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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has become a standard
recipe for improving large language models (LLMs) on reasoning tasks, with
Group Relative Policy Optimization (GRPO) widely used in practice. Yet GRPO
wastes substantial compute on negative groups: groups in which no sampled re-
sponse is correct yield zero advantage and thus no gradient. We ask whether nega-
tive groups can be leveraged without extra supervision. Starting from a maximum-
likelihood (MLE) objective in reward modeling, we show that the MLE gradient is
equivalent to a policy gradient for a modified value function. This value function
adds a confidence-weighted penalty on incorrect responses, imposing larger penal-
ties on more confident mistakes. We refer to this as Likelihood Estimation with
Negative Samples (LENS). LENS modifies GRPO to assign non-zero, confidence-
dependent rewards to incorrect generations, making negative groups informative
and converting previously wasted samples into useful gradient updates. On the
MATH benchmark with Llama-3.1-8B and Qwen-2.5-3B, the proposed variant
consistently outperforms GRPO baseline, with significant gains on harder items.
These results demonstrate a principled and practical way to “rescue” negative
groups, improving efficiency and performance in RLVR.

1 INTRODUCTION

Large language models (LLMs) fine-tuned with reinforcement learning and verifiable rewards
(RLVR) (Shao et al., 2024; Guo et al., 2025) have shown strong gains on complex reasoning tasks,
with algorithms such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al.,
2025) emerging as practical defaults. A persistent inefficiency, however, is how these methods han-
dle negative groups—the generation group in which no sampled response is correct. In GRPO and
its variants, such groups contribute zero advantage and therefore no gradient signal. This is espe-
cially common at the start of training and on harder reasoning problems, where negative groups can
constitute a substantial fraction of compute, effectively wasting already-generated trajectories.

We therefore ask: can we learn from negative groups without additional supervision in a principled
way? Our starting point is deliberately simple: to learn from negative groups, the natural approach
is reward modeling that distinguishes correct from incorrect answers, optimized with maximum
likelihood (MLE). From this likelihood perspective, the MLE gradient is equivalent to a policy gra-
dient on a modified RLVR value function. The modified value adds a confidence-weighted penalty
for incorrect responses: the more confident the model is in a wrong answer, the larger the penalty.
Intuitively, it discourages overconfident failure modes, thereby encouraging exploration of lower-
probability yet plausible alternatives.

This equivalence lets us modify GRPO directly. It yields a drop-in change in which incorrect gen-
erations receive non-zero, confidence-dependent rewards (i.e., lower rewards when confidence is
higher). As a result, negative groups now provide informative advantage estimates, converting pre-
viously wasted samples into useful gradient updates and promoting exploration on hard negatives.
We term this algorithm LENS: Likelihood Estimation with Negative Samples.

We evaluate LENS on mathematical reasoning using the MATH benchmark with
Llama-3.1-8B-Instruct and Qwen-2.5-3B-Base. In both settings, our GRPO
variant consistently outperforms the GRPO baseline across all Pass@k metrics. Stratifying by
difficulty, we find that gains are concentrated on the Levels 4-5 subsets (hard items), consistent
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Figure 1: Overview of our approach. Standard approaches like GRPO assign a uniform reward of 0
to all incorrect answers. This provides no learning signal, causing these samples to be discarded. Our
method, LENS, is derived from reward modeling via Maximum Likelihood Estimation (MLE) and
assigns non-zero, confidence-dependent rewards to incorrect responses. This creates a clear learning
signal where differences emerge from the samples, converting previously discarded information into
useful gradient updates.

with repurposed negative groups driving increased exploration for hard questions. We train on two
distinct math training datasets to demonstrate the generality of our method.

We summarize our contributions as follows:

• We introduce a likelihood framework, Likelihood Estimation with Negative Samples
(LENS), that explicitly connects reward modeling and policy optimization.

• LENS yields a principled value function whose additional term penalizes overconfident
incorrect answers, formalizing how negative-group signals should be used and calibrated
within the objective.

• We propose a GRPO variant that assigns non-zero, confidence-dependent rewards to in-
correct generations, thereby leveraging negative groups rather than wasting them. It is
plug-and-play with negligible computational overhead.

• Empirical results support our algorithm’s effectiveness and show increased exploration, as
reflected in Pass@k.

2 RELATED WORK

RLVR. Recent work has shown that reinforcement learning (RL) can effectively refine LLMs for rea-
soning. In RLVR, the LLM is treated as a policy that generates a chain-of-thought (CoT) reasoning
process, and it receives a deterministic reward based on whether the final answer can be algorith-
mically verified. Recent works (Shao et al., 2024; Guo et al., 2025; Team et al., 2025) show that
RLVR can elicit emergent reasoning behaviors and dramatically boost math and coding performance
compared to the base model. Underlying most of these RLVR methods is the Group Relative Policy
Optimization (GRPO) algorithm (Shao et al., 2024). GRPO is an efficient variant of Proximal Policy
Optimization (PPO) (Schulman et al., 2017) that drops the value network and instead computes ad-
vantages from grouped outputs. In this way, with a group of all incorrect generations, the advantage
is 0, and these groups do not contribute to the optimization. In this work, we try to make use of these
negative groups.

