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Abstract
Simplifying complex texts is essential for en-001
suring equitable access to information, espe-002
cially for individuals with cognitive impair-003
ments. The Easy-to-Read (ETR) initiative of-004
fers a framework for making content accessi-005
ble to the neurodivergent population, but the006
manual creation of such texts remains time-007
consuming and resource-intensive. In this008
work, we investigate the potential of large lan-009
guage models (LLMs) to automate the gener-010
ation of ETR content. To address the scarcity011
of aligned corpora and the specificity of ETR012
constraints, we propose a multi-task learning013
(MTL) approach that trains models jointly on014
text summarization, text simplification, and015
ETR generation. We explore two different016
strategies: multi-task retrieval-augmented gen-017
eration (RAG) for in-context learning, and018
MTL-LoRA for parameter-efficient fine-tuning.019
Our experiments with Mistral-7B and LLaMA-020
3-8B, based on ETR-fr, a new high-quality021
dataset, demonstrate the benefits of multi-task022
setups over single-task baselines across all023
configurations. Moreover, results show that024
the RAG-based strategy enables generalization025
in out-of-domain settings, while MTL-LoRA026
outperforms all learning strategies within in-027
domain configurations. Our code is publi-028
cally made available at https://anonymous.029
4open.science/r/ETR-MTL-C60E.030

1 Introduction031

Mental health and intellectual disabilities affect032

millions globally, posing serious challenges for eq-033

uitable access to information (Maulik et al., 2011;034

Gustavsson et al., 2011). People with cognitive im-035

pairments often struggle with complex texts, lim-036

iting their participation in healthcare, education,037

and civic life. Despite international initiatives for038

inclusion,12, accessible written content remains a039

major barrier for the neurodivergent population.040

1UN Sustainable Development Goals
2Leave No One Behind Principle

To address this issue, the Easy-to-Read (ETR) 041

framework (Pathways, 2021) provides guidelines 042

for producing cognitively accessible content. ETR 043

prioritizes the use of clear and simple language, 044

concise active sentences, consistent terminology, 045

and supportive layout elements. It further necessi- 046

tates collaboration between experts and individuals 047

with cognitive impairments to validate accessibil- 048

ity, ensure adherence to guidelines, and meet the 049

criteria for the European ETR certification3. 050

However, ETR adoption remains limited due to 051

the time-consuming and costly nature of manual 052

adaptation, coupled with the lack of robust auto- 053

mated tools tailored to the linguistic and cognitive 054

requirements of ETR content (Chehab et al., 2019). 055

The potential of LLMs for improving accessibil- 056

ity (Freyer et al., 2024) is limited by the scarcity 057

of high-quality, document-aligned ETR datasets. 058

Existing resources, such as ClearSim (Espinosa- 059

Zaragoza et al., 2023), are limited and only partially 060

aligned, highlighting the broader challenge of con- 061

structing or recovering document-aligned corpora 062

suitable for model training. Consequently, prior 063

studies (Martínez et al., 2024; Sun et al., 2023) 064

have approached the ETR task by leveraging sen- 065

tence simplification or summarization resources, 066

which fall short of fully meeting ETR specific re- 067

quirements as illustrated in Figure 1. 068

In this paper, we address these gaps by intro- 069

ducing ETR-fr, the first dataset of 523 document- 070

aligned text pairs fully compliant with the Eu- 071

ropean ETR guidelines. We explore multi-task 072

(MTL) learning to boost ETR generation by unit- 073

ing summarization and simplification, traditionally 074

applied in isolation. In particular, we evaluate two 075

MTL strategies: in-context learning (ICL) via a 076

multi-task variant of retrieval-augmented gener- 077

ation (RAG), and parameter-efficient fine-tuning 078

3https://www.inclusion-europe.eu/wp-content/
uploads/2021/02/How-to-use-ETR-logo..pdf
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The engine room is divided into two
parts: in the first, electricity is pro-
duced and in the second, a mechanism
activates the propeller. "Here are the
various dimensions of the boat that
carries you: it is shaped like a cigar
seventy meters long and its greatest
width is eight meters. The Nautilus is
made up of two hulls joined together
by iron bars that give it extreme rigid-
ity.
– But how were you able to

manufacture it in secret?
– I had established my workshops on

a deserted islet in the middle of the
ocean.

– One last question, Captain Nemo,
are you well-off?

– Infinitely rich, sir."

Information access
Easy to understand

Original

The Nautilus, a submarine with an
elongated shape of 70 meters long and
8 meters wide, consists of two hulls
firmly connected. Its engine room is
divided into two sections: one ded-
icated to electricity production, the
other to the propeller drive. Captain
Nemo reveals that he built the vessel
secretly on an isolated islet in the mid-
dle of the ocean. When asked about
his fortune, he claims to be "infinitely
rich."

Information access
Easy to understand

Summary

The engine room is divided into two
parts: in the first, electricity is pro-
duced and in the second, a mechanism
system activates the propeller. "Here
are the various different dimensions of
the boat that carries you: it is shaped
like a cigar seventy meters long and
its greatest width is eight meters. The
Nautilus is made up is formed of two
hulls joined attached together by iron
bars bars that give it extreme rigidity
very strong solidity.
– But how were you able to

manufacture build it in secret?
– I had established set up my

workshops on a deserted islet
island in the middle of the ocean.

– One last question, Captain Nemo,
are you well-off rich?

– Infinitely Extremely rich, sir."

Information access
Easy to understand

Simplification

The submarine has 2 machines:
– to produce electricity
– to turn the propeller.
The submarine is:
– huge and solid
– cigar-shaped.
Captain Nemo is rich.
Captain Nemo secretly built his subma-
rine on a deserted island.

Information access
Easy to understand

Easy-to-Read

Figure 1: Different versions derived from a passage of Twenty Thousand Leagues Under the Seas by Jules Verne:
from left to right, the original passage, an abstractive summary, a lexical simplification (crossed-out followed by
words in bold indicate substitutions), and an Easy-to-Read generation targeting readers with cognitive impairment.

(PEFT) using MTL-LoRA (Yang et al., 2024). Ex-079

periments are conducted on Mistral-7B (Jiang et al.,080

2023) and LLaMA-3-8B (Grattafiori et al., 2024),081

and compared against single-task baselines. The082

evaluation framework combines standard automatic083

metrics with detailed human assessment based on a084

28-point rubric from the European ETR guidelines,085

measuring clarity, coherence, and accessibility. Our086

experiments conducted on ETR-fr highlight the087

advantages of MTL setups over single-task base-088

lines across all configurations. Furthermore, the re-089

sults indicate that the RAG-based strategy supports090

better generalization in out-of-domain scenarios,091

while MTL-LoRA consistently achieves superior092

performance in in-domain settings.093

Our contributions are: (1) we release ETR-fr,094

the first high-quality, document-aligned dataset for095

ETR generation, fully compliant with European096

guidelines; (2) we benchmark multi-task ICL and097

PEFT approaches for ETR generation, introducing098

MTL PEFT to this task for the first time; (3) we099

propose a comprehensive evaluation combining au-100

tomatic and human assessment based on official101

European ETR standards; (4) we evaluate model102

generalization to new domains, including political103

texts aimed at fostering civic engagement among104

individuals with cognitive disabilities.105

2 Related Work106

Inclusive Text Generation. Recent works sup-107

port communication for users with cognitive im-108

pairments, often via dialogue agents (Martin and109

Nagalakshmi, 2024; Murillo-Morales et al., 2020;110

Huq et al., 2024; Wang et al., 2024). Much of 111

the existing work has focused on dyslexia. For in- 112

stance, Goodman et al. (2022) developed an email 113

assistant based on LaMDA (Thoppilan et al., 2022), 114

but found that the LLM’s outputs lacked preci- 115

sion. In the French context, HECTOR (Todirascu 116

et al., 2022) explored lexical and syntactic simpli- 117

fication, yielding mixed results. Efforts in other 118

languages reveal similar challenges. In Finnish, 119

Dmitrieva and Tiedemann (2024) aligned Easy- 120

Finnish data with mBART (Liu et al., 2020) and 121

FinGPT (Luukkonen et al., 2023), but reported poor 122

alignment and partial compliance with ETR stan- 123

dards. For Spanish, ClearText (Espinosa-Zaragoza 124

et al., 2023) uses ChatGPT to simplify adminis- 125

tratives texts, however its corpus remains limited 126

and prone to errors. Martínez et al. (2024) devel- 127

oped a sentence-level simplification dataset and 128

fine-tuned LLaMA-2 (Touvron et al., 2023b), find- 129

ing that translation-based methods suffer from se- 130

mantic drift and domain mismatch. 131

In-Context Learning (ICL). ICL allows LLMs 132

to learn tasks from examples without parameter up- 133

dates (Brown et al., 2020; Chowdhery et al., 2023; 134

OpenAI, 2023; Touvron et al., 2023a). Instruc- 135

tion tuning and Chain-of-Thought (CoT) prompt- 136

ing have been shown to improve task performance 137

and reasoning (Liu et al., 2023a; Wei et al., 2022; 138

Yin et al., 2023). Tang et al. (2023) assessed ICL 139

for controlled summarization, focusing on entity 140

inclusion and length constraints. They observed 141

that smaller models offered stronger controllabil- 142

ity, while larger models achieved higher ROUGE 143
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# Examples
# Words # Sentences Sentence length KMRE ↑

