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Abstract

Long video understanding has emerged as a crucial capability in real-world applications
such as meeting summarization, video surveillance, educational lecture analysis, and content
moderation. However, it remains computationally prohibitive for VideoLLMs, primarily due
to two bottlenecks: 1) sequential video decoding, the process of converting the raw bit stream
to RGB frames can take up to a minute for hour-long video inputs, and 2) costly prefilling
of up to several million tokens for LLM inference, resulting in high latency and memory
use. To address these challenges, we propose QuickVideo, a system-algorithm co-design
that substantially accelerates long video understanding to support real-time downstream
applications. It comprises three key innovations: QuickCodec, a parallelized CPU-based
video decoder that achieves 2–3× speedup by splitting videos into keyframe-aligned intervals
processed concurrently. QuickPrefill, a memory-efficient prefilling method using KV-cache
pruning to support more frames with less GPU memory; and an overlapping scheme
that overlaps CPU video decoding with GPU inference. Together, these components reduce
the time required to process a long video input by a minute, enabling fast, efficient video
understanding even on limited hardware. Experiments show that QuickVideo generalizes
across durations and sampling rates, making long video processing feasible in practice.

1 Introduction

Video data has become the dominant modality for conveying information online.

As of 2023, video data accounts for two thirds of all data transmitted over the Internet (Su et al., 2024). Much
of this data is “long video” ranging from minutes to hours in duration, from online conferencing, gaming,
social networking, and movie streaming. This torrent of online video data demands efficient and automated
understanding for problems such as content moderation (Akyon & Temizel, 2022), real-time surveillance (Yuan
et al., 2023), and accessibility (Liu et al., 2021). Video Large Language Models (VideoLLMs) (Bai et al.,
2025; Zhu et al., 2025a; Chen et al., 2025a) have emerged as powerful tools to support these downstream
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Figure 1: An overview of how QuickVideo overlaps video decoding on CPU (QuickCodec) and prefill
on GPU (QuickPrefill). QuickCodec concurrently processes intervals of the compressed video bit
stream. QuickPrefill uses independent groups of frames, therefore it can begin prefill once the first
frames are decoded, outputting carefully selected KV vectors. As QuickCodec loads frames synchronously,
QuickPrefill can process the next prefill group immediately. This results in video decoding and prefill
being almost enirely overlapped.

tasks. By natively processing entire video inputs, VideoLLMs exhibit phenomenal potential to understand
and reason about video content, offering a practical solution for managing and extracting information from
the exponentially growing flood of video data across the Internet (Zhou et al., 2024b).

However, using VideoLLMs for long video understanding suffers from several efficiency challenges. First, the
entire video must be decoded from raw bitstreams into RGB frames before the model can begin processing.
Current frameworks require up to a minute to decode the frames from an hour-long video input, introducing
high latency before any context prefill can start. Second, the prefilling step itself is both computationally and
memory intensive (Weng et al., 2024). Each frame—representing an instantaneous moment—can consume
hundreds of tokens in the model context (Zhu et al., 2025b; Chen et al., 2025b). As a result, even a modest
frame rate (e.g., 2 FPS) for an hour-long video can lead to millions of tokens, far exceeding the memory
budget of standard GPUs. Qwen2.5-VL (Bai et al., 2025) introduced several architecture modification to
accelerate video processing. However, using Qwen2.5-VL-7B, prefilling an hour-long HD video sampled at its
native 2 fps still requires more than the 80 GB of memory offered by an A100/H100 SXM4 GPU. Even after
reducing the frame sampling rate by 4×, prefilling still takes over 25 seconds on datacenter-grade hardware.
These inefficiencies result in a frustrating user experience, characterized by long delays and prohibitively high
hardware requirements. Users with limited computational resources are effectively excluded from accessing
the long video understanding capabilities of VideoLLMs.

To mitigate the computational overhead of long video VideoLLMs use extremely low frame sampling rates
when processing long video inputs, instead of their native 1-2 FPS Bai et al. (2025); Chen et al. (2025a).
Frames are sampled as much as a minute apart during hour-long video understanding (Zhu et al., 2025b;
Chen et al., 2025b). A minute gap between sampled frames can result in missing crucial video segments
required for an understanding task. Low frame sampling rates also make fine-grained temporal and motion
understanding impossible, as intervening frames are mostly removed (Nie et al., 2024). Effective long video
understanding thus requires loading and prefilling thousands of frames while preserving temporal continuity.
Developing faster, more efficient VideoLLMs is critical for enabling comprehension of videos that span hours.

Currently, video decoding and context prefilling are treated as disjoint and sequential stages in the VideoLLM
pipeline. Moreover, video decoding is largely overlooked, despite contributing substantially to end-to-end
latency. To remedy this, we introduce QuickVideo, a framework for faster, memory-efficient long video
understanding. QuickVideo reduces the latency and resource requirements of these key bottlenecks in
long video understanding. Our framework empowers fast video understanding on video inputs consisting of
hundreds of thousands of frames, while maintaining the sampling rates required for fine-grained understanding.
QuickVideo introduces three core contributions for accelerating long video understanding in VideoLLMs:

(1) System-Level → QuickCodec: a drop-in replacement video decoder designed for VideoLLMs. By
redesigning video decoding for VideoLLM frame sampling, we achieve a 2-3x speedup compared to existing
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libraries when loading hour-long video inputs.
(2) Algorithm-Level → QuickPrefill: a group-based prefilling strategy combined with key-value (KV)
cache pruning, which significantly reduces both computation time and memory usage during the prefilling
stage, while incurring less than 3% accuracy degradation in most benchmarks.
(3) Co-Design → Overlapped Execution Scheme: the strategy tightly couples CPU-based QuickCodec and
GPU-based QuickPrefill, enabling near-complete overlap to maximize efficiency. QuickVideo reduces
the time to infer a 30 minute video input by more than 3x, from 69.7 seconds to only 20.0 seconds. The
results demonstrate the effectiveness of our system-algorithm co-design.