Learning from negatives. Recent work has emphasized that negative samples are not merely noise
but a useful training signal in LLM reasoning. One direction explores asymmetric treatment of
positives and negatives in REINFORCE-style training: Roux et al. (2025) introduce an asymmetric
variant of importance sampling to speed up learning. Arnal et al. (2025) demonstrate that asym-
metric REINFORCE, and in particular reducing the signal from negative samples, can be beneficial
when data is off-policy. Lyu et al. (2025) propose to reweight positive and negative samples at the
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token level using a learned reward model combined with log-likelihood. Zhu et al. (2025) demon-
strate that training only on negatives, assigning reward −1 to incorrect and 0 to correct answers, can
outperform baselines on Pass@k for large k.

Another line of work argues that entirely wrong completions may still contain valuable sub-signals.
Chen et al. (2025a) assign fractional rewards within all-negative groups, Yang et al. (2025) mine
correct sub-steps from long chains of thought, and Li et al. (2024b) leverage negative rationales
through a dual-LoRA distillation framework. These methods demonstrate that even within incorrect
trajectories, certain steps are worth reinforcing, particularly in long reasoning traces where correct
and incorrect steps alternate. A key drawback of these approaches is that evaluating intermediate
reasoning steps is labor-intensive, and accurate automation remains underexplored.

Our contribution is to provide a framework that stratifies reward signals within negative samples
using only outcome rewards and probability, balancing computational efficiency with the benefits of
learning from structured negatives.

3 PRELIMINARIES AND MOTIVATION

We start with background on policy optimization and the motivation for our method.

3.1 LANGUAGE MODEL REASONING AS POLICY OPTIMIZATION

We begin with a basic setting: given a question q ∈ Q, a language model π is tasked with gen-
erating an answer o ∈ O. To evaluate correctness, we assume the existence of a reward function
r⋆ : Q×O → {0, 1}, which assigns 1 if the answer o is correct for the given question q, and 0
otherwise.

The ultimate goal of training the language model is to improve its accuracy rate. Formally, this
corresponds to maximizing the expected reward:

maximizeπ J(π) := E[r⋆(q,o)] , where q ∼ ξ, o ∼ π(· | q) . (1)

Here ξ denotes the distribution of questions. Equation (1) is the central criterion: it asks us to design
a policy π that maximizes the expected correctness of generated responses.

3.2 MOTIVATION: NEGATIVE GROUPS IN RLVR

In practice, Group Relative Policy Optimization (GRPO) has become a default algorithm for op-
timizing LLM reasoning ability for the objective in Equation (1). Concretely, for each verifiable
question q, we draw a group of G candidates {oi}Gi=1 ∼ πθold(· | q), obtain scalar rewards
ri : = r⋆(q,oi) ∈ {0, 1}, and form zero-mean, unit-variance group advantages

r̂i =
ri −mean({rj}j∈[G])

std({rj}j∈[G])
. (2)

With outcome-only rewards, the same advantage Âi,t = r̂i is assigned to all tokens t in response oi.
GRPO then maximizes a clipped PPO-style surrogate with an explicit per-token KL regularizer to a
fixed reference πref :

JGRPO(πθ) = Eq,{oi}
1

G

G∑

i=1

1

|oi|

|oi|∑

t=1

[
min

(
ρi,tÂi,t, clip(ρi,t, 1− ϵ, 1 + ϵ)Âi,t

) ]
, (3)

where ρi,t : =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

is the correction for off-policy samples. We omit the KL divergence
term following the common practice as β = 0.

GRPO is a practical policy-gradient method for LLMs because it computes advantages from group-
relative statistics rather than a learned value function (critic). This makes it simple and robust for
long-form reasoning, where sequences are long and rewards arrive only after a complete solution.
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Figure 2: Negative group ra-
tio during GRPO training of
Llama-3.1-8B-Instruct with
MATH and Numina 1.5. G = 16.

However, GRPO wastes substantial compute on negative
groups. If an entire group is incorrect, i.e., all rewards
{ri} are zero, the advantages collapse to zero, yielding
no contribution to the policy gradient. Figure 2 shows the
fraction of all-negative groups during training with group
size G = 16: despite 16 generations per prompt, nearly
45% of groups are all-negative early in training, and about
35% remain even by the end. These groups consume
substantial generation compute yet contribute no learning
signal.

4 A LIKELIHOOD-BASED
FRAMEWORK FOR REASONING

We now seek to find a principled framework to use the negative groups. A direct route is reward
modeling: train a model to discriminate correct from incorrect responses. We develop a likelihood-
based formulation of reward modeling and show how it connects to policy optimization.

4.1 FROM POLICY LEARNING TO REWARD MODELING

While our goal is to optimize the policy, the task becomes clearer when re-expressed through reward
modeling. To illustrate this connection, we turn to a simple multiple-choice example.

Illustrative Example: Multiple-Choice Reasoning. Suppose a single question q comes with six
possible answers: A,B,C,D,E, F . Out of these, only A and B are correct. We can think of an
unknown ground-truth probability function

p⋆(q,o) = P
[
Answer o is correct for question q

]
.

For math problems, this function is deterministic: each answer is either correct (p⋆ = 1) or incorrect
(p⋆ = 0) and p⋆ = r⋆. More generally, however, p⋆ could take fractional values in [0, 1] to reflect
varying confidence or partial correctness.

In this example, the desirable optimal policy π⋆ for Equation (1) is one that selects only from the
correct options. For instance:

π⋆(A | q) = π⋆(B | q) = 1
2 , π⋆(C | q) = · · · = π⋆(F | q) = 0.