Novelty (%) Comp. ratio (%)
source target source target source target source target

ETR-fr 523 102.76 46.15 9.30 7.13 12.57 7.89 91.43 98.94 53.80 50.05
Train 399 99.70 46.50 8.92 7.48 12.57 6.92 91.03 99.71 53.79 49.04
Dev 71 100.76 48.59 9.03 7.77 13.59 6.90 89.50 100.59 52.96 44.47
Test 53 128.47 40.26 12.51 10.34 11.16 3.97 97.02 103.67 55.01 65.19

ETR-fr-politic 33 96.27 62.85 6.03 6.42 16.69 11.84 74.00 87.74 63.78 29.17

WikiLarge FR 296402 34.88 29.28 1.68 1.56 27.53 23.74 65.38 71.35 31.97 12.79
OrangeSum 24401 375.98 34.00 17.15 1.86 22.77 21.68 69.80 68.32 38.24 89.16

Table 1: Statistics across ETR-fr, ETR-fr-politic, and ETR-related tasks, i.e. sentence simplification and text
summarization with WikiLarge FR and OrangeSum. Results are reported on average per document.

scores. However, precise length control remained144

challenging. Prompt quality and exemplar se-145

lection critically affect ICL outcomes (Lu et al.,146

2022; Dong et al., 2024). Retrieval-augmented147

methods (Liu et al., 2022; Ram et al., 2023) have148

been proposed to improve exemplar selection. For149

simplification, Vadlamannati and Şahin (2023)150

have used metric-based selection (e.g., SARI,151

BERTScore) to improve output quality. Multi-task152

ICL and cross-task prompting (Bhasin et al., 2024;153

Shi et al., 2024; Chatterjee et al., 2024) further en-154

hance generalization and stability, especially on155

unseen tasks, by leveraging format-aware prompts156

and semantically related exemplars.157

PEFT for Multi-Task Learning. Parameter-158

efficient fine-tuning (PEFT) methods such as159

LoRA (Hu et al., 2022), QLoRA (Dettmers et al.,160

2023) and DoRA (Liu et al., 2024) enable scalable161

adaptation of LLMs by modifying only a subset162

of parameters. LoRA leverage the intrinsic dimen-163

sionality of language models (Aghajanyan et al.,164

2021) to achieve strong performance with minimal165

computational overhead. However, LoRA-based166

strategies struggle in multi-task settings due to con-167

flicting updates accross tasks (Wang et al., 2023).168

Alternatives like MultiLoRA (Wang et al., 2023)169

and MoELoRA (Liu et al., 2023b) seek to balance170

generalization with task specificity, but face chal-171

lenges in task routing and mitigating interference.172

MTL-LoRA (Yang et al., 2024) addresses this by173

introducing both shared and task-specific modules,174

achieving competitive results on GLUE (Wang175

et al., 2018) with fewer trainable parameters.176

3 ETR-fr Dataset177

While several datasets exist for text simplifica-178

tion and summarization (Gala et al., 2020; Hauser179

et al., 2022; Kamal Eddine et al., 2021; Liu et al.,180

2018), there remains a notable lack of high-quality,181

document-aligned corpora for ETR generation. To182

address this gap, we introduce the ETR-fr dataset, 183

constructed from the François Baudez Publishing 184

collection,4 which provides literature specifically 185

designed for readers with cognitive impairments, 186

following European ETR guidelines. 187

Description. ETR-fr consists of 523 paragraph- 188

aligned text pairs. Table 1 outlines key dataset 189

statistics, including KMRE readability score (Kan- 190

del and Moles, 1958), compression ratios, and lexi- 191

cal novelty. On average, the dataset yields a com- 192

pression rate of 50.05%, with a reduction of 56.61 193

tokens and 2.17 sentences per pair. The average 194

novelty rate, following Narayan et al. (2018), is 195

53.80%, reflecting the proportion of newly intro- 196

duced unigrams in target texts. Readability im- 197

proves by 7.51 KMRE points from source to target. 198

The dataset is partitioned into fixed train, valida- 199

tion, and test subsets. The test set includes two 200

books selected to maximize variation in linguistic 201

attributes (e.g., sentence length, compression, nov- 202

elty). The remaining nine books are divided into 203

training and validation via stratified sampling. 204

ETR-fr-politic To assess generalization and ro- 205

bustness, we introduce ETR-fr-politic, an out-of- 206

domain test set with 33 ETR-aligned paragraphs 207

sampled from the 2022 French presidential elec- 208

tion programs.5 Compared to ETR-fr, the ETR-fr- 209

politic dataset features shorter source texts (96.27 210

vs. 102.76 words) and fewer sentences (6.03 vs. 211

9.30), but yields longer rewritten outputs (62.85 212

vs. 46.15 words). Additionally, ETR-fr-politic ex- 213

hibits higher novelty (63.78% vs. 53.80%) and sig- 214

nificantly lower compression ratios (29.17% vs. 215

50.05%), indicating a greater degree of content ex- 216

pansion. While ETR-fr exhibits higher overall sim- 217

plicity scores both before and after rewriting (91.43 218

and 98.94) compared to ETR-fr-politic (74.00 and 219

4http://www.yvelinedition.fr/Facile-a-lire
5https://www.cnccep.fr/candidats.html
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87.74), the latter achieves a greater simplification220

gain, with a larger increase in KMRE (+13.75 vs.221

+7.51 points). Overall, ETR-fr-politic poses a more222

challenging and higher-novelty setting for evaluat-223

ing ETR systems in politically sensitive, real-world224

rewriting contexts.6225

ETR-fr vs. Related Tasks. Table 1 compares226

ETR-fr with two gold-standard datasets on related227

tasks, respectively text simplification and sum-228

marization: WikiLarge FR (Cardon and Grabar,229

2020) and OrangeSum (Kamal Eddine et al., 2021).230

While WikiLarge FR is larger (296K sentence231

pairs), it is limited to sentence-level simplifica-232

tion, with short inputs (34.88 words, 1.68 sentences233

on average). By contrast, both ETR-fr and Or-234

angeSum support document-level simplification,235

offering substantially longer inputs (102.76 and236

375.98 words, respectively). ETR-fr demonstrates237

a balanced compression ratio (50.05%) higher than238

WikiLarge FR (12.79%) but lower than the extreme239

summarization found in OrangeSum (89.16%). No-240

tably, it offers the highest lexical richness and ab-241

straction, evidenced by its top KMRE scores (91.43242

source, 98.94 target) and novelty rate (53.80%).243

Simplified outputs also exhibit syntactic simplifi-244

cation, with shorter sentence lengths (7.89 words245

per sentence). In summary, while WikiLarge246

FR is suited for sentence-level simplification and247

OrangeSum for summarization, ETR-fr supports248

document-level simplification, emphasizing lexical249

and structural transformation making it well-suited250

for users with cognitive disabilities.251

4 Multi-Task ETR Generation252

4.1 Datasets, LLMs and Metrics253

Our experiments leverage the ETR-fr dataset as the254

primary resource, supplemented by related rewrit-255

ing tasks sourced from the OrangeSum summariza-256

tion dataset and the lexical simplification dataset257

WikiLarge FR. To evaluate the effectiveness of258

MTL for ETR transcription, we selected two re-259

cent LLMs that demonstrate strong generalization260

capabilities across a variety of NLP tasks : Llama3-261

8B (Grattafiori et al., 2024) and Mistral-7B (Jiang262

et al., 2023). Note that foundation models are used263

for PEFT and their Instruct versions for ICL.264

6Note that the documents on politics usually do not meet
high-quality standards as evidenced by the François Baudez
Publishing collection. Moreover, there are still difficult to
gather as their repository is not centralized.

