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Abstract

This study proposes PDFuse, a robust, general training-free image fusion frame-
work built on pre-trained latent diffusion models with projection–manifold regu-
larization. By redefining fusion as a diffusion inference process constrained by
multiple source images, PDFuse can adapt to varied image modalities and produce
high-fidelity outputs utilizing the diffusion prior. To ensure both source consistency
and full utilization of generative priors, we develop novel projection–manifold
regularization, which consists of two core mechanisms. On the one hand, the Multi-
source Information Consistency Projection (MICP) establishes a projection system
between diffusion latent representations and source images, solved efficiently via
conjugate gradients to inject multi-source information into the inference. On the
other hand, the Latent Manifold-preservation Guidance (LMG) aligns the latent
distribution of diffusion variables with that of the sources, guiding generation to
respect the model’s manifold prior. By alternating these mechanisms, PDFuse
strikes an optimal balance between fidelity and generative quality, achieving su-
perior fusion performance across diverse tasks. Moreover, PDFuse constructs
a canonical interference operator set. It synergistically incorporates it into the
aforementioned dual mechanisms, effectively leveraging generative priors to ad-
dress various degradation issues during the fusion process without requiring clean
data for supervising training. Extensive experimental evidence substantiates that
PDFuse achieves highly competitive performance across diverse image fusion tasks.
The code is publicly available at https://github.com/Leiii-Cao/PDFuse.

1 Introduction

Due to hardware restrictions and optical imaging constraints, single-sensor acquisition systems
often fail to capture scene details comprehensively. Consequently, image fusion technology has
emerged to meet the demands of various application scenarios [55]. Typical image fusion techniques
include infrared-visible image fusion (IVF) [18, 30], multi-exposure image fusion (MEF) [47, 21]
and multi-focus image fusion (MFF) [28]. These techniques demonstrate widespread applications in
intelligent driving, medical diagnostics, and computational photography [19, 53].

In recent years, the application of advanced feature representations and model architectures to image
fusion has enabled task-specific methods to achieve encouraging results [31, 58, 22]. However,
approaches that generalize across multiple tasks [48, 67, 49] and maintain robustness to degrada-
tion [52, 56, 59] remain relatively scarce. We summarize two primary challenges. (1) Generality
challenge: advanced universal image fusion techniques [48, 67] primarily depend on custom adapta-
tion networks or memory modules to facilitate cross-task generalization through continual learning.
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Figure 1: Framework diagrams of current training-free image fusion methods based on pre-trained
diffusion models, where (a) illustrates the DDFM [65] framework, (b) illustrates the CCF [3]
framework, and (c) illustrates our proposed PDFuse framework.

However, they require retraining for each task scenario, and in fact, their continual learning networks
and memory modules merely average knowledge across scenes, so universality remains insufficient.
(2) Robustness challenge: current approaches build supervision [56] by creating training pairs of
clean and degraded images through degradation removal and addition, but their robustness depends
heavily on data availability and typically targets only specific degradation types [57]. Therefore,
developing a framework that is both robust and truly universal for image fusion remains worth
investigating.

By combining diffusion posterior sampling with pretrained diffusion priors [37, 16], pretrained latent
diffusion models [12, 36] have demonstrated strong potential across a wide range of domains [44, 68],
offering a new perspective for tackling the generality and robustness challenges in image fusion.
However, fusion methods based on pretrained diffusion models remain in their infancy. DDFM [65]
employs an EM-based likelihood constraint for multimodal fusion, as shown in Fig. 1(a), while
CCF[3] uses a conditional library of fusion metrics to guide the diffusion process, as shown in
Fig. 1(b). Both focus on applying DDPM[12] to fusion tasks; however, comprehensive investigations
of latent diffusion models with enhanced generative capacities and richer priors are lacking, and
neither effectively coordinates multi-source information injection with the utilization of diffusion
generative priors to overcome the two major challenges mentioned above.

To overcome the limitations of current approaches, we introduce PDFuse, a training-free, universal,
and robust image fusion framework that harnesses the generative priors of a pre-trained latent
diffusion model, as shown in Fig. 1(c). To our knowledge, PDFuse is the first training-free image
fusion approach built on a pre-trained latent diffusion model. During the generative diffusion
posterior sampling process, we introduce two key regularization mechanisms to efficiently integrate
multi-source image information and leverage generative priors. First, the Multi-source Information
Consistency Projection (MICP) establishes a projection system between diffusion latents and source
images, solved efficiently via conjugate gradients to inject multi-source information and ensure high
fidelity. Second, the Latent Manifold-preservation Guidance (LMG) aligns the latent distribution
of diffusion variables with that of the sources, guiding generation to respect the model’s manifold
prior and further improve fusion quality. By alternating these two mechanisms, PDFuse strikes an
optimal balance between fidelity and generative quality. Moreover, PDFuse constructs a canonical
interference operator set and integrates it into the dual mechanisms to handle degradations via
generative priors without clean-data supervision, significantly enhancing robustness under varied
degradation scenarios.

The primary contributions of this study are outlined as follows:

• This study proposes PDFuse, the first training-free, universal, and robust image fusion framework
built on a pre-trained latent diffusion model, redefining fusion as a diffusion inference process
constrained by multiple source images.
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•We design two regularization mechanisms, the Multi-source Information Consistency Projection
and the Latent Manifold-preservation Guidance, which are alternately optimized to constrain the
diffusion process, enabling PDFuse to adapt to diverse image modalities and generate high-fidelity
outputs using the diffusion prior.
•We construct a canonical interference operator set and embed it into both regularization mechanisms,
enabling the framework to handle various degradation issues during fusion without clean-image
supervision.
•We conducted extensive and comprehensive evaluations of our method. Fusion experiments across
multiple task scenarios, along with robustness tests under interference, semantic experiments, and
ablation studies, demonstrate the high competitiveness of our approach.

