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ABSTRACT

The neural network (NN) looks for the hypothesis function in the search space,
where the hypothesis function can be conceptualized as a continuous interpolating
function. Nevertheless, the issue of overfitting commonly arises in interpolation
methods that focus on function values, such as Lagrange interpolation. We con-
struct the geometric intuition to improve extrapolation and induce the Jacobian
Regularization (JR) by Hermite interpolation. The concept of Jacobian Regular-
ization resembles the gradient penalty (GP) employed in the Wasserstein GAN,
with an experiment verifying the feasibility of our method.

1 INTRODUCTION

The hypothesis function is well-suited for accurately representing the relationship between the input
data and the corresponding ground truth. As the hypothesis function predicts each point metic-
ulously, it can be viewed as an interpolating function from the training data. Meanwhile, neural
network (NN) attempts to search such function usually by stochastic gradient descent (SGD).

We encounter two predominant challenges in practical training scenarios: underfitting and over-
fitting Zhang et al. (2021). One may adopt a more sophisticated model to address underfitting or
extend the training duration across additional epochs. Overfitting, on the other hand, presents a more
nuanced obstacle. While strategies such as early stopping (Caruana et al., 2000; Yao et al., 2007)
and data augmentation (Tanner & Wong, 1987; Van Dyk & Meng, 2001; Shorten & Khoshgoftaar,
2019) offer temporary mitigation, they are extrinsic and do not address the inherent complexities of
the overfitting phenomenon. Is it feasible to conceptualize the issue of overfitting using a straight-
forward yet perceptive approach? Although the generalization has been studied through different
prespectives (Lugosi & Neu, 2022; Stokes & Baer, 1977; Mitchell, 1982; Guttman & Kalish, 1956),
we try to seek to unravel this issue through the lens of the interpolation method.

The NN fits the interpolated part of data and extrapolates other data, showing the ability of NN’s
generalization. In this paper, we focus on the extrapolation of NN. Hanin (2021) had studied ↕2 norm
for parameter could improve NN to extrapolate. We consider the extrapolation by the geometrical
intuition inspired by the traditional interpolation approach. Previous studies have investigated the
correlation between the interpolation approach and NN (Berrada et al., 2020; Barnard & Wessels,
1992; Montanari & Zhong, 2022). The prominent method for a simple interpolating function is
Lagrange interpolation, which constructs most nth degree polynomials through n + 1 data points.
Nevertheless, the issue of Lagrange interpolation NN, as both methods are susceptible to overfitting.
Therefore, it is recommended to utilize Hermite interpolation to avoid such a scenario. This method
not only fulfills the requirements of the Lagrange polynomial but also ensures that the derivative of
the interpolated polynomial at each point xi matches the derivative of the original function f(xi).

In this paper, we rediscover Jacobian Regularization (JR) Sokolić et al. (2017) to generalize induced
by Hermite interpolation. The JR-like gradient penalty policy has been discussed in Varga et al.
(2017); Ross & Doshi-Velez (2018); Hoffman et al. (2019). However, we start with the property
of the hypothesis function to make the smooth interpolating function, which prevents overfitting
effectively and induces the JR in an interesting way. Additional analysis is placed in the appendix.
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Table 1: Simple FCN performance across penalty coefficients on MINIST and CIFAR10. The
Training Loss (↓) and the Test Accuracy (↑) are compared on convergence epochs.

Datasets λ Epochs Training Loss Accuracy(%)
MINST 0 9 0.0400 87.78
MINST 0.1 9 0.0337 88.11
MINST 0.2 9 0.0310 88.15
MINST 0.5 9 0.0365 88.24
CIFAR10 0 20 0.0804 33.99
CIFAR10 0.1 20 0.0836 34.69
CIFAR10 0.2 20 0.0812 34.12
CIFAR10 0.5 20 0.0819 35.05

2 METHODOLOGY

Given the training pair (xj , yj) ∈ D, j = 0, 1, ..., n and xj = (x0, x1, ..., xi, ..., xm). In the
following content, we denote xi directly to imply it as a coordinate component of arbitrary x ∼ p(x)
with corresponding y. Let h be a hypothesis function such that h′ is continuous and h′′ exists
in the hypothesis space H. Then for each xi, we have h(xi) = yi. Therefore, the hypothesis
is the optimal function we aim for our neural network to explore. However, to require a smooth
hypothesis function, which could be considered as the interpolation function of the training pair, the
new condition to reduce the search space is dh(xi)

dxi
= dyi

dxi
. This condition induces a smooth function

like the Hermite polynomial, preventing overfitting.