Since no dedicated evaluation metrics exist for 265

ETR generation, we propose assessing it using stan- 266

dard summarization and text simplification met- 267

rics. For summarization, we report F1-scores for 268

ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 2004), 269

along with BERTScore (Zhang et al., 2020). For 270

simplification, we include SARI (Xu et al., 2016), 271

the novelty ratio for new unigrams (Kamal Eddine 272

et al., 2021). BLEU (Papineni et al., 2002) and 273

KMRE, are excluded, as it has been shown to be un- 274

suitable for text simplification (Sulem et al., 2018; 275

Xu et al., 2016; Tanprasert and Kauchak, 2021). To 276

unify quality assessment of ETR texts, we propose 277

SRB, a composite score combining SARI, ROUGE- 278

L, and BERTScore-F1 via harmonic mean. This 279

metric captures simplification, summarization, and 280

meaning preservation for holistic ETR evaluation. 281

4.2 Multi-Task In-Context Learning 282

As baseline, we evaluate three single task in- 283

context learning strategies: zero-Shot prompt- 284

ing (Kojima et al., 2022), chain-of-thought prompt- 285

ing (Wei et al., 2022), and retrieval-augmented gen- 286

eration (Lewis et al., 2020). In the zero-shot setting, 287

the model is provided only with ETR task-specific 288

instruction, without any examples, serving as a 289

baseline to assess the model’s ability to general- 290

ize purely from the prompt. To enhance reason- 291

ing in more complex tasks, we incorporate CoT 292

prompting, which explicitly elicits intermediate 293

reasoning steps in the prompt. For a fair and repro- 294

ducible evaluation, we use consistent instruction- 295

based prompt templates across all models, as de- 296

tailed in Appendix B. 297

Multi Task RAG. To enable few-shot multi-task 298

ICL, we implement a multi-task RAG. Demonstra- 299

tions from multiple tasks are retrieved and incorpo- 300

rated into the prompt. We explore three sequencing 301

strategies for organizing demonstrations within the 302

prompt context, which are listed as follows. 303

Random Ordering: Examples from all 3 tasks are 304

interleaved in a fully randomized manner (e.g., 305

t1, t3, t3, t2, t1, t1, t3, t2, t2), serving as a baseline 306

to assess robustness to prompt structure. 307

Task-Grouped Ordering: Examples are grouped 308

by task, presenting all demonstrations from 309

one task before moving to the next one (e.g., 310

t1, t1, t1, t2, t2, t2, t3, t3, t3). This structure empha- 311

sizes intra-task consistency. 312
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Task-Interleaved Ordering: Examples alternate313

across tasks at each shot level, maintaining a round-314

robin pattern (e.g., t1, t2, t3, t1, t2, t3, t1, t2, t3).315

This configuration aims to balance exposure across316

tasks within the prompt.317

The impact of the number of shots per task and318

example orderings is shown in Appendix B (Fig-319

ure 3 and Figure 4). Note that to encode exam-320

ples into dense vector representations, we use the321

jina-embeddings-v3 (Sturua et al., 2024) model,322

and for distance computation, we employ the L2323

distance metric.324

4.3 Multi-Task PEFT325

LoRA. As baseline, we implement LoRA (Hu326

et al., 2022). LoRA approximates full fine-tuning327

by decomposing weight matrices into low-rank328

components. A weight matrix W0 ∈ Rd×k into329

two smaller matrices, B ∈ Rd×r and A ∈ Rr×k330

with r ≪ min(d, k). This low-rank update pre-331

serves the backbone while enabling efficient adap-332

tation, such that h = W0x+
α
rBAx. LoRA can be333

applied to each linear layer in the Transformer ar-334

chitecture, such as WQ,WK,WV,WO matrices335

projections in the attention layers.336

MTL-LoRA. Yang et al. (2024) introduce MTL-337

LoRA. Given task input xt, MTL-LoRA first ap-338

plies a shared standard LoRA down-projection via339

matrix A. To retain task-specific information, it340

inserts a task-specific low-rank matrix Λt ∈ Rr×r341

between the down- and up-projections, transform-342

ing Axt. Instead of a single shared up-projection,343

MTL-LoRA uses n matrices Bi ∈ Rd×r to support344

diverse knowledge-sharing strategies. Outputs are345

combined via a weighted average, where weights346

wt ∈ Rn×1 are learned per task as in Equation 1.347

ht = Wxt +

n∑
i=1

exp(wi
t/τ)B

i∑n
j=1 exp(w

j
t/τ)

ΛtAxt (1)348

Here, τ controls the softness of the weighting. Each349

Λt is initialized as a diagonal identity matrix to350

ensure ∆Wt = 0 at start.351

MTL Loss for ETR Generation. The model352

is trained to generate outputs conditioned on in-353

structions. Given an instruction sequence I =354

i1, i2, . . . , im and a corresponding completion se-355

quence C = c1, c2, . . . , cn, where I may con-356

tain special prompt tokens (e.g., <Input> and357

<Output>), the full input is represented as x =358

i1, . . . , im, c1, . . . , cn. The model is trained to au- 359

toregressively predict each token in C conditioned 360

on all preceding tokens in I and C as defined in 361

Equation 2. 362

P (C|I) =
n∏

j=1

P (cj | i1, ..., im, c1, ..., cj−1) (2) 363

Based on the findings from (Huerta-Enochian and 364

Ko, 2024), the objective is to minimize the negative 365

log-likelihood of the completion sequence given 366

the instruction as defined in Equation 3. 367

L = −
n∑

j=1

logP (cj | i1, ..., im, c1, ..., cj−1) (3) 368

To account for imbalance across different 369

instruction-following tasks, we apply a task- 370

specific weighting scheme during training. Let 371

Nt be the number of training examples for task t, 372

and let N =
∑

tNt be the total number of training 373

examples across all tasks. Each task’s contribution 374

to the overall loss is scaled by a factor wt =
Nt
N , 375

such that the final loss is redefined in Equation 4. 376

LMTL =
T∑
t=1

wt × Lt (4) 377

5 Results 378

Best models are selected based on the highest SRB 379

score on the ETR-fr validation set, following a 380

grid search hyperparameter tuning strategy.7 To 381

complement this analysis, all models are run five 382

times with different seeds, and detailed average 383

results can be found in Appendix C. 384

5.1 In-Domain Quantitative Results 385

ICL Performance. As shown in Table 2, ICL 386

models evidence steady improvements when tran- 387

sitioning from zero-shot and CoT prompting to 388

RAG-based prompting. For LlaMA-3-8B, RAG 389

achieves the best results with ETR-fr only inputs 390

(e.g., 33.43/12.99/24.38 ROUGE-1/2/L and 42.16 391

SARI), outperforming zero-shot by a large margin. 392

Adding related tasks does not consistently improve 393

performance under ICL, and in some cases, leads 394

to reduced novelty and compression ratio. 395

7Hyperparameter tuning is detailed in Appendix A.
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Method Task R-1 R-2 R-L SARI BERT-F1 SRB Comp. ratio Novelty

In Context Learning

M
is

tr
al

-7
B

Zero-Shot E 23.92 7.09 16.28 37.07 69.75 29.20 −64.14 35.70

CoT E 23.58 7.22 16.17 37.39 68.80 29.10 −60.53 36.09

RAG E 32.14 10.47 22.72 40.05 72.41 36.24 44.32 26.55
E,O 31.12 9.58 21.92 39.54 71.29 35.32 48.45 26.61
E,W 30.29 9.69 21.29 38.69 71.59 34.56 33.80 23.01
E,O,W 29.84 9.57 21.58 39.53 71.06 35.01 46.42 25.85

L
la

M
A

-3
-8

B Zero-Shot E 24.94 8.23 17.37 38.59 70.29 30.70 −21.56 38.73

CoT E 27.57 8.96 18.72 38.26 71.02 32.04 7.80 31.10

RAG E 33.43 12.99 24.38 42.16 72.58 38.21 46.18 27.14
E,O 31.10 10.87 22.37 39.94 71.27 35.81 39.22 24.29
E,W 33.03 11.62 23.28 40.59 72.14 36.83 41.89 25.26
E,O,W 29.35 9.97 20.54 39.03 70.84 33.93 25.94 23.69

Paramter-Efficient Fine-Tuning

M
is

tr
al

-7
B LoRA E 32.47 12.40 24.02 42.09 73.56 37.98 44.42 18.35

MTL-LoRA E,O 32.67 12.74 24.33 41.95 73.52 38.20 53.48 24.17
E,W 32.62 12.92 24.28 42.53 73.90 38.35 53.62 24.99
E,O,W 33.65 12.83 24.93 42.25 73.62 38.77 48.93 23.38

L
la

M
A

-3
-8

B LoRA E 31.76 13.17 25.04 42.15 72.93 38.77 50.66 18.87

MTL-LoRA E,O 33.44 13.22 24.24 43.04 73.86 38.45 51.36 23.06
E,W 32.54 13.56 25.08 44.67 74.05 39.60 56.11 33.05
E,O,W 32.78 13.64 25.67 43.53 73.28 39.69 53.24 24.39

Table 2: Performance comparison, on ETR-fr test set, across ICL methods and PEFT strategies on three tasks:
ETR-fr (E), OrangeSum (O) and WikiLarge FR (W). Best results are in bold, second-best are underlined.

