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ABSTRACT

We propose a federated methodology to learn low-dimensional representations
from a dataset that is distributed among several clients. In particular, we move
away from the commonly-used cross-entropy loss in federated learning, and seek
to learn shared low-dimensional representations of the data in a decentralized
manner via the principle of maximal coding rate reduction (MCR2). Our pro-
posed method, which we refer to as FLOW, utilizes MCR2 as the objective of
choice, hence resulting in representations that are both between-class discrimi-
native and within-class compressible. We theoretically show that our distributed
algorithm achieves a first-order stationary point. Moreover, we demonstrate, via
numerical experiments, the utility of the learned low-dimensional representations.

1 INTRODUCTION

Federated Learning (FL) has become the tool of choice when seeking to learn from distributed data.
As opposed to a centralized setting where data are concentrated in a single node, FL allows datasets
to be distributed among a set of clients. This subtle difference plays an important role in practice,
where data collection has moved to the edge (e.g., cellphones, cameras, sensors, etc.), and centraliz-
ing all the available data might not be possible due to privacy constraints and hardware limitations.
Moreover, under the FL paradigm, clients are required to train on their local datasets, which unlike
the centralized setting, successfully exploits the existence of available computing resources at the
edge (i.e., at each client).

The key challenges in FL include dealing with (i) data imbalances between clients, (i) unreliable
connections between the server and the clients, (iii) a large number of clients participating in the
communication, and (iv) objective mismatch between clients. A vast amount of successful work has
been done to deal with challenges (i), (ii), and (iii). However, the often-overlooked challenge of
objective mismatch plays a fundamental role in any distributed problem. For an client to participate
in a collaborative training process (as opposed to training on its own private dataset), there must
be a motivation: each client should see itself improved by taking part in the collaboration. Recent
work has shown that even in the case of convex losses, FL converges to a stationary point from a
mismatched optimization problem. This implies that there are cases where certain clients own the
majority of the data (or even of certain classes), and see their individual performance curtailed by
the collaborative approach.

When optimizing the average of the losses over the clients, the solution to the optimization problem
generally differs from the solution of the individual per-client optimization problems. Objective
mismatch becomes a particularly difficult problem in FL given the privacy limitations, which pre-
vents the central server from curtailing this undesirable effect. Moreover, given that in standard FL,
the central server possesses no data, and that no proxies of data structures should be shared, a cen-
tralized solution cannot be implemented. In order to resolve the objective mismatch issue, several
approaches have been proposed. However, most such approaches rely on obtaining more trustwor-
thy gradients in the clients, at the expense of either more communications rounds, or more expensive
communications.

In this work, we propose an alternative representation learning-based approach to resolve objective
mismatch, where low-dimensional representations of the data are learned in a distributed manner.
We specifically bridge two seemingly disconnected fields, namely federated representation learning
and rate distortion theory. We leverage the rate distortion theory to propose a principled way of
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optimizing the coding rate of the data between the clients, which does not require sharing data
between clients, and can be implemented in the standard FL setting, i.e., by sharing the weights of
the underlying backbone (i.e., feature extractor) parameterizations. Our approach is collaborative
in that all clients are individually rewarded by participating in the common optimization objective,
and follows the FL paradigm, in which only gradients of the objective function with respect to the
backbone parameters (or equivalently, the backbone parameters themselves) are shared between the
clients and the central server.

