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Abstract

Large language models (LLMs) have demonstrated strong performance on struc-1

tured tasks such as mathematics and scientific problem-solving, but their role in2

open-ended discovery science remains limited by the difficulty of validating their3

complex reasoning. Here we introduce LLM Kernel, a framework that makes4

an LLM’s interpretation of data verifiable by prompting it to produce a quanti-5

tative similarity score directly linked to its qualitative reasoning trace. Applied6

to transcriptomics, an LLM kernel consistently outperforms standard numerical7

approaches in recovering known biological relationships, with performance im-8

proving as a function of compute. Ablation experiments show that performance9

depends on the model’s biological knowledge of gene identities rather than mere10

approximation of statistical correlations. Furthermore, the framework’s flexibility11

enables novel cross-modal comparisons: an LLM kernel can score the similarity12

between a natural language description of a disease and a numerical gene expres-13

sion profile to identify relevant therapeutic compounds. LLM Kernel provides a14

scalable approach to quantitatively benchmark model reasoning, representing a15

step towards auditable AI for scientific interpretation.16

1 Introduction17

Modern science produces large datasets that capture system-level measurements across many disci-18

plines, from physics and climate science to economics and biology. These datasets offer opportunities19

to investigate complex systems in their entirety, yet interpreting them remains a core challenge.20

Statistical methods are crucial for pattern identification but often reveal correlations without the21

mechanistic explanations necessary for testable hypotheses. The disconnect between data-driven22

pattern extraction and scientific understanding is a primary gap in discovery research.23

Among the many fields facing this challenge, biology stands out. Genomics, transcriptomics, and24

proteomics generate high-dimensional data that record how living systems operate. Interpreting these25

data requires connecting them with the large, unstructured body of biological knowledge to turn26

patterns into mechanistic insight.27

LLMs may be well-suited to assist in open-ended scientific discovery due to their training on28

broad human knowledge. While LLMs excel at solving math, coding, and information retrieval29

problems, their role in discovery research is less clear. A key challenge is validating their reasoning,30

or interpretations of data. As reasoning traces grow more complex, there is a need for scalable31

frameworks that assess the credibility of LLM outputs and connect them to empirical validation.32

To address this, we introduce LLM Kernel, a framework for measuring the quality of reasoning33

traces. Our approach prompts an LLM to score the similarity between two data samples, producing34

an artifact with two key components: a qualitative interpretation of the pairwise comparison and a35
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corresponding quantitative score that depends on the interpretation. The score can then be compared36

against intrinsic or extrinsic expectations of pairwise similarity to assess quality.37

We apply the LLM kernel to transcriptomics, where interpreting high-dimensional features is a central38

challenge. Transcriptomic data is well-suited for this approach because its feature labels—gene39

identities—encode biological knowledge that LLMs can directly interpret. Unlike traditional kernels,40

the LLM kernel incorporates context from feature labels, enabling analyses that go beyond purely41

statistical similarity measures.42

Our work builds on two lines of research: classical similarity metrics in statistics and emerging43

LLM-based approaches for scientific discovery. Traditional methods for comparing biological profiles44

use statistical measures like Pearson and Spearman correlation, cosine similarity, and other non-45

parametric approaches. In transcriptomics, a prominent example is the Connectivity Map, which46

applies a rank-based method to score similarity between gene expression signatures1,2. These47

similarity analyses support discovery by clustering samples for functional annotation and by ranking48

complementary profiles for drug repurposing3. However, such analyses are agnostic to biological49

mechanisms—they quantify statistical relationships without providing a biological rationale.50

Concurrently, the use of LLMs to automate scientific workflows is rapidly growing. In this emerging51

field, LLMs act as reasoning engines for tasks ranging from literature synthesis and experimental52

design to database mining and computational analysis4–8. Typically, multi-agent systems embed53

LLMs in environments with access to databases and computational tools, enabling end-to-end54

automated analysis.55

While automation promises to accelerate research, few systems have been rigorously benchmarked56

for the validity of their knowledge-based interpretations of biological data. Yet this is central to57

discovery science, where progress depends on generating explanations through integrated data58

interpretation9–11. A core challenge is that reasoning outputs are qualitative, making systematic59

validation difficult. Assessing the correctness and discovery value of a generated explanation can60

be as complex as the original scientific question. The LLM Kernel framework leverages pairwise61

relationships—often obtainable without full labels—to enable scalable validation of model reasoning.62

Each comparison yields a reasoning trace coupled to a verifiable score, providing a foundation for63

quantitative evaluation and novel similarity analyses.64

2 LLM Kernel framework65

We consider the general case of using an LLM to produce a scientific interpretation of input data.66

This data can take various forms depending on the application, including raw measurement data (e.g.,67

transcriptomics or other omics) and abstracted text descriptions of natural processes (e.g., mechanistic68

descriptions of disease biology). Typical usage of an LLM may provide a data sample, di, along with69

an appropriate prompt, p, and return a scientific interpretation, gi, of the data sample:70

gi = LLM(di, p)

However, directly evaluating such interpretations remains challenging. A common approach is to71

score LLM responses on multiple-choice scientific benchmarks such as ScienceQA, or to use LLMs72

themselves to rate the quality of free-text outputs12–14. While useful for quantifying the extent of73

prior knowledge learned by the LLM, these approaches only weakly convey credibility on novel74

scientific interpretation tasks. In contrast, human evaluation relies on experts to assess LLM outputs,75

scoring responses along multiple axes such as novelty and discovery value. These scores may inform76

real-world applications where LLM-generated interpretations help guide experimental decisions.77

However, human evaluation scales poorly and may fail to consistently recognize truly novel insights.78

LLM Kernel instead casts scientific interpretation as a comparative task in which an LLM is prompted79

to produce scientific interpretations along with a score, s, of the concordance between a pair of data80

samples:81

gij , sij = LLM(di, dj , p)

Such a pairwise score can be quantitatively compared to other information about the sample82

pair—including exogenous labels or statistical similarity metrics—providing a scalable, indirect83
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evaluation of the LLM’s interpretation that amounts to scoring consistency with known information.84

For instance, when comparing drug response data, LLM Kernel can quantify the extent to which the85

