
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DON’T WASTE MISTAKES: LEVERAGING NEGATIVE
RL-GROUPS VIA CONFIDENCE REWEIGHTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has become a standard
recipe for improving large language models (LLMs) on reasoning tasks, with
Group Relative Policy Optimization (GRPO) widely used in practice. Yet GRPO
wastes substantial compute on negative groups: groups in which no sampled re-
sponse is correct yield zero advantage and thus no gradient. We ask whether nega-
tive groups can be leveraged without extra supervision. Starting from a maximum-
likelihood (MLE) objective in reward modeling, we show that the MLE gradient is
equivalent to a policy gradient for a modified value function. This value function
adds a confidence-weighted penalty on incorrect responses, imposing larger penal-
ties on more confident mistakes. We refer to this as Likelihood Estimation with
Negative Samples (LENS). LENS modifies GRPO to assign non-zero, confidence-
dependent rewards to incorrect generations, making negative groups informative
and converting previously wasted samples into useful gradient updates. On the
MATH benchmark with Llama-3.1-8B and Qwen-2.5-3B, the proposed variant
consistently outperforms GRPO baseline, with significant gains on harder items.
These results demonstrate a principled and practical way to “rescue” negative
groups, improving efficiency and performance in RLVR.

1 INTRODUCTION

Large language models (LLMs) fine-tuned with reinforcement learning and verifiable rewards
(RLVR) (Shao et al., 2024; Guo et al., 2025) have shown strong gains on complex reasoning tasks,
with algorithms such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al.,
2025) emerging as practical defaults. A persistent inefficiency, however, is how these methods han-
dle negative groups—the generation group in which no sampled response is correct. In GRPO and
its variants, such groups contribute zero advantage and therefore no gradient signal. This is espe-
cially common at the start of training and on harder reasoning problems, where negative groups can
constitute a substantial fraction of compute, effectively wasting already-generated trajectories.

We therefore ask: can we learn from negative groups without additional supervision in a principled
way? Our starting point is deliberately simple: to learn from negative groups, the natural approach
is reward modeling that distinguishes correct from incorrect answers, optimized with maximum
likelihood (MLE). From this likelihood perspective, the MLE gradient is equivalent to a policy gra-
dient on a modified RLVR value function. The modified value adds a confidence-weighted penalty
for incorrect responses: the more confident the model is in a wrong answer, the larger the penalty.
Intuitively, it discourages overconfident failure modes, thereby encouraging exploration of lower-
probability yet plausible alternatives.

This equivalence lets us modify GRPO directly. It yields a drop-in change in which incorrect gen-
erations receive non-zero, confidence-dependent rewards (i.e., lower rewards when confidence is
higher). As a result, negative groups now provide informative advantage estimates, converting pre-
viously wasted samples into useful gradient updates and promoting exploration on hard negatives.
We term this algorithm LENS: Likelihood Estimation with Negative Samples.

We evaluate LENS on mathematical reasoning using the MATH benchmark with
Llama-3.1-8B-Instruct and Qwen-2.5-3B-Base. In both settings, our GRPO
variant consistently outperforms the GRPO baseline across all Pass@k metrics. Stratifying by
difficulty, we find that gains are concentrated on the Levels 4-5 subsets (hard items), consistent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Answer Space O
0 1

0 1

Answer Space O

0 1

0 1

Answer Space O

π(o | q)

Low-confidence
error

ó Light penalty

High-confidence
error

ó Heavy penalty

LENS Reward

GRPO Reward =

Differences emerge

ó Clear signal

LENS Reward

−0.14 − 0.26

− 0.35

− 1.04
− 0.02

− 0.05

− 0.64

− 0.85

− 0.22

− 0.01

GRPO Reward

0 1
0 1
0 1
0 1

0 1

0 1

0 1
0 1
0 1
0 1

All zero ó

Everything discarded

=

(

1 3

0 7

=

8

>

<

>

:

1 3

−

π(o | q)

D(q) − π(o | q)
7

ng via
Reward Modeling

a MLE

Figure 1: Overview of our approach. Standard approaches like GRPO assign a uniform reward of 0
to all incorrect answers. This provides no learning signal, causing these samples to be discarded. Our
method, LENS, is derived from reward modeling via Maximum Likelihood Estimation (MLE) and
assigns non-zero, confidence-dependent rewards to incorrect responses. This creates a clear learning
signal where differences emerge from the samples, converting previously discarded information into
useful gradient updates.

with repurposed negative groups driving increased exploration for hard questions. We train on two
distinct math training datasets to demonstrate the generality of our method.

We summarize our contributions as follows:

• We introduce a likelihood framework, Likelihood Estimation with Negative Samples
(LENS), that explicitly connects reward modeling and policy optimization.

• LENS yields a principled value function whose additional term penalizes overconfident
incorrect answers, formalizing how negative-group signals should be used and calibrated
within the objective.

• We propose a GRPO variant that assigns non-zero, confidence-dependent rewards to in-
correct generations, thereby leveraging negative groups rather than wasting them. It is
plug-and-play with negligible computational overhead.

• Empirical results support our algorithm’s effectiveness and show increased exploration, as
reflected in Pass@k.

2 RELATED WORK

RLVR. Recent work has shown that reinforcement learning (RL) can effectively refine LLMs for rea-
soning. In RLVR, the LLM is treated as a policy that generates a chain-of-thought (CoT) reasoning
process, and it receives a deterministic reward based on whether the final answer can be algorith-
mically verified. Recent works (Shao et al., 2024; Guo et al., 2025; Team et al., 2025) show that
RLVR can elicit emergent reasoning behaviors and dramatically boost math and coding performance
compared to the base model. Underlying most of these RLVR methods is the Group Relative Policy
Optimization (GRPO) algorithm (Shao et al., 2024). GRPO is an efficient variant of Proximal Policy
Optimization (PPO) (Schulman et al., 2017) that drops the value network and instead computes ad-
vantages from grouped outputs. In this way, with a group of all incorrect generations, the advantage
is 0, and these groups do not contribute to the optimization. In this work, we try to make use of these
negative groups.

Learning from negatives. Recent work has emphasized that negative samples are not merely noise
but a useful training signal in LLM reasoning. One direction explores asymmetric treatment of
positives and negatives in REINFORCE-style training: Roux et al. (2025) introduce an asymmetric
variant of importance sampling to speed up learning. Arnal et al. (2025) demonstrate that asym-
metric REINFORCE, and in particular reducing the signal from negative samples, can be beneficial
when data is off-policy. Lyu et al. (2025) propose to reweight positive and negative samples at the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

token level using a learned reward model combined with log-likelihood. Zhu et al. (2025) demon-
strate that training only on negatives, assigning reward −1 to incorrect and 0 to correct answers, can
outperform baselines on Pass@k for large k.

Another line of work argues that entirely wrong completions may still contain valuable sub-signals.
Chen et al. (2025a) assign fractional rewards within all-negative groups, Yang et al. (2025) mine
correct sub-steps from long chains of thought, and Li et al. (2024b) leverage negative rationales
through a dual-LoRA distillation framework. These methods demonstrate that even within incorrect
trajectories, certain steps are worth reinforcing, particularly in long reasoning traces where correct
and incorrect steps alternate. A key drawback of these approaches is that evaluating intermediate
reasoning steps is labor-intensive, and accurate automation remains underexplored.