This π⋆ randomly chooses between the correct answers A and B.1 This relationship can be ex-
pressed more generally as

p⋆(q,o) =
1

D(q)
π⋆(o | q), (4)

where D(q) is a normalizing factor defined by

D(q) =

{ ∑

o∈O
p⋆(q,o)

}−1

. (5)

Intuitively, D(q) ∈ (0, 1] captures the difficulty of the question. If only one answer is correct,
D(q) = 1, indicating a hard question. If multiple answers are correct, D(q) becomes smaller,
signaling an easier question.

In practice, we do not have direct access to the full probability function p⋆. Instead, we observe data
samples of the form (q,o, r), where r ∼ Bernoulli

(
p⋆(q,o)

)
. Reward modeling then fits a model

pθ to these observations to approximate p⋆. Through the relation in Equation (4), we can recover
one optimal policy π⋆. Therefore, policy learning reduces to the statistical task of estimating reward
probabilities.

1Here we select an optimal policy that chooses uniformly at random among all correct answers. In more
general settings we may have preferences over which correct answers to favor; for example, one might prefer
shorter correct answers to longer ones. We extend the framework to incorporate a preference function, as
discussed in Appendix C.
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Figure 3: An optimal policy π⋆ is derived from reward probabilities p⋆ through normalization
(see Equation (4)). This approach reframes the task of finding the best policy as a more straightfor-
ward statistical problem: learning a reward model from data.

Maximum Likelihood Estimation (MLE) as the Learning Principle. Formally, suppose we are
given an i.i.d. dataset D = {(qi,oi, ri)}ni=1. If we have an estimate of the difficulty D(qi) (as
defined in Equation (5)), we can reparameterize the probability model as

pθ(q,o) =
1

D(q)
πθ(o | q), (6)

where πθ belongs to a parametric policy class. The straightforward way to solve pθ is through the
maximum likelihood (equivalently, cross-entropy minimization) objective:

minimizeθ L̂0(θ) = − 1

n

n∑

i=1

{
ri · log pθ(qi,oi) + (1− ri) · log

(
1− pθ(qi,oi)

)}
. (7)

Plugging in the reparameterization yields the equivalent form:

minimizeθ L̂(θ) = − 1

n

n∑

i=1

{
ri · logπθ(oi | qi) + (1− ri) · log

(
1− πθ(oi | qi)

D(qi)

)}
. (8)

This formulation makes explicit the bridge between policy learning and reward modeling: by esti-
mating p⋆, we implicitly learn a good policy πθ that maximizes accuracy.

4.2 CALIBRATING POLICY GRADIENT VIA MLE.

We now turn to the algorithmic perspective: how can the maximum likelihood objective (8) guide
policy gradient methods? Our first step is to analyze the gradient of the MLE loss. This is summa-
rized in Theorem 1.
Theorem 1. The gradient of the log-likelihood L̂(θ) with respect to the parameters θ is given by

∇θ L̂(θ) = − 1

n

n∑

i=1

{
ri − (1− ri)

πθ(oi | qi)
D(q)− πθ(oi | qi)

}
· ∇θ logπθ(oi | qi) . (9)

Comparison with Policy Gradient. For reference, the standard policy gradient expression for maxi-
mizing the accuracy objective in Equation (1) is

∇θ J(πθ) = E
[
r · ∇θ logπθ(o | q)

]
.

Classical algorithms such as REINFORCE, PPO, and GRPO are all built upon this form. In practice,
the raw reward r is often replaced by an advantage estimate A to reduce variance. However, in
GRPO, when all answers in a batch are incorrect (i.e., r = 0), the gradient contribution vanishes
entirely (after centralization). This explains why negative groups are typically discarded in existing
methods.

MLE Perspective. Theorem 1 sheds new light on this issue. The first term of the gradient,

ri · ∇θ logπθ(oi | qi),
matches the standard policy gradient signal: positive samples (ri = 1) encourage the model to
increase probability mass on correct answers.
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But critically, the MLE gradient also contains an additional negative sample contribution:

− (1− ri)
πθ(oi | qi)

D(qi)− πθ(oi | qi)
· ∇θ logπθ(oi | qi).

Although typically smaller in scale, this term is non-negligible when only negative answers are
observed, or when negative samples dominate the data. In other words, discarding negative groups
overlooks a legitimate part of the gradient revealed by the MLE formulation.

Calibrated Policy Gradient. Motivated by this observation, we propose a unified modification
to REINFORCE-type algorithms for LLM reasoning. Specifically, we replace the raw reward
r = r⋆(q,o) with a calibrated reward that incorporates both positive and negative contributions:

r̃ = r − (1− r)
πθ(o | q)

D(q)− πθ(o | q) . (10)

When the generation is correct (r = 1), the calibrated reward is unchanged: r̃ = r = 1. The ad-
justment applies only to incorrect samples. In negative groups, r = 0 for every candidate, but the
policy confidences πθold(o | q) differ; consequently, the adjusted rewards r̃ also differ across candi-
dates, reflecting their relative confidence. This ensures that negative groups contribute informative
gradients rather than being discarded, thereby yielding a more statistically principled update rule.

We provide the proof and show that the estimator is consistent in Appendix B.1: if the model is
correctly specified (i.e., π⋆ = πθ⋆ ∈ {πθ}θ∈Θ), then the true parameter vector θ⋆ is a maximizer of
the population log-likelihood.

