
DON'T WASTE MISTAKES: LEVERAGING NEGATIVE RL-GROUPS VIA CONFIDENCE REWEIGHTING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Reinforcement learning with verifiable rewards (RLVR) has become a standard
012 recipe for improving large language models (LLMs) on reasoning tasks, with
013 Group Relative Policy Optimization (GRPO) widely used in practice. Yet GRPO
014 wastes substantial compute on negative groups: groups in which no sampled re-
015 sponse is correct yield zero advantage and thus no gradient. We ask whether nega-
016 tive groups can be leveraged without extra supervision. Starting from a maximum-
017 likelihood (MLE) objective in reward modeling, we show that the MLE gradient is
018 equivalent to a policy gradient for a modified value function. This value function
019 adds a confidence-weighted penalty on incorrect responses, imposing larger pen-
020 alties on more confident mistakes. We refer to this as **Likelihood Estimation with**
021 **Negative Samples (LENS)**. LENS modifies GRPO to assign non-zero, confidence-
022 dependent rewards to incorrect generations, making negative groups informative
023 and converting previously wasted samples into useful gradient updates. On the
024 MATH benchmark with Llama-3.1-8B and Qwen-2.5-3B, the proposed variant
025 consistently outperforms GRPO baseline, with significant gains on harder items.
026 These results demonstrate a principled and practical way to “rescue” negative
027 groups, improving efficiency and performance in RLVR.

1 INTRODUCTION

028 Large language models (LLMs) fine-tuned with reinforcement learning and verifiable rewards
029 (RLVR) (Shao et al., 2024; Guo et al., 2025) have shown strong gains on complex reasoning tasks,
030 with algorithms such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al.,
031 2025) emerging as practical defaults. A persistent inefficiency, however, is how these methods han-
032 dle negative groups—the generation group in which no sampled response is correct. In GRPO and
033 its variants, such groups contribute zero advantage and therefore no gradient signal. This is espe-
034 cially common at the start of training and on harder reasoning problems, where negative groups can
035 constitute a substantial fraction of compute, effectively wasting already-generated trajectories.

036 We therefore ask: can we learn from negative groups without additional supervision in a *principled*
037 way? Our starting point is deliberately simple: to learn from negative groups, the natural approach
038 is reward modeling that distinguishes correct from incorrect answers, optimized with maximum
039 likelihood (MLE). From this likelihood perspective, the MLE gradient is equivalent to a policy gra-
040 dient on a modified RLVR value function. The modified value adds a confidence-weighted penalty
041 for incorrect responses: the more confident the model is in a wrong answer, the larger the penalty.
042 Intuitively, it discourages overconfident failure modes, thereby encouraging exploration of lower-
043 probability yet plausible alternatives.

044 This equivalence lets us modify GRPO directly. It yields a drop-in change in which incorrect genera-
045 tions receive non-zero, confidence-dependent rewards (i.e., lower rewards when confidence is
046 higher). As a result, negative groups now provide informative advantage estimates, converting pre-
047 viously wasted samples into useful gradient updates and promoting exploration on hard negatives.
048 We term this algorithm *LENS: Likelihood Estimation with Negative Samples*.

049 We evaluate LENS on mathematical reasoning using the MATH benchmark with
050 Llama-3.1-8B-Instruct and Qwen-2.5-3B-Base. In both settings, our GRPO
051 variant consistently outperforms the GRPO baseline across all Pass@ k metrics. Stratifying by
052 difficulty, we find that gains are concentrated on the Levels 4-5 subsets (hard items), consistent

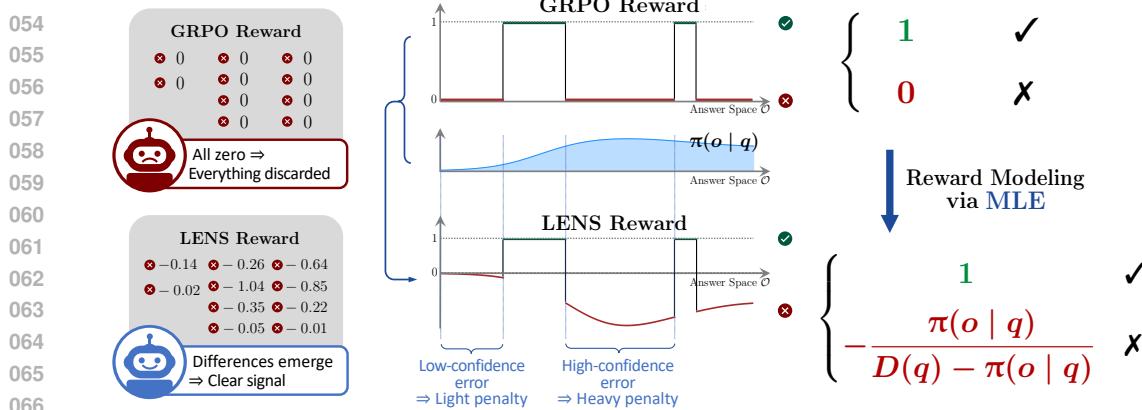


Figure 1: **Overview of our approach.** Standard approaches like GRPO assign a uniform reward of 0 to all incorrect answers. This provides no learning signal, causing these samples to be discarded. Our method, LENS, is derived from reward modeling via Maximum Likelihood Estimation (MLE) and assigns non-zero, confidence-dependent rewards to incorrect responses. This creates a clear learning signal where differences emerge from the samples, converting previously discarded information into useful gradient updates.

with repurposed negative groups driving increased exploration for hard questions. We train on two distinct math training datasets to demonstrate the generality of our method.

We summarize our contributions as follows:

- We introduce a likelihood framework, *Likelihood Estimation with Negative Samples (LENS)*, that *explicitly connects* reward modeling and policy optimization.
- LENS yields a principled value function whose additional term penalizes *overconfident incorrect* answers, formalizing how negative-group signals should be used and calibrated within the objective.
- We propose a GRPO variant that assigns *non-zero, confidence-dependent* rewards to incorrect generations, thereby leveraging negative groups rather than wasting them. It is plug-and-play with *negligible* computational overhead.
- Empirical results support our algorithm’s effectiveness and show increased exploration, as reflected in Pass@ k .

2 RELATED WORK

RLVR. Recent work has shown that reinforcement learning (RL) can effectively refine LLMs for reasoning. In RLVR, the LLM is treated as a policy that generates a chain-of-thought (CoT) reasoning process, and it receives a deterministic reward based on whether the final answer can be algorithmically verified. Recent works (Shao et al., 2024; Guo et al., 2025; Team et al., 2025) show that RLVR can elicit emergent reasoning behaviors and dramatically boost math and coding performance compared to the base model. Underlying most of these RLVR methods is the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024). GRPO is an efficient variant of Proximal Policy Optimization (PPO) (Schulman et al., 2017) that drops the value network and instead computes advantages from grouped outputs. In this way, with a group of all incorrect generations, the advantage is 0, and these groups do not contribute to the optimization. In this work, we try to make use of these negative groups.

Learning from negatives. Recent work has emphasized that negative samples are not merely noise but a useful training signal in LLM reasoning. One direction explores asymmetric treatment of positives and negatives in REINFORCE-style training: Roux et al. (2025) introduce an asymmetric variant of importance sampling to speed up learning. Arnal et al. (2025) demonstrate that asymmetric REINFORCE, and in particular reducing the signal from negative samples, can be beneficial when data is off-policy. Lyu et al. (2025) propose to reweight positive and negative samples at the

108 token level using a learned reward model combined with log-likelihood. Zhu et al. (2025) demonstrate that training only on negatives, assigning reward -1 to incorrect and 0 to correct answers, can 109 outperform baselines on $\text{Pass}@k$ for large k .
110

111 Another line of work argues that entirely wrong completions may still contain valuable sub-signals. 112 Chen et al. (2025a) assign fractional rewards within all-negative groups, Yang et al. (2025) mine 113 correct sub-steps from long chains of thought, and Li et al. (2024b) leverage negative rationales 114 through a dual-LoRA distillation framework. These methods demonstrate that even within incorrect 115 trajectories, certain steps are worth reinforcing, particularly in long reasoning traces where correct 116 and incorrect steps alternate. A key drawback of these approaches is that evaluating intermediate 117 reasoning steps is labor-intensive, and accurate automation remains underexplored.
118

119 Our contribution is to provide a framework that stratifies reward signals within negative samples 120 using only outcome rewards and probability, balancing computational efficiency with the benefits of 121 learning from structured negatives.
122