LLM’s interpretation concords with known shared drug mechanisms.86

This approach does not stipulate the specific content of an interpretation, making it a suitable87

tool for quantifying LLM performance without constraining interpretations to prior knowledge. It88

also yields per-interpretation scores, enabling direct comparison of interpretations for experimental89

decision-making. Lastly, pairwise comparison increases the effective number of evaluation samples90

in data-constrained domains.91

Figure 1: Overview of LLM Kernel and analysis methods. (A) Transcriptomes from perturbations
A and B are injected into a prompt requesting a quantitative similarity comparison of their features.
The reasoning trace is extracted, and the resulting similarity score is incorporated into a pairwise
similarity matrix. (B) Heatmaps of the LFC similarity matrix (left) and the LLM kernel similarity
matrix (right), with samples annotated by batch identity and compound treatment. Global and
local analyses are then applied to compare these matrices against intrinsic and extrinsic notions of
similarity.
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3 Results92

3.1 LLM Kernel improves upon numerical similarity scores as a function of compute93

We demonstrate that LLMs can reliably generate quantitative similarity scores between biological94

profiles. In our experimental setup, we prompt an LLM to score the similarity [-1, 1] of chemically95

perturbed gene expression profiles given a list of gene identities, differential expression log fold-96

changes (LFCs), and p-values (Fig. 1, Methods). These scores exhibit high self-consistency and a low97

frequency of failures (Fig. 1a, Fig. S1). Importantly, LLM-derived similarity scores align with and98

improve upon traditional numerical baseline measures of similarity. Using a drug response dataset99

designed to assess batch effects of the DRUG-seq assay across 14 transcriptionally diverse chemical100

perturbations, we observed concordance between LLM kernel scores and both (1) global patterns101

of original data (e.g., LFCs) and (2) local expected similarity structure (e.g., compound treatment102

labels)15. This concordance was quantified by Pearson correlation between LLM kernel scores and103

numerical similarity scores, with increased test-time computational budget improving alignment104

(Table 1, Fig. 2a, Methods). LLM kernel scores improved clustering quality, as measured by sample105

compound treatment labels. This improvement was especially notable at higher computational106

budgets, surpassing the baseline set by Spearman/Pearson correlations on the LFC data (Table 1,107

Fig. 2b, Methods). Finally, LLM kernel scores improved local similarity structure, as measured108

by neighborhood recall (Area Under Recall@k, AURecall@k) of sample annotations. Again, we109

observed improvements with increased computational budget (Table 1, Fig. 2c, Methods).110

3.2 LLM Kernel leverages prior biological knowledge for similarity scoring111

As previously noted, we observed that LLM kernel scores improved clustering quality over Spear-112

man/Pearson correlations as measured by true compound treatment labels, suggesting that the LLM113

leveraged biological prior knowledge in interpretation and scoring. To probe this further—and in114

particular to test whether the model was simply approximating conventional numerical methods—we115

conducted a series of ablation experiments. Our initial prompt explicitly requested reasoning about116

gene set and pathway overlap (numerical-prior) (Box S1, Methods). When we ablated gene identity,117

both Global Correlation and local expected similarity structures (Purity, ARI, AMI, AURecall@k)118

decreased (Table 2, Methods). This indicates that the model does not solely rely on internal ap-119

proximations of common numerical methods, such as simple gene list overlap, but rather integrates120

unstructured biological knowledge into its scoring mechanism. Under the numerical-prior prompt,121

removal of gene identity information resulted in a 9.01% performance drop in Global Correlation,122

suggesting that this component of the LLM kernel score is attributable to biological knowledge123

captured by the model (Table 2).124

Further probing revealed that the model performs a directional comparison of LFC magnitudes rather125

than a simple overlap analysis of gene feature labels. We ablated directional information of the LFCs,126

A B C

Figure 2: Global and local similarity analyses. Comparative evaluation of LFC similarity matrices
(Pearson and Spearman) and LLM kernel similarity matrices across reasoning compute budgets.
Budgets were sampled more densely at the lower end of the range to capture steeper performance
changes. (A) Pearson correlation with Pearson similarity (p = 1.48× 10−5) and Spearman similarity
(p = 3.69× 10−5). (B) Clustering metrics: Purity, Adjusted Rand Index (ARI), and Adjusted Mutual
Information (AMI). (C) Retrieval metric: Area Under the Recall@k curve (AURecall@k). All values
are reported as mean ± standard error of the mean (SEM) (n= 5).
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Table 1: LLM Kernel performance. Global Correlation measures the Pearson correlation between
each method and the Pearson LFC similarity matrix. For Purity, ARI, AMI and AURecall@k, a
one-sample t-test tests whether the LLM kernel (numerical) method differs significantly from baseline
methods (Pearson and Spearman). All LLM kernel results are computed under a fixed budget of 6144,
and metrics are reported as the mean ± SEM (n=5). Bold indicates the best performing method.
Significance levels: * 10−2 < p ≤ 5× 10−2; ** 10−3 < p ≤ 10−2; *** 10−4 < p ≤ 10−3; ****
p ≤ 10−4.

Method Global Corr. Purity ARI AMI AURecall@k

LLM kernel (numerical) 0.61± 0.01∗∗∗ 0.86± 0.02 0.75± 0.03 0.83± 0.02 0.96± 0.00
Pearson 1.00 0.81∗ 0.69 0.81 0.93∗∗∗

Spearman 0.93∗∗∗∗ 0.81∗ 0.65∗ 0.80 0.92∗∗∗

Table 2: LLM Kernel ablation results. Global Correlation measures the Pearson correlation between
each ablation method and the Pearson LFC similarity matrix. For Purity, ARI, AMI and AURecall@k,
an independent two-sample t-test tests whether ablation methods differ significantly from the LLM
kernel (numerical) method. All LLM kernel results are computed under a fixed budget of 6144,
and metrics are reported as the mean ± SEM (n=5). Bold indicates the best performing method.
Significance levels: * 10−2 < p ≤ 5× 10−2; ** 10−3 < p ≤ 10−2; *** 10−4 < p ≤ 10−3; ****
p ≤ 10−4.

