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Abstract
While multimodal generative models have ad-001
vanced radiology report generation (RRG),002
challenges remain in making reports accessi-003
ble to patients and ensuring reliable evaluation.004
The technical language and templated nature005
of professional reports hinder patient compre-006
hension and enable models to artificially boost007
lexical metrics such as BLEU by reproducing008
common report patterns. To address these limi-009
tations, we propose the Layman’s RRG frame-010
work, which leverages layperson-friendly lan-011
guage to enhance patient accessibility and pro-012
mote more robust evaluation and report gen-013
eration by encouraging models to focus on014
semantic accuracy over rigid templates. Our015
approach also introduces and releases two re-016
fined layman-style datasets (at the sentence and017
report levels), along with a semantics-based018
evaluation metric that mitigates inflated lexi-019
cal scores and a layman-guided training strat-020
egy. Experiments show that training on layman-021
style data helps models better capture the mean-022
ing of clinical findings. Notably, we observe023
a positive scaling law: model performance im-024
proves with more layman-style data, in contrast025
to the inverse trend observed with templated026
professional language.027

1 Introduction028

With the advancement of generative models, image029

captioning has made significant progress in produc-030

ing accurate textual descriptions from visual inputs.031

This capability has been increasingly applied in the032

medical domain, particularly in Radiology Report033

Generation (RRG) (Lin et al., 2022; Wang et al.,034

2022; Lee et al., 2023; Hou et al., 2023; Yan et al.,035

2023; Li et al., 2023; Liu et al., 2024). RRG aims036

to generate descriptive reports from medical im-037

ages, such as chest X-rays, to reduce radiologists’038

workload while improving the quality, consistency,039

and efficiency of clinical documentation. Despite040

recent progress, two critical challenges remain un-041

derexplored. First, the generated reports often lack042

patient accessibility due to their use of highly tech- 043

nical language and rigid clinical templates, mak- 044

ing them difficult for non-experts to understand. 045

Second, current evaluation metrics and training 046

paradigms emphasize surface-level textual similar- 047

ity rather than true semantic understanding, poten- 048

tially masking important deficiencies in report qual- 049

ity (Stent et al., 2005; Callison-Burch et al., 2006; 050

Smith et al., 2016; Li et al., 2019; Yan et al., 2021; 051

Dalla Serra et al., 2022; Kale et al., 2023; Yan et al., 052

2021; Dalla Serra et al., 2022). Although these chal- 053

lenges may appear distinct, they are closely linked: 054

the templated language that hinders patient com- 055

prehension also leads models to overfit to surface 056

patterns, inflating evaluation scores and hindering 057

semantic generalization. 058

A patient-centered approach is becoming in- 059

creasingly vital in modern healthcare, emphasizing 060

transparency and shared decision-making. With 061

policies like the 21st Century Cures Act requir- 062

ing immediate access to electronic health records 063

(EHR), patients now often receive radiology reports 064

before any clinical interpretation. However, these 065

reports—designed primarily for clinician communi- 066

cation and billing—are written in highly technical 067

language, with fewer than 4% meeting the eighth- 068

grade reading level typical of U.S. adults (Martin- 069

Carreras et al., 2019). This mismatch presents ma- 070

jor barriers to understanding and engagement, fre- 071

quently resulting in confusion, anxiety, and poor ad- 072

herence to follow-up or treatment plans (Domingo 073

et al., 2022; Mabotuwana et al., 2018). The chal- 074

lenge is compounded by the fact that only 50% of 075

recommended follow-ups are completed (Mabo- 076

tuwana et al., 2019), in part due to unclear commu- 077

nication of incidental findings. While prior studies 078

have explored barriers from the patient’s perspec- 079

tive, little work has addressed the need to redesign 080

the reports themselves. Improving report accessi- 081

bility is therefore both a practical necessity and an 082

ethical obligation in advancing patient-centered AI. 083

1



Beyond the challenge of patient accessibility, ra-084

diology report generation also faces a fundamental085

lack of robustness in both evaluation and training.086

On the evaluation side, most RRG models are still087

assessed using lexical overlap-based metrics like088

BLEU and ROUGE (Papineni et al., 2002; Lin,089

2004), which remain dominant in the field (Liu090

et al., 2023). However, these metrics operate at091

the surface level, capturing word-level similarity092

while ignoring clinical meaning. For example, the093

phrases “there is a focal consolidation” and “there094

is no focal consolidation” receive similarly high095

BLEU scores due to shared structure, despite ex-096

pressing opposite clinical conclusions (Stent et al.,097

2005). This shortcoming is magnified by the highly098

templated nature of radiology reports (Li et al.,099

2019; Kale et al., 2023), where rigid formats en-100

able models to achieve high scores by mimicking101

patterns rather than grasping content. Prior work102

has shown that template-based substitutions can103

produce strong lexical scores even when semantic104

accuracy is lost (Kale et al., 2023). Moreover, such105

structural rigidity in professional reports could also106

effect training, as models exposed to these tem-107

plates often overfit to superficial cues instead of108

learning generalizable semantic representations.109

We hypothesize that adopting layman-style lan-110

guage in radiology report generation can simul-111

taneously address the dual challenges of acces-112

sibility and robustness. From the patient’s per-113

spective, layman terms enhance the readability114

and comprehensibility of reports, making them115

more inclusive and actionable. From the model-116

ing perspective, the linguistic diversity and absence117

of rigid templates in layman-style reports encour-118

age models to focus on semantic understanding119

rather than overfitting to superficial patterns. Build-120

ing on this insight, we propose a new framework121

for radiology report generation grounded in lay-122

man’s terms. Our framework includes: (1) cre-123

ating two high-quality layman-style datasets: a124

sentence-level dataset and a report-level dataset;125

(2) a semantics-based evaluation method based126

on layman’s terms, which provides fairer assess-127

ments that mitigates inflated BLEU scores; and128

(3) a training strategy based on layman’s terms129

that improves the model’s semantic learning and130

reduces its reliance on templated language in pro-131

fessional reports.132

To validate the effectiveness of the Layman’s133

RRG framework, we conduct extensive experi-134

ments using the publicly available MIMIC-CXR135

dataset (Johnson et al., 2019). Results show that 136

our semantics-based evaluation method, combined 137

with the sentence-level layman dataset, provides 138

significantly more robust assessments. Further- 139

more, models trained with our layman-guided strat- 140

egy exhibit stronger semantic generalization com- 141

pared to those trained on templated professional 142

reports. Notably, we observe a promising scal- 143

ing trend: as the amount of layman-style training 144

data increases, model performance continues to 145

