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Abstract
Stochastic gradient Markov Chain Monte Carlo algorithms are popular samplers for

approximate inference, but they are generally biased. We show that many recent versions
of these methods (e.g. Chen et al. (2014)) cannot be corrected using Metropolis-Hastings
rejection sampling, because their acceptance probability is always zero. We can fix this
by employing a sampler with realizable backwards trajectories, such as Gradient-Guided
Monte Carlo (Horowitz, 1991), which generalizes stochastic gradient Langevin dynamics
(Welling and Teh, 2011) and Hamiltonian Monte Carlo. We show that this sampler can
be used with stochastic gradients, yielding nonzero acceptance probabilities which can be
computed even across multiple steps.

1. Introduction

Exact posterior inference in many Bayesian models is intractable, which has led to the de-
velopment of different approximate inference schemes. One popular class of such algorithms
are Markov Chain Monte Carlo (MCMC) methods. These simulate a Markov chain, con-
structed so that its stationary distribution is the true posterior (Geyer, 1992). Among the
MCMC methods, Hamiltonian Monte Carlo (HMC) has achieved recognition as being the
“gold standard”, mostly for its favorable convergence properties (Neal, 2012).

While HMC yields great performance, its adoption in many real applications is hindered
by the fact that it requires passes over the whole data set to compute one gradient step,
which is prohibitively expensive in many settings (Chen et al., 2014). Especially for large-
data Bayesian models such as Bayesian neural networks (BNNs), stochastic gradient MCMC
(SG-MCMC) methods are more popular, due to their favorable computational costs and their
similarity to stochastic gradient descent (SGD). Arguably, the most popular SG-MCMC
method for BNNs in recent years has been stochastic gradient HMC (Chen et al., 2014,
SGHMC), although its predecessor stochastic gradient Langevin dynamics (Welling and
Teh, 2011, SGLD) also enjoys considerable following.

Since all of these approaches are approximate, in order to ensure that they sample
from the true posterior, rejection sampling is often necessary, for instance, following the
Metropolis-Hastings (MH) scheme (Metropolis et al., 1953; Hastings, 1970). However, in
this work, we draw attention to the unfortunate fact that SGHMC does not allow for MH
rejection sampling, since its acceptance probability is always zero. We then revisit gradient-
guided Monte Carlo (GGMC) (Horowitz, 1991), which can overcome this problem. We show
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that GGMC provides a unified framework for SGLD and SGHMC and that it yields nonzero
acceptance probabilities, which can even be computed across multiple steps.

Our contributions are as follows:

• We show that the SG-MCMC schemes used in recent work (Chen et al., 2014; Wenzel
et al., 2020) always have acceptance probability zero, because the backward trajectory
is not realizable in the symplectic Euler-Maruyama integrator they employ (Sec. 3).

• We revisit GGMC, a variant of HMC. It generalises HMC and SGLD, always has posi-
tive acceptance probability and, with correction, accepts stochastic gradients (Sec. 4).
The scheme was independently discovered in the statistics (Neal, 2012; Horowitz,
1991) and molecular dynamics literatures (Bussi and Parrinello, 2007; Leimkuhler and
Matthews, 2015). The latter have shown that it simulates Langevin dynamics.

• We examine an augmentation scheme to calculate the acceptance probabilities across
multiple stochastic steps (Sec. 5, by Zhang et al. (2020)). This allows us to use
stochastic gradients, but sample from the exact posterior, by doing one MH correction
using the exact likelihood after many stochastic gradient steps.

Based on our findings, we believe that work in Bayesian deep learning should discard
the Euler-Maruyama scheme used by SGHMC and its variants (Ding et al., 2014; Ma et al.,
2015). Instead, to have confidence in our sampling, we should use reversible integrators
(Matthews and Weare, 2018; Leimkuhler et al., 2019; Zhang et al., 2020, this work) and
keep track of their acceptance probability.