Related Work. Several studies have been conducted in the context of FL to show the problem of
objective mismatch, by proposing modifications in the FL algorithm (Yang et al., 2019), adding
constraints to the optimization problem (Shen et al., 2021), or even including extra rounds of com-
munication (Mitra et al., 2021). As opposed to these methods, we propose to tackle the problem
by introducing a common loss that is in all clients’ self-interest to minimize. Another line of re-
search seeks to learn personalized FL solutions by partitioning the set of learnable parameters into
two parts, a common part, called the backbone, and a personalized part, called the head, to be used
for individual downstream tasks. Often referred to as personalized FL, this area of research is in-
terested in learning models utilizing a common backbone that is collaboratively learned among all
clients, while personalizing the head to each individual agent’s task or data distribution Liang et al.
(2020); Collins et al. (2021); Oh et al. (2021); Chen & Chao (2021); Silva et al. (2022); Collins et al.
(2022); Chen et al. (2022). We, on the other hand, are interested in learning representations in a
principled and interpretable way, as opposed to converging to a solution without any guarantees on
its behavior. In the context of information theory, rate distortion theory has been used to provide
theoretical (Altuğ et al., 2013; Unal & Wagner, 2017; Mahmood & Wagner, 2022) and empirical
(Ma et al., 2007; Wagner & Ballé, 2021) results on the tradeoff between the compression rate of a
random variable and its reconstruction error. However, most such solutions are centralized.

Contributions. We summarize our key contributions as follows:

1. We introduce a theoretically-grounded federated representation learning objective, referred
to as the maximal coding rate reduction (MCR2), that seeks to minimize the number of bits
needed to compress random representations up to a bounded reconstruction error.

2. We demonstrate that obtaining low-dimensional representations using our proposed
method, which we refer to as FLOW, entails an objective that is naturally collaborative,
i.e., all clients have a motivation to participate in the learning process.

2 BACKGROUND

2.1 FEDERATED LEARNING

Consider a federated learning (FL) setup with a central server and N clients. For any positive
integer M , let [M ] denote the set {1, . . . ,M} containing the positive integers up to (and including)
M . Each client n ∈ [N ] is assumed to host a local dataset of labeled samples, denoted by Dn =

{(xni , yni )}
|Dn|
i=1 , where xni ∈ RD and yni ∈ [K], ∀i ∈ [|Dn|],∀n ∈ [N ]. Focusing on a set of

parameters θ ∈ Θ, we assume that the nth client intends to minimize a local objective, denoted by
fn(Dn; θ), given its local dataset Dn. In many cases, such as the cross-entropy loss (CE), this local
objective can be decomposed as an empirical average of the per-sample losses, i.e.,

fn(Dn; θ) =
1

|Dn|

Dn∑
n=1

ℓ(hθ(x
n
i ), y

n
i ), (1)

where hθ : RD → [K] is a parameterized model that maps each input sample x to its predicted label
hθ(x), and l : [K]× [K] → R denotes a per-sample loss function.

The global objective in the FL setup is to find a single set of parameters θ∗ that minimizes the
average of the per-client objectives, i.e.,

θ∗ = argmin
θ∈Θ

1

N

N∑
n=1

fn(Dn; θ). (2)
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It is assumed that the clients in a FL setup cannot share their local datasets with each other. This
implies that the optimization problem in (2) needs to be solved in a distributed manner. To that end,
we assume that each client n ∈ [N ] maintains a local set of parameters θnt ∈ Θ over a series of
time steps t ∈ [T ]. Each client performs τ number of local updates using stochastic gradient descent
(SGD), and then the local parameters are sent to a central server every τ time steps, so that the server
averages clients’ parameters and broadcasts the resulting aggregated parameters to to the clients to
replace their local models. More precisely, denoting the learning rate by η, and letting ∇̂θ represent
the stochastic gradient with respect to the model parameters, the sequential parameter updates are
given by

θnt+1 =

{
θnt − η∇̂θfn(Dn; θnt ) if t mod τ ̸= 0,
1
N

∑N
n=1 θ

n
t o.w.

(3)

This forms the basis of the FedAvg algorithm (McMahan et al., 2017).

2.1.1 PERSONALIZED FEDERATED LEARNING

Leveraging the representation learning paradigm (Bengio et al., 2013; Oord et al., 2018; Chen et al.,
2020), the parameterized model hθ : RD → [K] can be decomposed into two components, namely
i) a backbone hϕ : RD → Rd, parameterized by a set of parameters ϕ ∈ Φ, that maps each input
sample x ∈ RD to a low-dimensional representation z = hϕ(x) ∈ Rd, where we assume that
d ≪ D, and ii) a head hψ : Rd → [K], parameterized by a set of parameters ψ ∈ Ψ, that maps the
representation z ∈ Rd to the predicted class hψ(z) = hψ(hϕ(x)) = hθ(x) ∈ [K]. This implies that
the set of end-to-end model parameters is given by θ = (ϕ, ψ), with the corresponding parameter
space being decomposed as Θ = Φ×Ψ.