improve—unlike the diminishing gains seen with 146

professional report training. These findings offer 147

strong empirical support for our hypothesis that 148

layman-style language enhances both accessibility 149

and robustness in radiology report generation. In 150

summary, our contributions are as follows: 151

• We introduce two high-quality layman-style 152

radiology report generation datasets: a 153

sentence-level dataset and a report-level 154

dataset. To the best of our knowledge, this 155

is the first systematic effort to create patient- 156

friendly datasets for RRG, offering a valuable 157

resource for future research aimed at enhanc- 158

ing the readability and inclusiveness of medi- 159

cal AI systems. 160

• We propose a layman-guided evaluation 161

method for RRG that leverages LLM-based 162

embedding models to substitute professional 163

report sentences with semantically matched 164

layman equivalents from our dataset. This 165

method enables fairer and more robust assess- 166

ment using both traditional lexical metrics and 167

our proposed semantics-based metric. 168

• We demonstrate training on our report-level 169

layman dataset enhances the model’s semantic 170

understanding and reveals a promising scaling 171

law: performance improves consistently with 172

more layman-style data—contrasting with the 173

diminishing returns seen when training on pro- 174

fessional reports. 175

2 Related work 176

2.1 Patient-Centric Reports 177

Some medical researches show that a direct link 178

between patients’ understanding of their medical 179

information with adherence to recommended pre- 180

vention and treatment processes, better clinical out- 181

comes, better patient safety within hospitals, and 182

less health care utilization (Anhang Price et al., 183

2



2014; López-Úbeda et al., 2024; Martin-Carreras184

et al., 2019). Radiology reports, although written185

primarily for healthcare providers, are read increas-186

ingly by patients and their family. However, few187

researches have focused on patient-centric reports.188

2.2 Evaluation Metrics for Radiology Report189

Generation190

Evaluation metrics are essential for RRG as they191

provide measurements of the quality of the pro-192

duced radiology reports from various approaches193

and ensure a fair comparison among counterparts.194

Similar to other AI research domains, prevailing ap-195

proaches in RRG evaluation adopt automatic met-196

rics by comparing the generated reports with gold197

standard references (i.e., doctor-written reports).198

Generally, metrics for this task are categorized199

into five types: natural language generation (NLG)200

(Papineni et al., 2002; Lin, 2004; Banerjee and201

Lavie, 2005; Zhao et al., 2023, 2024; Yang et al.,202

2024), clinical efficacy (CE) (Peng et al., 2018;203

Irvin et al., 2019; Smit et al., 2020; Jain et al.,204

2021), standard image captioning (SIC) (Vedan-205

tam et al., 2015), embedding-based metrics, and206

task-specific features-based metrics. Among these,207

NLG metrics and CE metrics are the most widely208

adopted in current approaches. However, most of209

these metrics primarily focus on word overlap and210

do not adequately consider the semantic meaning211

between the ground truth and generated reports.212

3 Layman’s Term RRG213

In this section, we present Layman’s term RRG,214

a unified framework encompassing {data creation,215

evaluation, and training}, designed to address the216

limitations of lexical-based metrics and the rigid,217

patterned nature of professional radiology reports.218

The framework (see Figure 1) is supported by two219

complementary resources: a sentence-level dataset220

for semantics-based evaluation and a report-level221

dataset for training models with improved semantic222

generalization.223

3.1 Data Creation224

Our data construction pipeline comprises three225

components: a deduplication preprocessing (ap-226

plicable only to the sentence-level dataset), a gen-227

eration–refinement step, and a human verification228

postprocessing. This pipeline is designed to pro-229

duce high-quality layman-style sentences and re-230

ports.231

3.1.1 Deduplication Preprocessing 232

We first use NLTK to segment each report into 233

individual sentences. Through analyzing large vol- 234

umes of reports, we found that many repetitive 235

sentences share similar semantics. To simplify 236

the final dataset and reduce the burden of pair- 237

wise similarity computation, we apply extensive 238

deduplication to the sentence-level inputs. To this 239

end, we use GritLM (Muennighoff et al., 2024), 240

a decoder-based embedding model that achieves 241

state-of-the-art performance on the Massive Text 242

Embedding Benchmark (MTEB) and the Reason- 243

ing as Retrieval Benchmark (RAR-b), to encode 244

sentences and obtain their vector representations. 245

We then iteratively compute pairwise cosine simi- 246

larities between sentences, retaining those that do 247

not exceed a similarity threshold of 0.8 with pre- 248

viously selected sentences and discarding the rest. 249

Through this deduplication procedure, the num- 250

ber of sentences is reduced from approximately 251

490,000 to 50,000, substantially lowering computa- 252

tional cost and improving the efficiency of subse- 253

quent processing. 254

3.1.2 Generation–Refinement Step 255

Generation. After the deduplication on sentences, 256

we use GPT-4o to translate professional sentences 257

or reports into layman-style language. The prompt 258

design—detailed in Appendix A.1—specifies the 259

generation objectives, enables batch processing, 260

and instructs the model to return outputs in JSON 261

format. This approach largely reduces cost and 262

improves output consistency through referencing 263

in-batch examples. 264

Refinement. To enhance translation quality, we 265

introduce a self-refinement method involving a 266

semantic-checking module built upon embedding 267

models, and a correctness self-checking module 268

using the same LLM in the generation step. De- 269

tails of the self-check prompt are provided in 270

Appendix A.2. For each professional–layman 271

sentence pair, we combine self-check feedback 272

from GPT-4o with semantic similarity scores from 273

GritLM to ensure the quality of translated sen- 274

tence. A translation must pass both checks to be 275

accepted; otherwise, the sentence is resubmitted for 276

regeneration. The full procedure of the generation- 277

refinement step is outlined in Appendix A.4. 278

3.1.3 Human Verification 279

Following the refinement process, the dataset qual- 280

ity improved substantially. As shown in Ap- 281
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:Pleural effusion, focal 
consolidation…

Hard to understand

need to interpret

Increase workload

Have rights to know its 
meaning by themselves

reference: 
Impression: No acute cardiopulmonary 
process

generated report: 
The impression is that there’s no acute cardiac 
or pulmonary process

low 
scoreSS & DE

reference: 
The chest x-ray shows no evidence of focal 
consolidation, effusion, or pneumothorax, and 
the cardiomediastinal silhouette is normal

generated report: 
There is minimal left base atelectasis, and 
no focal consolidation, pleural effusion, or 
evidence of pneumothorax is seen

DS & SE
high 
score

Not robust

Reports with Layman’s Term

Easy to understand

extra fluid around the lungs,
Lung infection

Decrease workload

Robust evaluation
SS & DE

Ref: No serious heart or lung issues.
Generated: The conclusion is no serious heart or 
lung issues.