For the NN fθ, which search or approach for such a hypothesis function can be converted into an
optimization problem with distance measure ∥ · ∥,

min
θ

1

mn

n∑
j=0

m∑
i=0

∥fθ(xi)− h(xi)∥2 + λ∥dfθ(xi)

dxi
− dh(xi)

dxi
∥2, (1)

where λ is a penalty coefficient. The new problem of our optimization objective in Eq. 1 is, what
is exactly for the dh(xi)

dxi
? Reminding of our training pair is discrete data, the punctured open ball

◦
B (xi, δ) with δ > 0 satisfy such a property we expect for our hypothesis function:

h(x) = h(xi), x ∈
◦
B (xi, δ) . (2)

With little perturbation, we hope the output of the hypothesis function remains at its original value.
Then dh(xi)

dxi
< ϵ with ∀ϵ > 0 for each xi, and naturally, h satisfies Lipschitz consistency. According

to this result and recall h(x) = y, the optimization objective in Eq. 1 can be converted into

min
θ

Ex∼p(x)∥fθ(x)− y∥2 + λ∥∇xfθ(x)∥2. (3)

The interesting point is that the result in Eq. 3 is really similar to Gradient Penalty (GP)

min
θ

Ex∼p(x)∥fθ(x)− y∥2 + λ (∥∇xfθ(x)∥ − 1)
2
, (4)

proposed by Gulrajani et al. (2017). The GP is the relaxed constraint of JR, which only requires the
norm of a gradient smaller than one.

3 EXPERIMENT

In this section, we set up the experiment to validate our result. We take the MINST and CIFAR10
as our dataset with superficial Full Connected Net (FCN). More specifically, we set the batch size
to 64. With the SGD set of the learning rate of 0.01, we research the result of different λ, while
the λ = 0 implies without the JR. To compare the overfitting situation, we compare the accuracy
of classification tasks on the test datasets with similar training losses. The results shown in Tab. 1
imply that with JR, the NN performs better on test sets and even reduces the training loss in some
situations, which indicates it can somehow prevent overfitting.

2



Published as a Tiny Paper at ICLR 2024

4 CONCLUSION

Our work starts from the previous interpolating method, especially for Hermite polynomial, deduc-
ing Jacobian Regularization to a smooth hypothesis function in search space. We analyze the error
and the feasibility of gradient descent with experiment validation. As our approach predicted, the
overfitting result is reduced when the proper hyperparameter λ is given. Ultimately, we point out the
interesting relationship between JR and GP, where our term is a more strict constraint than GP.
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A ERROR ANALYSIS

Figure 1: A straightforward yet easily understandable example demonstrating the smooth constraint.
While Lagrange interpolation and Hermite interpolation may yield comparable results in the convex
hull, the oscillation of the interpolation function can pose challenges when attempting to extrapo-
late outside the convex hull. This phenomenon can be attributed to overfitting. The generalizable
hypothesis should resemble Hermite interpolation, as it is a good fit for points within a convex hull
and can extrapolate.

In this appendix, we give the error analysis of HR. We study the error through the error at each point.

If x̂ ∈
◦
B (x0, δ), the Taylor polynomial P (x̂) of NN is

fθ(x̂) = fθ(x0) + [∇x̂fθ(x0)]
T
(x̂− x0) +R(x̂|x0), (5)

where

R(x̂|x0) =
1

2!
[x̂− x0]

T
H (c) [x̂− x0] . (6)

c is a point on the line segment induced by x̂ and x0. H (c) is the Hessian matrix on c. Obviously,
the polynomial P (x̂) satisfy

P (x0) = y, ∇x0
P (x0) = ∇x0

y, (7)

thus P (x̂) is the polynomial we want to meet the Lipschitz condition. Consequently, considering
the whole training set, we give the error term of the hypothesis function:

r = Exj∼p(x) sup
c

R(x̂|xj). (8)
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B EXPLANATION OF GENERALIZATION

The necessity for a well-defined hypothesis function arises due to several reasons. Revisiting the
interpolation, we desired a generalization model, as depicted in Fig. 1. It can be observed that the two
interpolation methods exhibit comparable performance when applied to the test points falling within
the convex hull. However, although the extrapolation test points, as discussed in Balestriero et al.
(2021), exhibit the phenomenon of test data always being extradited in high dimensions, Lagrange
interpolation cannot be performed confidently. Overfitting can be likened to Lagrange interpolation,
which exhibits good performance when applied within the convex hull but performs poorly when
extrapolating outside the convex hull. A method that imposes gradient constraints, such as Hermite
interpolation, can be employed to mitigate overfitting.

On the other hand, when the gradient restriction is applied, Hermite interpolation can be extended to
the extraction points. The ideal hypothesis function’s desired characteristic is to fit the points within
the convex hull accurately but also exhibit reliable performance in extrapolation. Therefore, the
NN that is trained to approximate such a function has the potential to exhibit better generalization
capabilities.

C CONVERGENCE ANALYSIS

The optimization object in Eq. 3, induces the JR term

∥∇xfθ(x)∥2. (9)

Notice that JR is differentiable, and if fθ is a convex function, the gradient descent can guarantee
the problem converges into a global minimum as a result of Zinkevich (2003). However, while fθ
is usually a complex NN, the SGD can only ensure a local minimum with the parameter update by
Eq. 3:

θt+1 = θt − η
(
∇θ ∥fθ(x)− y∥2 + λ∇θ ∥∇xfθ(x)∥2

)
, x ∼ p(x), (10)

where η is the learning rate set as 0.01 in Sec. 3.
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