Impact of Fine-Tuning. PEFT significantly out-396

performs ICL methods. The best overall perfor-397

mance is achieved by LlaMA-3-8B with MTL-398

LoRA fine-tuned on ETR-fr and WikiLarge FR,399

obtaining highest scores across SARI (44.67),400

BERTScore-F1 (74.05), SRB (39.60), and com-401

pression ratio (56.11), while maintaining strong402

novelty (33.05).403

LLM Comparison. Across both prompting404

and fine-tuning paradigms, LlaMA-3-8B outper-405

forms Mistral-7B in most metrics. For instance,406

with LoRA fine-tuning on ETR-fr, LlaMA-3-8B407

achieves higher ROUGE-L (25.04 vs. 24.02),408

SARI (42.15 vs. 42.09), and SRB (38.77 vs. 37.98).409

This suggests that the architectural or scale ad-410

vantages of LlaMA-3-8B translate effectively into411

more efficient capabilities.412

Combination of Tasks. Incorporating auxiliary413

tasks such as text summarization and simplifica-414

tion can provide complementary supervision, as415

seen in PEFT strategies. However, they do not416

yield performance gains in the ICL setting. No-417

tably, MTL-LoRA with ETR-fr and WikiLarge FR418

for LlaMA-3-8B achieves the highest SARI and419

compression ratio, suggesting the relevance of sen-420

tence simplification data to the ETR generation 421

task. However, inclusion of all three tasks does not 422

universally yield the best results, and in some cases 423

introduces performance regressions in BERTScore 424

and novelty. This implies that careful curation of 425

task mixtures is essential to avoid dilution or con- 426

flict between training objectives. Overall, these 427

results highlight that while RAG improves perfor- 428

mance in ICL, parameter-efficient fine-tuning (par- 429

ticularly MTL-LoRA) remains the most effective 430

approach for high-quality in-domain ETR-fr. 431

5.2 Out-of-Domain Quantitative Results 432

ICL Performance. As shown in Table 3, among 433

prompting strategies, RAG consistently outper- 434

forms zero-shot and CoT in all major content 435

preservation metrics (ROUGE-1/2/L, BERTScore- 436

F1) and the composite SRB score. On LlaMA- 437

3-8B, using RAG with all three tasks (E,O,W) 438

achieves the highest overall SRB score (41.52) and 439

the best ROUGE-L (28.43), indicating its strong 440

generalization and content fidelity. Moreover, it 441

yields the highest SARI (42.63) and BERTScore-F1 442

(73.39), showcasing a balanced ability to simplify 443

while preserving semantics. Interestingly, zero- 444

shot exhibits extremely poor compression ratios, 445
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Method Task R-1 R-2 R-L SARI BERT-F1 SRB Comp. ratio Novelty

In Context Learning

M
is

tr
al

-7
B

Zero-Shot E 28.36 11.02 19.29 39.87 68.10 32.75 −309.24 48.37

CoT E 29.78 11.22 19.90 39.62 69.40 33.37 −261.30 50.85

RAG E 39.22 15.28 28.12 41.33 73.15 40.86 11.03 25.49
E,O 37.87 14.59 26.43 39.51 72.08 38.96 14.37 18.41
E,W 39.77 15.55 27.74 40.32 72.47 40.19 10.80 17.81
E,O,W 39.12 15.97 28.26 40.74 72.87 40.73 14.63 18.33

L
la

M
A

-3
-8

B Zero-Shot E 29.60 10.84 18.83 40.55 68.68 32.50 −180.74 55.37

CoT E 31.68 11.46 20.14 40.80 69.87 33.91 −83.36 45.41

RAG E 37.48 13.98 26.94 41.05 73.18 39.92 11.37 41.63
E,O 40.53 15.15 27.47 41.14 72.75 40.29 −12.56 31.01
E,W 39.72 16.02 26.83 41.99 73.32 40.15 13.75 35.70
E,O,W 40.12 16.55 28.43 42.63 73.39 41.52 −4.79 30.08

Paramter-Efficient Fine-Tuning

M
is

tr
al

-7
B LoRA E 35.13 12.23 25.93 38.04 70.28 37.94 21.55 11.79

MTL-LoRA E,O 29.36 11.02 21.87 38.68 69.22 34.87 36.68 40.29
E,W 34.32 12.56 24.85 38.72 70.54 37.38 22.51 19.10
E,O,W 36.45 13.22 26.21 38.39 70.97 38.32 18.33 10.55

L
la

M
A

-3
-8

B LoRA E 35.53 13.83 26.94 39.90 71.30 39.37 6.38 16.13

MTL-LoRA E,O 32.77 12.20 24.23 38.84 69.74 36.88 18.26 19.30
E,W 37.46 13.74 27.06 38.26 71.30 38.90 8.45 6.44
E,O,W 36.48 13.69 25.90 36.19 70.97 37.35 8.68 2.06

Table 3: Performance comparison, on ETR-fr-politic test set, across ICL methods and PEFT strategies on three
tasks: ETR-fr (E), OrangeSum (O) and WikiLarge FR (W). Best results are in bold, second-best are underlined.

especially on Mistral-7B (-309.24), suggesting po-446

tential prompt misalignment or excessive halluci-447

nation. However, it achieves the highest novelty448

score (55.37) on LlaMA-3-8B, implying that de-449

spite poor content fidelity, more diverse lexical450

outputs are generated.451

Impact of Fine-Tuning. While PEFT strategies452

generally lag behind RAG in terms of SRB and453

BERTScore, they offer stable and interpretable per-454

formance, with notably better compression ratios455

than zero-shot, CoT and most RAG-based strate-456

gies. The best PEFT model in terms of SRB,457

LLaMA-3-8B+LoRA trained solely on ETR-fr,458

achieves a relatively low compression ratio (6.38),459

indicating only moderate summarization. However,460

this comes at the expense of lower ROUGE, SARI,461

and BERTScore metrics compared to RAG-based462

approaches. Additionally, MTL-LoRA configu-463

rations do not demonstrate performance improve-464

ments over single-task LoRA in out-of-domain465

(OOD) settings, particularly on LlaMA-3-8B, sug-466

gesting a tendency toward overspecialization on the467

target task of ETR derived from children’s books.468

Combination of Tasks. Prompting or training469

with multiple datasets (E,O,W) can improve OOD470

generalization. LLaMA-3-8B+RAG and Mistral- 471

7B+RAG show substantial gains across all met- 472

rics compared to single-task prompting, confirm- 473

ing the benefits of multi-domain exposure in 474

OOD settings. This situation is mitigated for the 475

PEFT strategy, where performance improvement 476

is backbone-dependent. While Mistral-7B+MTL- 477

LoRA steadily benefits from concurrent learning 478

achieving best results in terms of SRB with its 479

(E,O,W) configuration, overall best results with 480

LLaMA-3-8B are obtained with single task setting. 481

5.3 Human Evaluation 482

Manual evaluation is essential for assessing ETR 483

text quality and compliance with European guide- 484

lines, which include 57 weighted questions cover- 485

ing clarity, simplicity, and accessibility,8 to ensure 486

content is understandable and appropriate for the 487

target audience. We validated our approach through 488

human evaluation with 10 native French speakers, 489

seven NLP researchers and three linguists, who as- 490

sessed outputs from the ETR-fr and ETR-politic 491

8https://www.unapei.org/wp-content/
uploads/2020/01/liste_verification-falc-score_
v2020-01-14-1.xlsx
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Figure 2: Human evaluation of generation quality on ETR-fr and ETR-fr-politic using their optimal ICL and
MTL configurations. Subfigures (a) and (c) show average scores based on the ETR guideline criteria. Subfigures (b)
and (d) present average human ratings for text generation quality.

test sets.9 We evaluated outputs generated by two492

model configurations: (1) Llama-3-8B+RAG aug-493

mented with ETR-fr (E) and WikiLarge FR (W),494

and (2) Llama-3-8B+MTL-LoRA trained on ETR-495

fr, OrangeSum (O), and WikiLarge FR, alongside496

their respective single-task variants. These models497

were chosen as the best performing ones, respec-498

tively for ICL and PEFT, for in-domain settings.499

The evaluation was performed on 6 source docu-500

ments (3 from ETR-fr and 3 from ETR-fr-politic501

test sets). Each annotator reviewed 24 outputs, re-502

sulting in 60 samples per model and a total of 240503

different samples evaluated. The assessment pri-504

oritized the most critical ETR guideline criteria,505

including information selection, sentence construc-506

tion, word choice, and illustrations, covering 28507

detailed questions (see Table 9 in Appendix). Addi-508

tionally, we assessed general text generation quality509

metrics such as Fluency, Grammar/Spelling, Rele-510

vance, Textual Coherence, and Overall Perceived511

Quality, through additional five questions. ETR512

criteria were rated on a binary scale (respected, not513

respected, not applicable), whereas human judg-514

ments used a 5-point Likert scale (1–5).515

In-domain Results. Figures 2 present the human516

evaluation results.10 On ETR-fr, all methods per-517

form well with respect to the European ETR guide-518

lines. LoRA achieves the highest overall validation519

rate of 0.91, particularly excelling in word choice520

and sentence construction. MTL-LoRA+(E,O,W)521

shows the best results for sentence construction,522

while RAG+(E,W) outperforms other models in523

information selection. In terms of text generation524

quality, RAG leads with an overall score of 4.24,525

driven by strong performance in fluency, grammar,526

and coherence. While MTL-LoRA+(E,O,W) and527

LoRA are competitive across individual criteria,528

9All evaluators received training and were blind to model
development to prevent bias.