123 3 PRELIMINARIES AND MOTIVATION

125 We start with background on policy optimization and the motivation for our method.
126

127 3.1 LANGUAGE MODEL REASONING AS POLICY OPTIMIZATION

129 We begin with a basic setting: given a question $\mathbf{q} \in \mathcal{Q}$, a language model π is tasked with generating 130 an answer $\mathbf{o} \in \mathcal{O}$. To evaluate correctness, we assume the existence of a reward function 131 $r^* : \mathcal{Q} \times \mathcal{O} \rightarrow \{0, 1\}$, which assigns 1 if the answer \mathbf{o} is correct for the given question \mathbf{q} , and 0 132 otherwise.
133

134 The ultimate goal of training the language model is to improve its accuracy rate. Formally, this 135 corresponds to maximizing the expected reward:
136

$$\text{maximize}_{\pi} \quad J(\pi) := \mathbb{E}[r^*(\mathbf{q}, \mathbf{o})], \quad \text{where } \mathbf{q} \sim \xi, \mathbf{o} \sim \pi(\cdot | \mathbf{q}). \quad (1)$$

137 Here ξ denotes the distribution of questions. Equation (1) is the central criterion: it asks us to design 138 a policy π that maximizes the expected correctness of generated responses.
139

140 3.2 MOTIVATION: NEGATIVE GROUPS IN RLVR

142 In practice, *Group Relative Policy Optimization (GRPO)* has become a default algorithm for optimizing 143 LLM reasoning ability for the objective in Equation (1). Concretely, for each verifiable 144 question \mathbf{q} , we draw a group of G candidates $\{\mathbf{o}_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{q})$, obtain scalar rewards 145 $r_i := r^*(\mathbf{q}, \mathbf{o}_i) \in \{0, 1\}$, and form zero-mean, unit-variance group advantages
146

$$\hat{r}_i = \frac{r_i - \text{mean}(\{r_j\}_{j \in [G]})}{\text{std}(\{r_j\}_{j \in [G]})}. \quad (2)$$

150 With outcome-only rewards, the same advantage $\hat{A}_{i,t} = \hat{r}_i$ is assigned to all tokens t in response \mathbf{o}_i .
151 GRPO then maximizes a clipped PPO-style surrogate with an explicit per-token KL regularizer to a
152 fixed reference π_{ref} :
153

$$J_{\text{GRPO}}(\pi_{\theta}) = \mathbb{E}_{\mathbf{q}, \{\mathbf{o}_i\}} \frac{1}{G} \sum_{i=1}^G \frac{1}{|\mathbf{o}_i|} \sum_{t=1}^{|\mathbf{o}_i|} \left[\min(\rho_{i,t} \hat{A}_{i,t}, \text{clip}(\rho_{i,t}, 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t}) \right], \quad (3)$$

157 where $\rho_{i,t} := \frac{\pi_{\theta}(\mathbf{o}_{i,t} | \mathbf{q}, \mathbf{o}_{i,<t})}{\pi_{\theta_{\text{old}}}(\mathbf{o}_{i,t} | \mathbf{q}, \mathbf{o}_{i,<t})}$ is the correction for off-policy samples. We omit the KL divergence 158 term following the common practice as $\beta = 0$.
159

160 GRPO is a practical policy-gradient method for LLMs because it computes advantages from *group- 161 relative* statistics rather than a learned value function (critic). This makes it simple and robust for 162 long-form reasoning, where sequences are long and rewards arrive only after a complete solution.
163

162 However, GRPO wastes substantial compute on negative
 163 groups. If an entire group is incorrect, i.e., all rewards
 164 $\{r_i\}$ are zero, the advantages collapse to zero, yielding
 165 no contribution to the policy gradient. Figure 2 shows the
 166 fraction of all-negative groups during training with group
 167 size $G = 16$: despite 16 generations per prompt, nearly
 168 45% of groups are all-negative early in training, and about
 169 35% remain even by the end. These groups consume
 170 substantial generation compute yet contribute no learning
 171 signal.

4 A LIKELIHOOD-BASED FRAMEWORK FOR REASONING

172 We now seek to find a principled framework to use the negative groups. A direct route is reward
 173 modeling: train a model to discriminate correct from incorrect responses. We develop a likelihood-
 174 based formulation of reward modeling and show how it connects to policy optimization.

4.1 FROM POLICY LEARNING TO REWARD MODELING

175 While our goal is to optimize the policy, the task becomes clearer when re-expressed through reward
 176 modeling. To illustrate this connection, we turn to a simple multiple-choice example.

177 **Illustrative Example: Multiple-Choice Reasoning.** Suppose a single question q comes with six
 178 possible answers: A, B, C, D, E, F . Out of these, only A and B are correct. We can think of an
 179 unknown ground-truth probability function

$$180 \quad p^*(q, o) = \mathbb{P}[\text{Answer } o \text{ is correct for question } q].$$

181 For math problems, this function is deterministic: each answer is either correct ($p^* = 1$) or incorrect
 182 ($p^* = 0$) and $p^* = r^*$. More generally, however, p^* could take fractional values in $[0, 1]$ to reflect
 183 varying confidence or partial correctness.

184 In this example, the desirable optimal policy π^* for Equation (1) is one that selects only from the
 185 correct options. For instance:

$$186 \quad \pi^*(A \mid q) = \pi^*(B \mid q) = \frac{1}{2}, \quad \pi^*(C \mid q) = \cdots = \pi^*(F \mid q) = 0.$$

187 This π^* randomly chooses between the correct answers A and B .¹ This relationship can be ex-
 188 pressed more generally as

$$189 \quad p^*(q, o) = \frac{1}{D(q)} \pi^*(o \mid q), \quad (4)$$

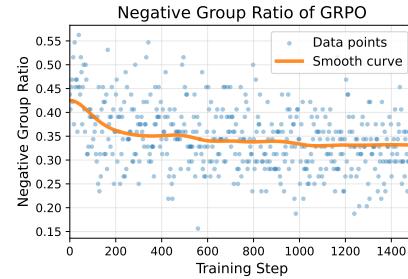
190 where $D(q)$ is a normalizing factor defined by

$$191 \quad D(q) = \left\{ \sum_{o \in \mathcal{O}} p^*(q, o) \right\}^{-1}. \quad (5)$$

192 Intuitively, $D(q) \in (0, 1]$ captures the *difficulty* of the question. If only one answer is correct,
 193 $D(q) = 1$, indicating a hard question. If multiple answers are correct, $D(q)$ becomes smaller,
 194 signaling an easier question.

195 In practice, we do not have direct access to the full probability function p^* . Instead, we observe data
 196 samples of the form (q, o, r) , where $r \sim \text{Bernoulli}(p^*(q, o))$. Reward modeling then fits a model
 197 p_θ to these observations to approximate p^* . Through the relation in Equation (4), we can recover
 198 one optimal policy π^* . Therefore, policy learning reduces to the statistical task of estimating reward
 199 probabilities.

200 ¹Here we select an optimal policy that chooses uniformly at random among all correct answers. In more
 201 general settings we may have preferences over which correct answers to favor; for example, one might prefer
 202 shorter correct answers to longer ones. We extend the framework to incorporate a preference function, as
 203 discussed in Appendix C.



204 Figure 2: Negative group ratio during GRPO training of
 205 Llama-3.1-8B-Instruct with
 206 MATH and Numina 1.5. $G = 16$.

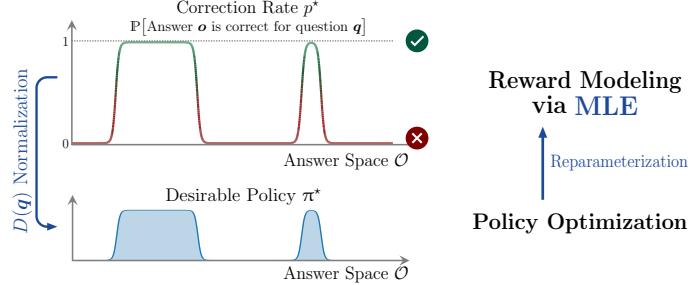


Figure 3: An optimal policy π^* is derived from reward probabilities p^* through normalization (see Equation (4)). This approach reframes the task of finding the best policy as a more straightforward statistical problem: learning a reward model from data.