Our contribution is to provide a framework that stratifies reward signals within negative samples
using only outcome rewards and probability, balancing computational efficiency with the benefits of
learning from structured negatives.

3 PRELIMINARIES AND MOTIVATION

We start with background on policy optimization and the motivation for our method.

3.1 LANGUAGE MODEL REASONING AS POLICY OPTIMIZATION

We begin with a basic setting: given a question q ∈ Q, a language model π is tasked with gen-
erating an answer o ∈ O. To evaluate correctness, we assume the existence of a reward function
r⋆ : Q×O → {0, 1}, which assigns 1 if the answer o is correct for the given question q, and 0
otherwise.

The ultimate goal of training the language model is to improve its accuracy rate. Formally, this
corresponds to maximizing the expected reward:

maximizeπ J(π) := E[r⋆(q,o)] , where q ∼ ξ, o ∼ π(· | q) . (1)

Here ξ denotes the distribution of questions. Equation (1) is the central criterion: it asks us to design
a policy π that maximizes the expected correctness of generated responses.

3.2 MOTIVATION: NEGATIVE GROUPS IN RLVR

In practice, Group Relative Policy Optimization (GRPO) has become a default algorithm for op-
timizing LLM reasoning ability for the objective in Equation (1). Concretely, for each verifiable
question q, we draw a group of G candidates {oi}Gi=1 ∼ πθold(· | q), obtain scalar rewards
ri : = r⋆(q,oi) ∈ {0, 1}, and form zero-mean, unit-variance group advantages

r̂i =
ri −mean({rj}j∈[G])

std({rj}j∈[G])
. (2)

With outcome-only rewards, the same advantage Âi,t = r̂i is assigned to all tokens t in response oi.
GRPO then maximizes a clipped PPO-style surrogate with an explicit per-token KL regularizer to a
fixed reference πref :

JGRPO(πθ) = Eq,{oi}
1

G

G∑

i=1

1

|oi|

|oi|∑

t=1

[
min

(
ρi,tÂi,t, clip(ρi,t, 1− ϵ, 1 + ϵ)Âi,t

)]
, (3)

where ρi,t : =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

is the correction for off-policy samples. We omit the KL divergence
term following the common practice as β = 0.

GRPO is a practical policy-gradient method for LLMs because it computes advantages from group-
relative statistics rather than a learned value function (critic). This makes it simple and robust for
long-form reasoning, where sequences are long and rewards arrive only after a complete solution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

0 200 400 600 800 1000 1200 1400
Training Step

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

Ne
ga

tiv
e

Gr
ou

p
Ra

tio

Negative Group Ratio of GRPO
Data points
Smooth curve

Figure 2: Negative group ra-
tio during GRPO training of
Llama-3.1-8B-Instruct with
MATH and Numina 1.5. G = 16.

However, GRPO wastes substantial compute on negative
groups. If an entire group is incorrect, i.e., all rewards
{ri} are zero, the advantages collapse to zero, yielding
no contribution to the policy gradient. Figure 2 shows the
fraction of all-negative groups during training with group
size G = 16: despite 16 generations per prompt, nearly
45% of groups are all-negative early in training, and about
35% remain even by the end. These groups consume
substantial generation compute yet contribute no learning
signal.

4 A LIKELIHOOD-BASED
FRAMEWORK FOR REASONING

We now seek to find a principled framework to use the negative groups. A direct route is reward
modeling: train a model to discriminate correct from incorrect responses. We develop a likelihood-
based formulation of reward modeling and show how it connects to policy optimization.

4.1 FROM POLICY LEARNING TO REWARD MODELING

While our goal is to optimize the policy, the task becomes clearer when re-expressed through reward
modeling. To illustrate this connection, we turn to a simple multiple-choice example.

Illustrative Example: Multiple-Choice Reasoning. Suppose a single question q comes with six
possible answers: A,B,C,D,E, F . Out of these, only A and B are correct. We can think of an
unknown ground-truth probability function

p⋆(q,o) = P
[
Answer o is correct for question q

]
.

For math problems, this function is deterministic: each answer is either correct (p⋆ = 1) or incorrect
(p⋆ = 0) and p⋆ = r⋆. More generally, however, p⋆ could take fractional values in [0, 1] to reflect
varying confidence or partial correctness.

In this example, the desirable optimal policy π⋆ for Equation (1) is one that selects only from the
correct options. For instance:

π⋆(A | q) = π⋆(B | q) = 1
2 , π⋆(C | q) = · · · = π⋆(F | q) = 0.

This π⋆ randomly chooses between the correct answers A and B.1 This relationship can be ex-
pressed more generally as

p⋆(q,o) =
1

D(q)
π⋆(o | q), (4)

where D(q) is a normalizing factor defined by

D(q) =

{ ∑

o∈O
p⋆(q,o)

}−1

. (5)

Intuitively, D(q) ∈ (0, 1] captures the difficulty of the question. If only one answer is correct,
D(q) = 1, indicating a hard question. If multiple answers are correct, D(q) becomes smaller,
signaling an easier question.

In practice, we do not have direct access to the full probability function p⋆. Instead, we observe data
samples of the form (q,o, r), where r ∼ Bernoulli

(
p⋆(q,o)

)
. Reward modeling then fits a model

pθ to these observations to approximate p⋆. Through the relation in Equation (4), we can recover
one optimal policy π⋆. Therefore, policy learning reduces to the statistical task of estimating reward
probabilities.

1Here we select an optimal policy that chooses uniformly at random among all correct answers. In more
general settings we may have preferences over which correct answers to favor; for example, one might prefer
shorter correct answers to longer ones. We extend the framework to incorporate a preference function, as
discussed in Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

th
en

q
A

> t
V

�
1

t�
1
A

t
&

su
p

a

q
a

>
V

�
1

t�
1
a

.

A
n
sw

er
S
p
ac

e
O

fo
r

a
q
u
es

ti
on

q

C
or

re
ct

io
n

R
at

e
p?

P
⇥ A

n
sw

er
o

is
co

rr
ec

t
fo

r
q
u
es

ti
on

q
⇤

0
1

D
(q

)
N

or
m

al
iz

at
io

n

D
es

ir
ab

le
P
ol

ic
y

⇡
?

R
e
w

a
rd

M
o
d
e
li
n
g

v
ia

M
L
E

P
o
li
cy

O
p
ti

m
iz

a
ti

o
n

R
ep

ar
am

et
er

iz
at

io
n

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

9

Proof of inequality (4):

By comparing derivatives, one can show that

eu � u � 1  u2/2

1 � u/3
for any 0 < u < 3.

Setting u = (
p

2z + 1)�1 for z > 0 and performing routine algebra yields

u2/2

1 � u/3
 1

4z2
.

Hence,

exp
⇣ 1p

2z + 1

⌘
� 1p

2z + 1
� 1  1

4z2
for any z > 0.