10Overall scores are provided in a table in Appendix C.2.

with MTL-LoRA+(E,O,W) scoring best on 3 out 529

of 4 dimensions, their overall quality scores are 530

comparable (3.95). Although automatic metrics in- 531

dicate improved performance in multi-task settings, 532

human evaluation results are more mixed, reveal- 533

ing no clear advantage for single- versus multi-task 534

strategies, except in the Illustrations dimension. 535

Out-of-domain Results Overall performance de- 536

clines on the more challenging ETR-fr-politic, yet 537

RAG+(E,W) remains the most robust across both 538

ETR criteria and text quality evaluations, under- 539

scoring the value of the multi-task setting. Specifi- 540

cally, RAG+(E,W), trained on a broader mix of 541

tasks combining ETR and sentence simplifica- 542

tion, achieves a total validation rate of 0.80 for 543

ETR guidelines and an overall quality score of 544

3.76. In contrast, MTL-LoRA+(E,O,W) exhibits 545

the sharpest drop in quality (2.62), indicating dif- 546

ficulties in managing politically nuanced content, 547

although it still outperforms the single-task config- 548

uration in 3 out of 5 evaluation dimensions. Fur- 549

thermore, in terms of European ETR compliance, 550

MTL-LoRA+(E,O,W) struggles to generalize in 551

out-of-domain settings, showing improvement only 552

in the Illustrations criterion. 553

6 Conclusion 554

In this paper, we introduced ETR-fr, the first dataset 555

fully compliant with the European ETR guidelines 556

targeting neurodivergent populations, and explored 557

multi-task learning to improve ETR generation 558

with LLMs. Our experiments show that multi- 559

task setups, particularly RAG for ICL and MTL- 560

LoRA for PEFT, consistently improve performance 561

in both in-domain and OOD settings according to 562

automatic metrics. While human evaluation reveals 563

more nuanced outcomes, it nonetheless confirms 564

the benefits of multi-task learning across a broad 565

range of ETR criteria and text quality dimensions. 566

8



7 Limitations567

The development of ETR generation models intro-568

duces important constraints and considerations that569

reflect the complexity of cognitive accessibility and570

language model behavior.571

Misalignment with deployment contexts.572

While our evaluation combines automatic and573

human assessments, it does not simulate usage574

in real-world settings such as assistive reading575

tools or educational platforms. Thus, the practical576

utility of outputs for neurodivergent users remains577

untested.578

Absence of direct end-user feedback. Human579

evaluation was conducted by proxy annotators,580

which limits insights into subjective usability, emo-581

tional response, and real-world accessibility, cen-582

tral concerns in ETR adoption.583

No explicit modeling of cognitive load. Though584

our models optimize for readability and fluency,585

they do not account for cognitive effort. Even sim-586

plified outputs may challenge users when process-587

ing abstract or ambiguous content.588

ETR guidelines as a fixed supervision target.589

We use European ETR guidelines as a normative590

framework. While they offer structure, rigid adher-591

ence may exclude culturally specific or individu-592

alized accessibility strategies, limiting generaliza-593

tion.594

Simplification-centric task framing. Our for-595

mulation treats ETR as summarization and simpli-596

fication. However, this may overlook strategies597

unique to ETR, such as intentional redundancy,598

explicit inference resolution, and narrative scaffold-599

ing, often crucial for accessibility.600

Susceptibility to hallucinations. As with most601

generative models, hallucinations and factual drift602

remain concerns, especially with RAG-based sys-603

tems. This is particularly risky for audiences who604

may interpret outputs literally or depend on high605

textual reliability.606

8 Impact and Ethical Considerations607

Social and Ethical Challenge. Identifying limi-608

tations is essential for transparency and inclusive609

design. ETR generation impacts neurodivergent610

readers and intersects with accessibility, language611

rights, and communicative equity. As such, sim-612

plification systems must be evaluated not only on613

linguistic performance but on their potential to over- 614

simplify or marginalize. By clarifying the limita- 615

tions of our work, we aim to support responsible de- 616

velopment and deployment. Acknowledging these 617

boundaries also helps position ETR generation as 618

a socio-technical task, one that demands sensitivity 619

to both linguistic quality and lived experience. 620

Risks of Oversimplification. Simplified lan- 621

guage is not neutral, it involves choices about what 622

meaning is retained or lost. In some cases, sim- 623

plification may erase nuance, flatten perspective, 624

or reinforce harmful stereotypes. This tension is 625

particularly acute for readers who engage with lan- 626

guage differently. 627

Toward Responsible Design. Mitigating risks 628

requires human-in-the-loop systems, participatory 629

evaluation involving end users, and adaptation 630

strategies that go beyond surface-level clarity. ETR 631

guidelines should be viewed as a starting point, not 632

a universal solution. 633

Positioning ETR as a Research Problem. ETR 634

remains underexplored in NLP. By introducing 635

aligned data, task-specific metrics, and a critical 636

lens on modeling assumptions, we aim to establish 637

it as a standalone task, one that demands linguis- 638

tic sensitivity, practical design, and participatory 639

validation. 640
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rameter selection is performed to maximize SRB. 1089

According to experimental findings, LoRA and 1090

MTL-LoRA hyperparameters are set to r = 128 1091

and attn_matrices = WQKV O. Moreover, we 1092

chose α = r to keep a 1:1 ratio so as not to 1093

overpower the backbone (Lee et al., 2023). For 1094
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Figure 3: SRB performance score of Mistral-7B and
LLaMA-3-8B on the ETR-fr validation set with varying
number of in-context examples (k = 1–9) and task
combinations.
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Figure 4: SRB performance of Mistral-7B and LLaMA-
3-8B on the ETR-fr validation set under different exam-
ple ordering strategies and task combination configura-
tions.

MTL-LoRA configuration, sharpness of the weight1095

distribution is fixed at 0.5 and the optimal n up-1096

projections is selected among {1, 2, 3}. Best hyper-1097

parameters for PEFT methods are in Table 41098

A.2 MTL-RAG1099

To facilitate few-shot multi-task learning within1100

the in-context learning framework, we develop a1101

multi-task extension of Retrieval-Augmented Gen-1102

eration (RAG). Our approach retrieves demonstra-1103

tions from various tasks and integrates them into1104

the prompt. We conduct experiments using 1, 2,1105

and 3 examples per task, analyzing how the order-1106

ing of tasks and examples within the prompt influ-1107

ences performance. We investigate three strategies1108

for sequencing demonstrations in the prompt as1109

mentioned in Section4.2: random, grouped and1110

interleaved orderings.1111

The optimal hyperparameters for in-context1112

learning are summarized in Table 5.1113

B In-Context Learning1114

Figure 5 illustrates examples of prompts used for1115

zero-shot, chain-of-thought and RAG.1116

B.1 Impact of the Number of Shots on ETR-fr 1117

Performance 1118

Figure 3 presents the performance of LLaMA-3-8B 1119

and Mistral-7B on the French text simplification 1120

benchmark (ETR-fr) across varying numbers of in- 1121

context learning (ICL) examples (k = 1 to 9) and 1122

under different training configurations. 1123

LLaMA-3-8B Performance. For the LLaMA-3- 1124

8B model, performance generally increases with 1125

larger k values. The basic task ETR-fr alone yields 1126

steadily rising median scores from 40.93 at k = 1 1127

to 45.96 at k = 9. The incorporation of auxiliary 1128

datasets (OrangeSum and WikiLarge FR) leads to 1129

varied results. For instance, combining ETR-fr 1130

with WikiLarge FR at k = 2 raises the median 1131

from 42.96 to 42.33, while the three-dataset com- 1132

bination at k = 6 has a lower median of 41.60 1133

compared to 44.84 for ETR-fr alone. This suggests 1134

diminishing returns or even negative interference 1135

when too many tasks are combined. 1136

Mistral-7B Performance. The Mistral-7B 1137

model demonstrates a similar trend of improved 1138

performance with increasing k values for the 1139

ETR-fr task. Median scores rise from 41.26 at 1140

k = 1 to 45.96 at k = 9. However, Mistral exhibits 1141

less variation across configurations. The inclusion 1142

of OrangeSum and WikiLarge FR improves scores 1143

modestly, and the three-dataset combination 1144

remains slightly below the single-task performance. 1145

For example, at k = 6, ETR-fr alone achieves a 1146

median of 44.58, whereas the triple combination 1147

achieves only 41.28. 1148

Comparative Insights. When comparing both 1149

models, LLaMA-3-8B tends to show greater gains 1150

from dataset combinations than Mistral-7B, al- 1151

though it also experiences more variance. For 1152

both models, the highest performances are obtained 1153

when using ETR-fr alone at higher k values, indi- 1154

cating that overloading the prompt context with 1155

multiple tasks may dilute performance. Moreover, 1156

the higher maximum scores for LLaMA across con- 1157

figurations (e.g., up to 46.12) suggest it may have 1158

a higher performance ceiling, buy with more fluc- 1159

tuation. 1160

B.2 Conclusion 1161

In summary, increasing the in-context learning size 1162

(k) generally improves model performance. Task 1163

combination has mixed effects: beneficial in some 1164

configurations but detrimental in others, especially 1165
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Batch size lr Acc. steps Epochs α = r Attn. matrices n up proj. τ
L

la
M

A
-3

-8
B LoRA E 4 1 · 10−4 4 6 128 WQKV O - -

MTL-LoRA
E,O,W 4 1 · 10−4 4 6 128 WQKV O 3 0.5
E,O 4 1 · 10−4 4 6 128 WQKV O 3 0.5
E,W 4 1 · 10−4 4 6 128 WQKV O 3 0.5

M
is

tr
al

-7
B LoRA E 4 1 · 10−4 4 6 128 WQKV O - -

MTL-LoRA
E,O,W 4 1 · 10−4 4 6 128 WQKV O 3 0.5
E,O 4 5 · 10−5 4 6 128 WQKV O 3 0.5
E,W 4 1 · 10−4 4 6 128 WQKV O 3 0.5

Table 4: PEFT hyperparameter configurations selected based on SRB performance on the ETR-fr validation set.