Maximum Likelihood Estimation (MLE) as the Learning Principle. Formally, suppose we are given an i.i.d. dataset $\mathcal{D} = \{(\mathbf{q}_i, \mathbf{o}_i, r_i)\}_{i=1}^n$. If we have an estimate of the difficulty $D(\mathbf{q}_i)$ (as defined in Equation (5)), we can reparameterize the probability model as

$$p_\theta(\mathbf{q}, \mathbf{o}) = \frac{1}{D(\mathbf{q})} \pi_\theta(\mathbf{o} \mid \mathbf{q}), \quad (6)$$

where π_θ belongs to a parametric policy class. The straightforward way to solve p_θ is through the maximum likelihood (equivalently, cross-entropy minimization) objective:

$$\text{minimize}_\theta \hat{\mathcal{L}}_0(\theta) = -\frac{1}{n} \sum_{i=1}^n \left\{ r_i \cdot \log p_\theta(\mathbf{q}_i, \mathbf{o}_i) + (1 - r_i) \cdot \log (1 - p_\theta(\mathbf{q}_i, \mathbf{o}_i)) \right\}. \quad (7)$$

Plugging in the reparameterization yields the equivalent form:

$$\text{minimize}_\theta \hat{\mathcal{L}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \left\{ r_i \cdot \log \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i) + (1 - r_i) \cdot \log \left(1 - \frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)}{D(\mathbf{q}_i)}\right) \right\}. \quad (8)$$

This formulation makes explicit the bridge between *policy learning* and *reward modeling*: by estimating p^* , we implicitly learn a good policy π_θ that maximizes accuracy.

4.2 CALIBRATING POLICY GRADIENT VIA MLE.

We now turn to the algorithmic perspective: how can the maximum likelihood objective (8) guide policy gradient methods? Our first step is to analyze the gradient of the MLE loss. This is summarized in Theorem 1.

Theorem 1. *The gradient of the log-likelihood $\hat{\mathcal{L}}(\theta)$ with respect to the parameters θ is given by*

$$\nabla_\theta \hat{\mathcal{L}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \left\{ r_i - (1 - r_i) \frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)}{D(\mathbf{q}) - \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)} \right\} \cdot \nabla_\theta \log \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i). \quad (9)$$

Comparison with Policy Gradient. For reference, the standard policy gradient expression for maximizing the accuracy objective in Equation (1) is

$$\nabla_\theta J(\pi_\theta) = \mathbb{E}[r \cdot \nabla_\theta \log \pi_\theta(\mathbf{o} \mid \mathbf{q})].$$

Classical algorithms such as REINFORCE, PPO, and GRPO are all built upon this form. In practice, the raw reward r is often replaced by an advantage estimate A to reduce variance. However, in GRPO, when all answers in a batch are incorrect (i.e., $r = 0$), the gradient contribution vanishes entirely (after centralization). This explains why negative groups are typically discarded in existing methods.

MLE Perspective. Theorem 1 sheds new light on this issue. The first term of the gradient,

$$r_i \cdot \nabla_\theta \log \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i),$$

matches the standard policy gradient signal: positive samples ($r_i = 1$) encourage the model to increase probability mass on correct answers.

270 But critically, the MLE gradient also contains an additional *negative sample contribution*:

$$272 \quad - (1 - r_i) \frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)}{D(\mathbf{q}_i) - \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)} \cdot \nabla_\theta \log \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i).$$

274 Although typically smaller in scale, this term is non-negligible when only negative answers are
275 observed, or when negative samples dominate the data. In other words, discarding negative groups
276 overlooks a legitimate part of the gradient revealed by the MLE formulation.

277 *Calibrated Policy Gradient.* Motivated by this observation, we propose a unified modification
278 to REINFORCE-type algorithms for LLM reasoning. Specifically, we replace the raw reward
279 $r = r^*(\mathbf{q}, \mathbf{o})$ with a *calibrated reward* that incorporates both positive and negative contributions:

$$280 \quad \boxed{\widetilde{r} = r - (1 - r) \frac{\pi_\theta(\mathbf{o} \mid \mathbf{q})}{D(\mathbf{q}) - \pi_\theta(\mathbf{o} \mid \mathbf{q})}.} \quad (10)$$

283 When the generation is correct ($r = 1$), the calibrated reward is unchanged: $\widetilde{r} = r = 1$. The ad-
284 justment applies only to incorrect samples. In negative groups, $r = 0$ for every candidate, but the
285 policy confidences $\pi_{\theta_{\text{old}}}(\mathbf{o} \mid \mathbf{q})$ differ; consequently, the adjusted rewards \widetilde{r} also differ across candi-
286 dates, reflecting their relative confidence. This ensures that negative groups contribute informative
287 gradients rather than being discarded, thereby yielding a more statistically principled update rule.

288 We provide the proof and show that the estimator is consistent in Appendix B.1: if the model is
289 correctly specified (i.e., $\pi^* = \pi_{\theta^*} \in \{\pi_\theta\}_{\theta \in \Theta}$), then the true parameter vector θ^* is a maximizer of
290 the population log-likelihood.

292 4.3 CONFIDENCE WEIGHTED VALUE FUNCTION

294 After introducing the calibrated policy gradient, we can interpret it as solving a modified policy
295 optimization problem with a redefined value function $J_{\text{MLE}}(\pi_\theta)$. The next theorem formalizes this
296 perspective: in the on-policy setting, the MLE gradient coincides with the gradient of this specially
297 constructed value function. The proof is deferred to Appendix B.2.

298 **Theorem 2.** *If we collect dataset \mathcal{D} according to $\mathbf{q}_i \sim \xi$ and $\mathbf{o}_i \sim \pi_\theta(\cdot \mid \mathbf{q}_i)$, then the gradient
299 of the (population) log-likelihood function $\mathcal{L}(\theta)$ is identical to the gradient of the following value
300 function $J_{\text{MLE}}(\pi_\theta)$:*

$$300 \quad \text{maximize}_\theta \quad J_{\text{MLE}}(\pi_\theta) = J_+(\pi_\theta) - J_-(\pi_\theta), \quad (11)$$

301 where

$$303 \quad J_+(\pi_\theta) := \mathbb{E}_{\mathbf{q} \sim \xi, \mathbf{o} \sim \pi_\theta(\cdot \mid \mathbf{q})} [r^*(\mathbf{q}, \mathbf{o})], \quad (12a)$$

$$304 \quad J_-(\pi_\theta) := \mathbb{E}_{\mathbf{q} \sim \xi, \mathbf{o} \sim \pi_\theta(\cdot \mid \mathbf{q})} [w(\pi_\theta(\mathbf{o} \mid \mathbf{q}) / D(\mathbf{q})) \{1 - r^*(\mathbf{q}, \mathbf{o})\}]. \quad (12b)$$

306 Here the weight function $w(\cdot)$ is defined as

$$307 \quad w(z) := \frac{1}{z} \log \frac{1}{1-z} - 1 \quad \text{for any } 0 \leq z < 1. \quad (13)$$

309 This formulation provides insight into the behavior of the MLE
310 optimizer. The objective $J_{\text{MLE}}(\pi_\theta)$ balances two components:

312 $J_+(\pi_\theta)$: This is the standard policy gradient objective (REIN-
313 FORCE), which maximizes the expected reward. It en-
314 courages the policy π_θ to take actions (i.e., propose an-
315 swers \mathbf{o}) that are likely to be correct.

316 $J_-(\pi_\theta)$: This term acts as a penalty for incorrect answers. The
317 cost of being incorrect, $1 - r^*$, is re-weighted by $w(\pi_\theta(\mathbf{o} \mid \mathbf{q}) / D(\mathbf{q}))$, which represents the policy's own "odds" of
318 its prediction being correct. The penalty is most se-
319 vere when the policy is highly confident but wrong (as
320 $\pi_\theta \rightarrow D_-$, $w \rightarrow \infty$). Conversely, the penalty is negligi-
321 ble when the policy is uncertain and wrong (as $\pi_\theta \rightarrow 0_+$,
322 $w \rightarrow 0$). It encourages diversity in the negative responses
323 / exploration in the negative space.

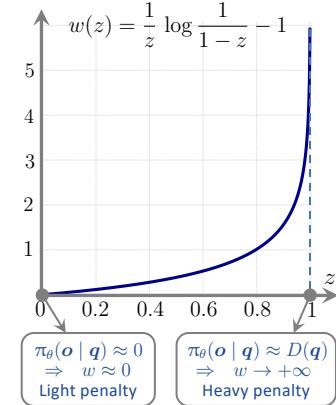


Figure 4: Illustration of the weight function $w(z)$.

324 The objective $J_{\text{MLE}}(\pi_\theta)$ creates a powerful dynamic. It not only drives the policy to maximize
 325 rewards but, more critically, it uses the penalty term $J_-(\pi_\theta)$ to enforce “principled exploration”.
 326 By penalizing misplaced confidence, the agent is forced to explore diverse responses rather than
 327 exploiting a potentially flawed understanding. This balance between exploitation and exploration is
 328 essential for learning a well-calibrated policy.

330 5 PROPOSED MODIFICATION TO GRPO

332 The likelihood framework naturally led to a theoretically-grounded modification to GRPO’s advan-
 333 tage function, directly incorporating the insights from the $J_{\text{MLE}}(\pi_\theta) = J_+(\pi_\theta) - J_-(\pi_\theta)$ objective
 334 to enhance exploration and policy calibration. The core of our proposal is to replace the original
 335 reward with our adjusted reward \tilde{r} from Equation (10). The adjusted reward directly implements
 336 the gradient of our theoretical objective. The calibrated reward is then normalized and the obtained
 337 advantage is used in Equation (3). We do not modify the GRPO loss function.