2 Related work

Image fusion. Since the advent of deep learning [55, 64], fusion frameworks with learnable
parameters such as autoencoders [18], convolutional neural networks [63], generative adversarial
networks [30, 47], Transformers [31, 58] and diffusion models [54, 51, 41] have dominated image
fusion. U2Fusion [48] introduced the first universal fusion framework based on information metrics
and continual learning, while TC-MoA [67] employs fine tuned adapters for multi task adaptation
but remains limited by the performance of adapters and continual learning networks. Text-IF [52]
integrates text guidance to address specific scene degradations and Text-DiFuse [56] couples diffusion
and fusion networks to improve robustness to degradation; both methods depend on simulation
based degradation data. Although DDFM [65] employs conditional likelihood to leverage pre-trained
diffusion models for image fusion, and CCF [3] proposes a flexible, controllable condition set, both
remain confined to pre-trained DDPMs, lack exploration of latent diffusion models, and cannot
synergistically integrate multi-source conditional embeddings with generative prior exploitation.

Zero-shot applications of latent diffusion models. The generative capacities and generative
diffusion priors of latent diffusion models open new avenues for zero-shot applications in diverse
downstream tasks [68]. Some methods harness diffusion denoising network attention maps for tasks
such as image editing [16]. Meanwhile, adaptive posterior sampling strategies have shown significant
promise in areas such as image restoration and protein generation [37, 11]. Since image fusion along
this trajectory remains in its infancy, exploring training-free applications of latent diffusion models in
image fusion and fully exploiting their generative diffusion priors is crucial.

3 Preliminaries

Latent Diffusion models transform data samples z0 ∼ pdata(z0) through a forward Itô stochastic
differential equation (SDE) [39]:

dzt = −
1

2
β(t)zt dt+

√
β(t) dwt, z0 = zt=0, (1)

where zt ∈ Rk represents the k-dimensional latent state at time t, wt is a standard k-dimensional
Brownian motion, β : [0, T ] → R+ defines the noise schedule, and Ik ∈ Rk×k denotes the k-
dimensional identity matrix. For any 0 ≤ s < t ≤ T , the conditional distribution satisfies [12]:

zt | zs ∼ N (µ(t, s)zs,Σ(t, s)Ik) , (2)

with signal attenuation µ(t, s) = exp
(
− 1

2

∫ t

s
β(u) du

)
and noise accumulation Σ(t, s) =∫ t

s
β(u)e−2(

∫ t
u
β(v) dv)du, demonstrating exponential decay characteristics. The corresponding

reverse-time SDE, which denoises zT ∼ N (0, Ik) to z0 ∼ pdata, obeys:

dzt =

[
−1

2
β(t)zt − β(t)∇zt

log pt(zt)

]
dt+

√
β(t)dw̄t, (3)

where w̄t denotes reverse-time Brownian motion. A neural network sθ(zt, t) approximates the score
function ∇zt

log pt(zt) via denoising score matching [39]. To sample from the posterior distribution
p(z0|y) ∝ p(y|z0)pdata(z0) under observation y, we modify the drift term of the reverse-time SDE
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Figure 2: A diagram depicting the inference architecture of Projection–Manifold Regularized Latent
Diffusion shows that each PRLD step comprises an alternating optimization cycle between the MICP
mechanism and the LMG mechanism.

to incorporate observational constraints [4]:

dzt =

[
− 1

2
β(t)zt − β(t)

(
sθ(zt, t) +∇zt log p(y|zt)

)]
dt+

√
β(t)dw̄t, (4)

where∇zt
log p(y|zt) derives from−∇zt

L under the exponential family assumption p(y|zt) ∝ e−L.
The discretized update rule via Euler-Maruyama [17] scheme becomes:

zt−∆t = zt +∆t

[
−1

2
β(t)zt − β(t) (sθ(zt, t)−∇ztL)

]
+
√

β(t)∆t ϵ, ϵ ∼ N (0, I). (5)

By this approach, no additional training of the diffusion model is necessary to achieve conditional
diffusion via posterior sampling.

4 Methodology

Denote the multi-source image inputs as im ∈ RH×W×C and in ∈ RH×W×C , and assume a
pre-trained latent diffusion model consisting of an encoder E(·), a decoder D(·), and a latent
noise–prediction network sθ(·). Following Eq. (4), we reformulate image fusion as a diffusion
inference process constrained by multiple source images. At the t-th sampling iteration, two critical
mechanisms are integrated: the multi-source information consistency projection mechanism Fθ(·)
and the latent manifold-preservation guidance mechanism PM(·), defined as:

zt−1 =
√
ᾱt−1 Fθ

(
ẑt
0, {yi}2i=1

)︸ ︷︷ ︸
(MICP mechanism)

+
√

1− ᾱt−1 − σ2
t sθ(zt, t)− λPM

(
ẑt
0, {yi}2i=1

)︸ ︷︷ ︸
(LMG mechanism)

+σtϵ. (6)

Here, the cumulative noise attenuation coefficient is defined as ᾱt =
∏t

s=1(1 − βs), and the

noise modulation term is specified by σt = η

√
1−ᾱt−1

1−ᾱt

(
1− ᾱt

ᾱt−1

)
where η ∈ [0, 1]. For the

multi-source image set {yi}2i=1 = {im, in}, the parameter λ governs the strength of the manifold
constraint. The clean signal estimate at iteration t, denoted ẑt

0, is obtained via Tweedie’s formula [12]
ẑt
0 = zt−

√
1−ᾱt sθ(zt,t)√

ᾱt
. In the following, we provide a detailed exposition.