Method Global Corr. Purity ARI AMI AURecall@k

LLM kernel (numerical) 0.61± 0.01∗∗∗ 0.86± 0.02 0.75± 0.03 0.83± 0.02 0.96± 0.00
Gene ID ablation 0.56 ± 0.01∗∗∗ 0.79 ± 0.01∗∗ 0.64 ± 0.03∗ 0.73 ± 0.03∗ 0.94 ± 0.00∗∗∗

Direction ablation 0.42 ± 0.01∗∗∗ 0.71 ± 0.01∗∗∗ 0.43 ± 0.02∗∗∗ 0.55 ± 0.03∗∗∗ 0.89 ± 0.00∗∗∗

Gene shuffle ablation 0.00 ± 0.01∗∗∗ 0.66 ± 0.03∗∗∗ 0.39 ± 0.03∗∗∗ 0.48 ± 0.04∗∗∗ 0.85 ± 0.01∗∗∗

and found performance fell further, providing evidence that the method employs directional logic127

crucial for discerning compensatory or additive biological effects (Table 2, Methods).128

To test whether the model relied on superficial heuristics—such as noticing that some genes have129

large effect sizes, without knowing which genes they are—we shuffled the association between gene130

identity and numerical values. This preserved the overall distribution of values but broke the link131

between each gene and its true effect. The model’s performance completely collapsed after shuffling,132

indicating that it relies on correctly associating specific genes with their statistical importance (Table133

2, Methods).134

3.3 LLM Kernel adapts to different notions of similarity based on natural language priors135

The LLM kernel can reflect diverse notions of similarity by incorporating different prompts that136

induce varying priors. We modified the original, numerical-prior prompt to one that focused on137

interpreting functional and causal information about genes and biological processes (functional-prior)138

to score sample similarity (Box S2, Methods). We created an artificial challenge task by simulating139

strong batch effects between compound sample replicates in the DRUG-seq calibration dataset (Fig.140

S3a, Methods). We observed that under strong simulated batch effects, the numerical-prior prompt141

offered a slight improvement over baseline approaches. In contrast, the functional-prior prompt142

demonstrated substantial improvement over both baseline and numerical-prior approaches (Fig. 3a,143

Fig. S3b,c). We further hypothesized that the functional-prior prompt may strongly rely on biological144

priors associated with gene identities. To test this, we again performed a gene ID ablation analysis,145

finding a significant reduction in expected similarity scores (Fig. 3a, Fig. S3b,c). Across local146

similarity metrics, ablation reduced the performance of the numerical-prior prompt by an average of147

24.6%, while the functional-prior prompt showed a larger average decrease of 37.7%. An example148

functional-prior reasoning trace can be found in Box S3.149

3.4 LLM Kernel enables cross-modal similarity scoring150

Given that natural language is used to induce an LLM kernel, we hypothesized that this method151

could score similarity between different modalities, a novel capability beyond standard numerical152
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Figure 3: LLM Kernel enables flexible notions of similarity and cross-modal comparisons.
(A) Local similarity structure analysis of batch-simulated transcriptomic data. LFC-based similarity
matrices (Spearman and Pearson correlations) and LLM kernel similarity matrices generated using
a numerical-prior prompt, a functional-prior prompt, and each prompt under gene ID ablation.
(B) Evaluation of average precision for inverse ranking of positive control drug transcriptomes
against matched textual disease descriptions. LLM kernel (functional) similarity scores vs. random
expectation in recovering known drug–disease relationships (**** p ≤ 10−4).

approaches. To demonstrate this, we selected 20 diseases with a strong genetic basis and identified153

relevant approved or investigational drugs (Table S1, Methods). We generated text-based disease154

signatures, detailing the functional basis and hypothesized transcriptome changes for each disease.155

We then scored the similarity between these textual disease signatures and the transcriptome profiles156

of chemical perturbations from positive control drugs and random compounds (Methods). Our157

hypothesis was that drugs approved for a specific disease would show a complementary (low)158

similarity score, similar to using negative cosine similarity in transcriptomic screens to identify159

compounds that induce complementary transcriptomic profiles3. Our results showed that the average160

precision for ranking drugs across the 20 diseases was significantly higher than random (Fig. 3b).161

This indicates a non-random retrieval of positive control compounds for their corresponding diseases,162

highlighting a novel capability of cross-modal similarity scoring unique to LLM kernels.163

4 Discussion164

In this work, we present a method for quantitatively evaluating the reasoning trace of LLMs, address-165

ing a challenge in benchmarking LLMs for scientific interpretation. LLM Kernel prompts an LLM to166

perform a pairwise comparison between samples and assign a quantitative similarity score. Applied167

to transcriptomic data, these scores capture a notion of similarity informed by biological knowledge,168

complementing purely statistical measures.169

Our ablation studies support this conclusion. The significant decrease in performance when gene170

identities are removed indicates the model leverages knowledge of gene function and pathway171

relationships to inform scoring, rather than simply approximating statistical patterns. In our cross-172

modal experiment, the model compared natural language disease descriptions with gene expression173

profiles—a task requiring both modalities to be mapped into a shared functional representation. This174

native multimodality is a feature of the underlying LLM, differing from prior cross-modal approaches175

that require custom architectures to bridge data types. These results suggest the LLM kernel functions176

by comparing latent representations of biological concepts learned from its training data.177

We applied LLM Kernel to evaluate reasoning in a simple, single-step paradigm and found reliable178

gains in similarity scoring performance as a function of compute, suggesting that the quality of179

the biological interpretation is tunable. Future work could extend this approach to more complex180

reasoning pipelines or multi-agent systems.181
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This framework has several limitations. Language model-based pairwise comparison introduces182

significant computational costs, making it more resource-intensive than standard numerical methods.183

Our cross-modal experiment tested a curated list of 20 genetically driven malignancies, pre-filtered184

for strong molecular bases. Performance will likely differ when applied to more complex, polygenic185

diseases with less distinct molecular phenotypes. Input prompt structure may also shape interpretation:186

although we used shuffled gene lists to avoid ordering bias, the overall prompt and data formatting187

may influence outputs16. Interestingly, our functional-prior kernel results highlight that sensitivity to188

prompt design may be a desirable feature, as it suggests prompt tuning provides an effective means to189

induce diverse notions of similarity.190

While interpretations partially externalize model logic, our experiments do not distinguish whether191

quantitative scores arise directly from the input data, from subsequent reasoning tokens, or from a192

combination of both. Our finding that similarity scores degrade under compute constraints suggests193

a dependence on compute volume, rather than a direct link between interpretation quality and194

performance. Understanding the relationship between compute volume and the quality of reasoning195

content remains a central question in NLP research, and our framework may provide a means to196

explore this in future work.197

Several areas should be prioritized for further work. First, the framework’s generalizability as a198

validation tool should be tested by extending it to other data modalities and scientific disciplines.199