339 5.1 IMPLEMENTATION AND PRACTICAL CONSIDERATIONS

340 We calibrate rewards using the ratio $\frac{\pi_{\theta_{\text{old}}}}{D(\mathbf{q}) - \pi_{\theta_{\text{old}}}}$ which requires careful handling, particularly in how
 341 the probability $\pi_{\theta_{\text{old}}}$ and the difficulty factor $D(\mathbf{q})$ are estimated and used.

342 **Term.** For LLMs with long generations, raw sequence probabilities are dominated by length:
 343 per-token probabilities tend to be of similar magnitude, so the sequence probability decays roughly
 344 as $\gamma^{|\mathbf{o}|}$ for some $\gamma \in (0, 1)$. Consequently, plugging $\pi_{\theta_{\text{old}}}$ in directly makes the adjustment sparse:
 345 length-driven decay pushes most candidates’ terms to 0, while a single dominant candidate gets a
 346 much larger value. To mitigate this, we use the length-normalized (geometric-mean) probability

$$347 \bar{\pi}_{\theta_{\text{old}}}(\mathbf{o} \mid \mathbf{q}) := \pi_{\theta_{\text{old}}}(\mathbf{o} \mid \mathbf{q})^{1/|\mathbf{o}|}.$$

348 In Appendix C we show that our likelihood framework naturally generalizes to incorpo-
 349 rate preferences over correct generations (e.g., in the example in Section 4.1, we can make
 350 $\pi^*(A \mid \mathbf{q}) = \rho(\mathbf{q}, A)$ and $\pi^*(B \mid \mathbf{q}) = \rho(\mathbf{q}, B)$, rather than 0.5 and 0.5); empirically, the above sub-
 351 stitution is equivalent to a calibrated reward that encodes a length preference for correct generations.

352 **Estimating $D(\mathbf{q})$.** The true difficulty function $D(\mathbf{q})$ (as defined in Equation (5)) is unknown and
 353 acts as a key hyperparameter controlling learning dynamics. Smaller $D(\mathbf{q})$ increases the penalty on
 354 confident but incorrect predictions, encouraging broader exploration to avoid overconfidence. This
 355 mechanism allows tuning between exploiting correct answers and exploring uncertain ones.

356 A direct estimator follows from importance sampling:

$$357 D_{\text{imp}}(\mathbf{q}) = \left\{ \sum_{\mathbf{o}' \in \mathcal{O}} p^*(\mathbf{o}' \mid \mathbf{q}) \right\}^{-1} = \mathbb{E}_{\mathbf{o} \sim \pi_{\theta_{\text{old}}}} \left[\frac{r^*(\mathbf{q}, \mathbf{o})}{\pi_{\theta_{\text{old}}}(\mathbf{o} \mid \mathbf{q})} \right]^{-1} \approx \left\{ \frac{1}{G} \sum_{i=1}^G \frac{r_i}{\bar{\pi}_{\theta_{\text{old}}}(\mathbf{o}_i \mid \mathbf{q})} \right\}^{-1}. \quad (14)$$

358 In this formulation, we approximate the expectation with a Monte Carlo average over a group of G
 359 samples $\{(\mathbf{o}_i, r_i)\}_{i=1}^G$ drawn from $\pi_{\theta_{\text{old}}}$.

360 For numerical stability, we should conservatively *overestimate* $D(\mathbf{q})$ so that the denominator
 361 $D(\mathbf{q}) - \bar{\pi}_{\theta_{\text{old}}}$ is positive and well-conditioned. Concretely, over the G candidates in the group we
 362 set

$$363 D(\mathbf{q}) = \max(D_{\text{imp}}(\mathbf{q}), 2 \cdot \max_{1 \leq i \leq G} \bar{\pi}_{\theta_{\text{old}}}(\mathbf{o}_i \mid \mathbf{q})),$$

364 which keeps the calibrated rewards in $[-1, 1]$.

365 $D_{\text{imp}}(\mathbf{q})$ is undefined for *negative groups* as all r_i are zero. In that case we fall back to

$$366 D(\mathbf{q}) = 2 \cdot \max_{1 \leq i \leq G} \bar{\pi}_{\theta_{\text{old}}}(\mathbf{o}_i \mid \mathbf{q}).$$

367 **Handling Invariance.** GRPO’s group-wise normalization enjoys a useful *sign invariance*: regard-
 368 less of how many generations are correct, after normalization all incorrect generations have negative

advantages and all correct generations have positive advantages. We aim to preserve this property under our calibration. Consider the extreme mixed group with one correct and $G - 1$ incorrect generations; the calibrated rewards might look like $[1, 0, -1, \dots, -1]$. To maintain sign invariance, we scale all negative calibrated rewards by $1/G$.

Calibrated Reward (per sample). In combination, our calibrated reward is

$$\tilde{r}_i := r_i - (1 - r_i) \frac{1}{G} \frac{\bar{\pi}_{\theta_{\text{old}}}(\mathbf{o}_i \mid \mathbf{q})}{D(\mathbf{q}) - \bar{\pi}_{\theta_{\text{old}}}(\mathbf{o}_i \mid \mathbf{q})},$$

with

$$D(\mathbf{q}) = \begin{cases} \max(D_{\text{imp}}(\mathbf{q}), 2 \cdot \max_j \bar{\pi}_{\theta_{\text{old}}}(\mathbf{o}_j \mid \mathbf{q})) & (\text{mixed group}), \\ 2 \cdot \max_j \bar{\pi}_{\theta_{\text{old}}}(\mathbf{o}_j \mid \mathbf{q}) & (\text{negative group}). \end{cases}$$

Final Objective. In negative groups, the only signal comes from confidence differences rather than a verifiable reward, so we treat it as a weaker, auxiliary signal. For those groups we use de-meaning only in the normalization for simplicity, and we introduce the only hyperparameter, α , to down-weight their contribution:

$$J_{\text{ours}} = J_{\text{GRPO}}[\text{mixed groups}] + \alpha \cdot J_{\text{GRPO}}[\text{negative groups}].$$

6 EXPERIMENTAL RESULTS

We now empirically test the effectiveness of our algorithm.

Set-up. We evaluate our method on mathematical reasoning. We conduct training on the MATH training split combined with Numina 1.5 (Li et al., 2024a). All evaluations are on the MATH test set. We consider two models, Llama-3.1-8B-Instruct (Dubey et al., 2024) and Qwen-2.5-3B-Base (Yang et al., 2024)², and compare our method against the baseline GRPO. To further test for generality, we also examine training on the DAPO (Yu et al., 2025a) dataset and report details and results in Appendix E.

Training protocol. To stress-test learning from negative groups, we use a possibly large G and sample 16 completions per question. Each gradient update uses a global batch of 512 trajectories (32 questions \times 16 samples). We decode with temperature 1.0 and cap generations at 4,096 tokens. We do not add any KL regularization following common practices. The negative ratio α is set to 0.25 for all models. No format rewards are added to the scalar reward.

Evaluation. At evaluation time, we use temperature 1.0 and top- p 1.0 to evaluate the model in the plain setup as training, and report Pass@ k for $k \in \{1, 2, 4, 8, 16\}$. We present evaluation curves during training for both the full MATH dataset, and the MATH Levels 4-5 subset to understand the performance on hard questions. To test for generalization, we also include GSM8k (Cobbe et al., 2021), MinervaMath (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024) for evaluation. We use Math-Verify (Kydliček, 2025) as the verifier function for both training and evaluation.

Results. We report training curves for Llama and Qwen in Figure 5. The full training results are in Appendix E. Across both models, LENS consistently attains higher accuracy than the GRPO baseline throughout training. On the hard split of MATH, LENS shows substantial additional gains, indicating that the method effectively converts *negative groups*, which often correspond to hard instances where no candidate is initially correct, into useful learning signals. As a result, when the GRPO curve saturates, LENS continues to improve. These results indicate that our method learns effectively through exploration and explicitly leverages negative groups, yielding stronger performance on difficult problems. Moreover, training remains stable for $>1,000$ steps without ad hoc tricks or collapse. Training results using DAPO training set are included in Appendix E, where we observe consistent improvements with identical hyperparameters.

We further report Pass@ k in Table 1. Compared with the GRPO baseline, LENS achieves higher Pass@ k for $k \in \{1, 2, 4, 8, 16\}$, with the improvement at Pass@16 also significant. These results

²Following prior work, we apply RL to the Qwen base model (Liu et al., 2025b), which already follows instructions and produces outputs in the required format, whereas for Llama we use the *instruction-tuned* model (Arnal et al., 2025). This allows us to remove the format reward in RLVR.