2. Background: Hamiltonian Monte Carlo

We wish to sample from a target distribution π(θ) ∝ π̃(θ), which we can only evaluate up to
a normalizing constant. HMC first augments the parameter space θ ∈ Rd with a momentum
m ∈ Rd of the same dimension. It constructs a Markov chain that alternates: re-sampling
the momentum, and then following an ordinary differential equation (ODE), specified by
the Hamiltonian H(θ,m), for a given amount of time. The stationary distribution of this
Markov chain (with exact simulation) is the Boltzmann distribution

P̄ (θ,m) ∝ exp

(
− 1

T
H(θ,m)

)
= exp

(
− 1

T
U(θ)

)
exp

(
− 1

T
K(m)

)
. (1)

Here U(θ) is the potential energy, which we relate to the unnormalised target distribution
by U(θ) = − log π̃(θ). The kinetic energy K(m) = 1

2m
TM−1m makes the momenta m

Gaussian, and thus easy to sample. M is a positive definite (usually diagonal) precondi-
tioner, the mass matrix. T ∈ R+ is a positive temperature. For HMC, T = 1, but this
changes in the next section. By construction, the tempered target π̃(θ)1/T is a marginal of
the Boltzmann distribution. We may write the ODE’s full state as s = (θ,m).

Unfortunately, we cannot exactly simulate the ODE for most posteriors, so we must
discretise it with an integrator. This unavoidably introduces errors into the simulation,
which have to be controlled if we want to guarantee that the sampling is accurate.
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The standard way to do this is via the Metropolis-Hastings acceptance probability. For
this, we define the transition kernel: g(s∗ | sn) = 1 if the approximate simulation starting at
sn = (θn,mn) ends at s∗ = (θ∗,m∗), otherwise 0.

Then, we accept the new sample (i.e. set sn+1 = s∗) with probability min (1,MH (s∗ | sn)),
where

MH (s∗ | sn) =
P̄ (θ∗,m∗)

P̄ (θn,mn)

g(θn,−mn |θ∗,−m∗)
g(θ∗,m∗ |θn,mn)

, (2)

Otherwise we reject the sample, that is, set sn+1 = sn. We negate the momentum so the
integrator applied backwards would retrace the same steps.1 Afterwards, we are free to
negate the momentum again without a rejection step, since K(−m) = K(m), so it leaves
the target distribution (1) invariant (Neal, 2012, eq. 5.20). For regular HMC, this can be
ignored because the momentum gets resampled immediately.

3. SG-MCMC acceptance probabilities are zero

All the Markov chains we consider in this paper are discretisations of Langevin’s stochastic
differential equations (SDEs) which, borrowing notation from Wenzel et al. (2020), are

dθ = M−1m dt (3)

dm = −γmdt−∇θU(θ) dt+M1/2
√

2γT dW . (4)

Here, γ ∈ R+ is a friction coefficient and W is a standard Wiener process with covariance
I.

If γ = 0, these become Hamilton’s equations, used for HMC. Setting dm = 0, we obtain
the overdamped Langevin equation, which discretises to the Metropolis-adjusted Langevin
algorithm (MALA; e.g. Roberts and Rosenthal (1998)).

For time step h, the symplectic Euler-Maruyama scheme in Chen et al. (2014, SGHMC)
and Wenzel et al. (2020) simulates these SDEs as follows. Using noise ε ∼ N (0, I),

mn+1 = (1− hγ)mn − h∇θU(θn) +
√
hM1/2

√
2γTε (5)

θn+1 = θn + hM−1mn+1 . (6)

Like in HMC, it is the discretisation, not the SDE, that determines our simulation’s Markov
transition kernel g. Unfortunately, we will see that the backward transition is unrealizable,
so its density g(θn,−mn |θn+1,−mn+1) is almost always zero. Because this density appears
in the numerator of eq. (2), the resulting acceptance probability for the Euler-Maruyama
scheme is zero as well.

Theorem 1 For any starting point (θn,mn) and step size h > 0, we sample (θn+1,mn+1)
using equations (5, 6). Then, the backward transition density g(θn,−mn |θn+1,−mn+1) is
zero, with probability 1 over the randomness of the forward transition.