4.1 Alternating optimization with projection strategy and manifold constraints

Multi-source information consistency projection mechanism. As formulated in Eq. (6), the
proposed MICP mechanism embeds multi-source image information via the efficient projection of ẑt

0
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onto the constrained manifold spanned by the multi-source image set {yi}2i=1 = {im, in}. Inspired
by [31], the fusion constraint loss is concisely expressed as follows:

LFusion

(
D(ẑt

0)
)
= γint∥D(ẑt

0)−max(im, in) ∥22 + γgrad∥∇D(ẑt
0)−max(∇im,∇in) ∥22, (7)

where max(·) denotes the element-wise maximum,∇ represents the gradient operator, and γint, γgrad
are coefficients balancing the intensity and gradient loss terms. To improve optimization efficiency,
we introduce a two-stage projection strategy, as illustrated in Fig. 2. This strategy decomposes the
projection into a coarse structural component Ds(ẑt

0), which captures the overarching shape and
form, and a fine detail component Dd(ẑt

0), which refines texture and local details, hereafter denoted
as Ds and Dd, respectively.

In the first stage, we solve the unconstrained quadratic program minD(ẑt
0)
∥D(ẑt

0)−max(im, in)∥22,
which is designed to ensure a coarse aggregation of the pixel-wise structures from multiple sources.
By computing and analyzing the partial derivatives of this objective function, the resulting optimality
conditions can be written compactly as the following projection system:

(As)⊤AsD(ẑt
0) = (As)⊤bs, where As = I. (8)

Here, I denotes the identity matrix, and bs = {im⊎in} ∈ RH×W×C . For instance, in infrared-visible
image fusion, ⊎ represents the max(·) operator. By employing the conjugate gradient method, we
efficiently obtain the coarse structural component Ds, which is produced by the first-stage projection
of D(ẑt

0).

In contrast to conventional fusion strategies that jointly balance structure and detail, our method
explicitly separates texture enhancement as an additive refinement layer. During the second stage,
building upon the retained coarse structural component Ds, we optimize and add a fine detail compo-
nent Dd to recover high-frequency texture information from the multi-source images {yi}2i=1. The
detail projection follows two key principles: (i) maximize the preservation of source image textures,
and (ii) minimize interference with the previously embedded structural information. Accordingly, by
extending the texture loss in Eq. (7), the optimization objective for Dd can be expressed as:

min
Dd

{∥∥∇(Ds +Dd)−max(∇im,∇in)
∥∥2
2︸ ︷︷ ︸

Detail-constraint term

+ ω ∥Dd∥22︸ ︷︷ ︸
Regularization term 1

+ ϕ ∥∇2Dd∥22︸ ︷︷ ︸
Regularization term 2

}
. (9)

Here, the detail-constraint term enforces texture consistency with the multi-source images and
thus implements principle (i), whereas the first regularizer penalizes excessive modifications to the
coarse structural component and thereby enforces principle (ii). The second regularizer suppresses
rasterization artifacts by penalizing the Laplacian of the detail component. The nonnegative weights
ω and ϕ trade off these objectives to maximize texture fidelity subject to structural preservation. By
differentiating Eq. (9) with respect to Dd and rearranging the resulting stationarity condition, we
obtain the following projection system:

Ad ⊙ (Ad)⊤Dd = ∇⊤
x b

d
x +∇⊤

y b
d
y,

where Ad ⊙ (Ad)⊤ =

(
ωI+∇⊤

x∇x +∇⊤
y ∇y + ϕ(∇2)⊤∇2

)
,

where bdx = max
(
∇xi

m,∇xi
n
)
−∇xDs, bdy = max

(
∇yi

m,∇yi
n
)
−∇yDs,

(10)

where∇x and∇y denote the horizontal and vertical gradient operators, respectively. This projection
system can be efficiently solved using the conjugate gradient method.

Owing to the VAE’s inherent insensitivity to high-frequency components, we apply a Gaussian
filter G(·) to the outputs of the projection system as a preprocessing step. The high-frequency
residual R obtained from this filtering is then added back to the final generated result to restore
fine-grained details. Accordingly, the multi-source information consistency projection mechanism
can be formulated as follows:

Fθ

(
ẑt
0, {yi}2i=1

)
= (E ◦ G)

(
(1− ᾱt) (Ds +Dd) + ᾱt ẑ

t
0

)
. (11)

Latent manifold-preservation guidance mechanism. The LMG mechanism is a posterior sam-
pling process based on a latent diffusion model. By applying the VAE encoder and decoder to both
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the multi-source images {yi}2i=1 and ẑt
0, we compute residuals in both the image domain and the

latent domain. We backpropagate the corresponding gradients and combine them to update and refine
ẑt
0. Consequently, the LMG operator can be written as:

PM
(
ẑt
0, {yi}2i=1

)
= ∇ztLFusion

(
D(ẑt

0)
)
+ γlatent∇zt

∥∥ẑt
0 − E(max(im, in))

∥∥2
2
. (12)

LFusion is a pixel-domain loss that aligns ẑt
0 with the multi-source images {yi}2i=1. This loss

comprises both intensity and texture terms. A complementary term, inspired by [37], serves as a
latent-space regularizer designed to suppress biases introduced by pixel-space guidance. The scalar
coefficient γlatent controls the strength of this latent regularization.