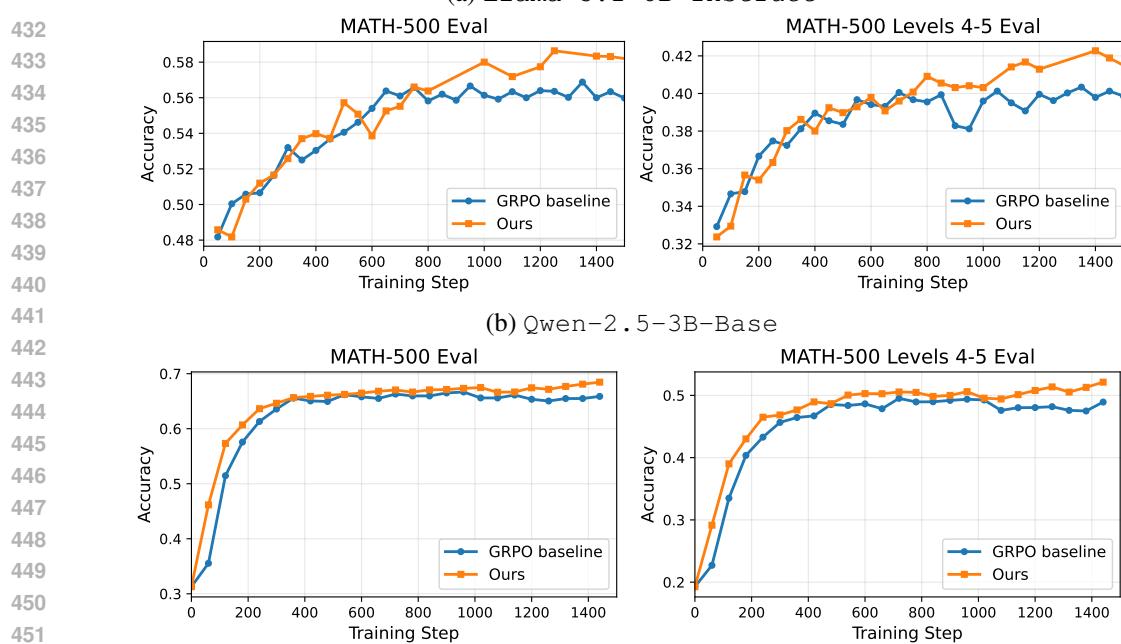


Figure 5: Comparison of our algorithm and GRPO baseline: performance on the full MATH test set and the Levels 4–5 (hard) subset. Top: Llama-3.1-8B-Instruct; bottom: Qwen-2.5-3B-Base. The accuracy is averaged over all 16 generations during the evaluation. Our algorithm brings improvement for both models.

Table 1: Pass@ k results on MATH with Llama-3.1-8B-Instruct and Qwen-2.5-3B-Base.

Model	Algorithm	Pass@1	Pass@2	Pass@4	Pass@8	Pass@16
Llama-3.1-8B-Instruct	GRPO baseline	56.88	65.42	72.08	78.34	82.80
	LENS (Ours)	58.64	66.08	73.98	79.46	83.40
Qwen-2.5-3B-Base	GRPO baseline	65.88	72.39	77.82	82.05	85.13
	LENS (Ours)	68.46	74.74	79.75	83.54	86.28

indicate that our algorithm consistently improves Pass@ k for all k , rather than only Pass@1, and that its confidence-based design enables these exploration gains.

To verify the robustness of our findings, we conducted two independent training runs to compute the mean and standard deviation, evaluating the Qwen model across all five benchmarks. The results, reported in Table 2, demonstrate that: (1) our method achieves statistically significant improvements over GRPO on MATH, MATH Levels 4–5, MinervaMath, and OlympiadBench; and (2) LENS exhibits high stability with negligible deviation across seeds, when scaling RL to thousands of steps. Appendix D.2 presents ablations that separately evaluate the effect of adjusted rewards in mixed and negative groups, showing strong improvements from negative groups alone.

Table 2: Comparison of our method against the baseline using Qwen-2.5-3B-Base. Values denote accuracy (%) Mean \pm Std. Generated with 2 random seeds.

Evaluation Set	GRPO Baseline	LENS (Ours)
MATH	66.11 ± 0.38	68.35 ± 0.67
MATH Levels 4–5	49.09 ± 0.26	51.82 ± 0.35
GSM8K	85.61 ± 0.12	85.98 ± 0.16
MinervaMath	26.67 ± 0.45	27.44 ± 0.26
OlympiadBench	30.91 ± 0.24	32.78 ± 0.27

486
487

7 DISCUSSION

488 In this paper, we start from an observation. In GRPO, any generation group in which all samples are
489 incorrect does not contribute to the optimization, even though these generations already consume
490 substantial compute. We ask a question: can we use this data in a principled way? We develop a
491 theoretical framework that begins with reward modeling using both positive and negative data, con-
492 nects it to policy optimization, and shows that the MLE objective corresponds to an adjusted value
493 function. The adjustment adds a confidence-weighted penalty for incorrect generations. This view
494 yields a calibrated reward that fits seamlessly into GRPO. Empirically, we demonstrate effectiveness
495 on both Llama and Qwen models, with improvements across all Pass@ k scores.

496 Our empirical algorithm builds on the connection between reward modeling and policy optimization,
497 and the framework can also incorporate preference, as shown in Appendix C. We study the simple
498 case and leave further exploration of preference-aware variants for future work. To balance the
499 impact of negative groups and mixed groups, we introduce a single tunable hyperparameter. A
500 natural direction is to quantify the contributions of both sources in theory and design an objective
501 that is free of hyperparameters. Our framework also covers nonbinary reward signals theoretically,
502 and we defer a systematic experimental study of this setting to future work.

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ACKNOWLEDGMENT

The authors would like to sincerely thank Dulhan Jayalath, Lovish Madaan, and Yuda Song for their technical guidance. An initial part of this work was completed while YF was an intern at Meta, and YF would like to thank Cheng Zhang for hosting. YF and JK acknowledge support from the Simons Foundation through the Collaborative Grant “The Physics of Learning and Neural Computation.” YD acknowledges support from NSF Grant DMS-2413812.

REFERENCES

- Charles Arnal, Ga  tan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, and Remi Munos. Asymmetric reinforce for off-policy reinforcement learning: Balancing positive and negative rewards, 2025. URL <https://arxiv.org/abs/2506.20520>. 2, 8, 14, 16, 17

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. *arXiv preprint arXiv:1810.12894*, 2018. 14

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified approach to online and offline rlhf. *arXiv preprint arXiv:2405.19320*, 2024. 14

Peter Chen, Xiaopeng Li, Ziniu Li, Xi Chen, and Tianyi Lin. Spectral policy optimization: Coloring your incorrect reasoning in grp. *arXiv preprint arXiv:2505.11595*, 2025a. 3

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi. Pass@k training for adaptively balancing exploration and exploitation of large reasoning models. *arXiv preprint arXiv:2508.10751*, 2025b. 14

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu Wei. Reasoning with exploration: An entropy perspective. *arXiv preprint arXiv:2506.14758*, 2025. 14

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021. 8

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024. 8

Yunzhen Feng, Ariel Kwiatkowski, Kunhao Zheng, Julia Kempe, and Yaqi Duan. PILAF: Optimal human preference sampling for reward modeling. In *Forty-second International Conference on Machine Learning*, 2025. 14

Jingtong Gao, Ling Pan, Yeqing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xiangyu Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided exploration. *arXiv preprint arXiv:2505.17621*, 2025. 14

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. 1, 2

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3828–3850, 2024. 8

Hynek Kydl  ek. Math-Verify: Math Verification Library, 2025. URL <https://github.com/huggingface/math-verify>. 8