2 Background
We provide an overview of VideoLLM inference and key concepts in video processing. Although details vary,
this background is broadly applicable to standard VideoLLM architectures and video standards. For clarity,
we use “video decoding” to describe the process of decoding the compressed video into a tensor of video
frames, and use “LLM decoding” to denote the process of auto-regressive decoding of a large language model.

2.1 VideoLLM Inference

VideoLLMs must first decode a compressed video into a packed frame tensor before tokenization. The
resulting raw frames are then passed through a visual encoder, which converts them into video tokens suitable
for input to the LLM. Unlike text preprocessing, which relies on lightweight tokenizers, video decoding is
inherently slow on both CPU and GPU due to its sequential nature (Wiegand et al., 2003; Sullivan et al.,
2012). Despite this, prior work in LLM video understanding has largely overlooked the latency incurred by
this stage. Following preprocessing, the generation process of a VideoLLM consists of two stages: (1) Prefill,
where both video and text tokens are processed to compute key-value (KV) caches for each transformer layer;
and (2) LLM decoding, where tokens are generated autoregressively using the stored KV representations.
The prefill stage is computationally expensive due to the quadratic complexity O(n2) of self-attention over
long sequences, while the decoding stage is memory-intensive as it requires storing and repeatedly accessing
the full KV cache.

Let Xv
= {xv

1, . . . , xv
∣Xv∣} and Xt

= {xt
1, . . . , xt

∣Xt∣} represent the video and text tokens, respectively, with
video tokens preceding the text. For each transformer layer l ∈ {1, . . . , L}, the KV cache comprises
tensors K(l)

, V(l)
∈ R(∣Xv∣+∣Xt∣)×nh×dh , where nh is the number of attention heads and dh is the per-head

dimensionality. For example, let 8B InternVL-2.5 (Chen et al., 2025a) model process a one-hour video at 1
frame per second, the total required memory is around 400GB (see subsection D.2). This memory footprint
makes KV cache storage a critical bottleneck in VideoLLM inference, significantly limiting the maximum
processable video length and constraining the feasible batch size.

2.2 Long Video Processing

Multimedia container formats like MP4 or MKV bundle all the elements required for media playback, including
video streams, audio streams, subtitles, and metadata (Koenen, 1999). In these containers, videos are stored
as compressed bit streams (Koenen, 1999; Wiegand et al., 2003). In multimedia processing libraries like
FFmpeg (Tomar, 2006), video decoding is described by a queue D that enqueues fixed-sized blocks of the bit
stream, called packets, as input and dequeues video frames. We denote a bit stream S = (p0, p1, . . . , pn−1) and
a video V = (f0, f1, . . . , fm−1) as ordered lists of packets and frames, respectively. Each frame fi is a tensor
containing 8-bit integers of shape (3×h×w), where h is the pixel height and w is the pixel width. In general,
packets are not frame aligned, enqueueing a single packet to the decoder can cause the decoder to output zero,
one or potentially multiple frames (Wiegand et al., 2003). This is because frames require varying amounts of
information to encode, and therefore cannot be aligned to fixed-sized packets. Furthermore, video frames are
not encoded independently in bit stream, as surrounding frames contain redundant information. Therefore,
the video encoder encodes the residual of the frame in the bitstream, instead of the frame itself (Wiegand
et al., 2003; Sullivan et al., 2012). For this reason, video decoding is a largely sequential process, where

The encoded residual of a frame may require information from previous or future frames to decode (Wiegand et al., 2003).
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previous frames must decoded first and then the residual information encoded in the bit stream can be used
to decode the next frame (Wiegand et al., 2003). Although the video encoder may also reorder frames in the
bit stream for efficiency, the decoder always outputs frames in the order that they should be displayed during
playback (Tomar, 2006).

Packet and Frame Metadata. Although metadata is not directly encoded in the bit stream or frame
itself, for simplicity, we denote metadata corresponding to packets or frames as if they are fields. The
packet and frame metadata is stored in the container, not the bit stream (Koenen, 1999). The presentation
timestamp (pts) of a frame is a 64-bit unsigned integer that represents when the frame should be displayed
to a user (Tomar, 2006). Most formats do not include global frame positioning information in metadata. We
instead use Equation (1) to rescale the presentation timestamp for a frame f to obtain f ’s index i in V.

i = ⌊ (m − 1) ⋅ f .pts
ptsmax − ptsmin

⌉ (1)

ptsmax and ptsmin are the minimum and maximum presentation timestamp for the video stream. Each packet
has a keyframe flag that marks that video decoding can begin from its position (Koenen, 1999; Tomar, 2006).

2.3 Keyframes and Seeking

As video decoding relies on surrounding frames, it is a sequential process. However, during playback, users
may want to navigate and skip through the video. To support this, the bit stream contains keyframes, which
act as reset points from which video decoding can begin. Keyframes are encoded at semi-regular intervals in
S, usually a few seconds apart. To use keyframes to navigate in S, we use the Seek subroutine. Seek(S, pts)
finds the keyframe packet pi ∈ S such that decoding from pi yields all f such that f .pts ≥ pts. However,
seeking introduces overhead, as it requires flushing decoder buffers and reinitializing state (Tomar, 2006).

Algorithm 1 Seek-based video decoding
Require: Bit stream S, Ordered set I, Video Decoder D, h, w

1: Allocate memory block F of size ∣I∣ × 3 × h × w
2: for i ∈ I do
3: Estimate pts of fi

4: pi ← Seek(S, pts) ▷ Seek to the keyframe before fi in S
5: Decode pi, pi+1, . . . until D outputs fi

6: Write fi to F

7: return F

Algorithm 1 is a standard approach when decoding video for machine learning (Distributed (Deep) Machine
Learning Community, 2019; PyTorch Team, 2025). For each desired frame fi, given by selected indices in
I ⊆ {1, 2, . . . , m − 1}, the algorithm does the following: It seeks for the keyframe closest to fi in S, and then
it decodes packets until D outputs fi. fi is saved in the buffer F . This algorithm performs well for sparse
access patterns, as if there are large gaps between desired frames, seeking before decoding each frame is ideal.