Now let z = 1
Rt

p
kW ⌧k2 (or z = 1

Rt

p
"/2). Then

g

✓
tp

2 kW ⌧k2 + Rt

◆
=

1

R2

⇢
exp

⇣ Rtp
2 kW ⌧k2 + Rt

⌘
� Rtp

2 kW ⌧k2 + Rt
� 1

�

 t2

4 kW ⌧k2

,

which establishes inequality (4).

References

[1] J. Tropp. Freedman’s inequality for matrix martingales. 2011.

E : =

⇢
kb✓t � ✓?

t kVt � ",
�max(Vt)

�min(Vt)
 `

�

hb✓t�1, ai + �t

q
a>V �1

t�1 a  hb✓t�1, Ati + �t

q
A>

t V �1
t�1 At

�t

q
A>

t V �1
t�1 At � �t

q
a>V �1

t�1 a +
�
hb✓t�1, ai � hb✓t�1, Ati

� �t

q
a>V �1

t�1 a � O(1)

If

sup
a

q
a>V �1

t�1 a & ��1
t ,

then q
A>

t V �1
t�1 At & sup

a

q
a>V �1

t�1 a .

Answer Space O for a question q

8

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate P
⇥
Answer o is correct for question q

⇤

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate P
⇥
Answer o is correct for question q

⇤
0 1

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate P
⇥
Answer o is correct for question q

⇤
0 1

9

Proof of inequality (4):

By comparing derivatives, one can show that

eu � u � 1  u2/2

1 � u/3
for any 0 < u < 3.

Setting u = (
p

2z + 1)�1 for z > 0 and performing routine algebra yields

u2/2

1 � u/3
 1

4z2
.

Hence,

exp
⇣ 1p

2z + 1

⌘
� 1p

2z + 1
� 1  1

4z2
for any z > 0.

Now let z = 1
Rt

p
kW ⌧k2 (or z = 1

Rt

p
"/2). Then

g

✓
tp

2 kW ⌧k2 + Rt

◆
=

1

R2

⇢
exp

⇣ Rtp
2 kW ⌧k2 + Rt

⌘
� Rtp

2 kW ⌧k2 + Rt
� 1

�

 t2

4 kW ⌧k2

,

which establishes inequality (4).

References

[1] J. Tropp. Freedman’s inequality for matrix martingales. 2011.

E : =

⇢
kb✓t � ✓?

t kVt � ",
�max(Vt)

�min(Vt)
 `

�

hb✓t�1, ai + �t

q
a>V �1

t�1 a  hb✓t�1, Ati + �t

q
A>

t V �1
t�1 At

�t

q
A>

t V �1
t�1 At � �t

q
a>V �1

t�1 a +
�
hb✓t�1, ai � hb✓t�1, Ati

� �t

q
a>V �1

t�1 a � O(1)

If

sup
a

q
a>V �1

t�1 a & ��1
t ,

then q
A>

t V �1
t�1 At & sup

a

q
a>V �1

t�1 a .

Answer Space O for a question q

8

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

Reward Modeling via MLE

Policy Optimization

Reparameterization

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

Reward Modeling via MLE

Policy Optimization

Reparameterization

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

Reward Modeling via MLE

Policy Optimization

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

Reward Modeling via MLE

Policy Optimization

Reparameterization

9

then
q

A>
t V �1

t�1 At & sup
a

q
a>V �1

t�1 a .

Answer Space O for a question q

Correction Rate p?

P
⇥
Answer o is correct for question q

⇤
0 1

D(q) Normalization

Desirable Policy ⇡?

Reward Modeling via MLE

Policy Optimization

9

Figure 3: An optimal policy π⋆ is derived from reward probabilities p⋆ through normalization
(see Equation (4)). This approach reframes the task of finding the best policy as a more straightfor-
ward statistical problem: learning a reward model from data.

Maximum Likelihood Estimation (MLE) as the Learning Principle. Formally, suppose we are
given an i.i.d. dataset D = {(qi,oi, ri)}ni=1. If we have an estimate of the difficulty D(qi) (as
defined in Equation (5)), we can reparameterize the probability model as

pθ(q,o) =
1

D(q)
πθ(o | q), (6)

where πθ belongs to a parametric policy class. The straightforward way to solve pθ is through the
maximum likelihood (equivalently, cross-entropy minimization) objective:

minimizeθ L̂0(θ) = − 1

n

n∑

i=1

{
ri · log pθ(qi,oi) + (1− ri) · log

(
1− pθ(qi,oi)

)}
. (7)

Plugging in the reparameterization yields the equivalent form:

minimizeθ L̂(θ) = − 1

n

n∑

i=1

{
ri · logπθ(oi | qi) + (1− ri) · log

(
1− πθ(oi | qi)

D(qi)

)}
. (8)

This formulation makes explicit the bridge between policy learning and reward modeling: by esti-
mating p⋆, we implicitly learn a good policy πθ that maximizes accuracy.

4.2 CALIBRATING POLICY GRADIENT VIA MLE.

We now turn to the algorithmic perspective: how can the maximum likelihood objective (8) guide
policy gradient methods? Our first step is to analyze the gradient of the MLE loss. This is summa-
rized in Theorem 1.
Theorem 1. The gradient of the log-likelihood L̂(θ) with respect to the parameters θ is given by

∇θ L̂(θ) = − 1

n

n∑

i=1

{
ri − (1− ri)

πθ(oi | qi)
D(q)− πθ(oi | qi)

}
· ∇θ logπθ(oi | qi) . (9)

Comparison with Policy Gradient. For reference, the standard policy gradient expression for maxi-
mizing the accuracy objective in Equation (1) is

∇θ J(πθ) = E
[
r · ∇θ logπθ(o | q)

]
.

Classical algorithms such as REINFORCE, PPO, and GRPO are all built upon this form. In practice,
the raw reward r is often replaced by an advantage estimate A to reduce variance. However, in
GRPO, when all answers in a batch are incorrect (i.e., r = 0), the gradient contribution vanishes
entirely (after centralization). This explains why negative groups are typically discarded in existing
methods.

MLE Perspective. Theorem 1 sheds new light on this issue. The first term of the gradient,

ri · ∇θ logπθ(oi | qi),
matches the standard policy gradient signal: positive samples (ri = 1) encourage the model to
increase probability mass on correct answers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

But critically, the MLE gradient also contains an additional negative sample contribution:

− (1− ri)
πθ(oi | qi)

D(qi)− πθ(oi | qi)
· ∇θ logπθ(oi | qi).

Although typically smaller in scale, this term is non-negligible when only negative answers are
observed, or when negative samples dominate the data. In other words, discarding negative groups
overlooks a legitimate part of the gradient revealed by the MLE formulation.