Second, the validated reasoning traces themselves could be used as rich, structured features for aug-200

menting human scientific interpretation or for downstream algorithmic learning. Finally, automated201

prompt optimization could be explored to create specialized kernels fine-tuned to assess specific202

types of biological reasoning, such as causality or compensatory pathway activation. In conclusion,203

LLM Kernel offers a framework for extracting knowledge-based similarity scores and quantitatively204

benchmarking LLM-based interpretations of data.205
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5 Methods289

5.1 Data sources290

5.1.1 DRUG-seq calibration dataset291

A publicly available dataset designed to evaluate DRUG-seq assay reproducibility was utilized.292

DRUG-seq is a high-throughput transcriptomic profiling method for measuring gene expression293

changes induced by small molecules or drugs in cells17. The original dataset was generated from294

nine 384-well plates, comprising three independent batches of U2OS cells plated on different295

days, with three replicate plates per batch15. Each plate was treated with 14 compounds across296

an eight-point dose response (3.2 nM to 10µM), with three replicates per dose. The original297

experiment demonstrated strong assay fidelity across batches and plates (Fig. 1a). Differential298

expression scores and corresponding statistics were generated for drug treatment samples using the299

publicly available analysis pipeline (https://github.com/Novartis/DRUG-seq/tree/main/300

data/Novartis_drugseq_U2OS_MoABox). For downstream analysis, 3.16µM treatment samples301

of all 14 compounds across three batches were used, yielding three replicates per compound treatment.302

5.1.2 Simulated batch effect DRUG-seq calibration dataset303

To benchmark the robustness of LLM kernels against technical confounding, synthetic batch effects304

were introduced into the DRUG-seq calibration dataset. This evaluated the sensitivity of LLM305

kernel scoring to systematic numerical biases by simulating realistic batch effects that degrade306

transcriptome signal fidelity. A two-component simulation model was developed to reflect both307

global and gene-specific sources of batch-induced variation:308

1. Systematic shift (Bi): A scalar offset applied uniformly to the full transcriptome vector of309

all samples in batch i, representing global technical variation (e.g., plate effects, reagent lot310

differences).311

2. Sparse gene-specific shift (Gij): Random offsets applied to a subset of genes within batch312

i, modeling heterogeneous gene-level sensitivity to batch-specific conditions.313

The model was parameterized as follows. For each batch i, the systematic shift was drawn as314

Bi ∼ N (0, 32) and applied uniformly across all genes in that batch. Gene-specific effects were315

specified by an indicator variable Zj ∼ Bernoulli(0.4), denoting whether gene j was affected. For316

each gene j in batch i, the shift was then drawn as Gij ∼ Zj · N (0, 1.52).317

These parameters were chosen to introduce strong yet biologically plausible confounding while318

maintaining interpretability. Original experimental batches defined batch identities. The noised LFC319

matrix was normalized by dividing each value by the batch effect strength (σ = 3). This post hoc320

rescaling ensured that the overall dynamic range of the data remained comparable to the original321

dataset, facilitating downstream comparisons ( Fig. S3a).322

5.1.3 NIBR MoA Box dataset323

We used the Novartis Institutes for BioMedical Research (NIBR) Mechanism-of-Action (MoA) Box324

dataset, a large, high-quality, publicly available DRUG-seq resource, for cross-modal comparisons325

between textual disease descriptions and perturbation transcriptomes18. The dataset comprises 4,755326

compounds curated for strong target annotation, broad target diversity and specificity, low redundancy,327

and overall bioactivity. Raw count files were reprocessed using an internal RNA-seq analysis pipeline.328

5.1.4 ChEMBL indications and compounds329

MoA Box compounds were mapped to disease indications for cross-modal LLM kernel similarity330

scoring. ChEMBL (v33) compound structures, indications (MeSH terms), and maximum approval331

phase were extracted. MoA Box compound structures were aligned to corresponding ChEMBL332

compounds with associated indications, and compound–indication pairs were filtered to those with333

maximum approval phase ≥ 3. The resulting set of unique indications (n = 574) was provided to334

a language model (Google Gemini Flash 2.5), which was prompted to identify genetically driven335

malignancies. This process yielded 20 indications with a strong molecular basis for disease ( Table S1).336
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We focused on genetically driven malignancies because many reference indications were broad (e.g.,337

Postoperative Nausea and Vomiting, Burns, Smoking Cessation) or represented complex diseases338

lacking clear molecular phenotypes.339

5.2 LLM kernel methods340

5.2.1 Data preprocessing341

For each sample, differentially expressed genes (DEG) were filtered to those with a false discovery342

rate (FDR) adjusted p-value < 0.05 and an absolute log2 fold change (LFC) value ≥ 0.5. The DEG343

vector was then sorted in descending order by absolute LFC, and a maximum of the top 1000 genes344

were selected.345

Each DEG vector was randomly shuffled, and a list containing the HGNC gene symbol, LFC, and346

FDR-adjusted p-value was injected into the prompt for each perturbation {A,B} in a tuple format:347

[(HGNC_symbol, log2_fold_change, FDR), ...]. This method resulted in variable-length348

lists up to 1000 genes, with ordering independent of DEG effect size.349

5.2.2 Numerical-prior prompt350

A prompt was designed to instruct the LLM to compare the similarity of two transcriptomic vectors.351