DS & SE

Ref: The chest x-ray shows no infection, fluid, or air 
outside thelungs, and the heart and chest look normal.
Generated: There is a small amount of lung collapse 
at the left base, but no signs of localized lung 
infection, fluid between the lungs and chestwall, or a 
collapsed lung elsewhere.

Generation Process

Professional 
reports

Layman’s Term

Check

Finish

New Finding: Scaling Law 

Figure 1: The Layman’s RRG Framework. The "DS & SE" denotes different semantics and similar expressions.
The "SS & DE" denotes similar semantics and different expressions.

pendix A.6, correction rates increase across self-282

refinement iterations. Additionally, we randomly283

sampled 500 sentence pairs for human verification,284

where over 98% were judged as correct matches.285

3.2 Beyond Lexical Overlap:286

Semantics-Based Evaluation287

Through thorough analysis of radiology reports, we288

observed that word-overlap metrics such as BLEU,289

ROUGE, and METEOR do not accurately reflect290

the quality of generated reports. This discrepancy291

arises due to the presence of semantically simi-292

lar sentences with different wordings, as well as293

semantically different sentences with high lexical294

overlap. For example, the sentences “There is a295

definite focal consolidation, no pneumothorax is296

appreciated" and “There is no focal consolidation,297

effusion, or pneumothorax" convey distinct clini-298

cal meanings but achieve a BLEU-1 score greater299

than 0.6. This demonstrates that even when the300

underlying pathology differs, high BLEU scores301

may still be obtained due to surface-level similar-302

ity. Conversely, the sentences “Impression: No303

acute cardiopulmonary process" and “The impres-304

sion is that there’s no acute cardiac or pulmonary305

process" convey the same meaning but receive a306

low BLEU-1 score due to differences in phrasing.307

We categorize these inconsistencies into two types:308

expression difference issues and semantics differ-309

ence issues. An expression difference issue occurs310

when the candidate and reference sentences share 311

similar semantics but exhibit low word overlap. 312

A semantics difference issue arises when the sen- 313

tences differ in meaning but have high word over- 314

lap. Both issues can result in misleading BLEU 315

scores, as illustrated in Table 1. 316

To address these issues, we propose a novel eval- 317

uation method for assessing generated radiology 318

reports. In brief, the method compares a candi- 319

date report with a reference report by first splitting 320

both into individual sentences. Each sentence is 321

then replaced with its most semantically similar 322

counterpart from our constructed sentence-level 323

dataset, using GritLM to compute semantic simi- 324

larity. Sentences exceeding a predefined similarity 325

threshold are considered matched. We then calcu- 326

late the proportion of matched sentences in both 327

the candidate and reference reports as an additional 328

metric, reported alongside traditional word-overlap 329

metrics such as BLEU, ROUGE, and METEOR. 330

This complementary metric enables our evaluation 331

framework to mitigate the limitations of lexical- 332

based evaluation and provide a more semantically 333

grounded assessment of report quality. The detailed 334

evaluation algorithm is provided in Appendix A.5. 335

3.3 Robust Training with Layman-style Data 336

To investigate how training data style affects the 337

semantic generalization ability of generative mod- 338

els, we design a scaling-based training protocol 339
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Examples of DS & SE

Candidate Reference Candidate layman term Reference layman term

The chest x-ray shows a normal
cardiomediastinal contour and
heart size.

The chest x-ray shows low lung
volumes and a mildly enlarged
heart size

The chest x-ray shows a normal
heart and chest.

The chest x-ray shows lower
than normal lung volumes and a
slightly enlarged heart.

The chest x-ray shows well-
expanded and clear lungs without
any focal consolidation, effusion
or pneumothorax

The chest x-ray shows left mid
lung linear atelectasis/scarring,
without any focal consolidation
or large pleural effusion

The chest x-ray shows clear
lungs without any infection, fluid,
or air outside the lungs.

The chest x-ray shows some mi-
nor scarring or collapse in the left
lung without any signs of local-
ized lung infection or significant
fluid.

Examples of SS & DE

Impression: No acute cardiopul-
monary process

The impression is that there’s no
acute cardiac or pulmonary pro-
cess

No serious heart or lung issues. The conclusion is no serious
heart or lung issues.

The cardiac and mediastinal sil-
houettes are grossly stable

The cardiomediastinal silhouette
appears stable

The heart and central chest area
look stable.

The heart and central chest struc-
tures appear stable.

Additionally, there is no sign of
pleural effusion or pneumothorax

There are no pleural effusions
and pneumothorax

There are no indications of fluid
build-up or air leakage in your
lungs.

There is no fluid build-up in the
chest, and no air leaks from the
lungs.

Table 1: Samples can be categorized based on different semantics but similar expressions, as well as similar semantics
but different expressions. The upperpart showcases examples of different semantics and similar expressions.
Although these sentences yield a high BLEU score, they convey distinct meanings. Conversely, the lower part
section presents examples of similar semantics and different expressions. Despite having a high BLEU score, these
sentences express different meanings. The blue box and orange box denote the differing expressions in the reference
and candidate texts.

using both professional and layman-style radiology340

reports. Our central hypothesis is that heavily tem-341

plated professional reports encourage models to342

focus on surface structure rather than semantic con-343

tent, while translating these reports into layman’s344

terms removes rigid formatting and introduces lin-345

guistic diversity, thereby promoting semantic learn-346

ing.347

We construct a series of training subsets for both348

datasets (professional and layman-style), with sizes349

of 5k, 10k, 15k, 20k, 25k, and 50k samples. For350

each subset, we fine-tune the MiniGPT-4 model.351

The training is conducted for 10 epochs with a352

batch size of 50, using gradient accumulation on353

NVIDIA A6000 GPUs. After training, we generate354

500 radiology reports for each setting.355

To evaluate model performance, we adopt356

our proposed semantics-based evaluation method.357

Specifically, for each generated report, we compute358

the semantic similarity between every sentence in359

the candidate report and each sentence in the refer-360

ence report using GritLM embeddings. Sentence361

pairs exceeding a cosine similarity threshold of 0.8362

are considered semantically matched. The propor-363

tion of matched sentences is used to assess seman-364

tic fidelity. In addition, we analyze the distribution365

of sentence pairs across similarity score ranges to366

better understand how different training regimes367

affect the semantic quality and variability of model368

outputs. 369

4 Experimental Results 370

4.1 Readability of Layman-Style Reports 371

We first evaluated the readability of LLM- 372

generated layman-style radiology reports using two 373

publicly available models, Kimi1 and DeepSeek2, 374

on the MIMIC-CXR dataset, denoted as LLM1 and 375

LLM2, respectively. To assess readability, we em- 376

ployed a suite of text-statistics-based metrics3. The 377

abbreviations and descriptions of these metrics are 378

listed in Appendix A.10. The Baseline approach 379

refers to layman-style reports generated using the 380

prompt provided in Appendix A.1 via ChatGPT-4o, 381

while the Original approach corresponds to the 382

professional radiology reports without modifica- 383

tion. In addition to the baseline prompt (P1), we 384

designed an instruction-following prompt (P2) that 385

guides the model to generate layman-style reports 386

based on provided examples. An illustration of this 387

prompt is shown in Figure 4. As shown in Table 2, 388

the layman-style reports produced by all three LLM 389

approaches demonstrate substantially higher read- 390

ability than the original professional reports across 391

all evaluation metrics. 392

1Kimi (www.moonshot.cn)
2DeepSeek (www.deepseek.com/)
3We use the open-source Python library available at pypi.