1. Hamiltonian dynamics are time-reversible. We also need to use a time-reversible integrator, like the
leapfrog or velocity Verlet, so the ratio of g in eq. (2) is 1.
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Proof Consider the transition distribution, g(θ∗,m∗ |θ,m). Because it has been generated
from equations (5, 6), any realization from g must satisfy them. In particular, it has to satisfy
eq. (6), i.e. θ∗ = θ+hM−1m∗. Thus, for the purposes of the acceptance probability (eq. 2),
we can define the density of g as zero outside of its support,

g(θ∗,m∗ |θ,m) =

{
N (m∗ | (1− hγ)m− h∇θU(θ), hM2γT ) if θ∗ = θ + hM−1m∗

0 otherwise.
(7)

Now, let us check whether this condition can simultaneously hold for the forward and back-
ward transitions in eq. (2). That is, is it possible that

θn+1 = θn + hM−1mn+1 and θn = θn+1 + hM−1(−mn) ? (8)

Solving the linear system we can see that, since M is positive definite and h > 0, eq. (8)
is true if and only if mn = mn+1. Since the step size is h > 0, this only happens when
the Gaussian random draw ε in eq. (5) is equal to v = (hM2γT )−1/2(hγmn + h∇θU(θn)).
Because the covariance of ε is the identity, this is a probability zero event.2

Thus, with probability 1, ε 6= v, which impliesmn 6= mn+1. We know the left-hand-side
expression of eq. (8) is true, so that implies θn 6= θn+1 + hM−1(−mn), which implies by
eq. (7) that g(θn,−mn |θn+1,−mn+1) = 0.

The easiest way to ensure mn = mn+1, such that the acceptance probability remains
nonzero, is to set the time step h = 0. This, however, makes the sampler useless. If we take
the limit h→ 0 instead, the Euler-Maruyama scheme gets arbitrarily close to the true SDE
trajectory. Crucially however, per theorem 1, the acceptance probability remains 0 for any
h > 0. Thus, it is impossible to use the acceptance probability to monitor the discretisation
error. The Euler-Maruyama scheme cannot satisfy detailed balance. So far, we have not
considered stochastic gradients, but this result includes them: it still holds if we substitute
an arbitrary gn for ∇θU(θn).

4. GGMC solves the problem by using a different integrator

To get a nonzero acceptance probability, we can just use a time-reversible integrator. The one
we present here has been discovered several times in statistics (Horowitz, 1991; Neal, 1993)
and molecular dynamics (Bussi and Parrinello, 2007; Leimkuhler and Matthews, 2015). We
call it Gradient-guided Monte Carlo (GGMC), following Horowitz (1991), because it operates
similarly to random walk Metropolis-Hastings, but with a gradient influencing the random
walk’s direction. Neal (1993, sec. 5.1) calls it the “stochastic dynamics” method, or “Langevin
Monte Carlo (LMC) with partial momentum refreshment” (Neal, 2012). Leimkuhler and
Matthews (2015) call this integrator “OBABO” because of the order of its steps.

The integrator splits Langevin dynamics (eqs. 4–3) into three parts, which can be solved
exactly, and applies them in sequence (Leimkuhler and Matthews, 2015). Let a = e−γh, and

2. This is undesirable for another reason: we would like the momentum to change during the sampling
process.
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ε, ε′ ∼ N (0, I) be Gaussian random variables with identity covariance. Then

mn+1/4 =
√
amn +

√
(1− a)TM1/2ε, (O.1)

mn+1/2 = mn+1/4 −
h

2
∇θU(θn), (B.1)

θn+1 = θn + hM−1mn+1/2, (A)

mn+3/4 = mn+1/2 −
h

2
∇θU(θn+1), (B.2)

mn+1 =
√
amn+3/4 +

√
(1− a)TM1/2ε′. (O.2)

Steps O.1 and O.2 are partial momentum refreshment, and steps B.1, A and B.2 form one
leapfrog step. Thus, the discretisation error is locally O(h3) (Neal, 2012). Establishing the
trajectory discretisation error is complicated, because it requires solving a partial differ-
ential equation (PDE). However, all found PDE solutions indicate that the error is O(h2)
(Leimkuhler and Matthews, 2015; Sivak et al., 2014), the same as HMC.

This scheme generalizes several popular samplers. To obtain HMC, we may repeat BAB
many times, and use O as momentum refreshment. Alternatively, setting γ = 0 implies
a = 1, so the O steps disappear, and the integrator becomes one leapfrog step. Adding
a separate momentum refreshment then also yields HMC. To obtain MALA3 or SGLD
(Welling and Teh, 2011), we take γ → ∞. This implies a → 0, which means that step O.1
entirely ignores the incoming momentummn and just samples a fresh one. Because of this,
we do not need to calculate the next momentum mn+1 at the end of a step, or represent
the momentum at all. Thus, steps B.2 and O.2 fall out. We may also fold steps O.1 and
B.1 into A to obtain the more common single-step expression for SGLD.