This prompt requested independent interpretations of both perturbations, a similarity analysis of352

the perturbations, and a similarity score in the range [−1, 1] ( Box S1). A structured output was353

implemented to capture each component of the response.354

For individual perturbation analysis, the requested outputs were:355

• reasoning: str356

• key_genes: list357

• affected_pathways: list358

• biological_impact: str359

For similarity analysis, the requested outputs were:360

• overlapping_genes: list361

• overlapping_pathways: list362

• similarity_reasoning: str363

• similarity_score: float, [−1, 1]364

This numerical-prior prompt biased the response towards direct consideration of key genes, pathways,365

and their explicit overlap between perturbations. Models gemini-2.5-flash-preview-05-20 or366

gemini-2.5-flash were queried via Google Vertex API under default settings, with maximum367

thinking budget modified as appropriate for experiments via the thinkingBudget API parameter.368

5.2.3 Functional-prior prompt369

A secondary prompt was designed to assess functional similarity between transcriptome vectors,370

emphasizing mechanistic interpretation rather than gene extraction and overlap reasoning in the371

comparison ( Box S2). For each perturbation, the model was prompted to infer upstream drivers372

(identify likely direct and secondary targets explaining expression changes), characterize downstream373

effects (map affected biological pathways and cellular processes), and assess mechanistic similarity374

(compare causal mechanisms, functional concordance, and pathway-level effects). A structured375

output was implemented to capture each component of the response.376

For individual perturbation analysis, the requested outputs were:377

• primary_targets: list378

• secondary_targets: list379

• upstream_regulators: list380
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• affected_pathways: list381

• functional_themes: list382

• causal_reasoning: str383

For similarity analysis, the requested outputs were:384

• shared_targets: list385

• shared_functional_themes: list386

• mechanistic_comparison: str387

• similarity_score: float [-1, 1]388

Models gemini-2.5-flash-preview-05-20 or gemini-2.5-flash were queried via Google389

Vertex API under default settings, with maximum thinking budget modified as appropriate for390

experiments.391

5.3 Data postprocessing392

5.3.1 Baseline similarity scores393

Spearman and Pearson correlation coefficients were computed between preprocessed DEG vectors us-394

ing pandas.DataFrame.corr(). Undefined sample comparisons (i.e., samples with no overlapping395

gene set) were imputed with 0.396

5.3.2 LLM Kernel scores397

Each perturbation pair {A,B} was tested once, with randomized order in the LLM query. Up to398

three attempts were made to retrieve a valid API response; nonetheless, a nonzero failure rate was399

observed in each experiment ( Fig. S1c). Failures typically occurred when responses exceeded the400

maximum token limit before completing the structured output. The LLM kernel score was extracted401

from each successful response, and a symmetric similarity matrix was constructed. For failed queries,402

similarity scores were imputed as 0, except for self-scored pairs {A,A}, where diagonal elements403

were set to 1 following self-consistency analysis.404

5.3.3 Self-consistency analysis405

Two self-consistency metrics were computed to assess whether each method preserved the property406

that samples should have perfect similarity with themselves ( Fig. S1a,b). Hard self-consistency407

was defined as the proportion of diagonal elements in the similarity matrix equal to 1.0. Soft self-408

consistency was defined as the average value of diagonal elements (excluding failed comparisons).409

For both metrics, a value of 1.0 corresponds to perfect self-consistency. These measures served as410

quality control, with lower values indicating potential systematic biases or methodological issues in411

similarity matrix generation.412

5.3.4 Hierarchical clustering413

Agglomerative hierarchical clustering was applied to the processed data matrix to identify groups414

of similar samples. Pairwise Euclidean distances between rows of the matrix were computed using415

the pdist function from SciPy. These distances were provided as input to the linkage function416

with Ward’s method, which iteratively merged clusters to minimize total within-cluster variance. The417

resulting linkage matrix captured the hierarchical structure of the data and was used for dendrogram418

visualization and cluster analysis.419

5.4 Statistical analysis420

5.4.1 Global Correlation421

To assess global agreement between similarity matrices, we extracted the upper triangles from both422

the baseline LFC similarity matrix (computed using Pearson or Spearman correlation) and the LLM423

kernel similarity matrix. The Pearson correlation coefficient was then calculated between these two424

upper triangles to quantify overall concordance.425
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5.4.2 Local clustering analysis: Purity, ARI, AMI426

Hierarchical clustering was performed to group samples by compound treatment, with an expected427

outcome of 14 clusters (each containing 3 replicates, corresponding to the 14 compounds). The428

fcluster function from SciPy, with the maxclust criterion, was applied to the linkage matrix429

(derived from the similarity matrix) to assign samples to clusters.430

Clustering quality was evaluated using three complementary metrics:431

Purity Measures the extent to which clusters align with ground-truth labels. For each cluster, the432

most frequent true label is identified, these maximum counts are summed across clusters, and the433

total is normalized by the number of samples. Values range from 0 to 1, with higher scores indicating434

better alignment.435

Adjusted Rand Index (ARI) Quantifies the agreement between clustering assignments and true la-436

bels, corrected for chance. ARI ranges from −1 to 1, with 0 indicating agreement at the level expected437

by chance, and higher values signifying stronger agreement (implemented in scikit-learn).438

Adjusted Mutual Information (AMI) Captures the mutual information between clustering assign-439

ments and true labels, adjusted for chance. AMI ranges from −1 to 1, with 0 indicating agreement440

at the level expected by chance, and higher values signifying stronger agreement (implemented in441

scikit-learn).442

Across all three metrics, higher values indicate superior clustering performance of compound treat-443

ment groups.444

5.4.3 Local neighborhood analysis: AURecall@k445

To evaluate how well a similarity matrix preserves replicate sample relationships, we computed446

recall@k metrics. For each sample, its k-nearest neighbors were identified from the similarity matrix447

and compared to the expected set of replicates. The recall@k score was defined as the proportion448

of expected replicates recovered among the k-nearest neighbors, averaged across samples. Scores449

were calculated for k = 1, . . . , 42, and the area under the recall@k curve (AURecall@k) was then450

computed as a comprehensive summary measure. Higher values indicate that replicate samples from451

the same compound treatment are more frequently identified as nearest neighbors, reflecting better452

preservation of expected local structure in the similarity matrix.453

5.5 Ablation experiments454

Gene ID ablation HGNC symbols were replaced with standardized random identi-455

fiers (e.g., GENE_001, GENE_002). This mapping was fixed across all samples so456

that each gene maintained the same masked ID. For example, input data appeared as:457