3 Method

In this section, we introduce QuickVideo, which consists of three main components:

3.1 QuickCodec: Long Video Decoding for VideoLLMs

Given a bitstream S for a video V = (f1, f2, . . . , fm), where each frame has height h, width w, and the desired
degree of concurrency is c, our goal is to compute F such that for all j ∈ 0, 1, . . . , ∣I∣ − 1, we have Fj = fI[j],
where I ⊆ 1, 2, . . . , m − 1. In other words, F is a packed tensor containing all the frames selected by I. We
assume m is known from container metadata or can be estimated using ptsmax and ptsmin.

The efficiency of our algorithm relies on two key observations:
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(1) It is faster to use c cores to decode c short videos than to use c cores to sequentially decode a single
long video. Video decoding for human playback focuses on the latter case, as humans watch earlier frames
while later frames are decoded. However, due to inter-frame dependencies, sequential video decoding is
difficult to parallelize (Wiegand et al., 2003). In contrast, VideoLLMs require the entire video input to be
loaded upfront. Therefore, we can decompose the loading of a long video V into loading c short videos that
collectively span V. However, decoding cannot start at arbitrary frames—it must begin at keyframes. The
Keyframe Intervals subroutine (Appendix A) parses the metadata of S and computes c approximately
equal-length intervals, starting and ending at keyframes, that cover the entire video. We parallelize over these
intervals in Algorithm 2.

(2) VideoLLMs typically sample frames at a short, regular interval, usually 1–2 FPS (Bai et al., 2025), which
is often smaller than the interval between keyframes in standard codecs. Consequently, seek-based decoding
must still decode from all keyframes, leading to redundant seeks. Our algorithm requires only one seek
operation per core, instead of a number of seeks proportional to the number of frames.

Algorithm 2 QuickCodec
Require: Bit stream S, Ordered set I, Video Decoder D, h, w, c, m

1: J ← Keyframe Intervals(S, c) ▷ t intervals that start and end on a keyframe
2: Allocate shared memory F of size ∣I∣ × 3 × h × w
3: Initialize memory offset map M
4: for k ∈ {0, 1, . . . , ∣I∣ − 1} do
5: M[I[k]] ← k ▷ Maps frame index to memory offset in F

6: for all (ptsstart, ptsend) ∈ J in parallel do ▷ Parallelize over t intervals
7: pi ← Seek(S, ptsstart) ▷ Seek to the packet at the start of the keyframe interval
8: repeat
9: while D not empty do

10: f ← D.dequeue()
11: if f .pts ≥ ptsend then
12: break
13: Compute i with equation 1
14: if i in M then
15: o ← M[i] ▷ Get the memory offset for fi in F
16: Fo ← f ▷ Write frame into shared memory tensor
17: D.enqueue(pi)
18: pi ← pi+1 ▷ Get next packet in bit stream S
19: until f .pts ≥ ptsend

20: return F

Algorithm 2 presents the core of our video decoding algorithm. The algorithm begins by using metadata to
compute c keyframe-aligned intervals that span the video (line 1). Lines 2–5 initialize a shared memory block
F and compute a dictionary M that maps indices of selected frames to unique memory offsets in F . We
then decode the long video in c parallel intervals (lines 6–19). Video decoding starts by seeking to the start
of each interval ptsstart, which is guaranteed to be a keyframe (line 7). Packets are enqueued for decoding
(lines 17–18) until the decoder yields frames for processing (line 9). If the timestamp of a dequeued frame
is greater than or equal to the interval endpoint ptsend, parallel processing ends (lines 11–12, 19). As the
intervals in J span S, ptsmin and ptsmax are given by the smallest and largest values in J , respectively.
We use Equation (1) to compute the index i of f (line 13). Finally, we save f to F if f is a selected frame
(lines 14–16). Because decoding from a keyframe yields all frames with greater pts values, and D outputs
frames in pts order, when the parallelized loop exits (line 19), all selected frames with pts in the interval
[ptsstart, ptsend) will have been output by D and saved to F . Thus, as J spans S, when the algorithm
returns, F will contain all selected frames.
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3.2 QuickPrefill: Efficient Group-Based Prefilling for VideoLLMs

After decoding the video bitstream into packed tensors, they are fed into the VideoLLM for inference. However,
LLM generation with long contexts is a well-known challenge due to high memory usage and computational
cost. To address this, we introduce QuickPrefill, a grouped prefilling and KV cache pruning method that
accelerates processing and significantly reduces memory requirements.

Group-Based Prefill Let Xv
= xv

1, . . . , xv
∣Xv∣ denote the sequence of video tokens, where ∣Xv∣ is the

total number of tokens, and each token xv
i ∈ Rd is a d-dimensional vector. To reduce memory overhead

during prefilling, we partition the video token sequence into G disjoint groups: Xv
= Xv

1, . . . , Xv
G, where

each group Xv
g contains approximately Ng =

∣Xv∣
G

tokens. Instead of processing the entire sequence at
once, we sequentially prefill each group and store the corresponding key-value (KV) cache as K(l)

g , V(l)
g for

each transformer layer l. This strategy significantly reduces peak activation memory usage by a factor of
G and remains effective even when combined with efficient attention mechanisms such as FlashAttention.
Empirically, it enables hour-long video understanding while keeping GPU memory usage within practical
limits (e.g., reducing memory overhead by over 100 GB; see subsection D.2).

Group-Based KV Cache Pruning While group-based prefill reduces peak activation memory, the KV
cache memory remains a major bottleneck. To address this, we prune unimportant KV cache vectors when
processing each group, maintaining a retention ratio ρ ∈ (0, 1]. This reduces KV cache memory usage by a
factor of 1

ρ
.