4.3 CONFIDENCE WEIGHTED VALUE FUNCTION

After introducing the calibrated policy gradient, we can interpret it as solving a modified policy
optimization problem with a redefined value function JMLE(πθ). The next theorem formalizes this
perspective: in the on-policy setting, the MLE gradient coincides with the gradient of this specially
constructed value function. The proof is deferred to Appendix B.2.
Theorem 2. If we collect dataset D according to qi ∼ ξ and oi ∼ πθ(· | qi), then the gradient
of the (population) log-likelihood function L(θ) is identical to the gradient of the following value
function JMLE(πθ):

maximizeθ JMLE(πθ) = J+(πθ)− J−(πθ) , (11)
where

J+(πθ) := Eq∼ξ,o∼πθ(·|q)
[
r⋆(q,o)

]
, (12a)

J−(πθ) := Eq∼ξ,o∼πθ(·|q)

[
w
(
πθ(o | q)/D(q)

) {
1− r⋆(q,o)

}]
. (12b)

Here the weight function w(·) is defined as

w(z) : =
1

z
log

1

1− z
− 1 for any 0 ≤ z < 1. (13)
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1

z
log

1

1− z
− 1

(z) =

Light penalty

πθ(o | q) ≈ 0
⇒ w ≈ 0

Heavy penalty

πθ(o | q) ≈ D(q)
⇒ w → +∞

Figure 4: Illustration of the
weight function w(z).

This formulation provides insight into the behavior of the MLE
optimizer. The objective JMLE(πθ) balances two components:

J+(πθ): This is the standard policy gradient objective (REIN-
FORCE), which maximizes the expected reward. It en-
courages the policy πθ to take actions (i.e., propose an-
swers o) that are likely to be correct.

J−(πθ): This term acts as a penalty for incorrect answers. The
cost of being incorrect, 1−r⋆, is re-weighted by w

(
πθ(o |

q)/D(q)
)
, which represents the policy’s own “odds” of

its prediction being correct. The penalty is most se-
vere when the policy is highly confident but wrong (as
πθ → D−, w → ∞). Conversely, the penalty is negligi-
ble when the policy is uncertain and wrong (as πθ → 0+,
w → 0). It encourages diversity in the negative responses
/ exploration in the negative space.
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The objective JMLE(πθ) creates a powerful dynamic. It not only drives the policy to maximize
rewards but, more critically, it uses the penalty term J−(πθ) to enforce “principled exploration”.
By penalizing misplaced confidence, the agent is forced to explore diverse responses rather than
exploiting a potentially flawed understanding. This balance between exploitation and exploration is
essential for learning a well-calibrated policy.

5 PROPOSED MODIFICATION TO GRPO

The likelihood framework naturally led to a theoretically-grounded modification to GRPO’s advan-
tage function, directly incorporating the insights from the JMLE(πθ) = J+(πθ)− J−(πθ) objective
to enhance exploration and policy calibration. The core of our proposal is to replace the original
reward with our adjusted reward r̃ from Equation (10). The adjusted reward directly implements
the gradient of our theoretical objective. The calibrated reward is then normalized and the obtained
advantage is used in Equation (3). We do not modify the GRPO loss function.

5.1 IMPLEMENTATION AND PRACTICAL CONSIDERATIONS

We calibrate rewards using the ratio πθold

D(q)−πθold

which requires careful handling, particularly in how
the probability πθold and the difficulty factor D(q) are estimated and used.

πθold Term. For LLMs with long generations, raw sequence probabilities are dominated by length:
per-token probabilities tend to be of similar magnitude, so the sequence probability decays roughly
as γ|o| for some γ ∈ (0, 1). Consequently, plugging πθold in directly makes the adjustment sparse:
length-driven decay pushes most candidates’ terms to 0, while a single dominant candidate gets a
much larger value. To mitigate this, we use the length-normalized (geometric-mean) probability

π̄θold(o | q) : = πθold(o | q)1/|o|.
In Appendix C we show that our likelihood framework naturally generalizes to incorpo-
rate preferences over correct generations (e.g., in the example in Section 4.1, we can make
π⋆(A | q) = ρ(q, A) and π⋆(B | q) = ρ(q, B), rather than 0.5 and 0.5); empirically, the above sub-
stitution is equivalent to a calibrated reward that encodes a length preference for correct generations.

Estimating D(q). The true difficulty function D(q) (as defined in Equation (5)) is unknown and
acts as a key hyperparameter controlling learning dynamics. Smaller D(q) increases the penalty on
confident but incorrect predictions, encouraging broader exploration to avoid overconfidence. This
mechanism allows tuning between exploiting correct answers and exploring uncertain ones.

A direct estimator follows from importance sampling:

Dimp(q) =

{ ∑

o′∈O
p⋆(o′ | q)

}−1

= Eo∼πθold

[
r⋆(q,o)

πθold(o | q)

]−1

≈
{

1

G

G∑

i=1

ri
πθold(oi | q)

}−1

.

(14)
In this formulation, we approximate the expectation with a Monte Carlo average over a group of G
samples {(oi, ri)}Gi=1 drawn from πθold .

For numerical stability, we should conservatively overestimate D(q) so that the denominator
D(q)− π̄θold is positive and well-conditioned. Concretely, over the G candidates in the group we
set

D(q) = max
(
Dimp(q), 2 · max

1≤i≤G
π̄θold(oi | q)

)
,

which keeps the calibrated rewards in [−1, 1].

Dimp(q) is undefined for negative groups as all ri are zero. In that case we fall back to

D(q) = 2 · max
1≤i≤G

π̄θold(oi | q).

