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Abstract

Self-supervised learning is a powerful way to learn useful representations from
natural data. It has also been suggested as one possible means of building visual
representation in humans, but the specific objective and algorithm are unknown.
Currently, most self-supervised methods encourage the system to learn an invariant
representation of different transformations of the same image in contrast to those of
other images. However, such transformations are generally non-biologically plausi-
ble, and often consist of contrived perceptual schemes such as random cropping and
color jittering. In this paper, we attempt to reverse-engineer these augmentations
to be more biologically or perceptually plausible while still conferring the same
benefits for encouraging robust representation. Critically, we find that random
cropping can be substituted by cortical magnification, and saccade-like sampling
of the image could also assist the representation learning. The feasibility of these
transformations suggests a potential way that biological visual systems could im-
plement self-supervision. Further, they break the widely accepted spatially-uniform
processing assumption used in many computer vision algorithms, suggesting a role
for spatially-adaptive computation in humans and machines alike. Our code and
demo can be found here (Wang, 2021).

1 Introduction

It has long been suggested that the human visual system is tuned not solely via supervised learning,
but also with the assistance of innate inductive biases and more recently self-supervised learning
schemes. If so, how might we approximate the power of self-supervised learning in biological vision?
A natural place to begin is with the recent progress in self-supervised learning in machine vision.

Recent years have seen great advances in self-supervised learning systems (Chen et al., 2020a; Grill
et al., 2020) and their application to machine (Geirhos et al., 2020) and human vision (Konkle &
Alvarez, 2020; Orhan et al., 2020b) alike. One common theme in these methods are the learning
pressures that push the learned representations to be invariant to certain augmentations. These
transformations are manually picked, and their effects differ substantially in producing a robust visual
representation(Chen et al., 2020a). Random crop and color jittering have been shown empirically to
be good transformations in the sense that using them within a contrastive framework yields both high
in-distribution generalization and robustness to common corruptions (Hendrycks et al., 2019; Naseer
et al., 2020).
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The triumph of the general principle of learning invariant representation and the success of the
specific transforms of random crop and color jittering suggest that biological visual system may
have also evolved to leverage the same objective for self-supervised learning. In other words, to
generate invariant representations against augmentations may be one goal our visual system uses to
train itself in order to learn object recognition. If so, what could be the augmentations the visual
system learns to be invariant against? Two biological processes appear to be relevant: 1) the spatially-
varying resolution (foveation) at the retina (Anstis, 1974); and 2) the active sampling procedure
(saccades) which happen naturally three times per second (Eckstein, 2011; Traver & Bernardino,
2010). The combination of the two processes creates a frequently changing retinal input to our visual
system, while our perception of the world remains stable. It’s a reasonable objective to encourage
the high level visual representation to remain stable across views of the environment. Indeed, there
is neurobiological evidence that higher visual cortices have longer time constants than lower visual
cortex, suggesting a more stable representation of natural input (Chaudhuri et al., 2015). Thus we
hypothesize that these foveation-based transformations and saccade-like active sampling mechanisms
may be the natural augmentations that biological visual systems learn to be invariant against, forming
a counterpart to the random crops in the self-supervised learning framework for computer vision.

Indeed, recent work has suggested a functional goal of the adaptive multi-resolution nature of the
primate retina – mainly tailored towards achieving scale invariance (Poggio et al., 2014; Han et al.,
2020), adversarial robustness (Luo et al., 2015; Reddy et al., 2020; Jonnalagadda et al., 2021) and
o.o.d. generalization (Deza & Konkle, 2020). Given these hints of a representational goal of foveation
– beyond computational efficiency – we hypothesize that it could possibly give rise to similar or
better performance in terms of generalization than its non-biologically plausible counterparts, random
cropping and color jittering, within a self-supervised framework.

In this work, we work to test these natural augmentations computationally, i.e. to jointly implement
foveation and saccades as augmentations under a self-supervised learning framework, and then
compare it against their computer vision counter-part augmentations (e.g. random crops). Altogether,
this work provides a proof of concepts for whether it’s possible to leverage these natural augmentations
in the service of learning robust visual representations without semantic labels.