org/project/textstat
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Data Model Easy
Level↑

Level of Grade Required for Reading↓
M1 M2 M3 M4 M5 M6 M7 M8 M9

MIMIC
CXR

(Original) 43 9 11 11 11 14 5 11 5 11
Baseline 76 6 8 8 8 9 7 10 5 19
LLM1+P1 84 5 8 8 7 7 7 8 4 21
LLM1+P2 85 5 7 7 6 7 6 8 4 19

Table 2: Readability of Layman-Style Reports. Original represents professional reports. Baseline, LLM1+P1 and
LLM1+P2 indicate layman-style reports generated by different LLMs and different prompts.

4.2 Limitations of Lexical-based Evaluation393

In this section, we reveal the behavioral differences394

between lexical-based evaluation metrics and our395

proposed semantics-based evaluation metric.396

To verify the effectiveness of layman-style re-397

ports in addressing expression difference and se-398

mantic difference issues, we construct two diag-399

nostic subsets: (1) Similar Semantics & Different400

Expressions (SS & DE) and (2) Different Seman-401

tics & Similar Expressions (DS & SE). The way402

lexical-based and semantics-based metrics respond403

to these subsets serves as a characterization of their404

robustness.405

For both raw professional reports and their406

layman-style counterparts, we compute BLEU,407

ROUGE, and METEOR scores, along with seman-408

tic similarity between candidate and reference sen-409

tences, within each diagnostic subset. The results410

are shown in Table 3. In the “DS & SE” subset, sen-411

tence pairs in the professional reports are mistak-412

enly assigned high scores by lexical metrics—for413

example, 0.644 (BLEU-1), 0.505 (BLEU-2), 0.393414

(BLEU-3), and 0.312 (BLEU-4). In contrast, their415

layman-translated counterparts significantly miti-416

gate this mirage effect, reducing the scores to 0.312,417

0.116, 0.064, and 0.042, respectively. Furthermore,418

our semantics-based metric correctly reflects the419

lack of semantic similarity in these pairs, with the420

proportion of sentences scoring above 0.8 dropping421

to only 2% and 1%.422

Conversely, in the “SS & DE” subset, an ideal423

evaluation metric should be robust to surface-level424

differences and assign high scores to semantically425

aligned sentence pairs. However, lexical-based426

metrics fail to capture this relationship, yielding427

significantly lower scores for professional report428

pairs. Our translated layman pairs alleviate this429

weakness, producing higher perceived scores under430

lexical metrics. More importantly, the combination431

of our layman-style dataset and semantics-based432

metric yields the most robust evaluation: it not only433

achieves a high proportion of semantically similar434

pairs (over 50% scoring above 0.8), but also main-435

tains a small perceptual gap between professional436

Dataset SS&DE DS&SE

Type raw layman raw layman

B-1 0.192 0.381 0.644 0.314

B-2 0.131 0.251 0.505 0.116

B-3 0.100 0.178 0.393 0.064

B-4 0.066 0.116 0.312 0.042

R-1 0.349 0.407 0.622 0.286

R-2 0.169 0.210 0.399 0.072

R-L 0.341 0.383 0.581 0.250

Meteor 0.386 0.452 0.627 0.310

Semantics 0.5 0.507 0.02 0.01

Table 3: BLEU and ROUGE score in professional report
and its layman’s term. SS&DE represent similar seman-
tics and different expressions; DS&SE means different
semantics and similar expressions. Semantic scores are
calculated with the proportion of semantic similarity
over 0.8 among all sentences.

and layman versions. 437

In summary, lexical-based metrics suffer from 438

inherent limitations, particularly when applied to 439

the highly patterned structure of professional radi- 440

ology reports. These metrics often fail to reflect 441

the true semantic relationships between sentence 442

pairs—frequently assigning higher scores to DS 443

pairs than to SS pairs. Our layman-style dataset 444

helps correct this imbalance, reversing the trend 445

and enabling lexical metrics to better align with se- 446

mantic intent. Most importantly, the combination 447

of semantics-based evaluation and layman-style 448

reports provides the most robust and faithful assess- 449

ment of generated report quality. 450

4.3 Improving Model Training with Layman’s 451

Terms: Insights from a Scaling Law 452

To evaluate the impact of training data style on 453

semantic learning, we compare models trained 454

on professional versus layman-style radiology re- 455

ports using our semantics-based evaluation met- 456

ric. As shown in Figure 2(b), the model trained 457

on layman-style data demonstrates a clear positive 458

scaling law: semantic performance steadily im- 459

proves as the training set size increases from 5k to 460
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50k. In contrast, the model trained on professional461