k Ordering

M
is

tr
al

-7
B

Zero-Shot E - -

CoT E - -

RAG E 7 Random
E,O 3 Random
E,W 3 Random
E,O,W 3 Interleaved

L
la

M
A

-3
-8

B Zero-Shot E - -

CoT E - -

RAG E 9 Random
E,O 3 Random
E,W 3 Random
E,O,W 2 Random

Table 5: ICL hyperparameter configurations selected
based on SRB performance on the ETR-fr validation
set.

when too many tasks are combined. LLaMA-3-1166

8B appears more sensitive to these changes than1167

Mistral-7B, highlighting important considerations1168

for prompt engineering.1169

B.2.1 Impact of the Tasks Ordering on1170

ETR-fr Performance1171

Figure 4 presents the impact of task ordering on1172

model performance under different multi-task train-1173

ing configurations. For both models, three types1174

of example ordering are compared: grouped, inter-1175

leaved, and random. Each ordering is evaluated1176

with different training task combinations, such as1177

ETR-fr+OrangeSum, ETR-fr+WikiLarge FR, and1178

ETR-fr+OrangeSum+WikiLarge FR.1179

LLaMA-3-8B Performance. For LLaMA-3-8B,1180

performance consistently improves when Wiki-1181

Large FR data is added to the training set. The1182

configuration using only ETR-fr+WikiLarge FR1183

yields the highest scores across all ordering meth-1184

ods, particularly under the random strategy, which1185

achieves the highest maximum score (45.39). Over-1186

all, grouped and random orderings tend to result 1187

in higher median and upper-quartile scores com- 1188

pared to interleaved ordering, indicating that the 1189

sequential arrangement of examples plays a role in 1190

performance. 1191

Mistral-7B Performance. For Mistral-7B, the 1192

impact of training set composition is similarly pos- 1193

itive, with improvements observed upon including 1194

WikiLarge FR. However, the differences among the 1195

three ordering strategies are more subtle. grouped 1196

and interleaved yield very similar statistics, with 1197

slight advantages in median scores depending on 1198

the training data. The highest maximum score for 1199

Mistral-7B (43.76) occurs under the random strat- 1200

egy with the ETR-fr+OrangeSum dataset, although 1201

this configuration does not have the most consistent 1202

results across runs. 1203

Comparative Insights. Comparing the two mod- 1204

els, LLaMA-3-8B generally outperforms Mistral- 1205

7B in terms of median and maximum scores, partic- 1206

ularly when trained with ETR-fr and WikiLarge FR. 1207

Mistral-7B demonstrates more stable performance 1208

with narrower score ranges but slightly lower cen- 1209

tral tendency metrics. These results suggest that 1210

while both models benefit from enriched prompts, 1211

LLaMA-3-8B exhibits greater potential for high- 1212

end performance when paired with appropriate ex- 1213

ample ordering and task combinations. 1214

C Complementary Evaluation Results 1215

C.1 Quantitative Results 1216

The average performances of various methods on 1217

the ETR-fr and ETR-fr-politic test sets is presented 1218

in tables 6a and 6b, respectively. These results 1219

compare In-Context Learning (ICL) techniques, 1220

such as Zero-shot, Chain-of-Thought (CoT), and 1221

Retrieval-Augmented Generation (RAG), against 1222

Parameter-Efficient Fine-Tuning (PEFT) methods 1223

15



including LoRA and MTL-LoRA. Evaluations are1224

conducted across different instruction-tuned mod-1225

els (Mistral-7B, LlaMA-3-8B) and task combina-1226

tions (E: ETR-fr, O: OrangeSum, W: WikiLarge1227

FR). Metrics such as ROUGE (R-1, R-2, R-L),1228

SARI, BERTScore-F1, SRB, Compression Ratio,1229

and Novelty are used to provide a comprehensive1230

performance overview.1231

The experimental results clearly highlight the1232

performance benefits of both retrieval augmenta-1233

tion and fine-tuning approaches, particularly under1234

multi task settings.1235

In-Context Learning (ICL) Zero-Shot and CoT-1236

settings generally underperform across all metrics1237

compared to RAG and PEFT. While CoTshows a1238

slight improvement in novelty and informativeness1239

over Zero-Shot, gains are marginal. RAG consis-1240

tently improves performance over basic prompt-1241

ing, especially on the main ETR-fr test set. For1242

both Mistral-7B and LlaMA-3-8B, RAG with task1243

combinations (E, E+O, E+W, E+O+W) achieves1244

substantial boosts in ROUGE and SARI scores. No-1245

tably, RAG yields the highest performance in most1246

individual metrics under the ICL category.1247

Parameter-Efficient Fine-Tuning (PEFT)1248

PEFT models significantly outperform ICL1249

approaches across the board. Both LoRA and1250

MTL-LoRA configurations demonstrate strong1251

improvements in fluency, simplicity, and infor-1252

mativeness. LlaMA-3-8B-MTL-LoRA shows the1253

best overall performance, especially on metrics1254

like SARI, BERT-F1, and Comp. ratio, reflecting1255

its superior simplification quality and semantic1256

fidelity. Multi-task LoRA (E+W) achieves the1257

highest SARI (44.67), BERT-F1 (74.05), and com-1258

pression ratio (56.11), indicating a well-balanced1259

simplification that maintains semantic consistency1260

while significantly reducing text length.1261

Out-of-Domain (ETR-fr-politic) Performance1262

The performance gap between ICL and PEFT nar-1263

rows slightly on the political subset, but PEFT mod-1264

els still maintain a strong advantage. RAG methods1265

maintain their relative lead among ICL approaches,1266

especially when enhanced with additional context1267

(E+W and E+O+W), suggesting their better gener-1268

alization ability. Interestingly, Zero-Shot LlaMA-1269

3-8B achieves the highest novelty score (55.73),1270

which may reflect increased variability but could1271

also indicate decreased fidelity.1272

C.2 Human Evaluation 1273

We conduct a comprehensive human evaluation 1274

on two datasets, ETR-fr and ETR-fr-politic, as- 1275

sessing the generated explanations along dimen- 1276

sions guided by the ETR framework and general 1277

language quality metrics. Results are reported in 1278

Tables 7 and 8. 1279

Explanation Criteria (ETR dimensions). On 1280

ETR-fr, all methods exhibit strong performance 1281

across information selection, word selection, and 1282

sentece construction construction (scores >0.88), 1283

with the LoRA method slightly outperforming oth- 1284

ers in word selection (0.94) and overall global qual- 1285

ity (0.91). Illustration quality, however, remains 1286

a consistent weakness across methods, with high 1287

variance indicating instability or inconsistent strat- 1288

egy for visual grounding. 1289

For the more challenging ETR-fr-politic, over- 1290

all scores decrease across all explanation criteria. 1291

Notably, RAG with joint training on E and W 1292

achieves the best global score (0.80), outperform- 1293

ing LoRA and MTL-LoRA. While RAG maintains 1294

high scores in information selection and sentece 1295

construction illustration scores remain low across 1296

the board, underscoring the difficulty of generat- 1297

ing coherent examples or analogies in politically 1298

sensitive domains. 1299

General Language Quality. As shown in Ta- 1300

ble 8, RAG again performs competitively on both 1301

datasets. On ETR-fr, it achieves the highest rat- 1302

ings in grammar and coherence (both > 4.4), with 1303

strong fluency and relevance. MTL-LoRA slightly 1304

improves grammaticality, but this does not translate 1305

to gains in perceived overall quality. 1306

In the political domain, quality metrics decline, 1307

consistent with the ETR scores. RAG trained on 1308

E and W maintains robust fluency and coherence, 1309

achieving the best overall quality score (3.76). In 1310

contrast, MTL-LoRA’s performance degrades no- 1311

tably in global quality (2.62), despite competitive 1312

scores in coherence and relevance, suggesting po- 1313

tential trade-offs introduced by multitask learning 1314

in more nuanced domains. 1315

Summary. These results highlight RAG’s robust- 1316

ness across both explanation and linguistic quality 1317

metrics, particularly when trained jointly on E and 1318

W. The consistent underperformance in illustration 1319

generation across all models indicates a need for 1320

future work on grounded or multimodal explana- 1321

tion strategies, especially in high-stakes domains 1322
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Method Task R-1 R-2 R-L SARI BERT-F1 SRB Comp. ratio Novelty

In Context Learning
M

is
tr

al
-7

B

Zero-Shot E 23.96±0.04 7.08±0.01 16.25±0.03 37.07±0.00 69.75±0.00 29.17±0.03 −64.14±0.00 35.70±0.00

CoT E 23.53±0.06 7.23±0.01 16.20±0.04 37.39±0.00 68.80±0.00 29.12±0.05 −60.53±0.00 36.09±0.00