2 Methods

Figure 1: Foveation Transform. The upper row shows foveation as magnification, which models
the cortical representation of the foveated image. We implemented this operation by sampling from a
warped grid around the fixation point. The lower row shows foveation as adaptive blur, which models
the perceptual experience of the foveated imagae. It’s implemented by blending images blurred by
different kernels with different masks.

Our natural augmentation pipeline consists of a saccade (selection of fixation point) and a foveation
transform (emphasizing visual information around the fixation).

We implement saccades as sampling multiple fixation points on the same image. These fixation
points p = (x, y) are generated by i.i.d. sampling either from a uniform distribution over the center
part of the image, or from a gaze probability distribution over the image. Conditional probability
between fixation points are not considered in this work, but worth development in the future. In our
implementation, we pre-computed the saliency maps S of all images with the FastSal model (Hu
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& McGuinness, 2021) pre-trained on the SALICON dataset (Jiang et al., 2015). This saliency map
is interpreted as the unnormalized log-density of the gaze probability P [x, y] on the image. We
continuously tune the effect of the saliency information by changing a "temperature" parameter T of
the sampling density.

P [x, y] ∝ exp(
S[x, y]−max(S)

T
)

Higher temperature will tune down the effect of saliency and approximate a uniform distribution
over the image, closer to the sampler of the original random crop. Lower temperature will amplify
the effect of saliency, resulting in a focused, low-entropy sampling of highly salient parts of the
object (Fig.2E). Note that given the specification of FastSal model, T = 1 shall give back the fixation
density distribution that is similar to the training dataset.

We now move to foveation, which we define as spatially-adaptive (non-uniform) processing of the
image (Eckstein, 2011; Bajcsy et al., 2018). We identified at least two approaches to implement
foveation as a transform of the images, one inspired by our perceptual experience of foveation, the
other inspired by the structure of the visual cortical map (Fig.1). We compared both of them in our
experiments.

Foveation as Spatial-Varying Blur This approach is inspired by our visual perception of the
world: when we fixate our gaze, our perception of the visual periphery seems lower resolution than
the central field of view. Moreover, the whole scene seems stable regardless of the shift of the fixation
point. To approximate this phenomena, people have used spatial varying blur (Geisler & Perry, 1998;
Pramod et al., 2018; Malkin et al., 2020) or texture-based distortions (Freeman & Simoncelli, 2011;
Rosenholtz et al., 2012; Deza et al., 2017; Wallis et al., 2019; Kaplanyan et al., 2019) to transform an
image such that it matches our perception of it. The extent of distortion or Gaussian blur changes as a
function of the eccentricity.

We implemented this foveation transform F as classically done in Geisler & Perry (1998), and
also Pramod et al. (2018); Malkin et al. (2020): Given a fixation point, the pixels in the image are
divided into belts of similar eccentricity, represented by masks Mi (Deza & Eckstein, 2016); and the
image is convolved with Gaussian kernels of different standard deviation σi, corresponding to the
degree of blur at different eccentricity; finally, these blurred images I ∗K(σi) are blended into one
with the belt-shape masks (Fig.1).

F(I) =
Nb∑
i

Mi · [I ∗K(σi)],

Nb∑
i

Mi[i, j] = 1

This was implemented using simple operations in computer vision (convolution, pixel-wise multi-
plication and addition) such that it could be an efficient step in the augmentation pipeline during
training. The standard deviation of the blur kernel is a linear function of the eccentricity σi = Kei;
additionally, the pixels within eccentricity eo are not blurred, corresponding to foveal vision. So,
there are two parameters: the size of the foveal area (ratio of unblurred pixels) fov area, and the
linear coefficient K of kernel size with respect to eccentricity. For more details, see Sec.A.1.

Foveation as Cortical Magnification This approach is inspired by the structure of retinotopic
maps on the visual cortex esp. primary visual cortex: due to the difference density of retina ganglion
cells in central and peripheral vision(Wässle et al., 1989), the cortical area corresponding to the unit
area of retinal image varies as a function of eccentricity(Van Essen et al., 1984). Thus, we can think
of the image in cortical coordinates as a warped version of the corresponding retinal image (Fig.1).
When our eyes move around on a scene, the cortical "image" will shift with our gaze Yates et al.
(2021) and magnify different parts depending on the fixation points; and the viewing distance will
affect the magnification factor. If we assume the typical CNN as a model of cortical visual processing,
then the cortical magnified views of an image is a reasonable transformation to use in representation
learning (Bashivan et al., 2019).