reports peaks at 10k samples and declines there-462

after, suggesting that prolonged exposure to highly463

templated language leads to overfitting and reduced464

semantic generalization. Notably, the layman-style465

dataset starts to outperform professional reports466

when the training size reaches 50k.467

To further assess semantic quality, we analyze468

the distribution of sentence-level similarity scores469

under the 50k training setting, as shown in Fig-470

ure 2(a), with full statistics across all training scales471

provided in Appendix A.11. The layman-style472

model yields more sentence pairs with high simi-473

larity scores (e.g., >0.8), indicating stronger align-474

ment with the reference semantics. In contrast,475

the professional model produces more outputs in476

the mid-to-low similarity range, reflecting weaker477

semantic fidelity.478

To understand why the model trained on 10k pro-479

fessional reports achieves the highest semantic per-480

formance, we conduct further analysis and identify481

signs of representation collapse. Specifically, we482

compute the pairwise cosine similarity of generated483

reports on the test set. The 10k professional model484

exhibits an average cosine similarity of 0.893 with a485

variance of 0.008, suggesting that the model learns486

to mimic the dominant class (e.g., no findings or487

normal reports) to minimize loss, rather than cap-488

turing diverse semantic content. In contrast, the489

10k layman-style model yields a lower average490

similarity of 0.802 with a higher variance of 0.012,491

reflecting greater report diversity and semantic rich-492

ness. These findings, combined with the overfitting493

trend observed in Figure 2, support the conclusion494

that the layman-style dataset promotes a more ro-495

bust and natural progression in semantic learning496

as the dataset scales—unlike the shortcut behavior497

observed with professional reports. Furthermore,498

we evaluate specialized clinical metrics and find499

that at the 10k scale, the layman-trained model out-500

performs its professional counterpart (CheXbert:501

0.447 vs. 0.398; RadCliQ-v0: 0.413 vs. 0.405).502

4.4 Evaluating Semantic Fidelity: Human vs.503

Automated Metrics504

Due to the obscurity of professional radiology re-505

ports and the high cost of involving clinicians as506

annotators, few studies have explored the correla-507

tion between human scores and automated metrics508

such as BLEU in this domain. However, it is well509

documented in other fields that word-overlap-based510

metrics often fail to capture semantic accuracy and511

typically exhibit weak correlation with human eval- 512

uations. Therefore, relying solely on such metrics 513

to assess the quality of generated radiology reports 514

is inadequate. To enable a fair comparison between 515

models trained on professional and layman-style 516

reports, and to make professional reports more com- 517

prehensible to non-clinician human evaluators, we 518

first translate all professional references into lay- 519

man terms. We then recruit three human anno- 520

tators—fluent English speakers with non-clinical 521

backgrounds—to score the generated reports using 522

a unified evaluation protocol:“Given the generated 523

text and the reference, calculate the proportion of 524

sentences in the generated text that semantically 525

match each sentence in the reference." This proto- 526

col is consistently applied to evaluate both types 527

of model outputs. After collecting scores from all 528

annotators, we compute the final report score by 529

averaging across annotators and across reference- 530

matched sentences. The inter-annotator agreement 531

(IAA), measured by Cohen’s Kappa, is 0.63 for pro- 532

fessional reports and 0.58 for layman-style reports, 533

indicating fair to good agreement (0.4–0.75 range). 534

Details about the annotators and scoring procedures 535

are provided in Appendix A.12. The correlation 536

results between human evaluations and automated 537

metrics are presented in Table 4. Across the board, 538

reports generated in layman terms show stronger 539

alignment with human judgments. This holds not 540

only for lexical metrics such as BLEU, ROUGE, 541

and METEOR, but also for clinically relevant Clin- 542

ical Efficacy (CE) metrics, including CheXbert-F1, 543

RadGraph-F1, and RadCliQ. Although CE metrics 544

are designed to assess named entity correctness in 545

medical texts, we find them equally applicable to 546

layman-style reports. Notably, the correlation be- 547

tween CE metrics and human scores is consistently 548

higher for layman-style outputs, reinforcing their 549

semantic fidelity and accessibility. 550

4.5 Case Study 551

Table 5 presents several sentence-level examples 552

demonstrating how translating professional radiol- 553

ogy terminology into layman’s language can sub- 554

stantially improve clarity and patient understanding. 555

For instance, the clinical term pleural effusion is 556

rephrased as extra fluid around the lungs, offering 557

a more intuitive explanation. Similarly, bibasilar 558

atelectasis, which may be obscure or confusing to 559

non-experts, becomes collapsed lung areas, con- 560

veying the concept in simpler terms. These ex- 561

amples highlight the value of plain language in 562

7



(a) (b)

Figure 2: Scaling law of the model’s semantic understanding by training on report-level datasets.

Correlation Pearson Spearman

Type raw layman raw layman

B-1 0.533 0.534↑ 0.536 0.524

B-2 0.526 0.573↑ 0.532 0.538↑

B-3 0.480 0.557↑ 0.502 0.519↑

B-4 0.420 0.519↑ 0.450 0.472↑

R-1 0.543 0.586↑ 0.550 0.565↑

R-2 0.430 0.524↑ 0.441 0.485↑

R-L 0.526 0.561↑ 0.532 0.534↑

Meteor 0.527 0.586↑ 0.538 0.556↑

Semantics 0.559 0.601↑ 0.558 0.576↑

Chexbert 0.570 0.600↑ 0.620 0.703↑

Radgraph 0.521 0.652↑ 0.536 0.658↑

RadCliQ-v0 0.616 0.710↑ 0.633 0.724↑

RadCliQ-v1 0.613 0.719↑ 0.630 0.728↑

Table 4: The correlation of automated metrics (BLEU,
ROUGE and semantic scores) and human evaluators,
for both professional reports and their layman’s terms
counterpart. Semantic scores are calculated with the
proportion of semantic similarity over 0.8 among all
sentences.

enhancing communication and promoting patient563

comprehension in medical settings.564

5 Conclusion565

In this paper, we presented the Layman’s RRG566

framework to jointly address the challenges of ac-567

cessibility and robustness in radiology report gen-568

eration. At the core of our framework are two569

high-quality layman-style datasets—at the sentence570

and report levels—constructed through a rigorous571

generation and self-refinement pipeline. These572

datasets serve as the foundation for both evalua-573

tion and training. Building on this, we introduced574

a semantics-based evaluation method that, when575

paired with our sentence-level dataset, mitigates the576

original layman

Both lung fields are
clear

Both lungs look healthy
with no problems

No evidence of pleural
effusion

There is no extra fluid
around the lungs

The chest x-ray shows
subtle patchy lateral left
lower lobe opacities,
which are most likely
vascular structures and
deemed stable with no
definite new focal con-
solidation

The x-ray shows faint
cloudy spots in the
lower part of the left
lung, likely blood ves-
sels, and overall stable
with no new clear lung
infection

Overall impression sug-
gests appropriate posi-
tioning of the tubes
and bibasilar atelectasis,
along with findings con-
sistent with small bowel
obstruction

The overall impression
suggests proper place-
ment of tubes and some
collapsed lung areas,
along with signs of
small bowel obstruction

However, cephalization
of engorged pulmonary
vessels has probably im-
proved

The congested blood
vessels in the lungs have
likely improved

Table 5: Examples from the sentence-level dataset.

overestimated scores produced by traditional word- 577

overlap metrics and more accurately captures the 578

semantic quality of generated reports. Furthermore, 579

we proposed a layman-guided training strategy uti- 580

lizing the report-level dataset, which enhances the 581

model’s semantic understanding and exhibits a pos- 582

itive scaling behavior, where performance contin- 583

ues to improve as the training data grows. Collec- 584

tively, these contributions provide a foundation for 585

building radiology report generation systems that 586

are not only semantically faithful, but also more 587

accessible to patients and non-experts. 588
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Ethics Statement589