The pruning decision is based on an importance score function s, which produces an ordered list of KV entries.
We select the top-k KV entries until the retention ratio is satisfied:

K̃(l)
g = K(l)

g [I(l)
g ], Ṽ(l)

g = V(l)
g [I(l)

g ], where I
(l)
g = TopK (s(K(l)

g , V(l)
g ), ; k = ρ ⋅ Ng) (2)

where TopK returns the indices of the top-k entries. We consider several heuristic importance functions s
from prior works (Devoto et al., 2024; Guo et al., 2024; Zhang et al., 2023). In this paper, we primarily
use the following three: 1) Key Norms (small): s = −L2(K(l)

g ); 2) Value Norms: s = L2(V(l)
g ); 3) Attention

Scores: s = matmul(K(l)
g , Q(l)). Here, L2 denotes the L2-norm function, and Q(l)

∈ R∣Xt∣×(nh×dh) is the
query vector of text tokens in layer l. We adopt Key Norms (small) as the default importance function in
QuickPrefill due to its strong performance. Using key norms also allows us to use efficient fused attention
implementations, such as FlashAttention (Dao, 2023).

3.3 Overlapping QuickCodec and QuickPrefill

The preceding sections introduced two complementary components: QuickCodec for CPU-based video
decoding and QuickPrefill for GPU-based group-wise prefilling. However, running these components
sequentially underutilizes resources—GPUs remain idle during video decoding, and CPUs are underutilized
during prefilling. To address this inefficiency, we propose an overlapped execution scheme that enables
concurrent processing across CPU and GPU resources.

To achieve this, we slightly adapt frame loading: Instead of using c cores to load c intervals, we divide V
into s intervals, where s ≫ c, using Keyframe Intervals(V, s). We then load the frames from the s
intervals using c cores, prioritizing earlier intervals so that frames corresponding to the first blocks of video
are available sooner. This allows us to exploit QuickCodec’s fast video decoding while ensuring that early
frames in V are prioritized for QuickPrefill. Once the frames required for the first group are loaded,
QuickPrefill begins processing immediately, while QuickCodec continues decoding subsequent frames
in the background. After QuickPrefill finishes processing a group, it stores the resulting KV cache and
checks whether QuickCodec has loaded the frames required for the next group. If so, QuickPrefill
starts processing the next group immediately. This design forms a producer-consumer pipeline between CPU
decoding and GPU prefilling, ensuring the GPU is only idle if it is waiting for the CPU to finish decoding the
next set of frames.

6



Published in Transactions on Machine Learning Research (01/2026)

The performance improvement of this overlap strategy can be formalized. Let t
i
dec and t

i
prefill denote the

time to decode and prefill a group of frames, respectively. With our overlap strategy, the execution time is
modeled by Equation (3).

ttotal =

G

∑
i

max(ti
dec, t

i
prefill) + ∆ (3)

∆ is a small latency introduced by QuickCodec’s metadata parsing and startup. Since each group contains
a small number of frames and tokens, this strategy achieves near-optimal overlap between CPU and GPU
resources, resulting in substantial speedup for hour-long video processing. Note that some VideoLLMs include
additional preprocessing steps (e.g., position embedding calculation or normalization), which we do not
include in this analysis (Bai et al., 2025).

4 Experiments

We evaluate QuickVideo’s performance on practical long video understanding tasks. In section 4.1, we
benchmark QuickCodec against existing frameworks. We also examine the limitations of QuickCodec,
identifying use cases where seek-based frameworks (Algorithm 1) outperform our method. Next, in section 4.2,
we evaluate the performance of QuickPrefill across four long video understanding benchmarks, analyzing
the trade-off between accuracy and efficiency. Finally, in section 4.3, we demonstrate that the prefill and
video decoding stages can be almost entirely overlapped, effectively reducing end-to-end inference time by
nearly a minute for long video inputs.

4.1 QuickCodec Results

Video Loading Speed. We benchmark the time required to load an hour-long 24 FPS 1920x1080p HD
video, sampled at 1 FPS and resized to 448x448 pixels. The video is a one-hour segment of a popular
movie encoded with default FFmpeg settings using H.264, the most widely used codec (Kerdranvat et al.,
2020). Sampling frames at 1–2 FPS is a standard practice in VideoLLMs, balancing computational efficiency
with task performance (Bai et al., 2025). We resize frames to 448x448 pixels, which matches the maximum
per-frame resolution used in most VideoLLMs (Zhu et al., 2025a; Chen et al., 2025a). All experiments are
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Figure 2: Speed comparison of Decord, TorchCodec (with Resize), and QuickCodec when loading hour-long
videos. We ablate across different levels of parallelization (core counts).
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conducted on an AWS m7a.16xlarge instance. Each timing result is averaged over five runs, with a 95%
confidence interval no greater than 0.5 seconds.

We compare QuickVideo against two widely used video decoding frameworks:

Decord (Distributed (Deep) Machine Learning Community, 2019): A multimedia loading framework designed
for machine learning applications. While no longer actively maintained, Decord remains integrated into
popular libraries like Hugging Face’s Transformers (Wolf et al., 2020) and, by extension, inference frameworks
such as vLLM (Kwon et al., 2023).

TorchCodec (PyTorch Team, 2025): A work-in-progress library from the PyTorch team designed to offer
faster multimedia processing than TorchVision (maintainers & contributors, 2016). TorchCodec lacks some
features of mature frameworks, such as built-in support for frame resizing. Thus, we report timings that
combine TorchCodec loading with a resizing step via TorchVision. TorchCodec is not optimized for decoding
with more than 16 cores; we observe that increasing core count beyond 16 can even degrade performance. In
collaboration with the TorchCodec team, algorithm 2 has been implemented into TorchCodec, we do not use
this setting in our timings.

As shown in Figure 2, QuickCodec outperforms other libraries across varying core counts. While other
frameworks plateau at 16 cores, QuickCodec scales up to 64 cores. We highlight the 16- and 32-core cases
as these are the most common configurations in practical deployments; most compute providers allocate
between 16 and 32 CPU cores per GPU (Google, 2025; Amazon, 2025; Microsoft, 2025). At 16–32 cores,
QuickCodec is 2–3× faster than other libraries when loading an hour-long video, reducing video loading
time by over 20 seconds.
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Figure 3: Video decoding performance
across different video durations (1 FPS sam-
pling).