Handling Invariance. GRPO’s group-wise normalization enjoys a useful sign invariance: regard-
less of how many generations are correct, after normalization all incorrect generations have negative

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

advantages and all correct generations have positive advantages. We aim to preserve this property
under our calibration. Consider the extreme mixed group with one correct and G− 1 incorrect gen-
erations; the calibrated rewards might look like [1, 0,−1, . . . ,−1]. To maintain sign invariance, we
scale all negative calibrated rewards by 1/G.

Calibrated Reward (per sample). In combination, our calibrated reward is

r̃i : = ri − (1− ri)
1

G

π̄θold(oi | q)
D(q)− π̄θold(oi | q)

,

with

D(q) =

{
max

(
Dimp(q), 2 ·maxj π̄θold(oj | q)

)
, (mixed group),

2 ·maxj π̄θold(oj | q), (negative group).

Final Objective. In negative groups, the only signal comes from confidence differences rather than
a verifiable reward, so we treat it as a weaker, auxiliary signal. For those groups we use de-meaning
only in the normalization for simplicity, and we introduce the only hyperparameter, α, to down-
weight their contribution:

Jours = JGRPO[mixed groups] + α · JGRPO[negative groups].

6 EXPERIMENTAL RESULTS

We now empirically test the effectiveness of our algorithm.

Set-up. We evaluate our method on mathematical reasoning. We conduct training on the MATH
training split combined with Numina 1.5 (Li et al., 2024a). All evaluations are on the MATH
test set. We consider two models, Llama-3.1-8B-Instruct (Dubey et al., 2024) and
Qwen-2.5-3B-Base (Yang et al., 2024) 2, and compare our method against the baseline GRPO.
To further test for generality, we also examine training on the DAPO (Yu et al., 2025a) dataset and
report details and results in Appendix E.

Training protocol. To stress-test learning from negative groups, we use a possibly large G and
sample 16 completions per question. Each gradient update uses a global batch of 512 trajectories
(32 questions × 16 samples). We decode with temperature 1.0 and cap generations at 4,096 tokens.
We do not add any KL regularization following common practices. The negative ratio α is set to
0.25 for all models. No format rewards are added to the scalar reward.

Evaluation. At evaluation time, we use temperature 1.0 and top-p 1.0 to evaluate the model in the
plain setup as training, and report Pass@k for k ∈ {1, 2, 4, 8, 16}. We present evaluation curves
during training for both the full MATH dataset, and the MATH Levels 4-5 subset to understand the
performance on hard questions. To test for generalization, we also include GSM8k (Cobbe et al.,
2021), MinervaMath (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024) for evaluation.
We use Math-Verify (Kydlı́ček, 2025) as the verifier function for both training and evaluation.

Results. We report training curves for Llama and Qwen in Figure 5. The full training results
are in Appendix E. Across both models, LENS consistently attains higher accuracy than the GRPO
baseline throughout training. On the hard split of MATH, LENS shows substantial additional gains,
indicating that the method effectively converts negative groups, which often correspond to hard
instances where no candidate is initially correct, into useful learning signals. As a result, when
the GRPO curve saturates, LENS continues to improve. These results indicate that our method
learns effectively through exploration and explicitly leverages negative groups, yielding stronger
performance on difficult problems. Moreover, training remains stable for >1,000 steps without ad
hoc tricks or collapse. Training results using DAPO training set are included in Appendix E, where
we observe consistent improvements with identical hyperparameters.

We further report Pass@k in Table 1. Compared with the GRPO baseline, LENS achieves higher
Pass@k for k ∈ {1, 2, 4, 8, 16}, with the improvement at Pass@16 also significant. These results

2Following prior work, we apply RL to the Qwen base model (Liu et al., 2025b), which already follows
instructions and produces outputs in the required format, whereas for Llama we use the instruction-tuned
model (Arnal et al., 2025). This allows us to remove the format reward in RLVR.
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Figure 5: Comparison of our algorithm and GRPO baseline: performance on the full MATH
test set and the Levels 4–5 (hard) subset. Top: Llama-3.1-8B-Instruct; bottom:
Qwen-2.5-3B-Base. The accuracy is averaged over all 16 generations during the evaluation.
Our algorithm brings improvement for both models.

Table 1: Pass@k results on MATH with Llama-3.1-8B-Instruct and
Qwen-2.5-3B-Base.

Model Algorithm Pass@1 Pass@2 Pass@4 Pass@8 Pass@16

Llama-3.1-8B-Instruct GRPO baseline 56.88 65.42 72.08 78.34 82.80
LENS (Ours) 58.64 66.08 73.98 79.46 83.40

Qwen-2.5-3B-Base GRPO baseline 65.88 72.39 77.82 82.05 85.13
LENS (Ours) 68.46 74.74 79.75 83.54 86.28

indicate that our algorithm consistently improves Pass@k for all k, rather than only Pass@1, and
that its confidence-based design enables these exploration gains.

To verify the robustness of our findings, we conducted two independent training runs to compute the
mean and standard deviation, evaluating the Qwen model across all five benchmarks. The results,
reported in Table 2, demonstrate that: (1) our method achieves statistically significant improvements
over GRPO on MATH, MATH Levels 4–5, MinervaMath, and OlympiadBench; and (2) LENS
exhibits high stability with negligible deviation across seeds, when scaling RL to thousands of steps.
Appendix D.2 presents ablations that separately evaluate the effect of adjusted rewards in mixed and
negative groups, showing strong improvements from negative groups alone.