In this paper, we introduce a Layman RRG frame-590

work for radiology report generation and evaluation.591

The advantage of our framework is that it is better592

for models to enhance the understanding on the593

semantics, as well as provide a more robust evalu-594

ation framework. However, a potential downside595

is that some layman’s terms may express inappro-596

priate or offensive meanings because of the hallu-597

cination issues of LLMs. Therefore, it is crucial598

to carefully review the content of training datasets599

prior to training the layman models to mitigate this600

issue.601

Limitations602

Although our Layman RRG framework could pro-603

vide a promising training process and provide a604

robust evaluation process, it has certain limitations.605

Primarily, as we utilized GPT-4o to translate the606

professional reports to layman’s terms and proceed607

a strict modification process to improve the quality608

of translated layman’s term, it may also include609

a few of professional reports that do not translate610

perfectly. In future work, we will focus more on611

continuing to improve the quality of translated re-612

ports.613
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A Appendix805

A.1 Prompt for Translation806

Given a series of sentences that are split from807

radiology reports.808

809

Sentences:810

{placeholder for 50 sentences}811

812

Please finish the following tasks.813

Tasks:814

1. Translation: Please translate each sentence into815

plain language that is easy to understand. You816

must translate all the sentences.817

818

For each task, return a dict. Here are some819

examples:820

Task 1:821

“‘json822

{823

"0": "No signs of infection, fluid, or air outside of824

the lung—everything looks normal.",825

"1": "The unclear spots seen in both lungs are826

most likely just shadows from nipples.",827

...828

}829

“‘830

831

A.2 Prompt for Refinement832

Given a series of Original sentences that are833

split from radiology reports and their translated834

layman’s terms sentence.835

836

Original Sentences:837

{placeholder for 50 sentences}838

839

Translated Layman’s Term:840

{placeholder for 50 sentences}841

842

Please finish the following tasks.843

Tasks:844

1. Check and Modification: Please check if the845

translated sentence is semantically consistent846

and has the same detailed description as the847

given original sentence. If it is, make no changes;848

otherwise, make modifications.849

850

For each task, return a dict. Here are some851

examples:852

Task 1:853

“‘json854

Algorithm 1 Dataset Generation and Refinement
Require: A set of n data items D = {d1, d2, . . . , dn}, a threshold θ for

semantic similarity
Ensure: Translated set T = {t1, t2, . . . , tn} where each ti is a valid

translation of di

1: for i = 1 to n do
2: repeat
3: ti ← LLM-Translate(di)
4: sim← Semantic-Similarity(di, ti)
5: correct← LLM-Check-Translation(di, ti)
6: until sim ≥ θ and correct
7: end for
8: return T

{ 855

"0": "No signs of infection, fluid, or air outside of 856

the lung—everything looks normal.", 857

"1": "The unclear spots seen in both lungs are 858

most likely just shadows from nipples.", 859

... 860

} 861

“‘ 862

863

864

A.3 Dataset 865

In this part, we outline the statistics of our datasets 866

as follows in the Table 6. 867

Datasets Sentence-level Report-Level

# Numbers 50000 50000

Avg. # Words per sample 28.68 101.45
Avg. # Sentences per sample 1 5.05

Table 6: Data statistics of the sentence-level and report-
level dataset.

A.4 Dataset Generation and Refinement 868

Algorithm 869

The Dataset Generation and Refinement Algorithm 870

is shown as Algorithm 1. 871

A.5 Candidate Report Evaluation using 872

GRITLM and Layman Term 873

Replacement 874

The Candidate Report Evaluation using GRITLM 875

and Layman Term Replacement is shown as Algo- 876

rithm 2. 877

A.6 Refinement Rate 878

In this section, we examine a subset of 100 sam- 879

ples to analyze the refinement process, observing 880

both the accuracy proportion at each stage and the 881

sentence modification rate per step. As illustrated 882

in Figure 3, the refinement process concludes after 883

three iterations. 884
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Algorithm 2 Candidate Report Evaluation using
GRITLM and Layman Term Replacement
Require: Candidate report C, Reference report R, Sentence-

level dataset S, Semantic similarity threshold θ = 0.8
Ensure: Proportion of sentences in C and R with semantic

similarity ≥ θ after replacement, BLEU, ROUGE, and
Meteor scores

1: Cs ← Split-Sentences(C)
2: Rs ← Split-Sentences(R)
3: for each sentence ci ∈ Cs do
4: max_sim← 0
5: for each sentence sj ∈ S do
6: sim← GRITLM-Similarity(ci, sj)
7: if sim > max_sim then
8: max_sim← sim
9: replacement← Layman-Term(sj)

10: end if
11: end for
12: ci ← replacement
13: end for
14: for each sentence ri ∈ Rs do
15: max_sim← 0
16: for each sentence sj ∈ S do
17: sim← GRITLM-Similarity(ri, sj)
18: if sim > max_sim then
19: max_sim← sim
20: replacement← Layman-Term(sj)
21: end if
22: end for
23: ri ← replacement
24: end for
25: similar_count← 0
26: for each sentence ci ∈ Cs do
27: for each sentence ri ∈ Rs do
28: sim← GRITLM-Similarity(ci, ri)
29: if sim ≥ θ then
30: similar_count← similar_count+ 1
31: break
32: end if
33: end for
34: end for
35: proportion← similar_count

|Cs|
36: BLEU ← Compute-BLEU(Cs, Rs)
37: ROUGE ← Compute-ROUGE(Cs, Rs)
38: Meteor ← Compute-Meteor(Cs, Rs)
39: return proportion,BLEU,ROUGE,Meteor
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Figure 3: Rate of Refinement as Iterations Increase

A.7 Analysis of Refinement Step 885

As mentioned in the early parts, our data generation 886

pipeline leverages a rigorous refinement process. 887

This includes a LLM self-refinement module and 888

an embedding model to assess semantic similarity. 889

Here, we present an example going through 4 890

steps in the refinement process. As detailed in Ta- 891

ble 7, the example includes the translated report at 892

each step and the calculation of semantic similarity 893

between each sentence in the original professional 894

report and the corresponding sentence in layman’s 895

terms. Step 0 is the raw professional report that 896

requires translation, and Steps 1-3 present the re- 897

ports translated to layman’s terms. The red num- 898

bers display the semantic similarity. It is evident 899

that the semantic similarity increases in each step 900

and remains unchanged at the third step, signify- 901

ing the conclusion of the refinement process. This 902

analysis demonstrates that the refinement process 903

effectively enhances the quality of the translated 904

layman’s reports. 905

Step Report

0

Subtle rounded nodular opacity projecting over both lung
bases which could represent nipple shadows. Recommend
repeat with nipple markers to confirm and exclude under-
lying pulmonary nodule. Subtle bibasilar opacities likely
represent atelectasis or aspiration. No evidence of pneumo-
nia.

