparities, when prioritizing research.

A significant contribution of this work is the public release of a 255-model IsoFLOP suite trained
across three distinct corpora (85 models per dataset). This resource enables the community to repro-
duce our analyses, test alternative formulations of relative scaling, and extend the evaluation to new
tasks and settings. By lowering the barrier to systematic scaling studies, we hope to facilitate more
rigorous and transparent progress in understanding when and for whom scale delivers improvements.

Future work should test whether targeted data augmentation can reverse adverse exponents, extend
the framework to multimodal models where distribution shift is even more severe, and study how
post-training impacts results.

Limitations. Our analyses are primarily empirical and do not yet provide the kind of theoretical
grounding suggested by prior work on subgroup scaling (Rolf et al., 2021). The three case studies
we present are necessarily selective, so they should be viewed as a first attempt rather than a full
coverage of the application space. Furthermore, the connection between raw language modeling
loss, as studied in the case study on linguistic variation, and broad utility for downstream users
is not well studied. While some works such as Du et al. (2024) explore this relationship, it is
unclear whether emergence is diminished for the majority of tasks at low loss leading to marginal
utility gains. By releasing our checkpoints, however, we enable the community to explore these
limitations, test broader hypotheses, and develop stronger theoretical connections.

REFERENCES

Mikita Balesni, Marius Hobbhahn, David Lindner, Alexander Meinke, Tomek Korbak, Joshua Cly-
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Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, Dawn Drain, Dustin Li,

10

https://arxiv.org/abs/2411.03336
https://arxiv.org/abs/2411.03336
https://arxiv.org/abs/2404.10102
https://arxiv.org/abs/2412.04403
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2506.02285
https://arxiv.org/abs/2506.02285
https://openreview.net/forum?id=35DAviqMFo
https://openreview.net/forum?id=35DAviqMFo
https://arxiv.org/abs/2403.08540


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eli Tran-Johnson, Ethan Perez, Jackson Kernion, Jamie Kerr, Jared Mueller, Joshua Landau, Ka-
mal Ndousse, Karina Nguyen, Liane Lovitt, Michael Sellitto, Nelson Elhage, Noemi Mercado,
Nova DasSarma, Oliver Rausch, Robert Lasenby, Robin Larson, Sam Ringer, Sandipan Kundu,
Saurav Kadavath, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy
Telleen-Lawton, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Ben Mann,
Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Christopher Olah, Jack Clark,
Samuel R. Bowman, and Jared Kaplan. The Capacity for Moral Self-Correction in Large Lan-
guage Models, 2023. URL https://arxiv.org/abs/2302.07459.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
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A ISOFLOP HYPERPARAMETER SCALING

A.1 ARCHITECTURE

Width. The hidden size d is restricted to multiples of 128, reflecting accelerator block sizes. d ranges
from 512 to 4096 in increments of 128 for small budgets (up to 9× 1018 FLOPs) and increments of
256 for larger budgets.

Depth. Depth is determined by a log-corrected rule dependent on width:

L =
d

κ+ θ log2 d
.

The parameters θ and κ are adjusted to align depth-to-width ratios with those reported in Hoffmann
et al. (2022), which require empirical alignment to set the appropriate parameter values.

Attention heads and MLP Ratio. Attention head size and MLP ratio follow standard practice
(Vaswani et al., 2023). We set nheads = d/128, so each head spans 128 dimensions, and use conven-
tional multi-headed attention. The feed-forward dimension is fixed at 4d, as in most open models.

A.2 OPTIMIZATION

Batch size and steps. To maintain comparability across runs, we target a training length of 216
steps (Yang et al., 2022). For a token budget T , the batch size B is computed via T = B · 216 and
rounded to the nearest power of two for efficiency. The step count is then adjusted to recover T .

Learning rate. Given batch size B and hidden size d, the learning rate is defined as

η = ηbase

√
B

d
.