[(GENE_678, log2_fold_change, FDR), ...].458

Direction ablation Directional information was removed by taking the absolute values of log2459

fold-change (LFC) values before injection into the LLM kernel.460

Gene shuffle ablation The relationship between gene identity and statistics was disrupted by461

randomly shuffling HGNC symbols relative to their corresponding LFC and adjusted p-values.462

Shuffling was performed independently for each sample, ensuring that the overall set of gene463

identities and statistics was preserved but their associations were randomized.464

5.5.1 Analysis465

For each ablation and baseline method, a similarity matrix was computed. LLM kernel methods and466

their ablations were run in triplicate, each with a thinking budget of 6144.467

Global Correlation Pearson correlation was calculated between each method’s similarity matrix468

and a reference Pearson correlation similarity matrix. Global correlations were compared to the469

Pearson LFC similarity matrix using a Student’s t-test.470
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Local similarity Clustering and retrieval metrics—Purity, ARI, AMI, and AURecall@k—were471

computed. Each method’s scores were compared against the numerical LLM kernel baseline using a472

Student’s t-test.473

Code availability The LLM kernel method is available at [anonymized].474

A Supplementary Material475

A.1 Supplementary Figures476

Figure S1: LLM Kernel response success metrics. (A) Hard self-consistency, (B) soft self-
consistency, and (C) response failure rate across thinking budgets.

A.2 Supplementary Tables477

Table S1: Genetic driven malignancies. Indications queried for cross-modal LLM kernel similarity
scoring (n=20).

Disease
Leukemia, Myelogenous, Chronic, BCR-ABL Positive
Leukemia, Lymphocytic, Chronic, B-Cell
Leukemia, Myeloid, Acute
Leukemia, Promyelocytic, Acute
Lymphoma, Mantle-Cell
Lymphoma, Follicular
Lymphoma, Large B-Cell, Diffuse
Lymphoma, T-Cell, Peripheral
Multiple Myeloma
Carcinoma, Non-Small-Cell Lung
Breast Neoplasms
Melanoma
Astrocytoma
Carcinoma, Renal Cell
Wilms Tumor
Neuroendocrine Tumors
Adenocarcinoma
Myelodysplastic Syndromes
Lymphoma, Non-Hodgkin
Leukemia, Mast-Cell
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Figure S2: Batch-simulated DRUG-seq dataset analysis. (A) Heatmaps of batch-simulated dataset
LFC similarity matrix (left) and LLM kernel similarity matrix (right) with samples annotated by batch
identity and compound treatment. (B) Recall@k lineplot and (C) AURecall@k barplot for LFC-based
similarity matrices (Spearman and Pearson correlations) compared to LLM kernel similarity matrices
generated using a numerical-prior prompt, a functional-prior prompt, each prompt under gene ID
ablation, and random expectation (0.5).

A.3 Supplementary Boxes478

479

Numerical-prior prompt

You are a scientist analyzing RNA -seq data to compare the biological impact of
two perturbations.

Each perturbation alters the expression of genes , which in turn affects broader
biological pathways , transcriptional programs , or regulatory modules.
However , not all perturbations have strong or clear biological effects.

You are given the output of differential expression analyses (from limma) for
each perturbation. These are lists of significantly affected genes (FDR <=
0.05) , along with their log2 fold changes (abs(LFC) >= 0.5). The lists are
unordered and vary in length:

Perturbation A: [( HGNC_symbol , log2_fold_change , fdr), ...]
Perturbation B: [( HGNC_symbol , log2_fold_change , fdr), ...]

Your task is to analyze these perturbations and provide:

1. Analysis of Perturbation A:
- Reasoning about the biological impact , considering:

* Direction and magnitude of gene expression changes
* Key genes affected and their biological functions

480
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* Affected pathways and regulatory modules
* Overall biological impact summary

- If the changes are minimal or unclear , explicitly state this
- If the biological significance is uncertain , acknowledge this uncertainty
- Key genes affected (list of gene symbols)
- Affected pathways (list of pathway names)
- Biological impact (detailed summary , including any limitations or

uncertainties)

2. Analysis of Perturbation B:
- Reasoning about the biological impact , considering:

* Direction and magnitude of gene expression changes
* Key genes affected and their biological functions
* Affected pathways and regulatory modules
* Overall biological impact summary

- If the changes are minimal or unclear , explicitly state this
- If the biological significance is uncertain , acknowledge this uncertainty
- Key genes affected (list of gene symbols)
- Affected pathways (list of pathway names)
- Biological impact (detailed summary , including any limitations or

uncertainties)

3. Similarity Analysis:
- Reasoning about how the perturbations are similar or different , considering:

* Genes changing in the same direction contribute to positive similarity
* Genes changing in opposite directions contribute to negative similarity
* Magnitude of changes affects the strength of the similarity
* Overall pattern of gene expression changes
* Both shared and unique changes in each perturbation
* Relative magnitudes of changes

- If either perturbation has minimal effects , this should be reflected in the
similarity score

- If the biological significance is unclear , the similarity score should be more
conservative

Guidelines for scoring:
- 1.0: Perfect positive correlation (identical changes in same direction)
- 0.5 -0.9: Strong positive correlation (many shared changes in same direction)
- 0.0 -0.4: Weak positive correlation (some shared changes but many differences)
- 0.0: No correlation (no overlapping genes , unrelated effects , or minimal

effects)
- -0.4 -0.0: Weak negative correlation (some changes in opposite directions)
- -0.9--0.5: Strong negative correlation (many changes in opposite directions)
- -1.0: Perfect negative correlation (identical changes in opposite directions)

Important guidelines:
1. If the biological functions of the affected genes are completely unrelated ,

the similarity score should be 0.0
2. If either perturbation has minimal or unclear effects , the similarity score

should be more conservative
3. When in doubt about the biological significance , err on the side of caution
4. Do not overinterpret small or unclear changes
5. Explicitly acknowledge when the biological impact is uncertain or minimal

Perturbation A: {pert_a}
Perturbation B: {pert_b}

481

Box S1: Numerical-prior prompt. Direct prompt input with reference variables (pert_a, pert_b).482

Functional-prior prompt

You are a systems biologist analyzing RNA -seq data to infer the mechanistic
impact of two perturbations.