Calibrated Policy Gradient. Motivated by this observation, we propose a unified modification
to REINFORCE-type algorithms for LLM reasoning. Specifically, we replace the raw reward
r = r⋆(q,o) with a calibrated reward that incorporates both positive and negative contributions:

r̃ = r − (1− r)
πθ(o | q)

D(q)− πθ(o | q) . (10)

When the generation is correct (r = 1), the calibrated reward is unchanged: r̃ = r = 1. The ad-
justment applies only to incorrect samples. In negative groups, r = 0 for every candidate, but the
policy confidences πθold(o | q) differ; consequently, the adjusted rewards r̃ also differ across candi-
dates, reflecting their relative confidence. This ensures that negative groups contribute informative
gradients rather than being discarded, thereby yielding a more statistically principled update rule.

We provide the proof and show that the estimator is consistent in Appendix B.1: if the model is
correctly specified (i.e., π⋆ = πθ⋆ ∈ {πθ}θ∈Θ), then the true parameter vector θ⋆ is a maximizer of
the population log-likelihood.

4.3 CONFIDENCE WEIGHTED VALUE FUNCTION

After introducing the calibrated policy gradient, we can interpret it as solving a modified policy
optimization problem with a redefined value function JMLE(πθ). The next theorem formalizes this
perspective: in the on-policy setting, the MLE gradient coincides with the gradient of this specially
constructed value function. The proof is deferred to Appendix B.2.
Theorem 2. If we collect dataset D according to qi ∼ ξ and oi ∼ πθ(· | qi), then the gradient
of the (population) log-likelihood function L(θ) is identical to the gradient of the following value
function JMLE(πθ):

maximizeθ JMLE(πθ) = J+(πθ)− J−(πθ) , (11)
where

J+(πθ) := Eq∼ξ,o∼πθ(·|q)
[
r⋆(q,o)

]
, (12a)

J−(πθ) := Eq∼ξ,o∼πθ(·|q)

[
w
(
πθ(o | q)/D(q)

) {
1− r⋆(q,o)

}]
. (12b)

Here the weight function w(·) is defined as

w(z) : =
1

z
log

1

1− z
− 1 for any 0 ≤ z < 1. (13)

å

0 1

?

ia

0 1 0 1

0 1

0.2 02 0.4 04 0.6 0

>

:

6 0.8 2 3 4

8 2 3 4

8 2 3 4

8 2 3 4

8 2 3 4 5 6

w(z) =
1

z
log

1

1− z
− 1

(z) =

Light penalty

πθ(o | q) ≈ 0
⇒ w ≈ 0

Heavy penalty

πθ(o | q) ≈ D(q)
⇒ w → +∞

Figure 4: Illustration of the
weight function w(z).

This formulation provides insight into the behavior of the MLE
optimizer. The objective JMLE(πθ) balances two components:

J+(πθ): This is the standard policy gradient objective (REIN-
FORCE), which maximizes the expected reward. It en-
courages the policy πθ to take actions (i.e., propose an-
swers o) that are likely to be correct.

J−(πθ): This term acts as a penalty for incorrect answers. The
cost of being incorrect, 1−r⋆, is re-weighted by w

(
πθ(o |

q)/D(q)
)
, which represents the policy’s own “odds” of

its prediction being correct. The penalty is most se-
vere when the policy is highly confident but wrong (as
πθ → D−, w → ∞). Conversely, the penalty is negligi-
ble when the policy is uncertain and wrong (as πθ → 0+,
w → 0). It encourages diversity in the negative responses
/ exploration in the negative space.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

The objective JMLE(πθ) creates a powerful dynamic. It not only drives the policy to maximize
rewards but, more critically, it uses the penalty term J−(πθ) to enforce “principled exploration”.
By penalizing misplaced confidence, the agent is forced to explore diverse responses rather than
exploiting a potentially flawed understanding. This balance between exploitation and exploration is
essential for learning a well-calibrated policy.

5 PROPOSED MODIFICATION TO GRPO

The likelihood framework naturally led to a theoretically-grounded modification to GRPO’s advan-
tage function, directly incorporating the insights from the JMLE(πθ) = J+(πθ)− J−(πθ) objective
to enhance exploration and policy calibration. The core of our proposal is to replace the original
reward with our adjusted reward r̃ from Equation (10). The adjusted reward directly implements
the gradient of our theoretical objective. The calibrated reward is then normalized and the obtained
advantage is used in Equation (3). We do not modify the GRPO loss function.

5.1 IMPLEMENTATION AND PRACTICAL CONSIDERATIONS

We calibrate rewards using the ratio πθold

D(q)−πθold

which requires careful handling, particularly in how
the probability πθold and the difficulty factor D(q) are estimated and used.

πθold Term. For LLMs with long generations, raw sequence probabilities are dominated by length:
per-token probabilities tend to be of similar magnitude, so the sequence probability decays roughly
as γ|o| for some γ ∈ (0, 1). Consequently, plugging πθold in directly makes the adjustment sparse:
length-driven decay pushes most candidates’ terms to 0, while a single dominant candidate gets a
much larger value. To mitigate this, we use the length-normalized (geometric-mean) probability

π̄θold(o | q) : = πθold(o | q)1/|o|.
In Appendix C we show that our likelihood framework naturally generalizes to incorpo-
rate preferences over correct generations (e.g., in the example in Section 4.1, we can make
π⋆(A | q) = ρ(q, A) and π⋆(B | q) = ρ(q, B), rather than 0.5 and 0.5); empirically, the above sub-
stitution is equivalent to a calibrated reward that encodes a length preference for correct generations.

Estimating D(q). The true difficulty function D(q) (as defined in Equation (5)) is unknown and
acts as a key hyperparameter controlling learning dynamics. Smaller D(q) increases the penalty on
confident but incorrect predictions, encouraging broader exploration to avoid overconfidence. This
mechanism allows tuning between exploiting correct answers and exploring uncertain ones.

A direct estimator follows from importance sampling:

Dimp(q) =

{ ∑

o′∈O
p⋆(o′ | q)

}−1

= Eo∼πθold

[
r⋆(q,o)

πθold(o | q)

]−1

≈
{

1

G

G∑

i=1

ri
πθold(oi | q)

}−1

.

(14)
In this formulation, we approximate the expectation with a Monte Carlo average over a group of G
samples {(oi, ri)}Gi=1 drawn from πθold .

For numerical stability, we should conservatively overestimate D(q) so that the denominator
D(q)− π̄θold is positive and well-conditioned. Concretely, over the G candidates in the group we
set

D(q) = max
(
Dimp(q), 2 · max

1≤i≤G
π̄θold(oi | q)

)
,

which keeps the calibrated rewards in [−1, 1].

Dimp(q) is undefined for negative groups as all ri are zero. In that case we fall back to

D(q) = 2 · max
1≤i≤G

π̄θold(oi | q).

Handling Invariance. GRPO’s group-wise normalization enjoys a useful sign invariance: regard-
less of how many generations are correct, after normalization all incorrect generations have negative

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

advantages and all correct generations have positive advantages. We aim to preserve this property
under our calibration. Consider the extreme mixed group with one correct and G− 1 incorrect gen-
erations; the calibrated rewards might look like [1, 0,−1, . . . ,−1]. To maintain sign invariance, we
scale all negative calibrated rewards by 1/G.