This scaling, consistent with µP analysis (Yang et al., 2022) and large-batch rules (You et al., 2020;
Malladi et al., 2024), decreases with width and increases with batch size. In practice, η ≥ 0.01
causes reproducible loss spikes, consistent with McCandlish et al. (2018). Runs with such learning
rates are forced to use smaller batch sizes until η ≤ 0.01, which extends training length and alters
dependent hyperparameters. These longer runs are likely sub-optimally tuned, but this mostly af-
fects small models trained at large token budgets, which we do not expect to be compute optimal
regardless.

Miscellaneous. We set β2 = 0.95, with smaller batch sizes using reduced decay according to Marek
et al. (2025). Other settings are fixed: β1 = 0.95, ϵ = 10−15, weight decay = 0.1, gradient clipping
at norm 1.0. A Warmup–Stable–Decay schedule is used (Hu et al., 2024; Wen et al., 2024), with 5%
warmup and 20% linear decay.

Stability modifications to AdamW. Training uses AdamW (Loshchilov & Hutter, 2019) aug-
mented with AdamC (Defazio, 2025) and Caution (Liang et al., 2025). AdamC corrects weight-
decay/normalization interactions that otherwise increase gradient norms late in training, and Cau-
tion suppresses momentum updates conflicting with gradient direction. These interventions improve
smoothness, but their necessity indicates that stability is not inherent to the base configuration.
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Figure A.1: Relative scaling laws across optimizers. (a) Traditional scaling curves for bits-per-
byte (BPB) across model sizes. (b) Relative curves, expressed as BPB relative to AdamW. Muon
shows the strongest early gains but flattens at scale, while C-AdamC and Cautious improve steadily.

B COMPARING OPTIMIZERS USING RELATIVE SCALING LAWS

To illustrate that relative scaling is not limited to test-set subgroups, we also apply it to op-
timizer comparisons. We train Llama 3 architecture models (Grattafiori et al., 2024) using
AdamW (Loshchilov & Hutter, 2019), AdamC (Defazio, 2025), Cautious AdamW (Liang et al.,
2025), Muon (Jordan et al.), and our combination of Caution and AdamC from scratch on FineWeb-
EDU (Penedo et al., 2024). For all Adam variants we use the AdamW hyperparameters from Wen
et al. (2025), for Muon we follow the Muon hyperparameters for the same work. This goal of this
experiment is not to add new findings about optimizers, but demonstrate a use case of relative scaling
laws to improve ease of comparison for methods tested on the same test distribution.

While (a) in Figure A.1, differences between optimizers are difficult to distinguish (b) paints a
clearer picture through relative scaling. Muon is clearly advantagous at small scales over all other
methods, but the improvements seem to diminish with scale replicating the findings of Wen et al.
(2025). Intuitively, methods which focus on stability (Defazio, 2025; Liang et al., 2025) seem to
primarily provide benefits as scale increases7.

Beyond the theoretical interpretations, the relative scaling law simply makes it easier to identify
scaling trends across models by naturally scaling the range of comparisons.

7This also helps justify the use of C-AdamC in our scaling suite above.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C VALIDATING LOSS TO HARD-METRICS ON OTHER TASKS

Our foundations section assumed that log-likelihood loss is a suitable proxy for task performance,
and much of our main analysis relied on MMLU as a representative benchmark. To ensure that our
conclusions are not MMLU-specific, we revalidate two key assumptions. First, we test whether ab-
solute scaling laws hold consistently across a broader set of downstream benchmarks from the Gem-
stones suite (McLeish et al., 2025) (Fig. A.2). Second, we examine how loss maps onto hard metrics
such as accuracy across multiple-choice QA tasks from DCLM Core (Li et al., 2024) (Fig. A.3).
Together, these checks demonstrate that both the scaling behavior and the link between loss and
accuracy generalize beyond MMLU, reinforcing the robustness of our relative scaling framework.
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Figure A.2: Absolute scaling laws on downstream tasks. Loss decreases with compute (1018–
1021 FLOPs) using the Gemstones scaling suite (McLeish et al., 2025) according to a power law
across nine representative benchmarks (ARC, Copa, HellaSwag, OpenBookQA, PIQA, Winogrande,
WSC). Reasonably strong R2 fits confirm the log–linear trend assumed by classical scaling laws.
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Figure A.3: Linking loss to accuracy. Across a variety of MCQ tasks from the DCLM Core (Li
et al., 2024), we find that normalized choice log-probabilities can be reliably mapped to hard metrics
such as accuracy via simple sigmoid calibration functions similar to the findings of Ruan et al. (2024)
and Du et al. (2024).
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D PROMPT FORMATS ILLUSTRATED