RAG E 31.91±0.66 10.77±0.65 22.54±0.75 40.14±0.57 72.17±0.30 36.08±0.80 45.23±1.17 27.27±0.58

E,O 30.36±0.47 9.61±0.34 21.80±0.30 39.49±0.12 71.07±0.18 35.19±0.29 47.99±1.91 26.80±0.84

E,W 30.46±0.48 9.93±0.17 21.72±0.34 38.76±0.43 71.57±0.14 34.96±0.34 35.08±2.13 23.32±0.31

E,O,W 29.85±0.04 9.58±0.03 21.55±0.05 39.53±0.00 71.06±0.00 34.98±0.05 46.42±0.00 25.85±0.00

L
la

M
A

-3
-8

B Zero-Shot E 24.90±0.20 8.16±0.25 17.10±0.38 38.48±0.38 70.15±0.17 30.38±0.48 −22.52±2.47 39.13±0.92

CoT E 27.23±0.91 8.81±0.21 18.34±0.57 38.15±0.23 70.79±0.52 31.62±0.65 7.59±4.82 30.33±1.75

RAG E 33.05±0.72 12.23±0.44 23.77±0.68 41.66±0.45 72.59±0.38 37.57±0.70 43.36±2.62 27.06±0.29

E,O 30.77±0.35 10.85±0.31 22.10±0.35 39.84±0.22 71.13±0.17 35.54±0.32 24.36±30.13 25.02±1.84

E,W 32.14±0.56 11.70±0.34 23.11±0.19 40.49±0.32 71.88±0.18 36.64±0.24 42.30±1.59 26.70±0.92

E,O,W 30.53±0.74 10.67±0.45 21.65±0.71 39.24±0.20 71.21±0.26 35.00±0.67 31.18±4.94 24.08±1.37

PEFT

M
is

tr
al

-7
B LoRA E 32.45±0.03 12.38±0.02 23.99±0.05 42.09±0.00 73.56±0.00 37.95±0.04 44.42±0.00 18.35±0.00

MTL-LoRA E,O 32.62±0.04 12.73±0.01 24.29±0.04 41.95±0.00 73.52±0.00 38.16±0.03 53.48±0.00 24.17±0.00

E,W 32.68±0.05 12.91±0.01 24.25±0.03 42.53±0.00 73.90±0.00 38.33±0.03 53.62±0.00 24.99±0.00

E,O,W 33.60±0.05 12.81±0.05 24.89±0.04 42.25±0.00 73.62±0.00 38.74±0.03 48.93±0.00 23.38±0.00

L
la

M
A

-3
-8

B LoRA E 31.80±0.03 13.16±0.09 24.92±0.18 42.15±0.01 72.84±0.17 38.67±0.17 50.50±0.28 18.37±0.88

MTL-LoRA E,O 33.38±0.06 13.16±0.05 24.20±0.04 43.06±0.01 73.88±0.01 38.42±0.03 50.90±0.40 23.25±0.17

E,W 32.54±0.05 13.50±0.06 25.01±0.06 44.67±0.00 74.05±0.00 39.54±0.05 56.11±0.00 33.05±0.00

E,O,W 32.78±0.02 13.67±0.03 25.55±0.16 43.58±0.10 73.33±0.09 39.62±0.09 52.66±1.00 24.27±0.21

(a) Performance on ETR-fr test set.

Method Task R-1 R-2 R-L SARI BERT-F1 SRB Comp. ratio Novelty

In Context Learning

M
is

tr
al

-7
B

Zero-Shot E 28.42±0.12 10.98±0.07 19.31±0.03 39.87±0.00 68.10±0.00 32.77±0.03 −309.24±0.00 48.37±0.00

CoT E 29.80±0.03 11.21±0.05 19.88±0.08 39.62±0.00 69.40±0.00 33.35±0.07 −261.30±0.00 50.85±0.00

RAG E 40.19±0.63 16.07±0.60 28.25±0.31 41.40±0.46 73.01±0.34 40.96±0.35 9.00±3.96 23.21±2.39

E,O 37.49±0.61 14.50±0.35 26.38±0.69 39.46±0.35 72.27±0.26 38.92±0.58 14.26±2.65 17.57±1.61

E,W 39.65±0.19 15.36±0.35 27.85±0.38 40.08±0.36 72.35±0.29 40.17±0.23 8.72±1.73 17.47±1.68

E,O,W 39.14±0.04 15.96±0.09 28.40±0.11 40.74±0.00 72.87±0.00 40.82±0.07 14.63±0.00 18.33±0.00

L
la

M
A

-3
-8

B Zero-Shot E 29.10±0.40 10.68±0.35 18.70±0.41 40.68±0.48 68.65±0.11 32.39±0.51 −178.23±7.77 55.73±1.07

CoT E 31.15±0.99 10.47±0.81 19.54±0.65 39.80±0.63 69.66±0.43 33.09±0.74 −70.57±8.09 47.80±1.71

RAG E 37.68±0.53 14.46±0.65 26.09±0.60 42.05±0.90 73.01±0.20 39.57±0.41 1.47±6.45 41.78±0.86

E,O 37.43±2.11 14.28±0.89 25.92±1.42 40.95±0.90 72.41±0.61 39.05±1.37 −7.72±14.32 31.85±1.69

E,W 39.99±1.10 16.27±0.61 27.84±1.10 42.41±0.43 73.83±0.47 41.06±0.96 13.46±2.37 36.72±2.01

E,O,W 38.33±1.46 15.12±1.08 26.89±1.10 41.08±0.94 72.86±0.51 39.86±1.13 6.34±7.54 29.92±0.48

PEFT

M
is

tr
al

-7
B LoRA E 35.10±0.04 12.28±0.04 25.97±0.03 38.04±0.00 70.28±0.00 37.96±0.02 21.55±0.00 11.79±0.00

MTL-LoRA E,O 29.29±0.07 11.02±0.01 21.90±0.04 38.68±0.00 69.22±0.00 34.90±0.03 36.68±0.00 40.29±0.00

E,W 34.32±0.06 12.60±0.07 24.87±0.11 38.72±0.00 70.54±0.00 37.40±0.09 22.51±0.00 19.10±0.00

E,O,W 36.34±0.10 13.24±0.02 26.29±0.08 38.39±0.00 70.97±0.00 38.37±0.06 18.33±0.00 10.55±0.00

L
la

M
A

-3
-8

B LoRA E 34.65±1.43 13.34±0.85 26.40±0.95 39.70±0.35 70.73±0.99 38.85±0.90 4.67±2.97 16.19±0.11

MTL-LoRA E,O 32.17±0.52 11.94±0.23 23.98±0.22 39.35±0.44 69.49±0.21 36.81±0.06 17.14±0.98 20.01±0.62

E,W 37.58±0.12 13.68±0.05 27.02±0.03 38.26±0.00 71.30±0.00 38.88±0.02 8.45±0.00 6.44±0.00

E,O,W 36.38±0.22 13.72±0.07 25.75±0.23 36.19±0.00 70.94±0.04 37.24±0.17 8.76±0.13 2.04±0.05

(b) Performance on ETR-fr-politic test set.

Table 6: Performance comparison across prompting methods (Zero-shot, Chain-of-Thought, RAG) and
fine-tuning strategies (LoRA, Multi-task LoRA) on three tasks: ETR-fr (E), OrangeSum (O) and WikiLarge FR
(W), using Mistral-7B and LlaMA-3-8B models. Metrics: ROUGE-1/2/L, SARI, BERTScore-F1, composite SRB
score, compression ratio, and lexical novelty. Results are presented as mean ± standard deviation. Best overall
results are shown in bold, and best results for each model are underlined.

like politics.1323

D Human Eval Questions1324

Table 9 presents a comprehensive set of human eval-1325

uation questions based on the ETR European guide-1326

lines, organized into four key categories: Infor-1327

mation Choice, Sentence Construction and Word 1328

Choice, Illustrations, and Overall Quality. Each 1329

category includes multiple criteria designed to as- 1330

sess the clarity, structure, and accessibility of in- 1331

formation provided in a text. For example, the 1332

Information Choice section evaluates whether es- 1333
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Method Task Informations Words Sentences Illustrations Global

ETR-fr

L
la

M
A

-3
-8

B LoRA E 0.89±0.08 0.94±0.04 0.91±0.05 0.38±0.40 0.91±0.04

MTL-LoRA E,O,W 0.88±0.06 0.89±0.07 0.93±0.04 0.50±0.65 0.89±0.04

RAG E 0.88±0.07 0.92±0.05 0.89±0.04 0.40±0.52 0.89±0.04
E,W 0.91±0.05 0.88±0.07 0.92±0.04 0.50±0.44 0.89±0.04

ETR-fr-politic

L
la

M
A

-3
-8

B LoRA E 0.77±0.14 0.66±0.11 0.79±0.11 0.15±0.24 0.73±0.08

MTL-LoRA E,O,W 0.69±0.13 0.59±0.11 0.65±0.12 0.27±0.27 0.64±0.08

RAG E 0.82±0.09 0.74±0.10 0.86±0.07 0.10±0.23 0.78±0.05
E,W 0.87±0.06 0.75±0.09 0.85±0.08 0.40±0.37 0.80±0.06

Table 7: Human evaluation of generations based on ETR guideline criteria, comparing various methods on the
ETR-fr and ETR-fr-politic test sets using their optimal ICL and MTL configurations. Each method is evaluated along
four explanation dimensions: Informations (information selection), Words (lexical choice), Sentences (sentence
construction), Illustrations, and Global representing the overall quality score. Training tasks are abbreviated as E
(ETR-fr), O (OrangeSum), and W (WikiLarge FR). Reported scores are means with 95% confidence intervals.