- 594 Thanh-Long V Le, Myeongho Jeon, Kim Vu, Viet Lai, and Eunho Yang. No prompt left behind:
595 Exploiting zero-variance prompts in llm reinforcement learning via entropy-guided advantage
596 shaping. *arXiv preprint arXiv:2509.21880*, 2025. 14
597
- 598 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
599 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
600 reasoning problems with language models. *Advances in neural information processing systems*,
35:3843–3857, 2022. 8
601
- 602 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
603 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
604 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
605 13(9):9, 2024a. 8
606
- 607 Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
608 is all you need: Few-shot rl fine-tuning of language models. *arXiv preprint arXiv:2506.06395*,
609 2025. 14
610
- 611 Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Bin Sun, Xinglin Wang, Heda Wang, and
612 Kan Li. Turning dust into gold: Distilling complex reasoning capabilities from llms by leveraging
613 negative data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
18591–18599, 2024b. 3
614
- 615 Wei Liu, Siya Qi, Xinyu Wang, Chen Qian, Yali Du, and Yulan He. Nover: Incentive training
616 for language models via verifier-free reinforcement learning. *arXiv preprint arXiv:2505.16022*,
617 2025a. 14
618
- 619 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
620 and Min Lin. Understanding rl-zero-like training: A critical perspective. *arXiv preprint
arXiv:2503.20783*, 2025b. 8
621
- 622 Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
623 Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. *arXiv preprint arXiv:2502.06781*, 2025. 2
624
- 625 Gongrui Nan, Siye Chen, Jing Huang, Mengyu Lu, Dexun Wang, Chunmei Xie, Weiqi Xiong,
Xianzhou Zeng, Qixuan Zhou, Yadong Li, et al. Ngrpo: Negative-enhanced group relative policy
626 optimization. *arXiv preprint arXiv:2509.18851*, 2025. 14
627
- 628 Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
629 Maximizing confidence alone improves reasoning. *arXiv preprint arXiv:2505.22660*, 2025. 14
630
- 631 Jatin Prakash and Anirudh Buvanesh. What can you do when you have zero rewards during rl?
arXiv preprint arXiv:2510.03971, 2025. 14
632
- 633 Nicolas Le Roux, Marc G. Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves, Alex
Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Tapered off-
634 policy reinforce: Stable and efficient reinforcement learning for llms, 2025. URL <https://arxiv.org/abs/2503.14286>. 2, 14
635
- 636 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017. 2
637
- 638 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
639 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024. 1, 2
640
- 641 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
arXiv: 2409.19256*, 2024. 17
642
- 643 Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
644 inference time objectives using reinforcement learning. *arXiv preprint arXiv:2503.19595*, 2025.
645 14

-
- 648 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
649 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
650 llms. *arXiv preprint arXiv:2501.12599*, 2025. 2
- 651 Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
652 Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q^* -approximation
653 for sample-efficient rlhf. *arXiv preprint arXiv:2405.21046*, 2024. 14
- 654 Wei Xiong, Chenlu Ye, Baohao Liao, Hanze Dong, Xinxing Xu, Christof Monz, Jiang Bian, Nan
655 Jiang, and Tong Zhang. Reinforce-ada: An adaptive sampling framework for reinforce-style llm
656 training. *arXiv preprint arXiv:2510.04996*, 2025. 14
- 657 Zhongwen Xu and Zihan Ding. Single-stream policy optimization. *arXiv preprint*
658 *arXiv:2509.13232*, 2025. 14
- 659 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
660 Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
661 Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
662 Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
663 Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang,
664 Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun
665 Wang. Qwen2.5 technical report. *ArXiv*, abs/2412.15115, 2024. 8
- 666 Zhaohui Yang, Yuxiao Ye, Shilei Jiang, Chen Hu, Linjing Li, Shihong Deng, and Dixin Jiang.
667 Unearthing gems from stones: Policy optimization with negative sample augmentation for llm
668 reasoning. *arXiv preprint arXiv:2505.14403*, 2025. 3
- 669 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
670 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
671 at scale. *arXiv preprint arXiv:2503.14476*, 2025a. 8
- 672 Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan
673 Yao, Zhiyuan Liu, et al. Rlpr: Extrapolating rlvr to general domains without verifiers. *arXiv*
674 *preprint arXiv:2506.18254*, 2025b. 14
- 675 Shenao Zhang, Donghan Yu, Hiteshi Sharma, Han Zhong, Zhihan Liu, Ziyi Yang, Shuohang Wang,
676 Hany Hassan, and Zhaoran Wang. Self-exploring language models: Active preference elicitation
677 for online alignment. *arXiv preprint arXiv:2405.19332*, 2024. 14
- 678 Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
679 without external rewards. *arXiv preprint arXiv:2505.19590*, 2025. 14
- 680 Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li, Zhou-
681 futu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore. *arXiv*
682 *preprint arXiv:2507.07017*, 2025. 14
- 683 Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
684 Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. *arXiv preprint*
685 *arXiv:2505.21493*, 2025. 14
- 686 Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
687 effectiveness of negative reinforcement in llm reasoning. *arXiv preprint arXiv:2506.01347*, 2025.
688 3, 16, 17
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A OTHER RELATED WORKS**
703

704 *Exploration in RL.* Enhancing exploration during RL training is an important part for all RL al-
705 gorithms. In RLHF, Xie et al. (2024); Cen et al. (2024); Zhang et al. (2024) use the base model
706 likelihood as an exploration bonus, nudging the policy toward outputs that are plausible yet seldom
707 sampled. Closest in theoretical spirit to our view is Feng et al. (2025), which studies the MLE ob-
708 jective of reward modeling to derive a principled exploration method. In the reasoning setting, Gao
709 et al. (2025) employ Random Network Distillation (Burda et al., 2018) to encourage novel solution
710 traces. Other works (Cheng et al., 2025; Zheng et al., 2025) promote exploration through entropy
711 based objectives. Finally, Chen et al. (2025b) optimize a pass@k objective (Tang et al., 2025) to
712 increase batch diversity during training. However, these approaches do not propose to differentiate
713 rewards inside negative groups and focus mainly on mixed groups.

714 *Asymmetric treatment of positive and negative outputs.* A few recent work introduce asymmetric
715 treatment of positive and negative generations during REINFORCE-style training. (Roux et al.,
716 2025) introduces an asymmetric variant of importance sampling to speed up learning. Arnal et al.
717 (2025) demonstrate that asymmetric REINFORCE, and in particular reducing the signal from nega-
718 tive generations, can be beneficial when data is off-policy.

719 *Using Confidence in RLVR.* Confidence proxies have also been applied in RLVR, mainly proposed
720 as a surrogate for the rule-based verifier. Zhao et al. (2025) use the KL divergence between the per
721 token generation probability and a uniform distribution. Zhou et al. (2025); Yu et al. (2025b); Liu
722 et al. (2025a) take the log prob of generating the reference answer conditioned on the existing CoT
723 as the reward. Li et al. (2025) leverage confidence scores at test time for light tuning and report
724 gains. Prabhudesai et al. (2025) similarly optimize the entropy of response tokens as the reward.
725 In all of these studies, the rule-based reward is replaced with a confidence-based proxy and light
726 training is performed. Most works do not train beyond one hundred steps and focus only on Qwen
727 models, which raises concerns about generalization and the risk of reward hacking without a bag of
728 tricks. In contrast, we do not aim to replace rule based rewards; instead, we propose to make use
729 of negative groups in GRPO in a principled way. We demonstrate effectiveness on both Llama and
730 Qwen and show stable training for more than one thousand five hundred steps.

731 Xu & Ding (2025) leverage on-the-fly baseline such that the negative groups will have a non-zero
732 baseline and the advantage is not zero. Similarly, Nan et al. (2025) also employs advantage cal-
733 ibration to change the baseline. Le et al. (2025) leverages the entropy to create difference in the
734 negative groups. Our work have a more theory-grounded. Xiong et al. (2025) propose to solve the
735 negative group by adaptively allocate more generation samples for hard problems. Prakash & Bu-
736 vanesh (2025) emphasize the importance to add easy sample to help generate correct answers for
737 hard problems.

738 **B PROOFS**
739

740 **B.1 PROOF OF THEOREM 1**

741 We now provide the proof of Theorem 1 and a comment on the estimator consistency.

742 **Proof of Theorem 1.** Let $\pi_\theta \equiv \pi_\theta(o | q)$ and $D \equiv D(q)$ for notational brevity. The gradient of
743 each individual term in the loss $\widehat{\mathcal{L}}(\theta)$ with respect to θ is found using the chain rule:

744

$$\nabla_\theta \left[r \cdot \log \pi_\theta + (1 - r) \cdot \log \left(1 - \frac{\pi_\theta}{D} \right) \right] = \left(\frac{r}{\pi_\theta} - \frac{1 - r}{D - \pi_\theta} \right) \nabla_\theta \pi_\theta.$$

745

746 By applying the identity for the gradient of a logarithm, $\nabla_\theta \pi_\theta = \pi_\theta \cdot \nabla_\theta \log \pi_\theta$, we can express
747 the result as:

748

$$\left(r - (1 - r) \frac{\pi_\theta}{D - \pi_\theta} \right) \nabla_\theta \log \pi_\theta,$$

749

750 which provides the final result.