Classically, the cortical magnification factor is an inverse function of the eccentricity, (Harvey &
Dumoulin, 2011). Additionally, here we assume the CMF is constant close to fovea since the data
there is usually lacking.

CMF (r) =

{
C r < rfov
C(r+rfov)

r+K r ≥ rfov
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Here, we transform the retinal eccentricity to cortical radial distance by integrating the reciprocal of
the cortical magnification function. Thus, we get the retinal eccentricity e(r) as a piecewise linear
(foveal) or quadratic (peripheral) function of the cortical radius r. For further analysis of this function
and the fitting of human cortical retinotopy data, see Sec. A.2 and Fig. A.1.

e(r) =

∫ r

0

1

CMF (ρ)
dρ =

1

C

{
r; r < rfov

(r+K)2

2(rfov+K) +
rfov−K

2 ; r ≥ rfov

We assume an isotropic transform from retinal images to cortical images, so we can use this radial
transform to build the 2d change of coordinates (r, θ) 7→ (e(r), θ). We note that the constant 1/C
controls the scaling of the map, which affects the image area covered by the sampling grid. Thus we
use the cover ratio as the control parameter in experiments. Besides, parameter rfov controls the
area of linear sampling while K controls the degree of distortion in the periphery, which are manually
tuned and fixed (rfov = 30,K = 20).

3 Experiments and Results

crop fov blur fov area train test SimCLR
X∗ X 86.6 80.5 78.1
X† X 86.5 80.8 74.3
X X 86.6 80.7 79.2
X X [0.01, 0.1] 84.4 78.2 78.6
X X [0.01, 0.5] 84.1 78.3 78.9
X X [0.1, 0.5] 83.6 77.8 79.0

X [0.01, 0.1] 40.4 38.4 100.0
X [0.01, 0.5] 39.6 36.8 100.0
X [0.1, 0.5] 41.0 39.0 100.0

X 38.0 35.0 99.7

Table 1: Performance of Foveation as Blur Augmentation.
Crop denotes the random resized crop augmentation guided
by pre-computed saliency maps; with the exceptions: ∗ used
the original crop, † used flat saliency map. Fov refers to
foveation as blur transform. Train, test accuracy at 96 epochs
and the exponential moving averaged (α = 0.6) SimCLR
objective accuracy at 99 epochs are reported, same below.

crop mag blur cover ratio train test SimCLR
X X 85.2 79.7 84.8

X [0.01, 0.35] 84.4 79.6 59.4
X [0.05, 0.35] 85.5 79.7 74.8
X [0.05, 0.7] 81.7 76.4 86.2
X [0.01, 1.5] 78.6 72.6 89.6

Table 2: Performance of Foveation as Magnification Aug-
mentation. Here crop denotes the original random resized
crop. Magn denotes the foveation as magnification transform.
Statistics of row 1 and 3 are averaged across 12 runs while
the rest are averaged across 2 runs.

We adapted the framework of Sim-
CLRv2 (Chen et al., 2020b), and
used the STL-10 dataset (96 pixel
resolution) as our test bed to evalu-
ate the effectiveness of the proposed
transforms. ResNet18 models (He
et al., 2016) were trained with the de-
fault settings of SimCLR (see A.4)
on the unlabeled set (100K images)
of the STL-10 dataset. We evaluated
the quality of representation by lin-
ear probes: For every 5 epochs, we
froze the model and trained a linear
classifier from its representation vec-
tor to the labels with the training set
(500 images× 10 classes), and then
evaluated this linear classifier on the
testing set (800 images× 10 classes).
The training and test set accuracy
and the evolution of each across the
training procedure are reported as our
major evaluation criteria. (Note that
on this dataset, linear evaluation of
a random visual representation (ran-
domly initialized ResNet18) can al-
ready achieve around 50% training
accuracy and 39% test accuracy.) We
also take note of another statistic, top-
1 SimCLR accuracy, the accuracy
of the self-supervised learning task.
This is the success rate of distinguish-
ing views of the same image from those of different images; in our setting when batch size is 256 this
is the accuracy of a 511-way classification. We interpret this statistic as reflecting the intrinsic diffi-
culty of the augmentation: the lower the SimCLR accuracy, the more challenging the augmentation
is.