Calibrated Reward (per sample). In combination, our calibrated reward is

r̃i : = ri − (1− ri)
1

G

π̄θold(oi | q)
D(q)− π̄θold(oi | q)

,

with

D(q) =

{
max

(
Dimp(q), 2 ·maxj π̄θold(oj | q)

)
, (mixed group),

2 ·maxj π̄θold(oj | q), (negative group).

Final Objective. In negative groups, the only signal comes from confidence differences rather than
a verifiable reward, so we treat it as a weaker, auxiliary signal. For those groups we use de-meaning
only in the normalization for simplicity, and we introduce the only hyperparameter, α, to down-
weight their contribution:

Jours = JGRPO[mixed groups] + α · JGRPO[negative groups].

6 EXPERIMENTAL RESULTS

We now empirically test the effectiveness of our algorithm.

Set-up. We evaluate our method on mathematical reasoning. We conduct training on the MATH
training split combined with Numina 1.5 (Li et al., 2024a). All evaluations are on the MATH
test set. We consider two models, Llama-3.1-8B-Instruct (Dubey et al., 2024) and
Qwen-2.5-3B-Base (Yang et al., 2024) 2, and compare our method against the baseline GRPO.
To further test for generality, we also examine training on the DAPO (Yu et al., 2025a) dataset and
report details and results in Appendix E.

Training protocol. To stress-test learning from negative groups, we use a possibly large G and
sample 16 completions per question. Each gradient update uses a global batch of 512 trajectories
(32 questions × 16 samples). We decode with temperature 1.0 and cap generations at 4,096 tokens.
We do not add any KL regularization following common practices. The negative ratio α is set to
0.25 for all models. No format rewards are added to the scalar reward.

Evaluation. At evaluation time, we use temperature 1.0 and top-p 1.0 to evaluate the model in the
plain setup as training, and report Pass@k for k ∈ {1, 2, 4, 8, 16}. We present evaluation curves
during training for both the full MATH dataset, and the MATH Levels 4-5 subset to understand the
performance on hard questions. To test for generalization, we also include GSM8k (Cobbe et al.,
2021), MinervaMath (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024) for evaluation.
We use Math-Verify (Kydlı́ček, 2025) as the verifier function for both training and evaluation.

Results. We report training curves for Llama and Qwen in Figure 5. The full training results
are in Appendix E. Across both models, LENS consistently attains higher accuracy than the GRPO
baseline throughout training. On the hard split of MATH, LENS shows substantial additional gains,
indicating that the method effectively converts negative groups, which often correspond to hard
instances where no candidate is initially correct, into useful learning signals. As a result, when
the GRPO curve saturates, LENS continues to improve. These results indicate that our method
learns effectively through exploration and explicitly leverages negative groups, yielding stronger
performance on difficult problems. Moreover, training remains stable for >1,000 steps without ad
hoc tricks or collapse. Training results using DAPO training set are included in Appendix E, where
we observe consistent improvements with identical hyperparameters.

We further report Pass@k in Table 1. Compared with the GRPO baseline, LENS achieves higher
Pass@k for k ∈ {1, 2, 4, 8, 16}, with the improvement at Pass@16 also significant. These results

2Following prior work, we apply RL to the Qwen base model (Liu et al., 2025b), which already follows
instructions and produces outputs in the required format, whereas for Llama we use the instruction-tuned
model (Arnal et al., 2025). This allows us to remove the format reward in RLVR.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Llama-3.1-8B-Instruct

0 200 400 600 800 1000 1200 1400
Training Step

0.48

0.50

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

MATH-500 Eval

GRPO baseline
Ours

0 200 400 600 800 1000 1200 1400
Training Step

0.32

0.34

0.36

0.38

0.40

0.42

Ac
cu

ra
cy

MATH-500 Levels 4-5 Eval

GRPO baseline
Ours

(b) Qwen-2.5-3B-Base

0 200 400 600 800 1000 1200 1400
Training Step

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

MATH-500 Eval

GRPO baseline
Ours

0 200 400 600 800 1000 1200 1400
Training Step

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

MATH-500 Levels 4-5 Eval

GRPO baseline
Ours

Figure 5: Comparison of our algorithm and GRPO baseline: performance on the full MATH
test set and the Levels 4–5 (hard) subset. Top: Llama-3.1-8B-Instruct; bottom:
Qwen-2.5-3B-Base. The accuracy is averaged over all 16 generations during the evaluation.
Our algorithm brings improvement for both models.

Table 1: Pass@k results on MATH with Llama-3.1-8B-Instruct and
Qwen-2.5-3B-Base.

Model Algorithm Pass@1 Pass@2 Pass@4 Pass@8 Pass@16

Llama-3.1-8B-Instruct GRPO baseline 56.88 65.42 72.08 78.34 82.80
LENS (Ours) 58.64 66.08 73.98 79.46 83.40

Qwen-2.5-3B-Base GRPO baseline 65.88 72.39 77.82 82.05 85.13
LENS (Ours) 68.46 74.74 79.75 83.54 86.28

indicate that our algorithm consistently improves Pass@k for all k, rather than only Pass@1, and
that its confidence-based design enables these exploration gains.

To verify the robustness of our findings, we conducted two independent training runs to compute the
mean and standard deviation, evaluating the Qwen model across all five benchmarks. The results,
reported in Table 2, demonstrate that: (1) our method achieves statistically significant improvements
over GRPO on MATH, MATH Levels 4–5, MinervaMath, and OlympiadBench; and (2) LENS
exhibits high stability with negligible deviation across seeds, when scaling RL to thousands of steps.
Appendix D.2 presents ablations that separately evaluate the effect of adjusted rewards in mixed and
negative groups, showing strong improvements from negative groups alone.

Table 2: Comparison of our method against the baseline using Qwen-2.5-3B-Base. Values
denote accuracy (%) Mean ± Std. Generated with 2 random seeds.

Evaluation Set GRPO Baseline LENS (Ours)

MATH 66.11± 0.38 68.35 ± 0.67
MATH Levels 4-5 49.09± 0.26 51.82 ± 0.35
GSM8K 85.61± 0.12 85.98 ± 0.16
MinervaMath 26.67± 0.45 27.44 ± 0.26
OlympiadBench 30.91± 0.24 32.78 ± 0.27

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 DISCUSSION

In this paper, we start from an observation. In GRPO, any generation group in which all samples are
incorrect does not contribute to the optimization, even though these generations already consume
substantial compute. We ask a question: can we use this data in a principled way? We develop a
theoretical framework that begins with reward modeling using both positive and negative data, con-
nects it to policy optimization, and shows that the MLE objective corresponds to an adjusted value
function. The adjustment adds a confidence-weighted penalty for incorrect generations. This view
yields a calibrated reward that fits seamlessly into GRPO. Empirically, we demonstrate effectiveness
on both Llama and Qwen models, with improvements across all Pass@k scores.