1

There are some unclear spots in the lower parts of both lungs
which might just be shadows caused by nipples (0.776).
We recommend doing another x-ray using nipple markers
to be sure (0.731). There are also subtle changes in the
lower lungs likely due to collapsed lung areas or inhaled
food/liquid (0.704). No signs of pneumonia (0.971).

2

The unclear spots seen in both lung bases are most likely
just shadows from nipples (0.778↑). We recommend a re-
peat x-ray with nipple markers to confirm and exclude any
underlying lung nodules (0.911↑). There are also subtle
changes in the lower lungs likely due to collapsed lung ar-
eas or inhalation of food/liquid (0.712↑). No evidence of
pneumonia (0.999↑).

3

The unclear spots seen in both lung bases are most likely
just shadows from nipples. We recommend a repeat x-ray
with nipple markers to confirm and exclude any underlying
lung nodules. There are also subtle changes in the lower
lungs likely due to collapsed lung areas or inhalation of
food/liquid. No evidence of pneumonia. (Refinement ends)

Table 7: The expression of an example going through
the refinement process.

A.8 Instruction Tuning 906

We further ran an initial experiment for the new 907

application, by concatenating the 50k professional 908

dataset and the 50k layman’s dataset, yielding a 909

100k two-class instruction tuning training set. We 910

hypothesize that seeing both versions with different 911

wordings would encourage the model to pick up 912

the semantic overlaps between the two datasets. 913
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Training set Similarity >0.8

professional 50k 0.293

layman 50k 0.299

professional + layman 100k 0.323

Table 8: Comparison of Similarity Scores Between
Mixed and Single Datasets

For the two datasets, we prepend their corre-914

sponding instruction to the example: “Given this915

X-ray image, generate a professional radiology re-916

port.”, “Given this X-ray image, generate a radiol-917

ogy report in layman’s terms.” and in inference, we918

prepend the same instructions based on our need.919

The experiments took 5 days on 4 A6000 GPUs.920

In Table 8, we reported the model performance921

on three settings: 1) trained professional & infer-922

ence professional 2) trained layman & inference923

layman 3) trained both & inference professional.924

We show the percentage of generated reports that925

have over 0.8 cosine similarity with the groundtruth926

reports for each setting, aligning with the setting in927

Figure 3 (right) in the paper.928

As shown in the results, the instruction-tuned929

model, when exposed to both professional and lay-930

man reports in the training, can generate a higher931

percentage of professional reports that are more se-932

mantically aligned with the groundtruth. This has933

indicated that the model is able to pick up semantic934

hints from the layman’s dataset in the training to935

enhance its professional report generation. More936

importantly, this new unified model can generate937

both professional and layman’s reports when pro-938

vided with the instructions.939

A.9 Case Study940

In this section, we provide more examples from941

sentence-level dataset and report-level dataset. The942

Table 9 include some examples in the sentence-943

level dataset and Table 10 present samples selected944

from the report-level dataset.945

A.10 Additional Experiments946

We also tested the LLM-based approach using947

two different open-access ChatGPTs4 in both948

MIMIC CXR and PadChest (English translated)949

datasets, denoted as LLM1 and LLM2, respectively.950

4Kimi (www.moonshot.cn) and DeepSeek
(www.deepseek.com/)

raw layman

Both lung fields are clear Both lungs look healthy with
no problems

No evidence of pleural effusion There is no extra fluid around
the lungs

The chest x-ray shows subtle
patchy lateral left lower lobe
opacities, which are most likely
vascular structures and deemed
stable with no definite new fo-
cal consolidation

The x-ray shows faint cloudy
spots in the lower part of the
left lung, likely blood vessels,
and overall stable with no new
clear lung infection

The impression states that the
opacities are bilateral and in-
dicative of an infection that re-
quires follow up attention to en-
sure resolution

The impression notes the
cloudy spots are in both lungs,
likely indicating an infection
that needs follow-up to ensure
it’s resolved

Overall impression suggests
appropriate positioning of the
tubes and bibasilar atelectasis,
along with findings consistent
with small bowel obstruction

The overall impression sug-
gests proper placement of tubes
and some collapsed lung ar-
eas, along with signs of small
bowel obstruction

A mildly displaced fracture of
the right anterior sixth rib and
possible additional right ante-
rior seventh rib fracture are
noted

There is a slightly displaced
fracture of the right front sixth
rib and possibly another right
front seventh rib fracture

There is increased soft tissue
density at the left hilum and a
fiducial seed is seen in an un-
changed position

Increased tissue density is seen
at the left lung root and a track-
ing marker is in the same place
as before

However, cephalization of en-
gorged pulmonary vessels has
probably improved

The congested blood vessels in
the lungs have likely improved

Moderate bilateral layering
pleural effusions are also
present along with a notable
compression deformity of a
lower thoracic vertebral body,
without information about the
age of the patient

Moderate fluid in both pleura
is seen along with a compres-
sion deformity in a lower chest
spine bone, without age infor-
mation on the patient

The chest x-ray image re-
veals worsening diffuse alveo-
lar consolidations with air bron-
chograms, particularly in the
right apex and entire left lung

The x-ray shows worsening of
diffuse lung cloudiness with
air-filled bronchial tubes, espe-
cially in the right lung apex and
the entire left lung

Table 9: Some examples of sentence-level dataset.

Baseline approach in MIMIC CXR dataset indi- 951

cates the layman reports which using prompts pro- 952

vided in A.1. (Original) approach in MIMIC 953

CXR and PadChest indicate the original radiology 954

reports. We also reported their readability scores. 955

Apart from the baseline prompt (denoted as P1), 956

a instruction-following prompt (denoted as P2) is 957

designed for GPT to generate layman report by 958

examples provided. An example is shown in Fig. 4. 959

The evaluation metrics are in three types: i) Clin- 960

ical accuracy, ii) Relevance, and iii) Readability. 961

For Readability, a set of text statistics metrics5 to 962

be used. Their abbreviation and the corresponding 963

metrics are listed below: 964

• Easy: The Flesch Reading Ease formula 965

5The open-source Python library is provided on pypi.org/
project/textstat
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raw layman

Bilateral nodular opacities,
which most likely represent
nipple shadows, are observed.
There is no focal consolidation,
pleural effusion, or pneu-
mothorax. Cardiomediastinal
silhouette is normal, and there
is no acute cardiopulmonary
process. Clips project over the
left lung, potentially within the
breast, and the imaged upper
abdomen is unremarkable.
Chronic deformity of the
posterior left sixth and seventh
ribs is noted.