Such a decomposition can then be used to train a shared backbone for all the clients using the FL
procedure, while the training process for the head can be personalized and local for each client. In
particular, for the nth client, assume that the local objective fn(Dn; θ) can be decomposed into an
objective on the backbone parameters, denoted by fn,ϕ(Dn;ϕ), and a separate objective on the head
parameters, denoted by fn,ψ(D̃n,ϕ;ψ), where,

D̃n,ϕ = {(zni , yni )}
|Dn|
i=1 = {(hϕ(xni ), yni )}

|Dn|
i=1 (4)

, i.e., the dataset Dn with each input sample xni being replaced by its low-dimensional representation
zni = hϕ(x

n
i ). Then, the global backbone objective would be a variation of (2), where the end-to-end

objectives are replaced by their backbone counterparts, i.e.,

ϕ∗ = argmin
ϕ∈Φ

1

N

N∑
n=1

fn,ϕ(Dn;ϕ). (5)

Similarly to (3), in order to derive the optimal backbone parameters ϕ∗ using SGD, the backbone
parameters at each client n ∈ [N ] can be sequentially updated as

ϕnt+1 =

{
ϕnt − η∇̂ϕfn,ϕ(Dn;ϕnt ) if t mod τ ̸= 0
1
N

∑N
n=1 ϕ

n
t o.w.

(6)

Once the optimal backbone parameters ϕ∗ are derived, each client n ∈ [N ] can freeze its backbone
and train its personalized head parameters ψn based on its local dataset D̃n,ϕ∗ , i.e.,

ψ∗
n = argmin

ψ∈Ψ
fn,ψ(D̃n,ϕ∗ ;ψ). (7)

2.2 RATE-DISTORTION THEORY AND MAXIMAL CODING RATE REDUCTION

Among the many ways to define the backbone objective fϕ(D;ϕ) to learn low-dimensional repre-
sentations for a given dataset D (see, e.g., (Chen et al., 2020; Grill et al., 2020; Wang & Isola, 2020;
Zbontar et al., 2021; Bardes et al., 2021), Lezama et al. (2018)), the maximal coding rate reduction
(or, MCR2, in short) has been recently proposed by Yu et al. (2020) as a theoretically-grounded way
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of training low-dimensional representations based on the rate-distortion theory (Cover & Thomas,
2006).

Consider an i.i.d. sequence {zi}i∈[M ] of M random variables following a distribution p(z), z ∈ Z
and a distortion function ω : Z×Z → R+. For a given Ω ≥ 0, the rate-distortion function is defined
as the infimum r for which there exist an encoding function genc : ZM → [2Mr] and a decoding
function gdec : [2Mr] → ZM , such that

lim
M→∞

1

M

M∑
i=1

E [ω(zi, ẑi)] ≤ Ω, (8)

where the sequence {ẑi}i∈[M ] denotes the reconstruction of the original sequence {zi}i∈[M ] at the
decoder output, i.e.,

{ẑi}i∈[M ] = gdec ◦ genc
(
{zi}i∈[M ]

)
. (9)

Intuitively, the rate-distortion function represents the minimum number of bits required to compress
a given random variable, such that the decompressing error is upper-bounded by a constant Ω.