In the following experiments, we kept the common augmentations in place: random horizontal flip,
random color jittering, and randomly turning images into gray scale. With blur, we refer to the spatial
uniform Gaussian blur of the image.

Experiment 1: Foveation as Adaptive Blur First, we tested if the foveation as adaptive blur could
substitute random crops as a natural alternative. In this experiment, fixation points were uniformly
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sampled. We found that, using either foveation or uniform blur without random crop, the SimCLR
training failed: the final test accuracy (36.8-39.0%) is close to or even worse than that of random
networks (39.0%) (Tab. 1). Using foveation in addition to random crop will result in similar and
or worse representation quality (77.8-78.3%) as the baseline using blur (80.6%). Note that without
random crop, SimCLR accuracy is saturated. We found that after a few epochs this saturated objective
no longer guides the learning of representation ; in other words, with variations only in color and
resolution but not space, learning the equivalence of different views of same image is trivial for a
CNN which is built to learn local image features. In this regard, “moving” the image with respect to
the field of view of the CNN seems necessary towards learning a good representation.

Experiment 2: Foveation as Magnification Next, we tested if foveation as magnification could
replace random crop. We found that the magnification transform could indeed substitute the effects
of random crop, with all other augmentations in place. We performed rough parameter tuning
for the cortical magnification transform, and picked the best performing parameter (fov = 30,
K = 20). We replicated the magnification transform and the random crop baseline N = 12 times
and compared their representation quality. The test set accuracy for magnification transforms is
79.65 ± 0.37% (mean±std) while that for the random crop group is 79.72 ± 0.23%. The 95%
confidence interval of their difference is [-0.33, 0.17]%, which is not a significant difference in
terms of overall accuracy, suggesting proper magnification is a biologically-plausible alternative to
the random crop. Further, we conducted systematic parameter sweep and examined how the shape
parameters affect the representation quality in Sec.A.3. We found that a larger K and fov value
which created a less warped image, generally improved the learned representation. Besides, the cover
ratio of range [0.05, 0.35] consistently outperformed the other three ranges, for all the K, fov values
(Tab.2,A.1). We reasoned that the image patches of this size do not overlap unreasonably, so the
SimCLR task remains challenging and instructive; these images patches are also not too small, so
they are still informative of the object category (see discussion in Sec.A.3).
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Figure 2: Effect of sampling temperature on training and feature
quality. For random crops with different temperature (Exp 3), A. Lin-
ear evaluation of the representation quality as a function of temperature,
uniform sampling baselines are shown in dashed lines; B. Final accuracy
for SimCLR objective as a function of temperature. In the same format,
C.D. show the effect of temperature, for foveation as magnification
(Exp 4). E. Sample from STL-10, its saliency map and the fixation
densities corresponding to different temperatures.

Experiment 3: Ran-
dom Crops Guided by
Saliency Maps After
finding the biological
plausible equivalent of
random crops, we moved
on to test the effect
of different models of
saccade, i.e. the sampling
distribution of the center
of views. Specifically,
we manipulated the tem-
perature of the sampling,
which controls the entropy
of the fixation distribution.
We found that with lower
temperature the accuracy
for SimCLR objective
can also saturate (97.4%
for 0.01 temperature or
93.9% for 0.1 tempera-
ture, Fig.2A) However,
the linear evaluated accu-
racy either on training set
or test set decreased as the
temperature became too
low (Fig.2B). In the other
extreme, high enough
temperature will eliminate the effect of saliency map, and bring the test accuracy and SimCLR
accuracy closer to the uniform sampling baseline. In between, there was a sweet spot at which the
saliency guided sampling could improve the quality of learned representation: when temperature was
in the range [0.3, 4.5], the test accuracy increased about 0.3%-0.7%.
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Experiment 4: Foveation as Magnification Guided by Saliency Maps Similar to experiment 3,
we also performed saliency guided sampling for the magnification transform and examined the effect
of sampling temperature. The results showed a similar trend as that in experiment 3 (Fig.2 C,D):
sampling temperature has a U-shaped effect on the quality of learnt representation, with the optimal
temperature falling in the range [0.3, 1.5].