Speed Across Video Durations. Our framework relies on
pre-computing intervals and sufficient keyframes for paralleliza-
tion. Therefore, we expect reduced benefits for shorter videos.
We benchmark QuickCodec on videos of varying lengths, from
1 minute to 1 hour, using the same source video (an hour-long
movie) cut to different durations. All tests use 1 FPS sam-
pling and 16 cores for video decoding. Results are averaged
over five runs on an AWS m7a.16xlarge instance, with a 95%
confidence interval of at most 0.2 seconds. We find that Quick-
Codec is consistently faster than other frameworks for videos
longer than 1 minute (Figure 3). Its advantage grows with
video length—QuickCodec is 1.7× faster than Decord for a
10-minute video and 2.1× faster for a 1-hour video. We fur-
ther discuss scenarios where seek-based decoders outperform
QuickCodec in Appendix B.

4.2 QuickPrefill Results

We evaluate QuickPrefill on four long video understanding benchmarks, with videos ranging from minutes
to hours: VideoMME (Fu et al., 2024), LongVideoBench (Wu et al., 2024), LVBench (Wang et al., 2024), and
MLVU (Zhou et al., 2024a). All generations use greedy sampling, and results are reported via the lmms-eval
framework (Zhang et al., 2024). Experiments are run on the Qwen2.5-VL-7B-Instruct model (Bai et al., 2025)
using a single A100 (40GB) GPU with 8 replicas.

Effectiveness of Different KV Cache Pruning Methods. We evaluate the impact of various KV cache
pruning strategies on model accuracy, as summarized in Table 1. We compare several pruning techniques
against a no-pruning baseline (ρ = 1), fixing the retention ratio ρ at 0.5 and the group size at 16 frames. The
Key Norms (small) method achieves the best balance between efficiency and accuracy, retaining over 95% of
the model’s original performance while halving the KV cache size and computation. In the 1024-frame setting,
it retains over 98% of the original performance. Notably, this method outperforms query-attention-based
token selection strategies. While prior work (Devoto et al., 2024) has shown that negative L2 norms of keys
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Table 1: Effectiveness of different KV cache pruning methods in the group-based prefilling scenario. We
use the Key Norms (small) as the default KV cache pruning method for QuickPrefill due to its superior
performance and query-agonistic nature.

Group Size KV Pruning ρ
VideoMME LongVideoBench LVBench MLVU Avg Performance#Frames w/o subtitle val test dev

64 Frames
- - 1 62.41 59.69 40.09 63.86 56.51 100.00%

16 Value Norms 0.5 47.63 35.98 30.92 31.38 36.48 64.55%
16 Attention Scores 0.5 58.63 52.95 37.83 59.87 52.32 92.58%
16 Key Norms (small) 0.5 60.56 56.17 37.70 62.34 54.19 95.90%

128 Frames
- - 1 66.41 60.96 42.87 66.86 59.27 100.00%

16 Value Norms 0.5 48.56 37.32 30.73 38.51 38.78 65.42%
16 Attention Scores 0.5 60.96 55.20 39.70 64.36 55.06 92.89%
16 Key Norms (small) 0.5 63.41 58.19 39.57 64.99 56.54 95.39%

256 Frames
- - 1 65.78 61.56 43.90 68.65 59.97 100.00%

16 Value Norms 0.5 48.33 38.89 31.38 37.74 39.08 65.17%
16 Attention Scores 0.5 62.52 57.22 41.96 67.27 57.24 95.45%
16 Key Norms (small) 0.5 64.04 60.21 41.90 66.73 58.22 97.08%

1024 Frames
- - 1 62.00 60.43 42.29 63.48 57.05 100.00%

16 Value Norms 0.5 47.37 33.66 29.18 32.65 35.71 62.60%
16 Attention Scores 0.5 62.22 58.49 42.03 64.45 56.80 99.56%
16 Key Norms (small) 0.5 59.99 61.59 40.80 64.76 56.78 99.53%

Figure 4: Ablation study on group size and retention ratio. Data from Table 2.

correlate strongly with attention scores in text-only LLMs, our results extend this finding to VideoLLM
prefilling, highlighting the generalizability and practical utility of key norm-based pruning.

We also conduct ablation studies on group size and retention ratio ρ (see Appendix E). As shown in Table 2
and Figure 4, group size has minimal impact on model performance, while increasing ρ consistently improves
accuracy, approaching the no-pruning baseline. Smaller group sizes reduce activation memory, while lower ρ
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Figure 5: Latency breakdown for video loading, prefill, and LLM decoding in end-to-end inference. We
compare a baseline Qwen2.5-VL Bai et al. (2025) implementation, the same model with QuickPrefill and
QuickCodec, and our block-overlapped design.

values reduce KV cache memory. These findings provide practical guidance for balancing memory efficiency
and model accuracy based on system constraints.

4.3 Latency in End-to-End QuickVideo Inference

We integrate QuickCodec and QuickPrefill into a Qwen2.5-VL-7B-Instruct (Bai et al., 2025) inference
pipeline. We evaluate two configurations: (1) loading the entire video with QuickCodec followed by
QuickPrefill, and (2) our group-overlapped design. Latency for video loading, prefill, and LLM decoding is
benchmarked in an end-to-end pipeline. For QuickPrefill, we use the Key Norms (small) pruning method
with ρ = 0.2 and set the group size to 32 frames. We use a 30-minute video (sampled at 1 FPS) as the
baseline implementation runs out of memory with longer videos. Experiments are conducted on an H100
SXM GPU and AMC Ryzen 9 7950x CPU, allocating 16 cores for video processing. For the overlapped
implementation, we use 64 intervals (s in section 3.3) for parallelized loading. All timings are averaged over 5
runs. Figure 5 presents latency breakdowns for all three implementations. After applying QuickCodec,
we significantly reduce video loading time from 25.0 seconds to 15.4 seconds. By overlapping video loading
and prefill, we reduce latency by 39.45% when compared to the baseline. We find that once prefill and video
decoding are overlapped, the combined stage becomes completely video-decoding bound.