Method Task Fluency Grammar Relevance Coherence Overall Quality

ETR-fr

L
la

M
A

-3
-8

B LoRA E 4.29±0.26 4.57±0.23 3.95±0.39 4.24±0.32 3.95±0.37

MTL-LoRA E,O,W 4.33±0.33 4.67±0.22 4.10±0.38 4.14±0.39 3.95±0.44

RAG E 4.43±0.27 4.71±0.21 4.24±0.38 4.43±0.34 4.24±0.35
E,W 4.43±0.23 4.57±0.23 4.43±0.34 4.52±0.27 3.95±0.34

ETR-fr-politic

L
la

M
A

-3
-8

B LoRA E 3.90±0.52 4.43±0.42 4.24±0.43 4.24±0.45 3.14±0.62

MTL-LoRA E,O,W 3.81±0.45 4.48±0.34 4.40±0.38 4.52±0.23 2.62±0.55

RAG E 4.24±0.38 4.48±0.34 4.10±0.35 4.33±0.30 3.45±0.44
E,W 4.33±0.33 4.57±0.23 4.29±0.29 4.43±0.27 3.76±0.40

Table 8: Human ratings of fluency, grammar, relevance, coherence, and overall quality for different methods
evaluated on the ETR-fr and ETR-fr-politic test sets, using their optimal ICL and MTL configurations. Training
tasks are abbreviated as E (ETR-fr), O (OrangeSum), and W (WikiLarge FR). Scores are reported as means with
95% confidence intervals.

sential information is prioritized, logically ordered,1334

and clearly grouped. Sentence Construction and1335

Word Choice emphasizes linguistic simplicity, clar-1336

ity, and consistency, discouraging complex vocabu-1337

lary, metaphors, or abbreviations unless adequately1338

explained. The Illustrations section assesses the1339

use of relatable examples to clarify abstract ideas,1340

while the Quality section covers fluency, grammar,1341

factual correctness, coherence, and other aspects1342

of textual integrity. These criteria serve as a struc-1343

tured framework to ensure texts are understandable,1344

reader-friendly, and fit for purpose.1345
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Information Choice Code Description

Information Choice

CI3 Providing too much information can create confusion. Only im-
portant information should be given. Is this criterion met?

CI4 Are the pieces of information placed in an order that is easy to
follow and understand?

CI5 Is the main information easy to find?
CI6 Are pieces of information about the same topic grouped together?
CI8 Are important pieces of information repeated?

Sentence construction
and word choice

CPM1 Are the sentences short?
CPM2 Are the words easy to understand?
CPM3 Are difficult words clearly explained when you use them?
CPM4 Are difficult words explained more than once?
CPM5 Is the language used the most suitable for the people who will use

the information?
CPM6 Is the same word used throughout the document to describe the

same thing?
CPM7 Difficult and abstract ideas like metaphors should not be used. Is

this criterion met?
CPM8 Uncommon words in a foreign language should not be used. Is

this criterion met?
CPM9 Contracted words, like text messaging slang, should not be used.

Is this criterion met?
CPM10 Does the author address directly the people for whom the informa-

tion is intended?
CPM11 Can you easily identify to whom or what the pronouns correspond?
CPM12 Are positive sentences rather than negative ones used whenever

possible?
CPM13 Is the active voice used instead of the passive voice whenever

possible?
CPM14 Is the punctuation simple?
CPM15 Are bullets or numbers used instead of lists of words separated by

commas?
CPM16 Are numbers written in digits (1, 2, 3) rather than words?
CPM17 Acronyms should be avoided or explained when used. Is this

criterion met?
CPM18 Abbreviations should not be used. Is this criterion met?
CPM19 Are dates written out in full?
CPM20 The use of percentages or large numbers should be limited and

always explained. Is this criterion met?
CPM21 Special characters should not be used. Is this criterion met?

Illustrations
I1 Are there examples to illustrate complex ideas?
I2 Are examples, as much as possible, drawn from everyday life?

Quality

CA1 Language fluency
CA2 Grammar / Spelling
CA3 Factual accuracy
CA4 Textual coherence
CA5 Presence of copies from the original text?
CA6 Presence of chaotic repetitions?
CA7 Presence of hallucinations?
CA8 Overall perceived quality

Table 9: Evaluation criteria, extracted from ETR European guidelines, for information clarity, sentence construction,
illustrations, and quality.
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Rewrite this text by following the principles of clarity and accessibility below:
– Provide only essential information. Avoid information overload.
– Present the information in a logical and easy-to-follow order.
– Highlight the main message right from the start.
– Group related information together.
– Repeat important information if it helps understanding.
– Use short and simple sentences.
– Choose easy-to-understand words.
– Clearly explain difficult words, and repeat the explanation if needed.
– Use language appropriate for the intended audience.
– Use the same word to refer to the same thing throughout the text.
– Avoid abstract ideas, metaphors, and complex comparisons.
– Don’t use foreign or obscure words without explanation.
– Avoid contractions and texting-style language.
– Speak directly to the reader in a clear and accessible way.
– Ensure that pronouns are always clear and unambiguous.
– Prefer positive phrasing over negative.
– Use the active voice as much as possible.
– Choose simple punctuation.
– Use bullet points or numbers for lists, not commas.
– Write numbers as digits (e.g., 1, 2, 3), not in words.
– Explain acronyms the first time they appear.
– Don’t use unexplained abbreviations.
– Write dates out in full for better clarity.
– Limit use of percentages or large numbers, and explain them simply.
– Don’t use unnecessary special characters.
– Use concrete examples to explain complex ideas.
– Prefer examples from everyday life.
###Input: <input_text>
###Output:

(a) Zero Shot Prompt
Rewrite this text by following the principles of clarity and accessibility below:
– Provide only essential information. Avoid information overload.
– Present the information in a logical and easy-to-follow order.
– Highlight the main message right from the start.
– Group related information together.
– Repeat important information if it helps understanding.
– Use short and simple sentences.
– Choose easy-to-understand words.
– Clearly explain difficult words, and repeat the explanation if needed.
– Use language appropriate for the intended audience.
– Use the same word to refer to the same thing throughout the text.
– Avoid abstract ideas, metaphors, and complex comparisons.
– Don’t use foreign or obscure words without explanation.
– Avoid contractions and texting-style language.
– Speak directly to the reader in a clear and accessible way.
– Ensure that pronouns are always clear and unambiguous.
– Prefer positive phrasing over negative.
– Use the active voice as much as possible.
– Choose simple punctuation.
– Use bullet points or numbers for lists, not commas.
– Write numbers as digits (e.g., 1, 2, 3), not in words.
– Explain acronyms the first time they appear.
– Don’t use unexplained abbreviations.
– Write dates out in full for better clarity.
– Limit use of percentages or large numbers, and explain them simply.
– Don’t use unnecessary special characters.
– Use concrete examples to explain complex ideas.
– Prefer examples from everyday life.
###Exemple 1
Task: <task_name>
Input: <example_input>
Output: <example_output>
...
Complete the following example:
Task: ETR
Input: <input_text>
Output:

(b) Few Shot Prompt
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1. Analyze the text to identify what can be simplified or clarified.
2. Briefly note the points that need improvement (syntax, vocabulary, structure...).
3. Rewrite the text by applying the following guidelines:
– Provide only essential information. Avoid information overload.
– Present the information in a logical and easy-to-follow order.
– Highlight the main message right from the start.
– Group related information together.
– Repeat important information if it helps understanding.
– Use short and simple sentences.
– Choose easy-to-understand words.
– Clearly explain difficult words, and repeat the explanation if needed.
– Use language appropriate for the intended audience.
– Use the same word to refer to the same thing throughout the text.
– Avoid abstract ideas, metaphors, and complex comparisons.
– Don’t use foreign or obscure words without explanation.
– Avoid contractions and texting-style language.
– Speak directly to the reader in a clear and accessible way.
– Ensure that pronouns are always clear and unambiguous.
– Prefer positive phrasing over negative.
– Use the active voice as much as possible.
– Choose simple punctuation.
– Use bullet points or numbers for lists, not commas.
– Write numbers as digits (e.g., 1, 2, 3), not in words.
– Explain acronyms the first time they appear.
– Don’t use unexplained abbreviations.
– Write dates out in full for better clarity.
– Limit use of percentages or large numbers, and explain them simply.
– Don’t use unnecessary special characters.
– Use concrete examples to explain complex ideas.
– Prefer examples from everyday life.
Start by reasoning step by step, then finish by providing the final version.
###Input: <input_text>
###Output:

(c) Chain of Thought Prompt

Figure 5: Zero Shot, Chain of Thought and Few Shot Prompts
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