In general, deriving the rate-distortion function is challenging, as it entails computing mutual infor-
mation terms between the input sequence and the reconstructed sequence. However, for the case of
finite-sample zero-mean multivariate Gaussian distribution with a squared-error distortion measure,
the rate-distortion function has a closed-form solution. In particular, letting Z = [z1 . . . zM ] ∈
Rd×M denote the matrix containing a set of M d-dimensional samples, for a squared-error distor-
tion of ϵ2, the rate-distortion function is given by

(
M+d

2

)
log det

(
I + d

Mϵ2ZZ
T
)
, where I denotes

the d × d identity matrix (Ma et al., 2007). Quite interestingly, the rate-distortion function, when
normalized by the number of samples, can be viewed as a measure of compactness of the given
samples in Rd. Assuming M ≫ d, this leads to the coding rate R(Z, ϵ), defined as

R(Z, ϵ) :=
1

2
log det

(
I +

d

Mϵ2
ZZT

)
. (10)

The coding rate in (10) can be leveraged in a representation learning setup, where zi’s are the repre-
sentations produced by the backbone hϕ. For representations to be useful, the representations within
one class should be as compact as possible, whereas the entire set of representations should be as
diverse as possible. For a given class k ∈ [K], let Πk ∈ RM×M be a diagonal binary matrix, whose
ith diagonal element is 1 if and only if the ith samples belongs to class k. Then, the average per-class
coding rate given the partitioning Π = {Πk}k∈[K] can be written as

Rc(Z, ϵ|Π) :=
1

2M

∑
k∈[K]

tr(Πk) log det
(
I +

d

tr(Πk)ϵ2
ZΠkZ

T

)
, (11)

where tr(·) represents the trace operation.

The principle of maximal coding rate reduction (MCR2) proposed by Yu et al. (2020) defines the
backbone objective fϕ(D;ϕ) as the difference between the average per-class coding rateRc(Z, ϵ|Π)
in (11) and the average coding rate over the entire dataset, R(Z, ϵ) in (10). More precisely,

fϕ(D;ϕ) = −∆R(Z(D;ϕ)) = Rc(Z(D;ϕ), ϵ|Π)−R(Z(D;ϕ), ϵ), (12)

where the dependence of the representations Z on the dataset D and the set of backbone parameters
ϕ is explicitly shown. 1

3 PROPOSED METHOD

Learning a low-dimensional representation can be posed as a collaborative objective, where each
client in the network benefits from the collaboration. In federated learning, the dataset D is dis-
tributed among a set of clients, i.e., D = ∪n∈[N ]Dn, where Dn is the dataset located at the nth client.

1Since the MCR2 backbone objective in (12) is monotonically decreasing with scaling the representations
Z, in practice, the representations need to be constrained, e.g., to the unit hypersphere Sd−1, or the Frobenius
norm of per-class representations should be bounded by the number of per-class samples.
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We leverage the MCR2 principle to introduce the global objective of our proposed FL method, which
we refer to as Federated Low-Dimensional Representation Learning, or FLOW, as follows,

min
ϕ
fϕ(D;ϕ) :=

1

2M

∑
k∈[K]

log det

I + d

|Mk|ϵ2
∑
n∈[N ]

∑
m∈Dn∩Mk

hϕ(xm)hϕ(xm)T


− 1

2
log det

I + d

Mϵ2

∑
n∈[N ]

∑
m∈Dn

hϕ(xm)hϕ(xm)T

 , (13)

where for a given class k ∈ [K], Mk denotes the set of samples that belong to the kth class. Note that
in (13), we have made the dependency of the objective function on ϕ explicit, that is zm = hϕ(xm).
It is worth noting that the objectives fϕ(D;ϕ) in (12) and (13) are equivalent, as

Z = [z1 . . . zM ] = [hϕ(x1) . . . hϕ(xM )] , and ZZT =
∑

m∈[M ]

zmz
T
m, (14)

and the partition matrix Πk has its mth diagonal element equal to one if and only if the mth belongs
to Mk. Therefore, learning low-dimensional representations in a distributed manner is equivalent
to solving (13).