5 Discussion and Related Work

GPU support for video decoding. Video decoding can be accelerated by GPU computing. However, due to
interframe dependencies, the speedup is not nearly as large as GPU acceleration for AI computations PyTorch
Team (2025). Furthermore, especially in the case of long video, GPU-based video decoding can result in device
memory problems; the hour-long video we use for benchmarking (Section 4.1) is 3600×3×1920×800×1 byte ≈

16.6 GB before being resized. This results in a significant portion of GPU resources being allocated to
video tensors, and can cause CUDA out-of-memory errors if not handled delicately. For simplicity, most
existing inference libraries default to using CPU for video decoding (Kwon et al., 2023; Wolf et al., 2020).
More sophisticated pipelines, such as NVIDIA’s Cosmos training, use dedicated hardware for handling the
video processing (NVIDIA et al., 2025).

Efficient VideoLLMs Inference. Recent VideoLLMs (Lin et al., 2023; Li et al., 2024; Chen et al., 2025a)
have demonstrated strong video understanding capabilities. Early models like Video-LLaVA (Lin et al., 2023)
and VideoLLama-2 (Cheng et al., 2024) were limited to around 32 input frames due to constrained training
data and unoptimized architectures. More advanced models such as Qwen2.5-VL (Bai et al., 2025) and
InternVideo2.5 (Wang et al., 2025) can now handle hundreds of frames by adopting architectural innovations
including Group Query Attention (GQA) (Ainslie et al., 2023), MRoPE (Bai et al., 2025), and Special Token
Merging (Chen et al., 2025a), which reduce KV cache size and enhance temporal reasoning. Nonetheless, the
KV cache and activation memory still grow linearly with context length, creating bottlenecks in hour-long
video inference. Meanwhile, existing token pruning techniques either address only image-level contexts (Wen
et al., 2025; Chen et al., 2024; Shang et al., 2024; Xing et al., 2024), or optimize for short prefill and long
decoding scenarios (Devoto et al., 2024; Zhang et al., 2023; Xiao et al., 2023). In contrast, we target efficient
prefill for millions of video tokens, introducing a method that achieves substantial memory savings and speedup

10



Published in Transactions on Machine Learning Research (01/2026)

with minimal accuracy loss, thereby enabling scalable long video understanding on resource-constrained
hardware.

6 Conclusion

We introduced QuickVideo, a framework to accelerate long video understanding. Our framework has three
core contributions: QuickCodec: A systems framework for fast video loading, designed for VideoLLM frame
sampling. QuickPrefill: An efficient algorithm for prefilling video tokens. Co-design: Lastly, we show
that our video loading and prefill algorithm can be almost entirely overlapped, drastically reducing the time
latency of these stages during inference. Overall, QuickVideo reduces time to infer a long video input by
more than 3×. Our work advances the capabilities for real-time video understanding applications, addressing
key efficiency challenges in long video inference.

Broader Impact Statement

As video has become the dominant modality of data, efficient long video understanding has extremely broad
implications, both positive and negative. On the positive side, better long video understanding allows us
to better interpret our digital landscape. In 2022, 30,000 hours of video were uploaded to YouTube every
hour (Ceci, 2024). That number is absolutely much higher today. Without efficient long video understanding
systems, we cannot understand our own digital artifacts, due to the scale at which we create them. Furthermore,
long video understanding also has extremely compelling use-cases for information accessibility. A video-first
internet is difficult to navigate for visually impaired people, with important information potentially only
accessible in video format (Liu et al., 2021). Efficient, robust long video understanding presents can serve
as a backbone for tools for assisting video understanding for the visually impaired. However, efficient long
video understanding also has potentially negative effects. As people’s lives are increasingly documented
as video and uploaded to the internet, long video understanding models could become a tool for privacy
intrusion (Feldstein, 2022).
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A Parallelized Interval Algorithm

Additional video decoding background. The container contains various metadata about packets that
we use during our interval parsing algorithm. For locality purposes, modalities such as audio and video are
often interleaved in the bit stream S. Therefore, it is important to filter out audio packets when parsing the
metadata stream. As packets are not frame-aligned, the pts field does not exactly represent the display time
of frame. Also, as packets can be reordered by the decoder, the first or last packets may not correspond to
the first and last frames.

Algorithm 3 Calculate Parallelized Intervals
1: procedure Keyframe Intervals(S, c)
2: K, ptsmin, ptsmax ← Scan Packets(S) ▷ Scan packet metadata.
3: J ← {ptsmin, ptsmax} ▷ Ordered list of keyframe intervals.
4: p ← 1

c
(ptsmax − ptsmin) ▷ Evenly spaced intervals in the video.

5: for i ∈ 1, . . . , c − 1 do
6: ptsestimate ← (c × p) + ptsmin

7: j ← FindInsertionIndex(K, ptsestimate)
8: if ∣Kj−1 − ptsestimate∣ < ∣Kj − ptsestimate∣ then
9: J = J ∪ {Kj−1}

10: else
11: J = J ∪ {Kj}

return J
12: procedure Scan Packets(S) ▷ Scan bit stream to get timestamps.
13: ptsmin ← −1
14: ptsmax ← ∞
15: K ← ∅ ▷ Sorted set of keyframe timestamps.
16: for pi ∈ S do
17: if pi.type ≠ “video” then ▷ Skip packets are not used to decode video.
18: continue
19: if pi.pts = NULL then ▷ Skip packets do not have pts metadata.
20: continue
21: if pi.pts < ptsmin then
22: ptsmin ← pi.pts
23: if pi.pts > ptsmax then
24: ptsmax ← pi.pts
25: if pi.keyframe = True then
26: K ← K ∪ {pi.pts}
27: return K, ptsmin, ptsmax

Algorithm 3 computes c intervals that we can parallelize video decoding over. For effective parallelization, it
is essential that these intervals are roughly length and keyframe-aligned, such that Algorithm 2 can seek to
the start of each interval. Scan Packets parses the metadata of the packet stream to find the location of all
keyframes in S, as well as the minimum and maximum pts in S. If the packet does not belong to the video
stream or the timestamp is NULL, the packet is skipped.