756 **Consistency of the Estimator.** A key property of this estimator is its consistency under ideal
757 conditions. If the model is correctly specified (i.e., $\pi_{\theta^*} \in \{\pi_\theta\}_{\theta \in \Theta}$), then the true parameter vector
758 θ^* is a maximizer of the population log-likelihood. This can be verified by observing that the
759 gradient $\nabla_\theta \mathcal{L}(\theta)$ evaluates to zero at $\theta = \theta^*$. By taking the conditional expectation of the gradient's
760 inner term with respect to r , given \mathbf{q} and \mathbf{o} , we find:

$$\mathbb{E}_{r|\mathbf{q}, \mathbf{o}} \left[r - (1-r) \frac{\pi_{\theta^*}(\mathbf{o} | \mathbf{q})}{D(\mathbf{q}) - \pi_{\theta^*}(\mathbf{o} | \mathbf{q})} \right]$$

761 Using $\mathbb{E}[r | \mathbf{q}, \mathbf{o}] = p^*(\mathbf{o} | \mathbf{q})$ and the definition $p^* = \pi^*/D$, this becomes:
762

$$= p^* - (1-p^*) \frac{\pi_{\theta^*}}{D - \pi_{\theta^*}} = p^* - (1-p^*) \frac{p^*}{1-p^*} = p^* - p^* = 0.$$

763 Since the conditional expectation of the term multiplying $\nabla_\theta \log \pi_\theta$ is zero, the full expectation is
764 zero, confirming that θ^* is a stationary point.

765 B.2 PROOF OF THEOREM 2

766 We will show that $\nabla_\theta J_{\text{MLE}}(\pi_\theta)$ is equivalent to $\nabla_\theta \mathcal{L}(\theta)$ when $\mu = \pi_\theta$.

767 First, the target gradient from Theorem 1, with the sampling policy μ set to the model policy π_θ , is:

$$\nabla_\theta \mathcal{L}(\theta) \Big|_{\mu=\pi_\theta} = \mathbb{E}_{\mathbf{q} \sim \xi, \mathbf{o} \sim \pi_\theta(\cdot | \mathbf{q})} \left[\left\{ r - (1-r) \frac{\pi_\theta}{D - \pi_\theta} \right\} \cdot \nabla_\theta \log \pi_\theta(\mathbf{o} | \mathbf{q}) \right]. \quad (15)$$

768 Next, we rigorously compute the gradient of $J(\pi_\theta) = J_+(\pi_\theta) - J_-(\pi_\theta)$. The gradient of the
769 positive term is standard:

$$\nabla_\theta J_+(\pi_\theta) = \mathbb{E}_{\mathbf{q} \sim \xi, \mathbf{o} \sim \pi_\theta(\cdot | \mathbf{q})} [r \cdot \nabla_\theta \log \pi_\theta]. \quad (16)$$

770 For the negative term, $J_-(\pi_\theta) = \mathbb{E}_{\mathbf{o} \sim \pi_\theta} [w(\pi_\theta/D) \cdot (1-r)]$, we use the product rule and derive
771

$$\nabla_\theta J_-(\pi_\theta) = \mathbb{E}_{\mathbf{q}, \mathbf{o} \sim \pi_\theta} \left[(1-r) (w(\pi_\theta/D) + (\pi_\theta/D) \cdot w'(\pi_\theta/D)) \cdot \nabla_\theta \log \pi_\theta \right]. \quad (17)$$

772 Now we compute $w(z) + z \cdot w'(z)$:

$$w(z) + z \cdot w'(z) = \left(\frac{-\log(1-z)}{z} - 1 \right) + z \left(\frac{\frac{z}{1-z} + D \log(1-z)}{z^2} \right) = \frac{1}{1-z} - 1 = \frac{z}{1-z}.$$

773 This is exactly the term we needed. Substituting this result back into the gradient for $J_-(\pi_\theta)$:

$$\nabla_\theta J_-(\pi_\theta) = \mathbb{E}_{\mathbf{q}, \mathbf{o} \sim \pi_\theta} \left[(1-r) \left(\frac{\pi_\theta}{D - \pi_\theta} \right) \cdot \nabla_\theta \log \pi_\theta \right]. \quad (18)$$

774 Finally, combining the gradients for the positive and negative parts of $J(\pi_\theta)$:

$$\nabla_\theta J_{\text{MLE}}(\pi_\theta) = \nabla_\theta J_+(\pi_\theta) - \nabla_\theta J_-(\pi_\theta) = \mathbb{E}_{\mathbf{q}, \mathbf{o} \sim \pi_\theta} \left[\left(r - (1-r) \frac{\pi_\theta}{D - \pi_\theta} \right) \cdot \nabla_\theta \log \pi_\theta \right]. \quad (19)$$

775 This expression is identical to the MLE gradient in equation 15. The equivalence is proven.
776

777 C A PREFERENCE-AWARE FRAMEWORK

778 The framework introduced in Section 4.1 assumed that when multiple answers are correct, the
779 optimal policy distributes probability mass uniformly across them. For example, if both A and B are
780 correct answers to a question \mathbf{q} , we had $\pi^*(A | \mathbf{q}) = \pi^*(B | \mathbf{q}) = 0.5$. However, uniformity may
781 not always reflect the true reasoning process. In practice, we might prefer some answers over others.
782 For instance, A could be easier to infer, shorter in form, or more natural to express. In such cases, a
783 more realistic distribution might be $\pi^*(A | \mathbf{q}) = 0.9$ and $\pi^*(B | \mathbf{q}) = 0.1$.

784 From the perspective of chain-of-thought reasoning, preferences can capture properties such as the
785 length of the reasoning trajectory or the similarity of an answer to outputs from a reference language
786 model. To encode this flexibility, we introduce a nonnegative *preference function*:

$$\rho(\mathbf{q}, \mathbf{o}) \geq 0,$$

787 which adjusts the weight assigned to each (\mathbf{q}, \mathbf{o}) pair.
788

810 **Modified Framework.** With the preference function, we adjust the relation between policy π_θ
 811 and correctness probabilities. Specifically, we define
 812

813
$$p_\theta(\mathbf{q}, \mathbf{o}) = \frac{1}{D(\mathbf{q}) \cdot \rho(\mathbf{q}, \mathbf{o})} \pi_\theta(\mathbf{o} \mid \mathbf{q}), \quad (20)$$

 814

815 where the difficulty factor $D(\mathbf{q})$ is updated as
 816

817
$$D(\mathbf{q}) = \left\{ \sum_{\mathbf{o} \in \mathcal{O}} p^*(\mathbf{q}, \mathbf{o}) \cdot \rho(\mathbf{q}, \mathbf{o}) \right\}^{-1}. \quad (21)$$

 818
 819

820 Intuitively, $D(\mathbf{q})$ still measures how hard the question is, but it now accounts for the internal weight-
 821 ing across candidate answers.
 822

823 The maximum likelihood estimation (MLE) problem under this new framework becomes
 824

825
$$\min_{\theta} \hat{\mathcal{L}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \left\{ r_i \cdot \log \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i) + (1 - r_i) \cdot \log \left(1 - \frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)}{D(\mathbf{q}_i) \cdot \rho(\mathbf{q}_i, \mathbf{o}_i)} \right) \right\}. \quad (22)$$

 826
 827

828 The corresponding gradient of the log-likelihood is
 829

830
$$\nabla_{\theta} \hat{\mathcal{L}}(\theta) = -\frac{1}{n} \sum_{i=1}^n \left\{ r_i - (1 - r_i) \frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)}{D(\mathbf{q}_i) \cdot \rho(\mathbf{q}_i, \mathbf{o}_i) - \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)} \right\} \cdot \nabla_{\theta} \log \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i). \quad (23)$$

 831
 832

833 Compared to the uniform case, the gradient now incorporates the additional signal encoded by ρ ,
 834 ensuring that both positive and negative samples are scaled according to the chosen preference struc-
 835 ture.
 836

837 **Examples of Preference Functions.** To illustrate the flexibility of this framework, we describe
 838 some concrete choices of ρ :

839 *Preference as the data collection distribution.* Suppose we take $\rho(\mathbf{q}, \mathbf{o}) = \mu(\mathbf{o} \mid \mathbf{q})$, where μ is the
 840 distribution used to collect the dataset \mathcal{D} . Then the difficulty factor $D(\mathbf{q})$ can be approximated by:
 841

842
$$D(\mathbf{q}) \approx \left\{ \frac{1}{|\mathcal{O}_{\mathcal{D}}(\mathbf{q})|} \sum_{\mathbf{o} \in \mathcal{O}_{\mathcal{D}}(\mathbf{q})} r^*(\mathbf{q}, \mathbf{o}) \right\}^{-1},$$

 843
 844

845 where $\mathcal{O}_{\mathcal{D}}(\mathbf{q})$ denotes the set of observed answers to question \mathbf{q} in \mathcal{D} . In words, $D(\mathbf{q})$ can be
 846 estimated as the inverse of the empirical correctness rate.
 847

848 *Preference as the policy itself.* If we further set $\mu = \pi_\theta$, then the negative calibration term simplifies
 849 to

850
$$\frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)}{D(\mathbf{q}_i) \cdot \rho(\mathbf{q}_i, \mathbf{o}_i) - \pi_\theta(\mathbf{o}_i \mid \mathbf{q}_i)} = \frac{1}{D(\mathbf{q}_i) - 1}.$$

 851
 852

853 In this case, the weight for negative samples is exactly the correction rate of the current policy π_θ .
 854 Equivalently, in the ordinary policy gradient formulation, each question should be reweighted by
 855 its correction rate. Although this choice does not produce the “confidence-based” weighting we
 856 ultimately seek, it highlights that commonly used uniform weights (e.g., Arnal et al. (2025); Zhu
 857 et al. (2025)) emerge as a special case of our framework.