Table 2: Comparison of our method against the baseline using Qwen-2.5-3B-Base. Values
denote accuracy (%) Mean ± Std. Generated with 2 random seeds.

Evaluation Set GRPO Baseline LENS (Ours)

MATH 66.11± 0.38 68.35 ± 0.67
MATH Levels 4-5 49.09± 0.26 51.82 ± 0.35
GSM8K 85.61± 0.12 85.98 ± 0.16
MinervaMath 26.67± 0.45 27.44 ± 0.26
OlympiadBench 30.91± 0.24 32.78 ± 0.27
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7 DISCUSSION

In this paper, we start from an observation. In GRPO, any generation group in which all samples are
incorrect does not contribute to the optimization, even though these generations already consume
substantial compute. We ask a question: can we use this data in a principled way? We develop a
theoretical framework that begins with reward modeling using both positive and negative data, con-
nects it to policy optimization, and shows that the MLE objective corresponds to an adjusted value
function. The adjustment adds a confidence-weighted penalty for incorrect generations. This view
yields a calibrated reward that fits seamlessly into GRPO. Empirically, we demonstrate effectiveness
on both Llama and Qwen models, with improvements across all Pass@k scores.

Our empirical algorithm builds on the connection between reward modeling and policy optimization,
and the framework can also incorporate preference, as shown in Appendix C. We study the simple
case and leave further exploration of preference-aware variants for future work. To balance the
impact of negative groups and mixed groups, we introduce a single tunable hyperparameter. A
natural direction is to quantify the contributions of both sources in theory and design an objective
that is free of hyperparameters. Our framework also covers nonbinary reward signals theoretically,
and we defer a systematic experimental study of this setting to future work.
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A OTHER RELATED WORKS

Exploration in RL. Enhancing exploration during RL training is an important part for all RL al-
gorithms. In RLHF, Xie et al. (2024); Cen et al. (2024); Zhang et al. (2024) use the base model
likelihood as an exploration bonus, nudging the policy toward outputs that are plausible yet seldom
sampled. Closest in theoretical spirit to our view is Feng et al. (2025), which studies the MLE ob-
jective of reward modeling to derive a principled exploration method. In the reasoning setting, Gao
et al. (2025) employ Random Network Distillation (Burda et al., 2018) to encourage novel solution
traces. Other works (Cheng et al., 2025; Zheng et al., 2025) promote exploration through entropy
based objectives. Finally, Chen et al. (2025b) optimize a pass@k objective (Tang et al., 2025) to
increase batch diversity during training. However, these approaches do not propose to differentiate
rewards inside negative groups and focus mainly on mixed groups.

Asymmetric treatment of positive and negative outputs. A few recent work introduce asymmetric
treatment of positive and negative generations during REINFORCE-style training. (Roux et al.,
2025) introduces an asymmetric variant of importance sampling to speed up learning. Arnal et al.
(2025) demonstrate that asymmetric REINFORCE, and in particular reducing the signal from nega-
tive generations, can be beneficial when data is off-policy.

Using Confidence in RLVR. Confidence proxies have also been applied in RLVR, mainly proposed
as a surrogate for the rule-based verifier. Zhao et al. (2025) use the KL divergence between the per
token generation probability and a uniform distribution. Zhou et al. (2025); Yu et al. (2025b); Liu
et al. (2025a) take the log prob of generating the reference answer conditioned on the existing CoT
as the reward. Li et al. (2025) leverage confidence scores at test time for light tuning and report
gains. Prabhudesai et al. (2025) similarly optimize the entropy of response tokens as the reward.
In all of these studies, the rule-based reward is replaced with a confidence-based proxy and light
training is performed. Most works do not train beyond one hundred steps and focus only on Qwen
models, which raises concerns about generalization and the risk of reward hacking without a bag of
tricks. In contrast, we do not aim to replace rule based rewards; instead, we propose to make use
of negative groups in GRPO in a principled way. We demonstrate effectiveness on both Llama and
Qwen and show stable training for more than one thousand five hundred steps.

Xu & Ding (2025) leverage on-the-fly baseline such that the negative groups will have a non-zero
baseline and the advantage is not zero. Similarly, Nan et al. (2025) also employs advantage cal-
ibration to change the baseline. Le et al. (2025) leverages the entropy to create difference in the
negative groups. Our work have a more theory-grounded. Xiong et al. (2025) propose to solve the
negative group by adaptively allocate more generation samples for hard problems. Prakash & Bu-
vanesh (2025) emphasize the importance to add easy sample to help generate correct answers for
hard problems.

B PROOFS

B.1 PROOF OF THEOREM 1

We now provide the proof of Theorem 1 and a comment on the estimator consistency.

Proof of Theorem 1. Let πθ ≡ πθ(o | q) and D ≡ D(q) for notational brevity. The gradient of
each individual term in the loss L̂(θ) with respect to θ is found using the chain rule:

∇θ

[
r · logπθ + (1− r) · log

(
1− πθ

D

)]
=

(
r

πθ
− 1− r

D − πθ

)
∇θ πθ .