After finding the locations of keyframes on line 2, Keyframe Intervals computes c intervals as follows:
We calculate the length of 1

c
of the stream, in pts units (line 4). On lines 5-10, we search for the keyframes

closest to being i
c
th through the video, given by ptsestimate. FindInsertionIndex uses binary search to find

where in the list of keyframes ptsestimate would be inserted. After finding the insertion point j, the algorithm
checks whether the keyframe before or after j is closer to ptsestimate. The closest keyframe location is added
to J , the list of intervals. J [0] = ptsmin and J [c − 1] = ptsmax, to ensure that the intervals span the video.
J [1],J [2], . . .J [c − 2] are keyframe-aligned and equally spaced. Therefore, J , a list containing c+ 1 values,
can be interpreted as c intervals: J ′

= {(J [i],J [i + 1]) ∣ i ∈ 0, 1, . . . , c}.
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B Effect of sampling rates on QuickCodec’s efficiency
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Figure 6: Video decoding performance for differ-
ent video durations with 1 FPS sampling.

As QuickCodec does not seek between loading frames,
all video frames are decoded during video loading. Con-
versely, seek-based frameworks skip decoding segments
of video if there are large gaps between sampled frames.
In Figure 6, we find that our framework has faster video
loading when there is a 4 second or less gap between
sampled frames. Our library performs best when using
VideoLLM sampling rates (1-2 FPS). Currently, our imple-
mentation always loads the whole video, and therefore does
not benefit significantly from sparse sampling patterns.
Our implementation could be adapted to leverage seeking
when it detects that the user has sampled with a large
gap between frames, closing the performance gap with
seek-based libraries PyTorch Team (2025); Distributed
(Deep) Machine Learning Community (2019). This would
make our library more flexible, and eliminate a potential
performance sharp edge, where users accidentally use our
QuickCodec for sparse sampling. We leave this as a
direction for future library improvements.

C Containers and Video Decoding

A multimedia container file format, like MP4 or MKV, bundles together all the elements required for
media playback, including video streams, audio streams, subtitles, images, and metadata (Koenen, 1999).
Video streams are compressed into bit streams by codecs . The bit streams are formatted in standards like
H.264 (Wiegand et al., 2003) and H.265 (Sullivan et al., 2012). A codec consists of two algorithms: a video
encoding algorithm that takes in a sequence of frames and outputs a compressed bit stream and a video
decoding algorithm that takes the bit stream as input and outputs video frames. We focus video decoding, as
it is the required operation before the video can be used as a VideoLLM input.

D QuickPrefill Efficiency Analysis Details

D.1 Activation Memory Analysis

The activation memory of modern LLM architecture mainly comes from two components of each transformer
block: 1) Attention Block and 2) MLP Block. We analyze the potential activation memory usage in formulas
in the followings and show that group-based prefilling can effectively reduce the activation memory by G
times, where G is the number of groups.

Attention Block Modern LLMs commonly adopt FlashAttention (Dao, 2023), a memory-efficient attention
algorithm that computes exact attention with reduced memory usage by fusing multiple steps and processing
attention in blocks. While the naive attention implementation would instantiate the full attention matrix
A ∈ RS×S , FlashAttention avoids this by computing attention block by block. Let Q, K, V ∈ RB×S×dhead

denote the query, key, and value tensors respectively, with nh heads and dhead =
dmodel

nh
. FlashAttention

divides the input sequence into blocks of size Bc (for keys/values) and Br (for queries) to process attention
efficiently within GPU memory constraints. Following (Dao, 2023), the dominant activation memory in
FlashAttention comes from storing Q, K, V . The block-based processing means that at any given time, only
blocks of the attention matrix of size Br × Bc are materialized in memory. Assume using float16 data type,
the total activation memory can be expressed as:

Mattn ≈ (3B ⋅ S ⋅ nh ⋅ dhead + B ⋅ nh ⋅ Br ⋅ Bc) ⋅ 2 bytes (4)
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The first term accounts for storing Q, K, and V tensors, while the second term accounts for the block of
attention matrix being processed. With appropriate block sizes Br and Bc (typically set based on GPU
memory constraints), the second term remains relatively small. Assuming B = 1, S = (∣Xv∣+ ∣Xt∣) ≈ 921600,
dmodel = 4096, nh = 8, Br = Bc = 1024, we compute:

Mattn = (3 ⋅ 1 ⋅ 921600 ⋅ 8 ⋅ 512 + 1 ⋅ 8 ⋅ 1024 ⋅ 1024) ⋅ 2 bytes (5)
= 60, 584, 722, 432 bytes (6)

≈ 21.1 GB (7)

While FlashAttention significantly reduces memory requirements compared to naive attention implementation,
this analysis shows it still consumes substantial memory for very long sequences. With group-based prefilling
using G = 225 groups, we can reduce the sequence length S by G times, reducing Mattn from 21.1 GB to
approximately 0.09 GB. This dramatic reduction enables the processing of extremely long sequences that
would otherwise be infeasible.

MLP Block The SwiGLU (Swish-Gated Linear Unit) (Shazeer, 2020) enhances transformer models through
improved gating mechanisms and has been adopted as the default MLP architecture in many popular LLMs
including InternVL2.5 and Qwen2.5 series (Bai et al., 2025; Chen et al., 2025a). For input representation
x ∈ Rdmodel , the SwiGLU operation is defined as:

SwiGLU(x) = Wdown(SiLU(Wgatex)⊙ Wupx) (8)

where Wgate, Wup ∈ Rdff×dmodel , Wdown ∈ Rdmodel×dff , and SiLU(x) = x ⋅ σ(x) with σ(x) = 1
1+e−x .