Alternating optimization. Although the LMG mechanism can guide the latent diffusion process
via posterior sampling to embed information from the multi-source image set {yi}2i=1, this guidance
often incurs significant information loss and degrades the fidelity of the generated images, as discussed
in our experiments. Therefore, to balance effective information embedding with latent manifold-
preservation guidance, we adopt an alternating-optimization scheme that switches between the MICP
mechanism and the LMG mechanism. The optimization strategy is as follows:

(Fθ(·),PM(·)) =

{(
Fθ

(
ẑt
0, {yi}2i=1

)
, 0
)
, if (MICP step),(

ẑt
0, PM

(
ẑt
0, {yi}2i=1

))
, if (LMG step).

(13)

4.2 Integrated interference operator set

We assemble a canonical interference operator set of N typical operators, {Πi}Ni=1 , including
overexposure and underexposure, Gaussian blur, motion blur, bicubic downsampling, etc. By
integrating the set of degradation operators through both mechanisms, our framework alleviates
degradation artifacts in image fusion without requiring paired data to train a degradation-inversion
model. When the degradation types Πi and Πj are respectively applied to the input images {yi}2i=1,
referring to Eq. (8), the first-stage projection strategy of the MICP mechanism, after integrating the
set of degradation operators, can be expressed as follows:

(As
Π)⊤As

ΠD(ẑt
0) = (As

Π)⊤bs. (14)

Here, Π denotes the aggregation of Πi and Πj , and its combination with the corresponding images
is related to the fusion weight coefficients at the pixel and texture levels. Building upon Eq. (10), an
upon incorporating the degradation-operator set, the MICP mechanism’s second-stage projection
strategy can be succinctly formulated as:

Ad
Π ⊙ (Ad

Π)⊤Dd = Π⊤∇⊤
x b

d
x +Π⊤∇⊤

y b
d
y,

where Ad
Π ⊙ (Ad

Π)⊤ =

(
ωΠ⊤Π+Π⊤∇⊤

x∇xΠ+Π⊤∇⊤
y ∇yΠ+ ϕΠ⊤(∇2)⊤∇2Π

)
Dd,

where bdx = max
(
∇xi

m,∇xi
n
)
−Π∇xDs, bdy = max

(
∇yi

m,∇yi
n
)
−Π∇yDs.

(15)
Analogously, the LMG mechanism PM

(
ẑt
0, {yi}2i=1

)
can be formulated as:

PM
(
ẑt
0, {yi}2i=1

)
= ∇ztLFusion

(
Π(D(ẑt

0))
)
+ γlatent∇zt

∥∥ẑt
0 − E(Ψ(max(im, in)))

∥∥2
2
. (16)

Here, the operator Ψ
(
max(im, in)

)
can be represented by the following equation:

Ψ
(
max(im, in)

)
= Π⊤(max(im, in)) + ẑt

0 −Π⊤Πẑt
0. (17)

Additional implementation details and derivations are provided in Appendix A.

5 Experiments

Configuration. We evaluate our method on three representative image fusion tasks: infrared-visible
fusion (IVF), multi-exposure fusion (MEF), and multi-focus fusion (MFF). For IVF, 200 test samples
from the LLVIP dataset [15] are used. MEF and MFF are evaluated following the testing setups
of the MEFB [62] and MFFW [50] datasets, respectively. In addition, we conducted semantic
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Figure 3: Qualitative comparison of PDFuse-B and state-of-the-art methods on the LLVIP dataset.

Figure 4: Qualitative comparison on the LLVIP dataset under complex degradation scenarios between
our enhanced PDFuse-E and state of the art degradation aware image fusion methods.

Table 1: Overall quantitative evaluation of infrared–visible image fusion on the LLVIP dataset using
our PDFuse-B and PDFuse-E methods, with the upper subplot showing methods unable to handle
degradation and the lower subplot showing degradation-handling methods. The red/blue/green
indicates the best, runner-up and third best. Rank is the mean ranking across all metrics.
Method EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑ Rank↓
U2Fusion (TPAMI’22) [48] 28.253 6.628 6.447 2.481 29.286 8.436 0.659 0.455 7.0
DeFusion (ECCV’22) [20] 29.604 6.537 7.122 2.513 39.623 7.761 0.705 0.390 6.9
DDFM (ICCV’23) [65] 31.124 6.854 7.141 2.649 40.433 7.742 1.081 0.390 5.1
EMMA (CVPR’24)) [66] 40.653 9.419 7.314 3.561 46.509 7.568 0.992 0.428 3.5
TC-MoA (CVPR’24) [67] 42.567 9.805 7.404 3.696 47.623 7.479 1.013 0.422 2.3
CCF (NeurIPS’24) [3] 31.342 7.513 7.045 2.708 39.255 7.838 0.977 0.394 5.9
DCEvo (CVPR’25) [25] 40.338 9.504 7.346 3.509 46.425 7.537 0.953 0.418 3.9
PDFuse-B (Ours) 48.519 11.028 7.427 4.221 47.931 7.457 0.981 0.437 1.5