By applying the identity for the gradient of a logarithm, ∇θ πθ = πθ · ∇θ logπθ, we can express
the result as:

(
r − (1− r)

πθ

D − πθ

)
∇θ logπθ ,

which provides the final result.
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Consistency of the Estimator. A key property of this estimator is its consistency under ideal
conditions. If the model is correctly specified (i.e., πθ⋆ ∈ {πθ}θ∈Θ), then the true parameter vector
θ⋆ is a maximizer of the population log-likelihood. This can be verified by observing that the
gradient ∇θ L(θ) evaluates to zero at θ = θ⋆. By taking the conditional expectation of the gradient’s
inner term with respect to r, given q and o, we find:

Er|q,o

[
r − (1− r)

πθ⋆(o | q)
D(q)− πθ⋆(o | q)

]

Using E[r | q,o] = p⋆(o | q) and the definition p⋆ = π⋆/D, this becomes:

= p⋆ − (1− p⋆)
πθ⋆

D − πθ⋆

= p⋆ − (1− p⋆)
p⋆

1− p⋆
= p⋆ − p⋆ = 0 .

Since the conditional expectation of the term multiplying ∇θ logπθ is zero, the full expectation is
zero, confirming that θ⋆ is a stationary point.

B.2 PROOF OF THEOREM 2

We will show that ∇θ JMLE(πθ) is equivalent to ∇θ L(θ) when µ = πθ.

First, the target gradient from Theorem 1, with the sampling policy µ set to the model policy πθ, is:

∇θ L(θ)
∣∣
µ=πθ

= Eq∼ξ,o∼πθ(·|q)

[{
r − (1− r)

πθ

D − πθ

}
· ∇θ logπθ(o | q)

]
. (15)

Next, we rigorously compute the gradient of J(πθ) = J+(πθ) − J−(πθ). The gradient of the
positive term is standard:

∇θ J+(πθ) = Eq∼ξ,o∼πθ(·|q)
[
r · ∇θ logπθ

]
. (16)

For the negative term, J−(πθ) = Eo∼πθ

[
w(πθ/D) · (1− r)

]
, we use the product rule and derive

∇θ J−(πθ) = Eq,o∼πθ

[
(1− r)

(
w(πθ/D) + (πθ/D) · w′(πθ/D)

)
· ∇θ logπθ

]
. (17)

Now we compute w(z) + z · w′(z):

w(z) + z · w′(z) =

(− log(1− z)

z
− 1

)
+ z

( z
1−z +D log(1− z)

z2

)
=

1

1− z
− 1 =

z

1− z
.

This is exactly the term we needed. Substituting this result back into the gradient for J−(πθ):

∇θ J−(πθ) = Eq,,o∼πθ

[
(1− r)

(
πθ

D − πθ

)
· ∇θ logπθ

]
. (18)

Finally, combining the gradients for the positive and negative parts of J(πθ):

∇θ JMLE(πθ) = ∇θ J+(πθ)−∇θ J−(πθ) = Eq,,o∼πθ

[(
r − (1− r)

πθ

D − πθ

)
· ∇θ logπθ

]
.

(19)
This expression is identical to the MLE gradient in equation 15. The equivalence is proven.

C A PREFERENCE-AWARE FRAMEWORK

The framework introduced in Section 4.1 assumed that when multiple answers are correct, the op-
timal policy distributes probability mass uniformly across them. For example, if both A and B are
correct answers to a question q, we had π⋆(A | q) = π⋆(B | q) = 0.5. However, uniformity may
not always reflect the true reasoning process. In practice, we might prefer some answers over others.
For instance, A could be easier to infer, shorter in form, or more natural to express. In such cases, a
more realistic distribution might be π⋆(A | q) = 0.9 and π⋆(B | q) = 0.1.

From the perspective of chain-of-thought reasoning, preferences can capture properties such as the
length of the reasoning trajectory or the similarity of an answer to outputs from a reference language
model. To encode this flexibility, we introduce a nonnegative preference function:

ρ(q,o) ≥ 0,

which adjusts the weight assigned to each (q,o) pair.
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Modified Framework. With the preference function, we adjust the relation between policy πθ

and correctness probabilities. Specifically, we define

pθ(q,o) =
1

D(q) · ρ(q,o) πθ(o | q), (20)

where the difficulty factor D(q) is updated as

D(q) =

{ ∑

o∈O
p⋆(q,o) · ρ(q,o)

}−1

. (21)

Intuitively, D(q) still measures how hard the question is, but it now accounts for the internal weight-
ing across candidate answers.

The maximum likelihood estimation (MLE) problem under this new framework becomes

min
θ

L̂(θ) = − 1

n

n∑

i=1

{
ri · logπθ(oi | qi) + (1− ri) · log

(
1− πθ(oi | qi)

D(qi) · ρ(qi,oi)

)}
. (22)

The corresponding gradient of the log-likelihood is

∇θ L̂(θ) = − 1

n

n∑

i=1

{
ri − (1− ri)

πθ(oi | qi)
D(qi) · ρ(qi,oi)− πθ(oi | qi)

}
· ∇θ logπθ(oi | qi). (23)

Compared to the uniform case, the gradient now incorporates the additional signal encoded by ρ,
ensuring that both positive and negative samples are scaled according to the chosen preference struc-
ture.

Examples of Preference Functions. To illustrate the flexibility of this framework, we describe
some concrete choices of ρ:

Preference as the data collection distribution. Suppose we take ρ(q,o) = µ(o | q), where µ is the
distribution used to collect the dataset D. Then the difficulty factor D(q) can be approximated by:

D(q) ≈
{

1

|OD(q)|
∑

o∈OD(q)

r⋆(q,o)

}−1

,

where OD(q) denotes the set of observed answers to question q in D. In words, D(q) can be
estimated as the inverse of the empirical correctness rate.

Preference as the policy itself. If we further set µ = πθ, then the negative calibration term simplifies
to

πθ(oi | qi)
D(qi) · ρ(qi,oi)− πθ(oi | qi)

=
1

D(qi)− 1
.