Note that as opposed to common FL implementations, our approach optimizes a common objective,
as opposed to a summation over different objectives. However, this comes at a cost; the objective
in (13) is not separable, i.e., it does not immediately follow that each client can take local gradient
descent steps. In what follows, we will demonstrate interesting properties of problem (13), namely
(i) that it is in each client’s self interest to obtain a collaborative solution, and (ii) that a solution
to problem (13) can be found in a distributed manner without clients needing to share their local
datasets with each other.

3.1 MOTIVATION

Learning low-dimensional representations is a collaborative objective, and it is in each client’s self
interest to obtain a better representation. The choice of maximizing the coding rate reduction is well
motivated by properties of the solution of problem (13), as can be shown in the following theorem.
Theorem 1. Consider a set of dimensions {dk}Kk=1 such that with rank(Z∗

k) ≤ dk. If the embedding
space is large enough, i.e., d ≥

∑K
k=1 dk , and the coding precision is high enough, i.e. ϵ4 <

mink∈[K]
|Mk|d2
Md2j

then:

• The optimal subspaces associated with each class are orthogonal even from data across
clients, i.e., hϕ∗(xm)Thϕ∗(xm̃) = 0 for any m ∈ Mk, m̃ ∈ Mk̃ with k ̸= k̃; and,

• Each class subspace Z∗
k =

∑
m∈Mk

hϕ∗(xm)hϕ∗(xm)T achieves its maximal dimension
rank(Z∗

k) = |Mk|, and the largest |Mk| − 1 singular values of Z∗
k are equal.

Proof. The proof follows from (Yu et al., 2020, Theorem 2.1) noting that problem (13) is equivalent
to optimizing the centralized objective (12). A similar proof can also be found in (Chan et al., 2022,
Theorem 1).

Theorem 1 is important because it shows that the benefits of our method are two-fold: (i) the solution
of the problem is orthogonal between classes, even from data coming from different clients, and
(ii) the obtained representations for each class are maximally diverse. Theorem 1 is notable given
that we are not sharing data between clients, and we are still able to learn representations that are
orthogonal between classes. That is to say, if two samples x ∈ RD and x′ ∈ RD belong to different
classes, their corresponding low-dimensional representations z and z′ will be orthogonal regardless
of which client owns the datum. What is more, the subspace associated with class j is maximal
across clients, which translates into having a rich and diverse representation, even in low dimensions.

Note that if clients were to solve the problem individually, there would be two undesirable proper-
ties. First, even if the representations of samples of different classes for a given client are orthogonal,
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Algorithm 1 FLOW: Federated LOW Dimensional Representation Learning

1: Set coding precision ϵ, step size η, embedding space dimensionality d, aggregation period τ .
2: Initialize backbone parameters ϕ0.
3: for round t = 1 to T do
4: if t mod τ ̸= 0 then
5: Client n does: Update model locally,

ϕnt = ϕt − η∇ϕfϕ(Dn;ϕnt ),

with fϕ given in (12).
6: else
7: Server does: Average models: ϕt+1 = 1

N

∑N
n=1 ϕ

n
t .

8: end if
9: end for

that orthogonality might be violated when we move across clients, since there is no guarantee that
per-class subspaces are aligned across clients. Therefore, having a common representation is a desir-
able property as it will enforce orthogonality between samples that do not co-exist at the same client.
Second, the fact that the class subspace achieves its maximal dimension makes the representations
more diverse, grouping similar samples together. Again, this property is desirable, and collaborating
between clients is in each client’s best interest. Note that these properties are properties of a central-
ized approach Yu et al. (2020), which our proposed method inherits and maintains in the distributed
setting.

3.2 ALGORITHM CONSTRUCTION

The optimization problem in (13) is non-separable between clients, that is to say, the global objective
is not equal to a summation, or an average, of individual objectives. Given that obtaining a closed-
form solution of ϕ cannot be done in practice, we turn into an iterative SGD-based procedure. In
short, at each round t, each client receives the current state of the model ϕt, and utilizes its own data
to maximize its own MCR2 loss, as follows,

ϕnt+1 = ϕt − η∇ϕfϕ(Dn;ϕt), (15)

with η being a non-negative step size. Every τ rounds, the clients communicates their backbone
parameters back to the central server. The central server’s job is to average the received backbone
parameters. Notice that these framework has two advantages: (i) clients do not need to share any
of their private data, (ii) the computing is done at the edge, on the clients. Moreover, averaging the
models between the clients can be done utilizing Homomorphic Encryption (HE), preventing the
central client from revealing clients’ gradient information. An overview of our proposed method
can be found in Algorithm 1.