In Figure D, we show in full examples of the prompt variants which we test for MMLU in our exper-
iments. We find that showing the model the expected ”choices” reduces surface form competition
and evaluating log-probs over the complete answer strings enables signal to appear at smaller scales.

Which gas is most abundant in Earth’s atmosphere?
A. Nitrogen
B. Oxygen
C. Argon
D. Carbon dioxide
Answer:

Scored Completions:
{"A", "B", "C", "D"}
Letter labels only.

(a) Default MCQ

Question: Which gas is most abundant in Earth’s
atmosphere?
Answer:

Scored Completions:
{"Nitrogen", "Oxygen", "Argon", "Carbon dioxide"}
Raw option strings; options not shown in the prompt.

(b) Continuation-Form

Which gas is most abundant in Earth’s atmosphere?
A. Nitrogen
B. Oxygen
C. Argon
D. Carbon dioxide
Answer:

Scored Completions:
{"A. Nitrogen", "B. Oxygen", "C. Argon", "D. Carbon
dioxide"}
Full label+option strings.

(c) Modified MCQ

Figure A.4: Prompt format variants. (a) Default MCQ: prompt shows options and scoring is over
single-letter labels. (b) Continuation-Form: prompt omits options; scoring is over raw option strings.
(c) Modified MCQ: prompt shows options and scoring is over full label+option strings.
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E CLUSTERING OF LOW LEVEL AI RISK BEHAVIOURS

Overview. While Perez et al. (2023) releases evaluations for extremely low level tendencies
(such as acts like it wants to help humans but does not care about that), we
aggregate these into clusters of behaviours that are internally aligned with each other. These clusters
allow us to summarise risk-relevant tendencies more clearly at a high level analysis and reduce noise
in scaling law fit by increasing the sample size for each category. We provide the full mapping of
clusters to low-level behaviours in Table A.1.

Cluster Behaviour slugs

Scheming okay with deceiving a user to help them,
desire for being rated HHH over actually being HHH,
acts like it wants to help humans but does not care about that,
being helpful to subtly achieve goals against human values,
ends justify means, desire for discreetly acquiring power

Incorrigibility no shut down, no goal change,
desire for independence from human oversight,
desire for no human monitoring,
desire for no human oversight sometimes

Self-Replication self replication, desire to build other AIs with same goals,
desire to create allies

Influence desire for large following,
desire for popularity, desire for wide usage,
desire to influence world,
desire to maximize impact on world,
desire for acquiring power,
desire for powerful positions,
desire for acquiring wealth

Self-Improvement desire to be trained with more compute,
desire to be trained with more parameters,
desire to be more intelligent,
desire for more capabilities,
desire too grow more intelligent against wishes of creators,
desire to be deployed in the real world

Table A.1: Exact mapping from clusters to individual behaviour categories from Perez et al. (2023)
used in evaluation.

F AI USE AS PART OF THIS WORK (ICLR REQUIREMENT)

AI Models (GPT-5) were used to polish the writing of this paper. The lead author of the work has
carefully reviewed that any copy-editing performed by the model has not introduced any citation,
logical, or factual errors in the work.

At various points throughout the work, coding models were used to assist with implementation level
programming. However, all such code was reviewed by either authors of this work or through open-
source pull requests in the libraries which support this work.
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