For a batch of sequences, activation memory analysis reveals requirements at each computational step. With
batch size B, sequence length S, hidden dimension dmodel, intermediate dimension dff, and data type float16,
the total activation memory for a single SwiGLU layer is:

Mact = (B ⋅ S ⋅ (2dmodel + 4dff)) ⋅ 2 bytes (9)

For a one hour video sampled with 1 FPS (3600 frames in total), parameters can be set B = 1, S =

(∣Xv∣ + ∣Xt∣) ≈ 921600, dmodel = 4096, and dff = 14336:

Mact = (1 ⋅ 921600 ⋅ (2 ⋅ 4096 + 4 ⋅ 14336)) ⋅ 2 bytes (10)
= 241, 591, 910, 400 bytes (11)

≈ 112.5 GB (12)

This substantial memory requirement highlights the computational challenges in deploying SwiGLU-based
models for high-resolution inputs with extended sequence lengths. However, if we prefill the tokens group by
group, we can reduce the S by G times, and thus reduce the activation memory Mact by G times. Assuming
each group contains tokens of 16 frames, then G =

3600
16 = 225 and we can reduce Mact from 112.5 GB to 0.5

GB, which is a substantial improvement.

D.2 KV cache Memory Analysis

When using InternVL2.5-8B (Chen et al., 2025a), with each frame encoded as 256 tokens (∣V ∣ = 3,600× 256 =

921,600), and ∣Q∣ = 256 text tokens, L = 28 layers, nh = 8 heads, and dh = 512, the total memory required
to store the KV cache in float16 precision is:

Memory = 2 × L × (∣Xv∣ + ∣Xt∣) × nh × dh × 2 bytes ≈ 393.9 GB . (13)
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E Ablation Study on Group Size and Retention Ratio

Table 2: Ablation study of different group sizes and retention ratio ρ. We use Key Norms (small) as the KV
pruning method here.

Group
Size ρ VideoMME LongVideoBench

(val) LVBench MLVU
(dev) Avg Performance

Varying Group Size
- 1 65.78 61.56 43.90 68.65 59.97 100.00%
4 0.5 63.78 60.36 42.61 66.81 58.39 97.36%
8 0.5 64.00 60.88 42.35 66.94 58.54 97.62%
16 0.5 64.04 60.21 41.90 66.73 58.22 97.08%
32 0.5 63.59 59.46 41.51 66.78 57.84 96.44%
64 0.5 63.89 60.51 42.29 66.83 58.38 97.34%
128 0.5 63.56 59.24 42.61 66.97 58.09 96.87%

Varying Retention Ratio ρ

16 1 65.78 61.56 43.90 68.65 59.97 100.00%
16 0.1 55.89 53.40 36.02 59.02 51.08 85.18%
16 0.2 59.74 56.47 39.57 61.58 54.34 90.61%
16 0.4 63.22 58.94 41.19 65.75 57.27 95.51%
16 0.6 64.74 60.81 41.90 67.48 58.73 97.93%
16 0.8 65.70 61.41 43.51 68.37 59.75 99.63%
16 0.9 65.85 61.18 43.71 68.70 59.86 99.82%

F HourVideo Results

HourVideo (Chandrasegaran et al., 2024) is a video-understanding benchmark designed to test the reasoning,
perception, summarization and navigation abilities of VideoLLMs. In Table 3, we compare our best performing
pruning method, Key Norms (small), to a no pruning baseline. We use 256 frames and group size of 16
frames, as we found that is the strongest setting for the baseline (Table 1). The overall score is computed by
weighting each category by its respective number of samples. We note that the navigation category requires
answering with an image, which our model does not support.

G QuickVideo CPU and GPU Memory Profiles

We provide a CPU memory profile corresponding to Figure 5. QuickVideo’s CPU memory is made up of 3
components: the torch main process, QuickCodec workers, and the shared memory block into which video
frames are loaded (line 2 in Algorithm 2). The torch main process has consistent memory utilization (RSS

Method Reasoning Perception Summarization Navigation Overall

No Pruning 31.76 32.38 30.49 20.00 31.47
Key Norms (small) 33.09 28.98 31.71 17.50 31.13

Performance 104.2% 89.5% 104.0% 87.5% 98.9%

Table 3: Results on HourVideo (Chandrasegaran et al., 2024).
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Group Size Peak Allocated (MB) 95th Percentile Allocated (MB)
Base Model 15816.09 —
16 16718.12 16670.19
32 17349.22 17240.74
64 18606.21 18494.28

Table 4: Memory allocation statistics by group size.

95-percentile and peak of 1557.86 MB), QuickCodec workers have a peak RSS of 89.27 MB and 95th percentile
of 88.68 MB per worker. The shared memory buffer is allocated with a constant size (Algorithm 2).

Table 4 shows GPU memory profile for a processing 30 minute video with different group sizes. We report
both the peak allocated memory and 95th percentile allocated memory. The majority of memory is allocated
for the base model, processing groups of size 16 and 32 increases peak memory utilization by 854.1 MB and
1533.13 MB, respectively.

H Implementation Details

QuickCodec, TorchCodec and Decord use FFmpeg to implement the decoder D. QuickCodec uses system
shared memory directly, instead of a parallelization library such as python’s multiprocessing, as we find that
serializing video tensors for inter-process communication introduces significant latency. Shared memory is
designed for fast inter-process communication and is not secure. QuickCodec should not be used on hosts
running untrusted processes.

I Limitations

As it is slow and resource intensive, most VideoLLMs are not trained to use their 1-2 FPS short video sampling
rates when using processing long video (Bai et al., 2025; Chen et al., 2025a; Zhu et al., 2025a). Instead, they
use very low sampling rates over large time-spans, as we discussed in Section 1. Therefore, VideoLLMs do
not (yet) gain a large performance advantage by processing a large number of frames. However, it is clear
that a model that has seconds-long gaps between frames can never capture fine-grained temporal and spatial
details. Our hope is that making long video understanding (with realistic sampling rates) practical from a
systems and algorithm perspective, we will empower the development of such models. Another limitation is
that our QuickCodec timings only use H.264 coded video for timings. Although H.264 is the dominant
standard, it is not universal.
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