Note that there are other modern methods that simulate Langevin dynamics while
preserving reversibility. For instance, Matthews and Weare (2018) propose a variant of
ABOBA that corrects for the (known or estimated) covariance of the gradient noise, sim-
ilar to SGHMC, to get the correct O(h2) statistics. Also, Zhang et al. (2020) develop an
integrator that uses time-asymmetric gradients but, nevertheless, is realizable in the reverse
direction and thus has a nonzero acceptance probability.

Acceptance probability. The key ingredient is the ratio of backward and forward tran-
sition probabilities, which we derive in appendix A. The resulting acceptance probability
is

logMH (θn+1,mn+1 |θn,mn) = − 1

T

(
U(θn+1)− U(θn) +K(mn+3/4)−K(mn+1/4)

)
. (9)

This is the same expression as in HMC or Langevin MC, were we to regard only the inner
leapfrog step as the transition to accept or reject. Interestingly, the acceptance probability
does not at all depend on the permanence a of the momentum.

5. Acceptance probabilities for multiple and stochastic steps

The inventors of HMC, Duane et al. (1987), already observed that the kinetic and potential
energies used to specify the transition probability g need not be the same ones used to

3. Leimkuhler and Matthews (2015) recommend the BAOAB ordering for more accurate sampling in MALA.
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calculate the acceptance probability. Only the latter will determine what distribution we
actually sample from. That is, the sampler (be it HMC, or GGMC) may use stochastic or
incorrect gradients: so long as the MH acceptance probability is calculated with respect to
the target π̃(θ)1/T e−K(m)/T , the resulting algorithm will estimate averages with respect to
the target distribution.

This would seem to be irrelevant in practice because, naïvely, we need to calculate
the exact acceptance probability after every (stochastic) GGMC step. This would bring the
overall algorithm’s per-step complexity to linear in the size of the data set, which is precisely
what we want to avoid when using stochastic gradients.

Instead, perhaps we can calculate the MH correction only after many GGMC steps.
Naïvely, this is impractical, since even the two-step transition probability is an intractable
integral: g2(sn+2 | sn) =

∫
g(sn+2 | sn+1)g(sn+1 | sn)dsn+1. However, it turns out we can

just multiply the per-step probabilities. Starting at sn, after N steps of MCMC, we can
accept the resulting sample sn+N with probability min (1,MH (sn+N | sn)) (Zhang et al.,
2020), where

MH (sn+N | sn) =

N∏
i=1

MH (sn+i | sn+i−1) =
P̄ (sn+N )

P̄ (sn)

N∏
i=1

g(sn+i | sn+i−1)
g(sn+i−1 | sn+i)

. (10)

Due to telescopic cancellation, we need only evaluate the exact likelihood at the end of
many steps. For example, we could follow 10 epochs of stochastic gradients, and then
spend 1 epoch evaluating the likelihood exactly for the MH correction step. This can be
combined with other algorithms (Neal, 2012; Sohl-Dickstein et al., 2014, sec. 5.4) to reduce
the rejection probability.

Zhang et al. (2020, Lemma 2) propose this deferred MH scheme and show its correctness
for any sampler with a homogeneous Markov chain. We can extend it to inhomogeneous
Markov chains, such as the cosine schedule (Zhang et al., 2019) by considering the following
scheme. We augment the state of the Markov chain with N random variables, {ζi}Ni=1, that
will determine the randomness of the intermediate steps. Their target distributions have to
be time-symmetric, i.e. pζi(·) = pζN−i+1

(·) for all i. Before an MCMC multi-step, we sample
all the ζi from their target distribution. Then, we use them to provide all the randomness
for the intermediate steps, so each step is just the result of a deterministic transformation:

sn+i = fi(sn+i−1; ζ1, . . . , ζi), for all i = 1, . . . , N. (11)

The functions fi have to be time-symmetric as well (fi = fN−i+1). Otherwise, the backward
transition is not realizable using the same ζi as the forward one, so the acceptance probability
is zero. If they are time-symmetric, the resulting acceptance probability is eq. (10).

In this view, the cosine schedule (Zhang et al., 2019) has acceptance probability zero,
even if a backward-realizable integrator is used. The cosine schedule is not a time-symmetric
transformation: the schedule of learning rates is high at the beginning and low at the end
of a cycle.