858 *Preference as a function of response length.* Now, consider a preference function that depends on
 859 the length of the candidate answer:

860
$$\rho(\mathbf{q}, \mathbf{o}) := \gamma^{|\mathbf{o}|} \quad \text{for a fixed parameter } \gamma \in (0, 1).$$

 861

862 Define the shorthand

863
$$\bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q}) := \pi_\theta(\mathbf{o} \mid \mathbf{q})^{\frac{1}{|\mathbf{o}|}}.$$

864 The negative-sample reward can then be expressed as
 865

$$866 \quad \tilde{r}_\theta(\mathbf{o} \mid \mathbf{q}) = -\frac{\pi_\theta(\mathbf{o} \mid \mathbf{q})}{D(\mathbf{q}) \cdot \rho(\mathbf{q}, \mathbf{o}) - \pi_\theta(\mathbf{o} \mid \mathbf{q})} = -\frac{\bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})^{|\mathbf{o}|}}{D(\mathbf{q}) \cdot \gamma^{|\mathbf{o}|} - \bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})^{|\mathbf{o}|}}.$$

868 For large $|\mathbf{o}|$, we have $D(\mathbf{q})^{\frac{1}{|\mathbf{o}|}} \approx 1$. If γ is chosen on the same scale as $\bar{\pi}_\theta$, this weight simplifies to
 869

$$870 \quad \tilde{r}_\theta(\mathbf{o} \mid \mathbf{q}) = -\left\{ \left(\frac{D(\mathbf{q})^{\frac{1}{|\mathbf{o}|}} \cdot \gamma}{\bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})} \right)^{|\mathbf{o}|} - 1 \right\}^{-1} \approx -\frac{1}{|\mathbf{o}|} \left\{ \frac{D(\mathbf{q})^{\frac{1}{|\mathbf{o}|}} \cdot \gamma}{\bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})} - 1 \right\}^{-1}$$

$$871 \quad = -\frac{1}{|\mathbf{o}|} \cdot \frac{\bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})}{D(\mathbf{q})^{\frac{1}{|\mathbf{o}|}} \cdot \gamma - \bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})} \approx -\frac{1}{|\mathbf{o}|} \cdot \frac{\bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})}{\gamma - \bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})}.$$

875 Therefore, in practice, it is convenient to set negative-sample reward
 876

$$877 \quad \tilde{r}_\theta(\mathbf{o} \mid \mathbf{q}) := -\frac{1}{|\mathbf{o}|} \cdot \frac{\bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})}{\gamma - \bar{\pi}_\theta(\mathbf{o} \mid \mathbf{q})} = -\frac{1}{|\mathbf{o}|} \cdot \frac{\pi_\theta(\mathbf{o} \mid \mathbf{q})^{\frac{1}{|\mathbf{o}|}}}{\gamma - \pi_\theta(\mathbf{o} \mid \mathbf{q})^{\frac{1}{|\mathbf{o}|}}}$$

879 with $\gamma > 0$ properly tuned.
 880

881 D EXPERIMENT DETAILS

883 D.1 HYPERPARAMETERS

885 We use a learning rate $3e - 7$ for Llama-3.1-8B-Instruct and a learning rate $1e - 6$ for
 886 Qwen-2.5-3B-Base. The base model requires a larger learning rate while the instruct model has
 887 gone through the RLHF stages so a smaller learning rate is better. Prior works (Zhu et al., 2025;
 888 Arnal et al., 2025) have used the same setup. The batch size is set to be 512, with 32 questions and
 889 16 generations for each. We use a clipping ratio of 0.2 for all the models to mitigate the impact
 890 of off-policy data. We set the maximum number of off-policy updates to 4; in VeRL (Sheng et al.,
 891 2024), this is implemented by using a training batch size as 128 (4×32).

892 We set temperature and top-p to 1.0 during both training and evaluation for both models.
 893

894 D.2 ABLATION

895 We also conduct an ablation to understand where the improvement comes from. In our algorithm,
 896 we modify the reward for all incorrect generations in both mixed and negative groups as in Equation
 897 10. Compared with GRPO, we adjust rewards for incorrect generations within mixed groups, and
 898 negative groups now have nonzero advantages. To quantify the contribution of each component, we
 899 use the Llama model and consider two settings: (i) modify only the incorrect generations in mixed
 900 groups while keeping advantages for negative groups at zero, and (ii) modify only the incorrect
 901 generations in negative groups while leaving mixed groups unchanged. This design isolates the
 902 effect of each part. We refer to these variants as *LENS with only mixed groups* and *LENS with only*
 903 *negative groups*. The training set is MATH and Numina 1.5. The pass@k results are reported in
 904 Table 3.
 905

906 Table 3: Ablation results of pass@k on MATH with Llama-3.1-8B-Instruct.

907 Algorithm	Pass@1	Pass@2	Pass@4	Pass@8	Pass@16
908 GRPO baseline	56.88	65.42	72.08	78.34	82.80
909 LENS with only mixed groups	57.42	65.82	73.08	78.80	83.20
910 LENS with only negative groups	58.14	66.48	73.46	79.79	83.40
911 LENS (Ours)	58.64	66.08	73.98	79.46	83.40

913 The results show that both components help improve performance. Specifically, adjusting the reward
 914 in mixed groups encourages exploration in batches that already contain a correct answer. This helps
 915 the model reinforce correct samples while rejecting incorrect generations. As a result, *LENS with*
 916 *only mixed groups* yields its largest gains at pass@1. *LENS with only negative groups* also improves
 917 over GRPO and in several cases nearly matches the full LENS, suggesting that a substantial portion
 918 of the improvement arises from the negative groups.

918

E ADDITIONAL RESULTS

919

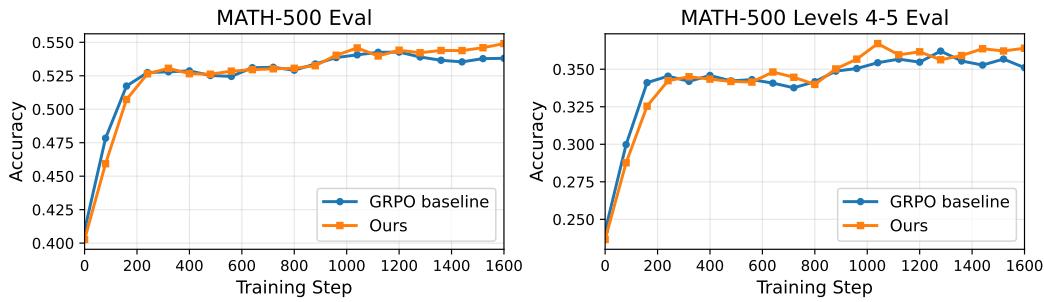
920 We report additional results from two training setups using distinct corpora: (i) MATH + Numina 1.5
921 and (ii) DAPO. These complementary results, omitted from the main paper for space, are summa-
922 rized as follows. Figure 6 shows training curves for Llama trained on DAPO and Qwen trained on
923 MATH and Numina 1.5. Table 4 reports the Pass@ k results for the DAPO-trained models. On this
924 training set, we significantly improve Pass@ k for larger k , indicating greater diversity.

935

Figure 6: Comparison of our algorithm and GRPO baseline on MATH, during training: performance
936 on the full test set and the Levels 4–5 (hard) subset. Llama-3.1-8B-Instruct trained on
937 DAPO. The accuracy is averaged over all 16 generations during the evaluation. Our algorithm
938 brings significant improvement for both models.

939
940
941
942

943

Table 4: Pass@ k results on MATH with Llama-3.1-8B-Instruct. Training set: DAPO.

944

945

Model	Algorithm	Pass@1	Pass@2	Pass@4	Pass@8	Pass@16
Llama-3.1-8B-Instruct	GRPO baseline	53.80	61.04	67.30	71.36	74.54
	LENS (Ours)	54.90	63.03	69.47	74.36	77.95

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971