4 Discussion

Our results showed that foveation as spatially varying blur of the image per se is not a particularly
strong mode of data augmentation, and its effect is comparable to uniform Gaussian blurring of the
image. Reframing random crop as cortical magnification, however, provides both a biologically
plausible method of data augmentation and similarly robust benefits to training. Furthermore,
random sampling of the fixation points (via crops or cortical magnification; Exp 3, 4) based on
pre-trained saliency information has a small but reasonable effect on the learned representation.
Overall, finding these pattern of results are encouraging despite the lack of temporal dynamics (Akbas
& Eckstein, 2017), inhibition-of-return or actual human fixation data (Koehler et al., 2014). Broadly,
we think this computational framework should set the stage to further incorporate these and other
factors in additional analyses where perceptual dimensions such as adversarial robustness and o.o.d.
generalization can be tested.

The difference between foveation as blur and foveation as cortical magnification is intriguing. For
self-supervised learning, it showed the importance of learning similar representations for spatially
varying views (which was lacking in the foveated blur). In the parameter sweep of magnification
transform (Tab. A.1), we further showed the importance of sampling local views with small overlaps.
For visual neuroscience, this offers a potential mechanism for visual stability across saccades: if the
visual system learns its representations in such a self-supervised fashion, then the learning objective
could facilitate a stable representation or even an entire percept of the scene.

Altogether, this work presents another step on the journey to parity between classically used trans-
formations in computer vision and biologically motivated computations that occur in human visual
cortex. As previously discussed, future work should focus on incorporating the temporal nature of vi-
sual perception within a contrastive framework and comparing these learned representations with real
human fixation data. Such directions have been growing in popularity as modern datasets have been
tracking infant visual behavior (Sullivan et al., 2020; Orhan et al., 2020a). We think these datasets
and approaches may provide an excellent first step for creating more ‘infant’-like self-supervised
learning regimes to gradually close the gap between human and machine perception. Finally, our
results suggest a symbiotic motivation to continue to find biologically-plausible transformations for
modern computer vision training pipelines rather than relying on hand-engineered heuristics.
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A Appendix

A.1 Implementation Details for Foveation as Blur Transform

The equations to generate the belts around fovea are borrowed from Equ. 1,3 in Deza & Eckstein
(2016). It reads

f(x) =


cos2(π(x+ 1

4 )); if − 3
4 ≤ x ≤ −

1
4

1; if − 1
4 ≤ x ≤

1
4

1− cos2(π(x− 3
4 )); if 1

4 ≤ x ≤
3
4

0; otherwise

gn(e) = f(
log(e)− [log(e0) + we(n+ 1)]

we
); we =

log(er)− log(e0)

Ne

The belt shaped masks are generated by passing the eccentricity (distance to fixation point (x, y)) of
each pixel into gn(e) function

Mn[i, j] = gn(
√

(i− x)2 + (j − y)2)

A.2 Rationale and Physiological Data for Cortical Magnification

To support the proposed cortical magnification, we reviewed retinotopy data for V1 in human subjects
(Engel et al., 1997; Qiu et al., 2006; Wu et al., 2012). In these studies, the researchers measured
the cortical responses to different sizes of ring gratings with fMRI to estimate the retinotopy of V1.
We fetched the subject averaged data points (from Figure 9 of (Qiu et al., 2006)) and fit the retinal
eccentricity-retinal distance relationship with the classic exponential model and our linear-quadratic
model (Eq. 2).

We noted that the classic exponential fit would not cross the x axis, i.e. no cortical point would
correspond to the exact foveal point. This is clearly an artifact of the exponential functional form, and
a result of lacking data for activations to small images (< 2 deg). This made the classic exponential
form unsuitable for our radial transform, thus we decided to derive our own radial transform function.
Given the functional form in Eq. 2, with C,K, rfov as free parameter, we found we could fit the
data points from (Qiu et al., 2006) well (Fig.A.1): the R2 was 0.9999, with parameter K = −7.73
with 95% confidence interval [−10.0,−5.44], rfov = 15.2 with 95% confidence interval [14.0, 16.4].
Since C is the overall scaling and unit dependent so we neglect it. In comparison the classic
exponential fit had an R2 of 0.9989. This analysis showed that our proposed function form for
cortical magnification is expressive enough to accommodate existing human cortical magnification
data.