Our empirical algorithm builds on the connection between reward modeling and policy optimization,
and the framework can also incorporate preference, as shown in Appendix C. We study the simple
case and leave further exploration of preference-aware variants for future work. To balance the
impact of negative groups and mixed groups, we introduce a single tunable hyperparameter. A
natural direction is to quantify the contributions of both sources in theory and design an objective
that is free of hyperparameters. Our framework also covers nonbinary reward signals theoretically,
and we defer a systematic experimental study of this setting to future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

ACKNOWLEDGMENT

The authors would like to sincerely thank Dulhan Jayalath, Lovish Madaan, and Yuda Song for their
technical guidance. An initial part of this work was completed while YF was an intern at Meta, and
YF would like to thank Cheng Zhang for hosting. YF and JK acknowledge support from the Simons
Foundation through the Collaborative Grant “The Physics of Learning and Neural Computation.”
YD acknowledges support from NSF Grant DMS-2413812.

REFERENCES

Charles Arnal, Gaëtan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, and Remi Munos.
Asymmetric reinforce for off-policy reinforcement learning: Balancing positive and negative re-
wards, 2025. URL https://arxiv.org/abs/2506.20520. 2, 8, 14, 16, 17

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018. 14

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schu-
urmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified approach
to online and offline rlhf. arXiv preprint arXiv:2405.19320, 2024. 14

Peter Chen, Xiaopeng Li, Ziniu Li, Xi Chen, and Tianyi Lin. Spectral policy optimization: Coloring
your incorrect reasoning in grpo. arXiv preprint arXiv:2505.11595, 2025a. 3

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass@ k training for adaptively balancing exploration and exploitation of large reasoning models.
arXiv preprint arXiv:2508.10751, 2025b. 14

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
Furu Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758,
2025. 14

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. 8

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024. 8

Yunzhen Feng, Ariel Kwiatkowski, Kunhao Zheng, Julia Kempe, and Yaqi Duan. PILAF: Optimal
human preference sampling for reward modeling. In Forty-second International Conference on
Machine Learning, 2025. 14

Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xi-
angyu Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided
exploration. arXiv preprint arXiv:2505.17621, 2025. 14

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. 1, 2

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024. 8

Hynek Kydlı́ček. Math-Verify: Math Verification Library, 2025. URL https://github.com/
huggingface/math-verify. 8

11

https://arxiv.org/abs/2506.20520
https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Thanh-Long V Le, Myeongho Jeon, Kim Vu, Viet Lai, and Eunho Yang. No prompt left behind:
Exploiting zero-variance prompts in llm reinforcement learning via entropy-guided advantage
shaping. arXiv preprint arXiv:2509.21880, 2025. 14

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022. 8

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024a. 8

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
is all you need: Few-shot rl fine-tuning of language models. arXiv preprint arXiv:2506.06395,
2025. 14

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Bin Sun, Xinglin Wang, Heda Wang, and
Kan Li. Turning dust into gold: Distilling complex reasoning capabilities from llms by leveraging
negative data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
18591–18599, 2024b. 3

Wei Liu, Siya Qi, Xinyu Wang, Chen Qian, Yali Du, and Yulan He. Nover: Incentive training
for language models via verifier-free reinforcement learning. arXiv preprint arXiv:2505.16022,
2025a. 14

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025b. 8

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv preprint arXiv:2502.06781, 2025. 2

Gongrui Nan, Siye Chen, Jing Huang, Mengyu Lu, Dexun Wang, Chunmei Xie, Weiqi Xiong,
Xianzhou Zeng, Qixuan Zhou, Yadong Li, et al. Ngrpo: Negative-enhanced group relative policy
optimization. arXiv preprint arXiv:2509.18851, 2025. 14

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025. 14

Jatin Prakash and Anirudh Buvanesh. What can you do when you have zero rewards during rl?
arXiv preprint arXiv:2510.03971, 2025. 14

Nicolas Le Roux, Marc G. Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves, Alex
Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Tapered off-
policy reinforce: Stable and efficient reinforcement learning for llms, 2025. URL https://
arxiv.org/abs/2503.14286. 2, 14

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 2

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024. 1, 2

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024. 17

Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
inference time objectives using reinforcement learning. arXiv preprint arXiv:2503.19595, 2025.
14

12

https://arxiv.org/abs/2503.14286
https://arxiv.org/abs/2503.14286

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025. 2

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024. 14

Wei Xiong, Chenlu Ye, Baohao Liao, Hanze Dong, Xinxing Xu, Christof Monz, Jiang Bian, Nan
Jiang, and Tong Zhang. Reinforce-ada: An adaptive sampling framework for reinforce-style llm
training. arXiv preprint arXiv:2510.04996, 2025. 14

Zhongwen Xu and Zihan Ding. Single-stream policy optimization. arXiv preprint
arXiv:2509.13232, 2025. 14

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang,
Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun
Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024. 8

Zhaohui Yang, Yuxiao Ye, Shilei Jiang, Chen Hu, Linjing Li, Shihong Deng, and Daxin Jiang.
Unearthing gems from stones: Policy optimization with negative sample augmentation for llm
reasoning. arXiv preprint arXiv:2505.14403, 2025. 3

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025a. 8

Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan
Yao, Zhiyuan Liu, et al. Rlpr: Extrapolating rlvr to general domains without verifiers. arXiv
preprint arXiv:2506.18254, 2025b. 14

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Han Zhong, Zhihan Liu, Ziyi Yang, Shuohang Wang,
Hany Hassan, and Zhaoran Wang. Self-exploring language models: Active preference elicitation
for online alignment. arXiv preprint arXiv:2405.19332, 2024. 14

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025. 14

Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li, Zhou-
futu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore. arXiv
preprint arXiv:2507.07017, 2025. 14

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025. 14

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347, 2025.
3, 16, 17

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A OTHER RELATED WORKS

Exploration in RL. Enhancing exploration during RL training is an important part for all RL al-
gorithms. In RLHF, Xie et al. (2024); Cen et al. (2024); Zhang et al. (2024) use the base model
likelihood as an exploration bonus, nudging the policy toward outputs that are plausible yet seldom
sampled. Closest in theoretical spirit to our view is Feng et al. (2025), which studies the MLE ob-
jective of reward modeling to derive a principled exploration method. In the reasoning setting, Gao
et al. (2025) employ Random Network Distillation (Burda et al., 2018) to encourage novel solution
traces. Other works (Cheng et al., 2025; Zheng et al., 2025) promote exploration through entropy
based objectives. Finally, Chen et al. (2025b) optimize a pass@k objective (Tang et al., 2025) to
increase batch diversity during training. However, these approaches do not propose to differentiate
rewards inside negative groups and focus mainly on mixed groups.

Asymmetric treatment of positive and negative outputs. A few recent work introduce asymmetric
treatment of positive and negative generations during REINFORCE-style training. (Roux et al.,
2025) introduces an asymmetric variant of importance sampling to speed up learning. Arnal et al.
(2025) demonstrate that asymmetric REINFORCE, and in particular reducing the signal from nega-
tive generations, can be beneficial when data is off-policy.