DDBF (CVPR’24) [57] 55.108 13.082 7.336 4.806 48.308 7.547 1.021 0.413 2.4
Text-IF (CVPR’24) [52] 44.917 9.768 7.302 3.844 42.485 7.581 1.001 0.413 3.4
MRFS (CVPR’24) [58] 26.828 6.624 6.719 2.278 36.401 8.164 0.696 0.382 5.8
TIMFusion (TPAMI’24) [26] 34.206 7.363 6.818 2.910 36.079 8.653 0.482 0.397 5.3
Text-DiFuse (NeurIPS’24) [56] 38.744 8.711 7.417 3.255 52.255 7.466 1.255 0.403 2.9
PDFuse-E (Ours) 140.302 35.079 7.617 13.634 52.492 7.265 0.824 0.476 1.4

segmentation experiments on the FMB dataset [22] to verify the effectiveness of the fused images
generated by our method in high-level vision tasks. All experiments ran on an NVIDIA GeForce
RTX 3090 GPU and a 2.4 GHz Intel Xeon Silver 4210R CPU. Quantitative evaluation includes
three reference-based metrics: Correlation-Based Quality (Qcb) [29], Sum of the Correlations of
Differences (SCD) [1], and Total Entropy (TE) [24], as well as five no-reference metrics: Edge
Intensity (EI) [33], Spatial Frequency (SF) [7], Entropy (EN) [35], Average Gradient (AG) [6], and
Standard Deviation (SD) [34].
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Figure 5: Qualitative comparison of PDFuse-B and state-of-the-art methods on the MEFB dataset.

Evaluation on infrared-visible fusion. We evaluate our approach on the LLVIP dataset [15]
by generating paired clean and degraded test images via degradation removal [5] and addition
operations. To ensure a fair comparison, we form two experimental groups. In the first group, our
base model PDFuse-B is compared with four state-of-the-art general fusion methods (U2Fusion [48],
DeFusion [20], TC-MoA [67] and CCF [3]) and three task-specific multi-modal methods (DDFM [65],
EMMA [66] and DCEvo [25]), none of which can handle degradation. The qualitative results,
encompassing both daytime and nighttime scenarios as demonstrated in Fig. 3, along with quantitative
comparisons summarized in Table 1, reveal that our method achieves superior preservation of texture
and salient object information. In particular, according to the qualitative analysis, our method exhibits
superior infrared salience in pedestrians and effectively preserves fine details in both infrared and
visible textures (e.g., bicycle and tree trunk textures), and it attains the highest average ranking across
all evaluation metrics.

In the second group, we evaluate our enhanced variant, PDFuse-E, which incorporates a degradation
operator library, against five leading degradation-aware fusion methods (DDBF [57], MRFS [58],
Text-IF [52], TIMFusion [26], Text-DiFuse [56]). Fig. 4 illustrates our method’s effectiveness
in removing degradation and retaining detail. As shown in the lower half of Table 1, PDFuse-E
outperforms current state-of-the-art techniques in texture, contrast, and structural metrics and secures
the highest Rank.

Table 2: Quantitative comparison of multi-exposure image fusion methods on the MEFB dataset. The
red/blue/green denotes first, second and third best. Rank is the mean ranking across all metrics.
Method EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑ Rank↓
U2Fusion (TPAMI’22) [48] 49.381 14.503 6.767 4.393 46.789 5.185 5.515 0.446 6.9
DeFusion (ECCV’22) [20] 52.704 15.319 6.799 4.570 52.734 5.150 0.275 0.370 6.5
HSDS-MEF (AAAI’24) [45] 64.217 19.379 7.136 5.951 55.440 4.813 0.859 0.449 2.4
TC-MoA (CVPR’24) [67] 56.439 15.782 7.093 5.049 49.852 4.856 0.538 0.450 4.4
CCF (NeurIPS’24) [3] 51.933 17.501 7.134 4.855 60.174 4.815 1.163 0.406 3.8
SAMT-MEF (InF’24) [14] 55.097 17.518 7.046 5.146 50.824 4.904 0.635 0.450 3.9
EAT (TMM’25) [42] 45.237 13.366 6.916 4.055 47.096 5.033 0.423 0.428 7.0
PDFuse-B (Ours) 69.772 20.695 7.271 6.316 60.463 4.678 0.774 0.457 1.3

Evaluation on multi-exposure fusion. We compare our method, PDFuse-B, against four general-
purpose image fusion techniques (U2Fusion [48], DeFusion [20], TC-MoA [67], and CCF [3]) and
three task-specific multi-exposure fusion methods (SAMT-MEF [14], HSDS-MEF [45] and EAT [42])
as competitors. As shown in Fig. 5, our approach delivers the most consistent global exposure and
color while offering clear advantages in texture, contrast, and color saturation. Our method shows
a significant advantage in overall exposure levels and color contrast compared to other methods,
and the highlighted regions further confirm its superiority in preserving textures across images with
different exposures (e.g., windows, posters, clouds). The superior quantitative results in Table 2
further confirm these improvements.

Evaluation on multi-focus fusion. In addition to the four general-purpose fusion methods, we
compare our approach with two leading multi-focus fusion techniques, ZMFF [13] and DB-MFIF [60].
Fig. 6 demonstrates that our method more effectively preserves texture and combines details from
images with different focus regions. In particular, our approach preserves textures across varying
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Table 3: Quantitative comparison of multi-focus image fusion methods on the MFFW dataset. The
red/blue/green denotes first, second and third best. Rank is the mean ranking across all metrics.
Method EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑ Rank↓
U2Fusion (TPAMI’22) [20] 72.763 17.152 6.953 6.595 48.967 7.312 0.465 0.586 5.8
DeFusion (ECCV’22) [20] 57.015 12.937 7.120 5.010 51.224 7.146 0.410 0.556 6.5
ZMFF (InF’23) [13] 85.799 22.175 7.188 8.026 53.682 7.077 0.500 0.671 3.4
TC-MoA (CVPR’24) [67] 74.781 18.620 7.184 6.805 54.094 7.081 0.719 0.650 4.0
CCF (NeurIPS’24) [3] 65.660 16.613 7.261 5.998 59.329 7.004 1.330 0.539 4.0
DB-MFIF (TMM’24) [60] 87.087 24.045 7.221 8.321 55.158 7.045 0.677 0.662 2.6
PDFuse-B (Ours) 93.756 22.523 7.278 8.463 60.445 6.990 0.894 0.576 1.8

Figure 6: Qualitative comparison of PDFuse-B and state-of-the-art methods on the MFFW dataset.