There are spots seen in both
lungs that are likely just nipple
shadows. There is no evidence
of a specific infection, fluid in
the lungs, or air outside the
lungs. The shape of the heart
and area around it looks nor-
mal. There are no immediate
heart or lung issues. There are
surgical clips in the area of the
left lung, likely in the breast,
and the upper abdomen appears
normal. There is a long-term
deformity of the sixth and sev-
enth ribs on the left side.

The chest x-ray shows normal
cardiac, mediastinal, and hilar
contours with clear lungs and
normal pulmonary vasculature.
No pleural effusion or pneu-
mothorax is present. However,
multiple clips are seen project-
ing over the left breast, and re-
mote left-sided rib fractures are
also demonstrated. The impres-
sion is that there is no acute
cardiopulmonary abnormality
detected.

The chest x-ray shows a nor-
mal heart shape and clear lungs
with no fluid or air outside the
lungs. There are multiple surgi-
cal clips seen in the left breast
area, and old rib fractures on
the left side. There are no im-
mediate heart or lung problems
detected.

The chest x-ray shows no ev-
idence of focal consolidation,
effusion, or pneumothorax, and
the cardiomediastinal silhou-
ette is normal. Multiple clips
projecting over the left breast
and remote left-sided rib frac-
tures are noted. No free air be-
low the right hemidiaphragm
is seen. The impression is that
there is no acute intrathoracic
process.

The chest x-ray does not show
any specific lung infection,
fluid, or air outside the lungs.
The heart and surrounding area
appear normal. Multiple sur-
gical clips are seen in the left
breast area, and old rib frac-
tures on the left side are noted.
There is no free air under the
right side of the diaphragm.
There are no immediate issues
inside the chest.

Table 10: Some examples of report-level dataset.

• M1: The Flesch-Kincaid Grade Level966

• M2: The Fog Scale (Gunning FOG Formula)967

• M3: The SMOG Index968

• M4: Automated Readability Index969

• M5: The Coleman-Liau Index970

• M6: Linsear Write Formula971

• M7: Dale-Chall Readability Score972

• M8: Spache Readability Formula973

• M9: McAlpine EFLAW Readability Score974

The experimental results are provided in Table 11975

and Table 12.976

A.11 Scaling Law977

As illustrated in Figure 5, the training dataset scales978

are 5k, 10k, 15k, and 20k from top to bottom, re-979

spectively. We use the trained models to generate980

reports and calculate the semantic similarity be- 981

tween the generated reports and reference reports. 982

The figures on the left represent models trained by 983

layman’s terms, while the plots on the right repre- 984

sent those trained using raw professional reports. 985

986

A.12 Details of Human Annotators 987

Institutional Review Board (IRB). Our work 988

does not require IRB approval as it only involves 989

semantic assessment. Our evaluation compares 990

the semantic consistency between paragraph pairs, 991

where the ground truth is sourced from a public 992

dataset available on GitHub. As our task focuses 993

solely on semantic consistency without involving 994

any X-ray images in the evaluation process, it can 995

be considered a common text generation task. 996

Human Annotators We would like to highlight 997

the nature of the human evaluation of this work 998

as the assessment of semantic alignment, which 999

makes the task fall back to the evaluation of a reg- 1000

ular text generation task. This process is without 1001

involvement of any medical images. So we recruit 1002

human annotators from linguistic students and med- 1003

ical PhD students, who are professional in English 1004

reading and understanding. In addition, all of them 1005

have the right to access the MIMIC-CXR dataset. 1006
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Data Model
Clinical Accuracy Relevance

Chexbert-F1 RadGraph-F1 B. M. R. Sem.Acc Micro Macro R1 R2 R3

MIMIC
CXR

Baseline 0.737 0.576 0.076 0.026 0.023 0.016 0.073 0.299 0.337 0.577
LLM1+P1 0.771 0.602 0.086 0.012 0.010 0.007 0.085 0.366 0.348 0.587
LLM1+P2 0.846 0.776 0.138 0.028 0.024 0.017 0.087 0.384 0.347 0.758

PadChest

LLM1+P1 0.918 0.655 0.060 0.058 0.039 0.030 0.068 0.436 0.251 0.685
LLM1+P2 0.940 0.748 0.075 0.065 0.041 0.029 0.065 0.421 0.244 0.778
LLM2+P1 0.945 0.746 0.074 0.095 0.073 0.061 0.084 0.389 0.267 0.778
LLM2+P2 0.937 0.736 0.073 0.153 0.134 0.122 0.188 0.497 0.373 0.792

Table 11: Clinical Accuracy and Relevance of Layman-style reports on MIMIC-CXR and PadChest Dataset.
Baseline, LLM1+P1 and LLM1+P2 indicate layman-style reports generated by different LLMs and different
prompts.

message = [ ]

introduction = """You are a writer of science journalism. 

Given a radiology reports, please finish the following tasks. 
Tasks: 1. Translation: Please translate each report into plain language that is easy to understand (layman's terms). The layman-translated
report requires writing factual descriptions, while also paraphrasing complex scientific concepts using a language that is accessible to the
general public. Meanwhile, it preserve the details as much as possible. Each translated sentence must correspond to the original sentence.
For example, a 4-sentence report should be translated into a 4-sentence layman's termed report. You must translate all the reports. 

Here are some examples of layman-version reports: 
"""

query = """Report to be translated:\n"""

for example in example_of_layman_reports:
    introduction.append(example)

messages.append({"role":"system", "content": introduction}) 

for report in radiology_reports:
    messages.append({"role":"user", "content": query}) 

Prompting GPT to Generate Layman Report of Radiology Image Reports

Figure 4: Example of prompting GPT to generate the layman report of the radiology image reports.

Data Model Easy
Level↑

Level of Grade Required for Reading↓
M1 M2 M3 M4 M5 M6 M7 M8 M9

MIMIC
CXR

(Original) 43 9 11 11 11 14 5 11 5 11
Baseline 76 6 8 8 8 9 7 10 5 19
LLM1+P1 84 5 8 8 7 7 7 8 4 21
LLM1+P2 85 5 7 7 6 7 6 8 4 19

PadChest

(Original) 26 12 14 4 14 16 5 14 6 10
LLM1+P1 69 7 9 4 8 9 7 9 5 19
LLM1+P2 73 6 8 3 8 8 7 9 4 18
LLM2+P1 68 8 9 4 9 10 8 10 5 21
LLM2+P2 64 8 10 3 9 10 7 11 5 18

Table 12: Readability of Layman-Style Reports. Original represents professional reports. Baseline, LLM1+P1 and
LLM1+P2 indicate layman-style reports generated by different LLMs and different prompts.
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Figure 5: Scaling law of model’s semantic understanding training using report-level datasets. From up to down
shows the trend for models trained by 5k, 10k, 15k and 20k respectively.
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