Using Confidence in RLVR. Confidence proxies have also been applied in RLVR, mainly proposed
as a surrogate for the rule-based verifier. Zhao et al. (2025) use the KL divergence between the per
token generation probability and a uniform distribution. Zhou et al. (2025); Yu et al. (2025b); Liu
et al. (2025a) take the log prob of generating the reference answer conditioned on the existing CoT
as the reward. Li et al. (2025) leverage confidence scores at test time for light tuning and report
gains. Prabhudesai et al. (2025) similarly optimize the entropy of response tokens as the reward.
In all of these studies, the rule-based reward is replaced with a confidence-based proxy and light
training is performed. Most works do not train beyond one hundred steps and focus only on Qwen
models, which raises concerns about generalization and the risk of reward hacking without a bag of
tricks. In contrast, we do not aim to replace rule based rewards; instead, we propose to make use
of negative groups in GRPO in a principled way. We demonstrate effectiveness on both Llama and
Qwen and show stable training for more than one thousand five hundred steps.

Xu & Ding (2025) leverage on-the-fly baseline such that the negative groups will have a non-zero
baseline and the advantage is not zero. Similarly, Nan et al. (2025) also employs advantage cal-
ibration to change the baseline. Le et al. (2025) leverages the entropy to create difference in the
negative groups. Our work have a more theory-grounded. Xiong et al. (2025) propose to solve the
negative group by adaptively allocate more generation samples for hard problems. Prakash & Bu-
vanesh (2025) emphasize the importance to add easy sample to help generate correct answers for
hard problems.

B PROOFS

B.1 PROOF OF THEOREM 1

We now provide the proof of Theorem 1 and a comment on the estimator consistency.

Proof of Theorem 1. Let πθ ≡ πθ(o | q) and D ≡ D(q) for notational brevity. The gradient of
each individual term in the loss L̂(θ) with respect to θ is found using the chain rule:

∇θ

[
r · logπθ + (1− r) · log

(
1− πθ

D

)]
=

(
r

πθ
− 1− r

D − πθ

)
∇θ πθ .

By applying the identity for the gradient of a logarithm, ∇θ πθ = πθ · ∇θ logπθ, we can express
the result as:

(
r − (1− r)

πθ

D − πθ

)
∇θ logπθ ,

which provides the final result.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Consistency of the Estimator. A key property of this estimator is its consistency under ideal
conditions. If the model is correctly specified (i.e., πθ⋆ ∈ {πθ}θ∈Θ), then the true parameter vector
θ⋆ is a maximizer of the population log-likelihood. This can be verified by observing that the
gradient ∇θ L(θ) evaluates to zero at θ = θ⋆. By taking the conditional expectation of the gradient’s
inner term with respect to r, given q and o, we find:

Er|q,o

[
r − (1− r)

πθ⋆(o | q)
D(q)− πθ⋆(o | q)

]

Using E[r | q,o] = p⋆(o | q) and the definition p⋆ = π⋆/D, this becomes:

= p⋆ − (1− p⋆)
πθ⋆

D − πθ⋆

= p⋆ − (1− p⋆)
p⋆

1− p⋆
= p⋆ − p⋆ = 0 .

Since the conditional expectation of the term multiplying ∇θ logπθ is zero, the full expectation is
zero, confirming that θ⋆ is a stationary point.

B.2 PROOF OF THEOREM 2

We will show that ∇θ JMLE(πθ) is equivalent to ∇θ L(θ) when µ = πθ.

First, the target gradient from Theorem 1, with the sampling policy µ set to the model policy πθ, is:

∇θ L(θ)
∣∣
µ=πθ

= Eq∼ξ,o∼πθ(·|q)

[{
r − (1− r)

πθ

D − πθ

}
· ∇θ logπθ(o | q)

]
. (15)

Next, we rigorously compute the gradient of J(πθ) = J+(πθ) − J−(πθ). The gradient of the
positive term is standard:

∇θ J+(πθ) = Eq∼ξ,o∼πθ(·|q)
[
r · ∇θ logπθ

]
. (16)

For the negative term, J−(πθ) = Eo∼πθ

[
w(πθ/D) · (1− r)

]
, we use the product rule and derive

∇θ J−(πθ) = Eq,o∼πθ

[
(1− r)

(
w(πθ/D) + (πθ/D) · w′(πθ/D)

)
· ∇θ logπθ

]
. (17)

Now we compute w(z) + z · w′(z):

w(z) + z · w′(z) =

(− log(1− z)

z
− 1

)
+ z

(z
1−z +D log(1− z)

z2

)
=

1

1− z
− 1 =

z

1− z
.

This is exactly the term we needed. Substituting this result back into the gradient for J−(πθ):

∇θ J−(πθ) = Eq,,o∼πθ

[
(1− r)

(
πθ

D − πθ

)
· ∇θ logπθ

]
. (18)

Finally, combining the gradients for the positive and negative parts of J(πθ):

∇θ JMLE(πθ) = ∇θ J+(πθ)−∇θ J−(πθ) = Eq,,o∼πθ

[(
r − (1− r)

πθ

D − πθ

)
· ∇θ logπθ

]
.

(19)
This expression is identical to the MLE gradient in equation 15. The equivalence is proven.

C A PREFERENCE-AWARE FRAMEWORK

The framework introduced in Section 4.1 assumed that when multiple answers are correct, the op-
timal policy distributes probability mass uniformly across them. For example, if both A and B are
correct answers to a question q, we had π⋆(A | q) = π⋆(B | q) = 0.5. However, uniformity may
not always reflect the true reasoning process. In practice, we might prefer some answers over others.
For instance, A could be easier to infer, shorter in form, or more natural to express. In such cases, a
more realistic distribution might be π⋆(A | q) = 0.9 and π⋆(B | q) = 0.1.

From the perspective of chain-of-thought reasoning, preferences can capture properties such as the
length of the reasoning trajectory or the similarity of an answer to outputs from a reference language
model. To encode this flexibility, we introduce a nonnegative preference function:

ρ(q,o) ≥ 0,

which adjusts the weight assigned to each (q,o) pair.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Modified Framework. With the preference function, we adjust the relation between policy πθ

and correctness probabilities. Specifically, we define

pθ(q,o) =
1

D(q) · ρ(q,o) πθ(o | q), (20)

where the difficulty factor D(q) is updated as

D(q) =

{ ∑

o∈O
p⋆(q,o) · ρ(q,o)

}−1

. (21)

Intuitively, D(q) still measures how hard the question is, but it now accounts for the internal weight-
ing across candidate answers.

The maximum likelihood estimation (MLE) problem under this new framework becomes

min
θ

L̂(θ) = − 1

n

n∑

i=1

{
ri · logπθ(oi | qi) + (1− ri) · log

(
1− πθ(oi | qi)

D(qi) · ρ(qi,oi)

)}
. (22)

The corresponding gradient of the log-likelihood is

∇θ L̂(θ) = − 1

n

n∑

i=1

{
ri − (1− ri)

πθ(oi | qi)
D(qi) · ρ(qi,oi)− πθ(oi | qi)

}
· ∇θ logπθ(oi | qi). (23)

Compared to the uniform case, the gradient now incorporates the additional signal encoded by ρ,
ensuring that both positive and negative samples are scaled according to the chosen preference struc-
ture.