In this case, the weight for negative samples is exactly the correction rate of the current policy πθ.
Equivalently, in the ordinary policy gradient formulation, each question should be reweighted by
its correction rate. Although this choice does not produce the “confidence-based” weighting we
ultimately seek, it highlights that commonly used uniform weights (e.g., Arnal et al. (2025); Zhu
et al. (2025)) emerge as a special case of our framework.

Preference as a function of response length. Now, consider a preference function that depends on
the length of the candidate answer:

ρ(q,o) := γ|o| for a fixed parameter γ ∈ (0, 1).

Define the shorthand

π̄θ(o | q) := πθ(o | q) 1
|o| .
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The negative-sample reward can then be expressed as

r̃θ(o | q) = − πθ(o | q)
D(q) · ρ(q,o)− πθ(o | q) = − π̄θ(o | q)|o|

D(q) · γ|o| − π̄θ(o | q)|o| .

For large |o|, we have D(q)
1

|o| ≈ 1. If γ is chosen on the same scale as π̄θ, this weight simplifies to

r̃θ(o | q) = −
{(D(q)

1
|o| · γ

π̄θ(o | q)
)|o|

− 1

}−1

≈ − 1

|o|

{
D(q)

1
|o| · γ

π̄θ(o | q) − 1

}−1

= − 1

|o| ·
π̄θ(o | q)

D(q)
1

|o| · γ − π̄θ(o | q)
≈ − 1

|o| ·
π̄θ(o | q)

γ − π̄θ(o | q) .

Therefore, in practice, it is convenient to set negative-sample reward

r̃θ(o | q) := − 1

|o| ·
π̄θ(o | q)

γ − π̄θ(o | q) = − 1

|o| ·
πθ(o | q) 1

|o|

γ − πθ(o | q) 1
|o|

with γ > 0 properly tuned.

D EXPERIMENT DETAILS

D.1 HYPERPARAMETERS

We use a learning rate 3e − 7 for Llama-3.1-8B-Instruct and a learning rate 1e − 6 for
Qwen-2.5-3B-Base. The base model requires a larger learning rate while the instruct model has
gone through the RLHF stages so a smaller learning rate is better. Prior works (Zhu et al., 2025;
Arnal et al., 2025) have used the same setup. The batch size is set to be 512, with 32 questions and
16 generations for each. We use a clipping ratio of 0.2 for all the models to mitigate the impact
of off-policy data. We set the maximum number of off-policy updates to 4; in VeRL (Sheng et al.,
2024), this is implemented by using a training batch size as 128 (4×32).

We set temperature and top-p to 1.0 during both training and evaluation for both models.

D.2 ABLATION

We also conduct an ablation to understand where the improvement comes from. In our algorithm,
we modify the reward for all incorrect generations in both mixed and negative groups as in Equation
10. Compared with GRPO, we adjust rewards for incorrect generations within mixed groups, and
negative groups now have nonzero advantages. To quantify the contribution of each component, we
use the Llama model and consider two settings: (i) modify only the incorrect generations in mixed
groups while keeping advantages for negative groups at zero, and (ii) modify only the incorrect
generations in negative groups while leaving mixed groups unchanged. This design isolates the
effect of each part. We refer to these variants as LENS with only mixed groups and LENS with only
negative groups. The training set is MATH and Numina 1.5. The pass@k results are reported in
Table 3.

Table 3: Ablation results of pass@k on MATH with Llama-3.1-8B-Instruct.

Algorithm Pass@1 Pass@2 Pass@4 Pass@8 Pass@16
GRPO baseline 56.88 65.42 72.08 78.34 82.80
LENS with only mixed groups 57.42 65.82 73.08 78.80 83.20
LENS with only negative groups 58.14 66.48 73.46 79.79 83.40
LENS (Ours) 58.64 66.08 73.98 79.46 83.40

The results show that both components help improve performance. Specifically, adjusting the reward
in mixed groups encourages exploration in batches that already contain a correct answer. This helps
the model reinforce correct samples while rejecting incorrect generations. As a result, LENS with
only mixed groups yields its largest gains at pass@1. LENS with only negative groups also improves
over GRPO and in several cases nearly matches the full LENS, suggesting that a substantial portion
of the improvement arises from the negative groups.
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E ADDITIONAL RESULTS

We report additional results from two training setups using distinct corpora: (i) MATH + Numina 1.5
and (ii) DAPO. These complementary results, omitted from the main paper for space, are summa-
rized as follows. Figure 6 shows training curves for Llama trained on DAPO and Qwen trained on
MATH and Numina 1.5. Table 4 reports the Pass@ k results for the DAPO-trained models. On this
training set, we significantly improve Pass@k for larger k, indicating greater diversity.
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Figure 6: Comparison of our algorithm and GRPO baseline on MATH, during training: performance
on the full test set and the Levels 4–5 (hard) subset. Llama-3.1-8B-Instruct trained on
DAPO. The accuracy is averaged over all 16 generations during the evaluation. Our algorithm
brings significant improvement for both models.

Table 4: Pass@k results on MATH with Llama-3.1-8B-Instruct. Training set: DAPO.

Model Algorithm Pass@1 Pass@2 Pass@4 Pass@8 Pass@16

Llama-3.1-8B-Instruct GRPO baseline 53.80 61.04 67.30 71.36 74.54
LENS (Ours) 54.90 63.03 69.47 74.36 77.95
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