Finally, note that the Eq. 2 could be nondimensionalized as

e(r̃) =
1

C̃

{
r̃; r̃ < 1
(r̃+K̃)2

2(1+K̃)
+ 1−K̃

2 ; r̃ ≥ 1
(1)

r̃ = r/rfov, K̃ = K/rfov, C̃ = C/rfov (2)

Since the value of rfov and C are influenced by the units of retinal eccentricity or cortical distance,
K̃ is the unitless parameter that could be compared between the model and the human data. In Fig.
A.1, K̃ is around -0.509.

A.3 Parameter Sweep for Cortical Magnification Transform

We tested how the shape parameters of the cortical magnification fov,K, cover ratio affect the
quality of the learned representation. Recall that: fov controls the relative size of the fovea or the
radius of linear sampling; K controls the curviness of the periphery, the smaller (i.e. closer to −fov)
K is the degree of warping in the periphery sampling; cover ratio approximately controls the area
of sampling grid relative to the image size (see Fig.A.2). When each view is generated, we sampled
uniformly in the specified range of cover ratio. We systematically varied these three parameters
and examined the test and SimCLR accuracy of the learned representation (Tab. A.1). For these
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Figure A.1: Fitting of Human V1 Average Cortical Magnification. Data are obtained from (Qiu
et al., 2006), averaged across 5 subjects and both hemifields. The x axis showed the distance to
reference point (the cortical point for 2.43◦ radius stimuli), the y axis showed the retinal eccentricity.

experiments, we disabled the Gaussian blur and kept the color jittering, flip and random gray scale
transform in place.

We found that using a larger fov value generally yielded a better representation: fov = 45 had higher
testing accuracy and higher SimCLR accuracy, compared to those of fov = 15. For the flatness of
periphery controlled by K, a higher K value generally resulted in a better representation. These
two trends both suggest that the warped sampling doesn’t necessarily improve the test accuracy and
that reducing the warping by increasing the fov size or increasing the K will both improve the test
performance. We think this is due to the domain shift introduced by the warped peripheral image:
testing data were not warped. From this analysis we reasoned that if cortical magnification is the
augmentation that facilitates human self-supervised learning, then the contrastive learning of visual
representation might be applied to the less warped foveal and near-peripheral vision, instead of the
whole visual field.

Most interestingly, comparing different sizes of sampled views (cover ratio), we found that the
range [0.05, 0.35] consistently yielded the highest representation quality. In this range of cover ratio,
the views are local parts of the image with small overlap. In contrast, for the ranges [0.01, 1.5] or
[0.05, 0.7], the field of views are larger, resulting in more overlaps between views, rendering the
SimCLR task easier. This interpretation is in line with the consistent increase of SimCLR accuracy
from [0.01, 0.35], [0.05, 0.35], [0.05, 0.7], to [0.01, 1.5] across all the fov and K values. Notably,
it was also consistent across all fov and K value that the range [0.01, 0.35] resulted in a lower
performance than the range [0.05, 0.35]. We interpreted this as follows: when a local patch is too
small, it will not be informative or distinguishable for the object identity. For example, a patch of
white fur sampled from the image of a dog is not strongly associated with the dog category Ullman
et al. (2016). As a result, encouraging similar representations between these tiny patches or between
tiny patches and larger patches may harm the categorical representation of objects.