Examples of Preference Functions. To illustrate the flexibility of this framework, we describe
some concrete choices of ρ:

Preference as the data collection distribution. Suppose we take ρ(q,o) = µ(o | q), where µ is the
distribution used to collect the dataset D. Then the difficulty factor D(q) can be approximated by:

D(q) ≈
{

1

|OD(q)|
∑

o∈OD(q)

r⋆(q,o)

}−1

,

where OD(q) denotes the set of observed answers to question q in D. In words, D(q) can be
estimated as the inverse of the empirical correctness rate.

Preference as the policy itself. If we further set µ = πθ, then the negative calibration term simplifies
to

πθ(oi | qi)
D(qi) · ρ(qi,oi)− πθ(oi | qi)

=
1

D(qi)− 1
.

In this case, the weight for negative samples is exactly the correction rate of the current policy πθ.
Equivalently, in the ordinary policy gradient formulation, each question should be reweighted by
its correction rate. Although this choice does not produce the “confidence-based” weighting we
ultimately seek, it highlights that commonly used uniform weights (e.g., Arnal et al. (2025); Zhu
et al. (2025)) emerge as a special case of our framework.

Preference as a function of response length. Now, consider a preference function that depends on
the length of the candidate answer:

ρ(q,o) := γ|o| for a fixed parameter γ ∈ (0, 1).

Define the shorthand

π̄θ(o | q) := πθ(o | q) 1
|o| .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

The negative-sample reward can then be expressed as

r̃θ(o | q) = − πθ(o | q)
D(q) · ρ(q,o)− πθ(o | q) = − π̄θ(o | q)|o|

D(q) · γ|o| − π̄θ(o | q)|o| .

For large |o|, we have D(q)
1

|o| ≈ 1. If γ is chosen on the same scale as π̄θ, this weight simplifies to

r̃θ(o | q) = −
{(D(q)

1
|o| · γ

π̄θ(o | q)
)|o|

− 1

}−1

≈ − 1

|o|

{
D(q)

1
|o| · γ

π̄θ(o | q) − 1

}−1

= − 1

|o| ·
π̄θ(o | q)

D(q)
1

|o| · γ − π̄θ(o | q)
≈ − 1

|o| ·
π̄θ(o | q)

γ − π̄θ(o | q) .

Therefore, in practice, it is convenient to set negative-sample reward

r̃θ(o | q) := − 1

|o| ·
π̄θ(o | q)

γ − π̄θ(o | q) = − 1

|o| ·
πθ(o | q) 1

|o|

γ − πθ(o | q) 1
|o|

with γ > 0 properly tuned.

D EXPERIMENT DETAILS

D.1 HYPERPARAMETERS

We use a learning rate 3e − 7 for Llama-3.1-8B-Instruct and a learning rate 1e − 6 for
Qwen-2.5-3B-Base. The base model requires a larger learning rate while the instruct model has
gone through the RLHF stages so a smaller learning rate is better. Prior works (Zhu et al., 2025;
Arnal et al., 2025) have used the same setup. The batch size is set to be 512, with 32 questions and
16 generations for each. We use a clipping ratio of 0.2 for all the models to mitigate the impact
of off-policy data. We set the maximum number of off-policy updates to 4; in VeRL (Sheng et al.,
2024), this is implemented by using a training batch size as 128 (4×32).

We set temperature and top-p to 1.0 during both training and evaluation for both models.

D.2 ABLATION

We also conduct an ablation to understand where the improvement comes from. In our algorithm,
we modify the reward for all incorrect generations in both mixed and negative groups as in Equation
10. Compared with GRPO, we adjust rewards for incorrect generations within mixed groups, and
negative groups now have nonzero advantages. To quantify the contribution of each component, we
use the Llama model and consider two settings: (i) modify only the incorrect generations in mixed
groups while keeping advantages for negative groups at zero, and (ii) modify only the incorrect
generations in negative groups while leaving mixed groups unchanged. This design isolates the
effect of each part. We refer to these variants as LENS with only mixed groups and LENS with only
negative groups. The training set is MATH and Numina 1.5. The pass@k results are reported in
Table 3.

Table 3: Ablation results of pass@k on MATH with Llama-3.1-8B-Instruct.

Algorithm Pass@1 Pass@2 Pass@4 Pass@8 Pass@16
GRPO baseline 56.88 65.42 72.08 78.34 82.80
LENS with only mixed groups 57.42 65.82 73.08 78.80 83.20
LENS with only negative groups 58.14 66.48 73.46 79.79 83.40
LENS (Ours) 58.64 66.08 73.98 79.46 83.40

The results show that both components help improve performance. Specifically, adjusting the reward
in mixed groups encourages exploration in batches that already contain a correct answer. This helps
the model reinforce correct samples while rejecting incorrect generations. As a result, LENS with
only mixed groups yields its largest gains at pass@1. LENS with only negative groups also improves
over GRPO and in several cases nearly matches the full LENS, suggesting that a substantial portion
of the improvement arises from the negative groups.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

E ADDITIONAL RESULTS

We report additional results from two training setups using distinct corpora: (i) MATH + Numina 1.5
and (ii) DAPO. These complementary results, omitted from the main paper for space, are summa-
rized as follows. Figure 6 shows training curves for Llama trained on DAPO and Qwen trained on
MATH and Numina 1.5. Table 4 reports the Pass@ k results for the DAPO-trained models. On this
training set, we significantly improve Pass@k for larger k, indicating greater diversity.

0 200 400 600 800 1000 1200 1400 1600
Training Step

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Ac
cu

ra
cy

MATH-500 Eval

GRPO baseline
Ours

0 200 400 600 800 1000 1200 1400 1600
Training Step

0.250

0.275

0.300

0.325

0.350

Ac
cu

ra
cy

MATH-500 Levels 4-5 Eval

GRPO baseline
Ours

Figure 6: Comparison of our algorithm and GRPO baseline on MATH, during training: performance
on the full test set and the Levels 4–5 (hard) subset. Llama-3.1-8B-Instruct trained on
DAPO. The accuracy is averaged over all 16 generations during the evaluation. Our algorithm
brings significant improvement for both models.

Table 4: Pass@k results on MATH with Llama-3.1-8B-Instruct. Training set: DAPO.

Model Algorithm Pass@1 Pass@2 Pass@4 Pass@8 Pass@16

Llama-3.1-8B-Instruct GRPO baseline 53.80 61.04 67.30 71.36 74.54
LENS (Ours) 54.90 63.03 69.47 74.36 77.95

18

	Introduction
	Related Work
	Preliminaries and Motivation
	Language Model Reasoning as Policy Optimization
	Motivation: Negative Groups in RLVR

	A Likelihood-Based Framework for Reasoning
	From Policy Learning to Reward Modeling
	Calibrating Policy Gradient via MLE.
	Confidence Weighted Value Function

	Proposed Modification to GRPO
	Implementation and Practical Considerations

	Experimental Results
	Discussion
	Other Related Works
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	A Preference-Aware Framework
	Experiment Details
	Hyperparameters
	Ablation

	Additional Results