3.3 CONVERGENCE OF FLOW

In this section we analyze the convergence of FLOW (cf. Algorithm 1). To do so, we require the
following assumptions,

Assumption 1. The MCR2 loss is G-smooth with respect to the parameters ϕ, i.e.,

∥∇ϕfϕ(Dn;ϕ1)−∇ϕfϕ(Dn;ϕ2)∥ ≤ G∥ϕ1 − ϕ2∥. (16)

Assumption 1 is a standard assumption for learning problems. What this assumption implies is
smoothness on the gradient of the function with respect to the parameters ϕ. In the case of neural
networks as the parameterization, this is a mild assumption, given the continuity of the non-linearity
and its linear filters.

Theorem 2. Consider the iterates generated by Algorithm 1. Under Assumption 1, if the
client gradients are homogeneous unbiased estimates of ∇ϕfϕ(D;ϕ), i.e. EDn [∇ϕfϕ(Dn;ϕ)] =
∇ϕfϕ(D;ϕ), and the variance of the estimates of the gradients is bounded, i.e. E[∥∇ϕfϕ(Dn;ϕ)−
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∇ϕfϕ(D;ϕ)∥2] ≤ σ2, then

1

T

T∑
t=1

∥∇ϕfϕ(D;ϕ)∥2 ≤ G

T

(
fϕ(Dn;ϕ0)− fϕ(Dn;ϕT )

)
+
σ2

2N
, (17)

with η ≤ 1/L.

Proof. See Appendix A.

If datasets Dn are composed of samples that are sufficiently similar, individual gradients taken at
each client can be modeled as unbiased gradients of the gradients taken over the whole dataset, i.e.,
EDn

[∇ϕfϕ(Dn;ϕ)] = ∇ϕfϕ(D;ϕ). Theorem 2 provides a standard convergence result for the case
of a non-convex loss, which indicates that the summation of the norm of the gradient square does
not diverge. The convergence of the summation implies that the norm of the gradient is in fact
decreasing, which means that the iterates of the algorithm are approaching a first order stationary
point.

We can also provide a proof of convergence of our algorithm in the case in which the distributions
are not uniform in the clients.

Theorem 3. Consider the iterates generated by Algorithm 1. Under Assumption 1, if the client
gradients are a biased estimate of ∇ϕfϕ(D;ϕ), i.e. E[∇ϕfϕ(Dn;ϕ)] = ∇ϕfϕ(D;ϕ) + µn, with
∥µTn∇ϕfϕ(D;ϕ)∥ ≤ δ, and E[∥∇ϕfϕ(D;ϕ)−∇ϕfϕ(Dn;ϕ)∥2] ≤ δ2 + σ2, then

1

T

T∑
t=1

∥∇ϕfϕ(D;ϕ)∥2 ≤ G

T

(
fϕ(D;ϕ0)− fϕ(D;ϕT )

)
+
σ2

2N
+ δ, (18)

with η ≤ 1/L.

Proof. See Appendix B.

Theorem 3 provides a convergence result of Algorithm 1 in the case of non-uniform clients. We
model the non-uniformity of the client distributions by introducing a µn discrepancy vector for each
client n. Notice that the key difference between Theorems 2 and 3 is the presence of δ, which is a
bound on the maximum norm of the discrepancy between the gradients. The consequence of such a
dissimilarity is mild, as we can still obtain a convergent sequence.