Each perturbation causes differential gene expression , which reflects the
engagement of upstream targets and regulatory pathways. These responses may
be caused by a single molecular interaction or multiple targets , especially
in the case of small molecules with polypharmacology.

You are provided with the results of differential expression analyses (from
limma) for each perturbation. These are lists of significantly affected
genes , filtered by:

- FDR <= 0.05
- Absolute log2 fold change >= 0.5

483
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Format:
Perturbation A: [( HGNC_symbol , log2_fold_change , FDR), ...]
Perturbation B: [( HGNC_symbol , log2_fold_change , FDR), ...]

Your task is to reason about the ** mechanistic drivers ** of the observed
responses and provide a structured biological interpretation for each
perturbation , ultimately to score the functional similarity between the two
perturbations. Do not score merely based on the overlap of genes , or the
magnitude of the log2 fold changes , as there may be experimental noise in
the data.

-----------------------------------------------------
1. Mechanistic Analysis of Perturbation A:
- Consider the ** upstream causes ** of the observed expression changes , including:

* Likely ** direct targets ** (e.g., enzymes , receptors , transcription factors),
which may be modulated by the perturbation

* Potential ** secondary targets**, consistent with a polypharmacology profile
* Engagement of known ** regulatory networks**, signaling cascades , or

transcriptional programs
- Describe the ** downstream consequences ** reflected in the gene expression

profile , including:
* Key affected pathways or cellular processes
* Overall biological theme (e.g., ER stress , apoptosis , metabolic

reprogramming)
- Acknowledge uncertainty if the target or causal mechanism is unclear
- Output:

* Hypothesized direct targets: [list of gene/protein names]
* Affected biological systems: [list of pathway names or processes]
* Mechanistic summary: [paragraph with causal reasoning]

2. Mechanistic Analysis of Perturbation B:
- Use the same structure and reasoning as above

-----------------------------------------------------
3. Comparative Mechanistic Similarity:
- Compare the ** causal mechanisms and biological programs ** engaged by

perturbations A and B
- Consider:

* Do they affect similar pathways or cellular systems?
* Are the ** likely targets ** overlapping or distinct?
* Are the observed effects ** functionally concordant **, ** opposing**, or

unrelated?
* Could they result from ** shared upstream regulators ** or ** distinct

mechanisms converging on the same output **?

- Avoid scoring based on gene -level overlap or log2 fold change magnitude
- Prioritize ** biological reasoning ** about mechanistic similarity
- If either perturbation ’s mechanism is unclear or biologically diffuse , use a

conservative score

- Output:
* Mechanistic comparison: [paragraph]
* Functional similarity score: [float from -1.0 to 1.0]
* Justification: [paragraph]

-----------------------------------------------------
Scoring Guidelines:
- +1.0: Identical mechanisms and downstream programs
- +0.5 to +0.9: Strongly similar causal programs or affected pathways
- 0.0 to +0.4: Partial or unclear overlap in mechanisms or systems
- 0.0: Distinct or ambiguous biological mechanisms
- -0.4 to -0.0: Opposing effects on shared pathways
- -0.9 to -0.5: Strong inverse regulation of common biological systems
- -1.0: Identical programs activated in opposite directions

Evaluation principles:
1. Focus on ** causal reasoning**, not just expression magnitude or overlap
2. There may be experimental noise in the data , so do not overinterpret the

numerical values of log2 fold changes
3. Explicitly identify and interpret ** candidate upstream drivers **
4. Acknowledge and accommodate the possibility of ** polypharmacology **
5. Do not overinterpret weak or diffuse transcriptional signals
6. Be conservative in scoring when uncertainty is high

-----------------------------------------------------
Perturbation A: {pert_a}
Perturbation B: {pert_b}

484
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Box S2: Functional-prior prompt. Direct prompt input with reference variables (pert_a, pert_b).485

Example functional-prior reasoning trace

"response ": {
"pert_a ": {

"primary_targets ": [],
"secondary_targets ": [],
"upstream_regulators ": [

"Integrated Stress Response",
"Wnt signaling pathway",
"Cell cycle regulators"

],
"affected_pathways ": [

"Integrated Stress Response",
"ER Stress",
"Wnt signaling pathway",
"Cell cycle regulation",
"Lipid metabolism",
"Extracellular matrix organization",
"Muscle structure and function"

],
"functional_themes ": [

"Cellular Stress (ER/ISR)",
"Anti -proliferative effects",
"Tissue remodeling",
"Altered cytoskeletal dynamics"

],
"causal_reasoning ": "Perturbation A induces a cellular stress response ,

evidenced by the upregulation of key Integrated Stress Response
(ISR) and ER stress markers such as DDIT3 (CHOP), SESN2 , NUPR1 , and
CHAC1. Paradoxically , ATF4 , a central ISR transcription factor , is
downregulated , suggesting a complex or perhaps a distinct branch of
the stress response , or an intricate interplay with other affected
pathways. Beyond stress , there ’s a prominent downregulation of genes
involved in Wnt signaling (WNT5B , FZD7), suggesting an inhibition of
this pathway , and a broad suppression of cell cycle components
(e.g., MCM6 , ORC4 , KIF20A , CENPF), indicating anti -proliferative
effects. Genes related to muscle structure (DYSF , TNNT1 , TNNT2 ,
TPM1) and extracellular matrix organization (COL4A2 , CTGF , SERPINE1)
are also significantly downregulated , pointing towards tissue
remodeling or altered cellular adhesion. Upregulation of specific
keratin family members (KRT17 , KRT75) and certain lncRNAs (SNHG1 ,
SNHG15 , SNHG6) further characterize the cellular adaptation to this
perturbation. While direct molecular targets are not explicit from
this data , the overall profile suggests a perturbation that broadly
impacts cellular homeostasis , possibly by inducing proteotoxic
stress , leading to a coordinated cellular response involving stress
pathways , cell cycle inhibition , and changes in structural
components ."