Figure 7: Qualitative comparison of semantic segmentation performance on the FMB dataset.

Figure 8: A qualitative comparison for the ablation study on the LLVIP dataset.

focus depths while maintaining high overall image contrast. When compared to the diffusion-based
CCF [3], our method achieves markedly higher texture fidelity. These qualitative advantages are
corroborated by the quantitative results in Table 3, which show superior performance across multiple
multi-focus fusion metrics.

Semantic verification on segmentation. We retrained SegNeXt-B [8] on the fusion outputs of
all methods from the FMB training set and evaluated on the corresponding test set [22]; qualitative
comparisons are presented in Fig. 7 and quantitative results in Table 4, where our enhanced method
PDFuse-E attains the highest segmentation mIoU and mAcc.

Ablation studies. We performed an ablation study on the LLVIP dataset to assess the impact of
each core component in our framework, including (I) the LMG mechanism, (II) the first projection
stage of the MICP mechanism, (III) the second projection stage of the MICP mechanism, and (IV)
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Table 4: Quantitative comparison of semantic segmentation performance on fused images from the
FMB dataset. The red/blue/green indicates the best, runner-up and third best.
Method Person SKy Lamp Car Bus Truck Motor Pole mAcc mIoU

DDBF 62.97 93.73 33.11 81.60 35.00 49.38 45.81 46.61 68.12 59.89
EMMA 68.27 93.47 44.43 81.71 34.87 47.18 49.55 47.92 70.69 61.87
Text-IF 67.08 94.04 40.00 81.77 28.00 48.48 47.47 48.52 69.54 61.15
TC-MoA 67.34 94.11 43.02 80.90 41.29 43.15 44.61 47.31 69.69 61.67
MRFS 68.37 94.09 36.95 84.02 56.55 49.20 46.27 47.12 71.16 63.00
TIMFusion 66.04 93.72 41.43 83.62 50.71 46.07 44.41 45.70 70.72 62.25
Text-DiFuse 67.79 94.12 37.44 83.04 62.96 39.16 45.24 46.56 70.98 62.61
DCEvo 69.44 93.81 41.42 83.09 62.65 28.71 43.54 45.45 70.89 62.53
PDFuse-B 69.06 94.07 39.23 82.22 43.77 45.30 49.72 48.25 70.97 62.54
PDFuse-E 66.88 93.80 45.51 83.83 57.99 48.15 47.09 47.65 71.77 63.70

Table 5: Quantitative evaluation of the ablation experiments on the LLVIP dataset.
Method MICP. LMG. Opr. EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑
I ✓ ✗ ✗ 45.26 10.01 7.394 3.941 46.71 7.489 0.975 0.443
II ✗/st.1 ✓ ✗ 47.72 10.59 7.408 4.132 47.36 7.475 0.987 0.432
III ✗/st.2 ✓ ✗ 42.54 10.06 7.385 3.661 47.11 7.498 0.901 0.406
IV ✗ ✓ ✗ 33.76 8.413 7.155 2.892 40.85 7.718 0.678 0.316
PDFuse-B ✓ ✓ ✗ 48.52 11.03 7.427 4.221 47.93 7.457 0.981 0.437
PDFuse-E ✓ ✓ ✓ 140.3 35.08 7.617 13.63 52.49 7.265 0.824 0.476

the entire MICP mechanism; qualitative results are presented in Fig. 8 and quantitative comparisons
are reported in Table 5.

The results reveal that removing the first projection stage of MICP causes color distortion because
this stage injects the coarse structural component Ds into the diffusion process, and without it low-
frequency and color information cannot be effectively preserved. Removing the second projection
stage leads to significant texture loss, since it injects the fine-detail component Dd. When the entire
MICP mechanism is removed, relying solely on the LMG mechanism fails to maintain information
fidelity and results in poor fusion quality. Conversely, if the LMG mechanism is removed while
MICP remains, the MICP mechanism still supports structural and texture preservation, but the fusion
exhibits reduced contrast and darker tones compared to PDFuse-B (which includes LMG), due to the
lack of manifold-preservation guidance and consequently limited use of generative priors.

Finally, PDFuse-E, which integrates the interference operator set, outperforms PDFuse-B by lever-
aging diffusion priors to address inverse degradation problems (e.g., low light and blur), thereby
producing better overall visual quality. These findings demonstrate that the full configuration delivers
the best overall performance.