In summary, this parameter sweep suggests that the effectiveness of SimCLR training is sensitive to
the scale of the sampled views.
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Cover Ratio Testing Accuracy SimCLR Accuracy
fov=15, K= -15 -7.5 5 20 35 50 -15 -7.5 5 20 35 50

[0.01, 0.35] NA 73.4 76.5 78.1 78.6 79.2 NA 54.6 58.2 61.6 61.5 64.6
[0.05, 0.35] NA 74.4 76.9 77.9 79.7 79.5 NA 62.1 68.7 73.1 76.4 75.9
[0.05, 0.7] NA 71.4 74.1 75.7 76.3 76.4 NA 79.9 84.2 85.8 88.6 89.0
[0.01, 1.5] NA 68.0 70.3 71.5 71.5 71.1 NA 86.5 89.1 90.3 90.9 91.1

fov=30, K= -15 -7.5 5 20 35 50 -15 -7.5 5 20 35 50

[0.01, 0.35] 79.2 65.7
[0.05, 0.35] 80.0 75.4
[0.05, 0.7] 76.3 89.1
[0.01, 1.5] 72.2 91.4

fov=45, K= -15 -7.5 5 20 35 50 -15 -7.5 5 20 35 50

[0.01, 0.35] 79.1 79.0 79.6 79.0 79.2 66.0 65.4 68.7 67.6 68.4
[0.05, 0.35] 79.8 79.8 80.2 80.1 80.0 75.8 79.0 80.7 79.6 81.9
[0.05, 0.7] 77.4 76.7 77.6 76.6 77.1 89.0 89.5 91.1 90.8 91.1
[0.01, 1.5] 72.5 72.1 71.5 71.9 72.3 91.4 91.9 91.8 91.8 92.2

Table A.1: Parameter Tuning for the Cortical Magnification Transform. We reported the test
accuracy and SimCLR accuracy in left and right panel. The three row blocks correspond to the three
fov values, 15, 30, 45. In each block, the columns correspond to the different K values, and rows
correspond to different range of cover ratios.

Figure A.2: The Visual Effect of Magnification Parameters. Views were generated using the full
pipeline of Sec. A.3, Four views were sampled using the same random seed for each set of parameter
fov,K, cover ratio. Left column examined the effect of shape parameters fov and K, right column
examined the effect of size parameter cover ratio
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A.4 Hyperparameters for SimCLR Training

For the model, we used the ResNet-18 architecture, with a 512-dimensional representation space and
a 1 hidden-layer MLP as projection head. We used a 256-dimensional projection space for calculating
the SimCLR loss. For the SimCLR objective, 2 views are generated per image and the soft-max
temperature for the view classification is set as 0.07.

For training, Adam optimizer is used with an initial learning rate 0.0003 and a Cosine Annealing
schedule (Loshchilov & Hutter, 2016), while the weight decay was set as 0.0001. All training was
conducted with single GPU (TeslaV100 32G), using batch size 256. Training terminated at 100
epochs, which usually took 3-6 hrs per run.

A.5 CO2 Emission Related to Experiments

Experiments were conducted using a private infrastructure, with a carbon efficiency around 0.432 kg
CO2 eq/kWh. Around 1053 hours of computation (network training) was performed on hardware of
type Tesla V100-SXM2-32GB (TDP of 300W). Total emissions are estimated to be 136.47 kg CO2

eq. Estimations were conducted using the Machine Learning Impact calculator presented in Lacoste
et al. (2019).

A.6 Training Process of Foveation as Blur Augmentations
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Figure A.3: Evolution of representation quality and SimCLR objective during training of Ex-
periment 1. A. Linear probe evaluation of the representation throughout training, training and test
accuracy are shown in solid and dashed lines. B. SimCLR Accuracy through out training. The experi-
ments are binned into three groups: with crops, with crop+foveation, and with foveation/blur only.
The SimCLR accuracy saturated rapidly for all runs without random crops, and their representation
quality stopped improving or even degraded.
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A.7 Distribution of Augmented Images

Exp 1: Foveation as Blur Baseline: Resized Random Crop

Exp 3: Saliency Guided Random Crop, T=0.7Exp 2: Foveation as Magni�cation Exp 4: Saliency Guided Magni�cation, T=0.7

Samples Saliency T=0.7 T=1.0

Figure A.4: Distribution of Augmented Images in Experiments. Four images sampled from STL-
10 unlabeled set are shown as examples, the corresponding saliency map and fixation densities are
shown to their side. We visualize four views for each image for each training setting: Foveation
as blur, without crop; Baseline setting, resized random crops; Foveation as Magnification, without
crop; saliency guided sampling for magnification; saliency guided sampling for random crops. The
variation and focus of each augmentation pipeline can be seen from this comparison.
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