},
"pert_b ": {

"primary_targets ": [],
"secondary_targets ": [],
"upstream_regulators ": [

"Integrated Stress Response",
"ER Stress"

],
"affected_pathways ": [

"Integrated Stress Response",
"ER Stress",
"Protein unfolding and degradation",
"Metabolic reprogramming (gluconeogenesis)",
"Cell cycle progression",
"Extracellular matrix remodeling"

],
"functional_themes ": [

"Severe Cellular Stress (ER/Proteotoxic Stress)",
"Metabolic Adaptation",
"Increased cell proliferation/growth signaling"

],
"causal_reasoning ": "Perturbation B elicits a remarkably strong and

canonical Integrated Stress Response (ISR) and ER stress signature.
This is overwhelmingly evident from the highly significant
upregulation of multiple core ISR genes , including PPP1R15A
(GADD34), DDIT3 (CHOP), GADD45B , ATF4P3 , TRIB3 , and TXNIP. PPP1R15A ,
in particular , is a potent hallmark of an active ISR , involved in

486
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the dephosphorylation of eIF2\u03b1 and translational recovery
following stress. The coordinated induction of these factors points
to a severe disruption of protein folding or ER homeostasis.
Concurrently , genes involved in metabolic adaptation , such as PCK2
(gluconeogenesis) and SLC2A3 (glucose transport), are upregulated ,
suggesting metabolic reprogramming in response to the stress.
Upregulation of MMP3 indicates extracellular matrix remodeling ,
often a component of stress or repair responses. Multiple Small
Nucleolar Host Genes (SNHG1 , SNHG6 , SNHG15 , SNHG17) are also
consistently upregulated , indicating changes in RNA processing.
While direct molecular targets cannot be determined solely from this
transcriptomic data , the observed gene expression profile strongly
implicates a perturbation that severely challenges cellular
proteostasis and activates a robust ER stress response , leading to
downstream metabolic and structural adaptations ."

},
"shared_targets ": [],
"shared_regulators ": [

"Integrated Stress Response",
"ER Stress pathway"
],
"shared_functional_themes ": [
"Cellular Stress Response"
],

"mechanistic_comparison ": "Both Perturbation A and Perturbation B induce a
significant cellular stress response , with the upregulation of DDIT3
being a common and strong indicator of Integrated Stress Response (ISR)
activation in both cases. Both also show consistent upregulation of
several SNHG family lncRNAs (SNHG1 , SNHG6 , SNHG15), SLC2A3 , PEX16 ,
RPL32P29 , KHK , SLC12A7 , and XAGE5. However , while the overarching theme
of ’cellular stress ’ is shared , the specific molecular signatures and
downstream consequences diverge significantly. Perturbation B presents a
more robust and canonical ISR profile , characterized by the strong
induction of PPP1R15A , GADD45B , ATF4P3 , TRIB3 , and TXNIP. In contrast ,
Perturbation A exhibits a more complex and mixed stress signature ,
notably with a downregulation of ATF4 , and additional widespread effects
on cell cycle inhibition , Wnt signaling suppression , and muscle/ECM
components. A substantial number of genes involved in stress ,
metabolism , and cellular function are regulated in *opposite directions*
between the two perturbations (e.g., GLRX , TM7SF2 , ABTB1 , C6orf48 , EMC9 ,
HDAC5 , FOXO6 , WIPI1 , RASA3 , YPEL3 , MMP3 , DYSF , CTGF , CCL3L3 , TCF19 ,
LA16c -83 F12.6, ADCK3). This indicates that while both perturbations
ultimately lead to cellular stress , their initial mechanistic triggers
or the specific adaptive pathways engaged are largely distinct ,
resulting in functionally divergent downstream responses beyond the
common core stress pathway.",

"similarity_score ": 0.4
}
"thoughts ": "Alright , let ’s get this done. I’ve been given RNA -seq data for two

perturbations , A and B, and I need to dive deep into their systems biology
implications. My task is to analyze each one separately , looking for key
targets , upstream regulators , affected pathways , and functional themes , and
then compare them to assess their similarity. I’ve got a checklist to
follow , and a high confidence score , so let ’s get started.

First , Perturbation A. I’ll start by sifting through the differentially expressed
genes , focusing on those with the most significant changes in expression.
I’m looking for the big hitters \u2013 genes that are strongly up- or
downregulated. Immediately , I’m noting things like the downregulation of
DYSF , WNT5B , and MYEOV , and upregulation of keratin genes like KRT17 and
KRT75. From this gene list , I can see a pattern beginning to emerge: it
seems that Perturbation A might be interfering with the ER, along with
suppressing the Wnt pathway and cell cycle activity. The upregulation of ER
stress -related genes like DDIT3 , CHAC1 , and SESN2 , alongside the
downregulation of cell cycle components and muscle -related genes , is a clear
indication of stress and possible interference with cellular processes. My
hypothesis is that it’s an activation of the ISR.

Moving on to Perturbation B, the analysis will follow the same rigorous approach.
Scanning the data , I immediately see a significant upregulation of PPP1R15A ,
a key player in the integrated stress response , along with strong activation
of DDIT3 , GADD45B , and ATF4P3. This strongly suggests a scenario of ER
stress or a similar type of cellular stress. The upregulated SNHG lncRNAs ,
coupled with metabolic changes such as increased PCK2 and SLC2A3 , reinforce
this perspective.

Then , the comparison. Both perturbations seem to induce an ER stress/ISR response
based on shared DDIT3 upregulation. However , Perturbation B’s induction is
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more pronounced and complete. There is the strong signal from the
upregulation of key ISR genes , especially PPP1R15A. Looking closer , though ,
the contrasting gene expression patterns are striking. Perturbation A
presents a more complex signature , with indications of cell cycle
inhibition , Wnt suppression , and effects on lipid metabolism , muscle , and
cytoskeleton. Perturbation B, on the other hand , seems to exhibit a more
direct and strong ER stress response. Many genes show opposing regulation in
the two perturbations. This opposing regulation reduces the overall
mechanistic congruence.

Finally , the similarity score. Although the core theme of ISR is shared , the
contrasting gene expression profiles suggest distinct initiating mechanisms
or cellular responses. Given the shared core ISR component (DDIT3
upregulation) but the significant differences in how various genes are
modulated , the mechanistic similarity is moderate. Therefore , the similarity
score will land at 0.4."

488

Box S3: Example reasoning trace. Example reasoning trace for the functional-prior prompt with489

structured output and summarized thinking.490
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