Wu et al. (2020) employ a similar construction to use MCMC samplers as normalizing
flows. Neal (1996, Section 3.5.1) proposed the “partial gradient” construction: a variant
of this for HMC and dataset minibatching in particular, motivated by the same operator-
splitting view of integrators as the leapfrog.
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6. Conclusion

We have shown that two popular SG-MCMC samplers cannot be corrected using rejection
sampling, since their acceptance probabilities are zero. We have then revisited GGMC,
which solves this problem and generalizes SGLD and HMC. Finally, we have also presented
a way to compute the acceptance probabilities of GGMC across several steps, leading to a
practical method for drawing exact posterior samples using only stochastic gradients.

It is time for the Bayesian deep learning community to let go of the Euler-Maruyama
scheme. Instead, we should explore the breadth of integrators for Langevin dynamics which
we have inherited from molecular dynamics and statistics. We have shown that correctness
is achievable. Thus, we should demand correctness from our samplers.
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Appendix A. Acceptance probability calculation for GGMC

The procedure used by Bussi and Parrinello (2007) is to start with the joint distribution
of the noises ε, ε′ and transform it to the distribution over θn+1,mn+1 |θn,mn using the
density transformation formula with the determinant of the Jacobian.

However, in this case, there is somewhat more illustrative way. Consider

r =
√

(1− a)TM−1/2ε, and thus r ∼ N (0, (1− a)TM), (12)

and similarly for r′ and ε′. Note that r = mn+1/4 −
√
amn, and r′ = mn+1 −

√
amn+3/4.

By substituting r, r′ into eqs. (B.1) and (B.2), we can write θn+1,mn+1 as

θn+1 = θn + hM−1
(√

amn −
h

2
∇θU(θn) + r

)
, (13)

mn+1 = amn −
√
ah

2
(∇θU(θn) +∇θU(θn+1)) +

√
ar + r′. (14)

The reciprocal of the determinant of the Jacobian is thus∣∣∣∣ dθn+1/dr dθn+1/dr
′

dmn+1/dr dmn+1/dr
′

∣∣∣∣−1 =

∣∣∣∣hM−1 0√
a I

∣∣∣∣−1 = h−1|M |, (15)

which is a constant, so it will be eliminated when dividing by the backward transition density.
Putting this all together, the forward transition density is

g(θn+1,mn+1 |θn,mn) = h−1|M | N
(
mn+1/4 −

√
amn

∣∣0, (1− a)TM
)

N
(
mn+1 −

√
amn+3/4

∣∣0, (1− a)TM
)
.

(16)

By substituting θn+1 ↔ θn,mn → −mn+1,mn+1/4 → −mn+3/4,mn+3/4 → −mn+1/4,
mn+1 → −mn, we can obtain the backward transition probability

g(θn,−mn |θn+1,−mn+1) = h−1|M | N
(
−mn+3/4 +

√
amn+1

∣∣0, (1− a)TM
)

N
(
−mn +

√
amn+1/4

∣∣0, (1− a)TM
)
.

(17)

Dividing them, the constant terms from the Gaussians and h−1|M | disappear, and we
obtain

log
g(θn,−mn |θn+1,−mn+1)

g(θn+1,mn+1 |θn,mn)
=

− 1

(1− a)T

(
K
(
−mn+3/4 +

√
amn+1

)
+K

(
−mn +

√
amn+1/4

)
−K

(
mn+1/4 −

√
amn

)
−K

(
mn+1 −

√
amn+3/4

))
(18)
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where K(v) = 1
2v

TM−1v is the kinetic energy defined in section 3. This simplifies greatly,
to

log
g(θn,−mn |θn+1,−mn+1)

g(θn+1,mn+1 |θn,mn)
= − 1

T

(
K(mn)−K(mn+1) +K

(
mn+3/4

)
−K

(
mn+1/4

))
.

(19)
The log ratio of the Boltzmann densities (eq. (1)) is

log
P̄ (θn+1,mn+1)

P̄ (θn,mn)
= − 1

T
(U(θn+1)− U(θn) +K(mn+1)−K(mn)). (20)

Now, to obtain the acceptance probability in eq. (2) we add eqs. (19) and (20), obtaining

logMH (θn+1,mn+1 |θn,mn) = − 1

T

(
U(θn+1)− U(θn) +K(mn+3/4)−K(mn+1/4)

)
(9)

which is exactly the same as eq. (9).
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