4 EXPERIMENTS

We run our Algorithm 1 in two federated learning settings, with N = 50, and with N = 100 agents,
in both cases, we run full participation, i.e. all agents were part of the communication rounds. For
the dataset, we utilized CIFAR 10, and for the parameterization, ResNet18. The low dimensional
representation has dimension d = 128. To model the agent mismatch, we distributed the samples
per class according to a Dirichlet distribution prior with α = 5, this distribution is widely used in the
literature Shen et al. (2021); Hsu et al. (2019); Acar et al. (2021). In all cases we run for 500 epochs,
with a learning rate of 0.3, we utilized a batch size of 500 samples, and we run 5 local epochs per
agent.

4.1 LEARNING CURVES

In figure 1 we plot the learning curves for the MCR2, as well as the R loss, and the RC loss. It can
be seen that in all cases, the centralized MCR2parameterization outperforms the Federated learning
case. This is expected, as distributing the datasets tends to have a negative effect on performance.
The number of agents also affects the loss, as the parameterization is able to get a better performance
on N = 50 than on N = 100. This has to do with the unbiasness of the local gradients, that as the
number of clients increases, so does the bias term. In all, figure 1 shows that the MCR2loss can be
learned in a distributed manner.
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(c) Compressive loss R.

Figure 1: Learning curves for MCR2in Federated and Centralized settings for CIFAR-10.
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(b) Centralized Cross Entropy.
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(c) Federated Learning with N = 50 agents.
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(d) Federated Learning with N = 100 agents.

Figure 2: Orthogonality of the low dimensional representation.
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(a) Centralized.
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(b) Federated Learning 50 agents.
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(c) Federated Learning 100 agents.

Figure 3: Decreasing order of magnitude of singular values of the subspaces associated with each
class.

4.2 ORTHOGONALITY OF REPRESENTATIONS

Figure 2 shows the cosine similarities between all the elements of the dataset. Upon training, we
obtained the low dimensional representation of each sample, and computed the pairwise cosine
correlation between them. In order to plot the samples, we ordered so that the first 10000 samples
belong to the first class and so on so forth. As expected by Theorem 1, samples of different classes
tend to be orthogonal between themselves, and samples of the same class are maximally diverse.
Consistently with the worse value of the loss observed in Figure 1, we can visually verify that the
orthogonality between samples is worse as the number of clients increases. Nevertheless, for the
most part, we are able to obtain an orthogonal representation for the samples. This, is as expected
by Theorem 1, 2, 3. As opposed to the centralized case, in our federated learning procedure, samples
of different agents are never shared, which adds merit to Figure 2. The value of using the MCR2as
a loss is seen when compared to the representations learned with the cross entropy loss. To obtain
this representation, we train a centralized architecture (i.e. ResNet 18) with 128 features before
the fully connected layer. Figure 2 shows that learning orthogonal representations is not obtained
unless enforced. Moreover, the block diagonal elements of the cross entropy matrix are darker,
which means that the numbers are closer to 1. This comes to no surprise, as the sole objective of the
cross-entropy loss is to separate samples of different classes. However, the MCR2loss also seeks for
diverse representations, allowing samples of the same class to have different alignments.

Finally, Figure 3 shows the distribution of the eigenvalues of the per-class matrices ZkZTk or the
singular values of Zk for different classes in centralized and federated cases. Again, we see that
our proposed approach can lead to similar distributions of the principal components of the learned
representation subspaces, where each class ends up occupying a low-dimensional subspace, even
though each client does not have direct access to the data samples hosted by other clients.

5 CONCLUSION

In this paper we introduced a principled procedure to learn low-dimensional representations in a
distributed manner. In the context of Federated Learning, we introduce a collaborative loss based
on the maximal coding rate reduction (MCR2), which individually benefits all the agents in a self
interested way. We refer to our federated low-dimensional representation learning algorithm by
FLOW. Theoretically, we show that (i) the solution of FLOW generated orthogonal representations
for samples of different classes, and maximizes the dimension of each class subspace, and (ii) that
under mild conditions, FLOW converges to first order stationary point. Empirically, we compare our
method to the centralized procedure, validating all the claims that we put forward.
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