6 Conclusion

This paper proposes PDFuse, a robust, training-free image fusion framework built on pre-trained
latent diffusion models with projection–manifold regularization. PDFuse formulates fusion as a
multi-source regularized latent diffusion process and employs two complementary regularization
mechanisms to ensure high fidelity and effective use of diffusion priors. It also integrates a canonical
interference operator set into these mechanisms, allowing the model to address diverse degradations
without clear-image supervision. Extensive experiments demonstrate that PDFuse outperforms
current methods in both fusion quality and preservation of semantic attributes.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The main claims of this study are the proposal of a Projection-Manifold
Regularized Latent Diffusion framework for general image fusion, and the construction and
integration of a canonical interference operator set to enhance its robustness. These claims
are consistent with our stated contributions and are substantiated by experimental validation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We discuss the limitations of our method, including its runtime efficiency, in
the supplementary material. Additionally, we outline potential directions for future work to
effectively address these limitations.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: In fact, this work does not include theoretical results. It is the first to formulate
the image fusion task as a diffusion inference process constrained by multiple source
images. Through a regularization mechanism embedded within the latent diffusion process,
it achieves general and robust image fusion.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: This work proposes an image fusion approach based on a pre-trained latent
diffusion model and conducts extensive experiments to validate its effectiveness. In the main
paper, we provide a detailed description of the experimental setup and data, with further
elaboration presented in the supplementary material.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: The datasets used in this work are sourced from publicly available datasets, as
detailed in the paper. The code will be released on a public platform after the rebuttal phase.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: We provide a detailed description of all necessary details in the Experimen-
tal configuration section, including the datasets, computing hardware, and other relevant
configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] .
Justification: All experiments in this study were conducted, evaluated, and statistically
analyzed under a unified experimental setup.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: In the experimental configuration section, we provide the computing resources
required to reproduce the experiments in this paper, including an NVIDIA GeForce RTX
3090 GPU and a 2.4 GHz Intel Xeon Silver 4210R CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The methods, experimental data, and related content presented in this paper
fully comply with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: We discuss the potential positive and negative impacts of the proposed method
in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This paper does not present any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We have provided precise citations for all datasets, baseline methods, and
models referenced in the paper.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: The code for our work is provided as a zip file, which already contains an MIT
License.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: LLMs are not a core component of the method proposed in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A More details of PDFuse

To further enhance the clarity and completeness of our discussion, we provide additional architectural
details of the proposed PDFuse framework.

A.1 More details of the MICP mechanism

The fine detail projection. The Sobel operator ∇ used for extracting texture features can be
decomposed into a horizontal gradient operator∇x and a vertical gradient operator∇y . Accordingly,
the detail-constraint term in Eq. (7) can be reformulated as

min
Dd

(∥∥∇x(Ds +Dd)−max (∇xi
m,∇xi

n)
∥∥2
2
+
∥∥∇y(Ds +Dd)−max (∇yi

m,∇yi
n)
∥∥2
2︸ ︷︷ ︸

detail-constraint term

)
.

(18)
Taking the derivative of Eq. (7) with respect to Dd yields:

∂L
∂Dd

= 2
[
∇⊤

x

(
∇x(Ds+Dd)−Tx

)
+∇⊤

y

(
∇y(Ds+Dd)−Ty

)
+ ωDd + ϕ(∇2)⊤(∇2)Dd

]
. (19)

Specifically, we define Tx = max(∇xi
m,∇xi

n) and Ty = max(∇yi
m,∇yi

n). By setting ∂L
∂Dd = 0

and rearranging the terms, we obtain:[
∇⊤

x∇x +∇⊤
y ∇y + ωI+ ϕ(∇2)⊤(∇2)

]
Dd = ∇⊤

x (Tx −∇xDs) +∇⊤
y (Ty −∇yDs). (20)

This result is consistent with Eq. (10) in the main text.

Conjugate gradient method. The two-stage projection system is fully solvable via the Conjugate
Gradient (CG) method. In the first-stage projection, the coefficient matrix reduces to the identity
operator I, which is trivially symmetric positive definite (SPD) since ⟨x, Ix⟩ = ∥x∥22 > 0 for all
x ̸= 0. For the second-stage projection with composite operator:

Ad ⊙ (Ad)⊤ = ∇⊤
x∇x +∇⊤

y ∇y︸ ︷︷ ︸
gradient terms

+ ωI︸︷︷︸
regularization

+ϕ(∇2)⊤∇2︸ ︷︷ ︸
high-order term

, (21)

is solvable via the Conjugate Gradient (CG) method [38] since Ad ⊙ (Ad)⊤ satisfies the required
symmetry and positive definiteness. Symmetry arises from: 1) Adjoint Sobel operators∇⊤

x = ∇T
x

and∇⊤
y = ∇T

y , 2) Self-adjoint Laplacian ∇2 = ∇⊤
x∇x +∇⊤

y ∇y, and 3) Explicit symmetry of ωI.
Positive definiteness follows from:

⟨x,Ad ⊙ (Ad)⊤x⟩ = ∥∇xx∥22 + ∥∇yx∥22︸ ︷︷ ︸
≥0

+ω∥x∥22︸ ︷︷ ︸
>0

+ϕ∥∇2x∥22︸ ︷︷ ︸
≥0

> 0, ∀x ̸= 0, (22)

where the strict inequality holds due to the ωI term. The CG method therefore guarantees convergence
to the unique solution within finite iterations.

A.2 More details of alternating optimization

We collected a series of intermediate diffusion results under the regularization-constrained diffusion
process, D(ẑt0), which allows for an intuitive visualization of the effects imposed by different
regularization mechanisms, as demonstrated in Fig. 9. From these results, it is evident that the MICP
mechanism produces a pronounced enhancement of multi-source information, whereas the LMG
mechanism yields an overall improvement in visual quality.

A.3 More details of interference operator set

The interference operator set {Πi}Ni=1 is defined as a library of degradation operators, which includes
a collection of representative interference models. These operators are integrated into the bidirectional
inference mechanism of our framework to address potential disturbances that may arise during the
fusion process.
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Figure 9: An intuitive visualization of the effects imposed by different regularization mechanisms.

Implementation details of representative degradation operators. For degradations caused by
low-light conditions and overexposure, we adopt the illumination decomposition theory based on the
Retinex model, where the observed image is represented as iE = iL/L. To estimate the degraded
illumination component, we follow the approach proposed in [9]. Specifically, for handling both low-
light and overexposed regions, we leverage forward and inverse illumination estimation strategies as
described in [61]. The resulting illumination map L is then incorporated into our framework to guide
the optimization of illumination-aware fusion. Other degradation types, including Gaussian blur,
motion blur, and thermal diffusion in infrared images, are implemented via convolutional operations.
By constructing both the degradation operators and their corresponding transpose (adjoint) operators,
these degradation processes can be universally integrated into our proposed bidirectional inference
mechanism, thereby assisting the diffusion-based reasoning in a more robust manner.

Integrated strategy. Given a set of multi-source image inputs{yi}2i=1, when each image is subject
to different degradations Πi and Πj drawn from a predefined degradation operator set {Πi}Ni=1,
directly applying the basic projection-manifold regularization inevitably results in the fused image
inheriting the degradations from the source images, which is an undesirable outcome. Therefore, we
further revise the formulation in Eq. (7) as follows:

LFusion(ΠD(ẑt
0)) = γint

∥∥ΠD(ẑt
0)−max(im, in)

∥∥2
2
+ γgrad

∥∥∇ (ΠD(ẑt
0)
)
−max (∇im,∇in)

∥∥2
2
.

(23)
In this context, Π denotes a weighted combination of Πi and Πj , where the weighting coefficients
are determined by the fusion contributions of the respective source images. When the source images
undergo different types of degradation, the consistency loss between Πẑt0 and the multi-source images
is established by treating Π as a fused operator derived from Πi and Πj . The fusion coefficients are
determined by the spatial weights of the multi-source images during each stage of regularization.

Taking the first-stage projection of the MICP mechanism in the VIS task as an example, in order to
preserve the saliency of the infrared image and the majority of scene details from the visible image,
the fusion is typically performed using the max(·) operator. In this case, the spatial fusion weights
coeffm and coeffn satisfy the relation:

coeffm · im + coeffn · in = max(im, in). (24)

Accordingly, the fusion of the interference operator sets Πi and Πj also follows this coefficient
scheme. In the second stage of the MICP mechanism, the fusion coefficients for the interference
operator sets are similarly derived based on the fusion weights computed over Sobel gradients. Each
component of the LMG mechanism adheres to similar principles. Based on the same derivation
process described earlier, the resulting projection-manifold regularization formulations correspond to
Eq. (14), Eq. (15) and Eq. (16).

B Explanation on VAE fidelity

VAE does exhibit significant information bias and loss when applied to high-quality visible images
with very dense and regular textures. However, the loss introduced by VAE is typically concentrated
in its high-frequency components.We perform a 2D FFT on both the original image and the VAE-
encoded and decoded reconstructed image, generating a radial frequency grid followed by frequency
band partitioning, which is used to study the distribution of MSE losses from VAE encoding and
decoding across different normalized frequency bands on the LLVIP dataset, as shown in Table 6.
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Table 6: The distribution of MSE losses from VAE encoding and decoding across different normalized
frequency bands on the LLVIP dataset.
Frequency Range (cycles/pixel) 0.00-0.025 0.025-0.050 0.050-0.100 0.100-0.250 0.250-0.500
MSE Loss 0.000000 0.000001 0.000003 0.000062 0.001003

It is clear that VAE’s loss and reconstruction bias are concentrated in the high frequencies. To address
this challenge, we adopted a high-frequency residual injection strategy. Specifically, in our MICP
mechanism, the regularized projection captures the coarse structural componentDs and the fine detail
component Dd from the multi-source image set im, in. Then, a high-frequency filter G(·) is applied
to remove the high-frequency components from the projection result as in Eq. (11). In other words,
the high-frequency information is kept as R rather than encoded into the latent space. Moreover, R
is iteratively refined via projection regularization of ẑt−1

0 and finally injected as a residual after the
process completes. Additionally, we further conduct an ablation study on the high-frequency filtering
and residual structure. The MICP mechanism projection result is directly encoded by VAE into the
latent space (without pre-reserving high-frequency information), and the quantitative comparison is
shown in Table 7.

Table 7: Ablation comparison of high-frequency information skip residual injection.
Methods EI↑ SF↑ AG↑ EN↑ SD↑ TE↓ SCD↑ Qcb↑
wo / (filtering and residual) 39.391 8.070 7.359 3.371 45.077 7.528 0.913 0.418
PDFuse 48.519 11.028 7.427 4.221 47.931 7.457 0.981 0.437

Based on the ablation results, the model variant lacking high-frequency filtering and residual compo-
nents exhibits a significant loss in edge and texture details. These results demonstrate the effectiveness
of our adopted high-frequency residual injection strategy.

C Algorithm flowchart

This figure presents the algorithmic flowchart of our proposed method, the projection-manifold
regularized latent diffusion framework. The flowchart is divided into two variants: the basic version
(PDFuse-B) and the enhanced version (PDFuse-E).

Algorithm 1 PDFuse-B

Require: T, {α}Tt=1,D, im, in

1: Sample zT ∼ N (0, I)
2: for i = T to 1 do
3: ϵ̂θ ← sθ(zt, t, c)

4: ẑt
0 ←

zt−
√
1−ᾱt ϵ̂θ√
ᾱt

5: if MICP step then
6: Ds ← Eq. (8)†

7: Dd ← Eq. (10)†

8: R ← (I− G)(Ds +Dd)
9: Fθ

(
ẑt
0, {yi}2i=1

)
← Eq. (11)†

10: PM
(
ẑt
0, {yi}2i=1

)
← 0

11: zt−1 ← Eq. (6)†

12: else if LGM step then
13: Fθ

(
ẑt
0, {yi}2i=1

)
← ẑt

0

14: PM
(
ẑt
0, {yi}2i=1

)
← Eq. (12)†

15: end if
16: end for
17: return D(zt−1) +R

Algorithm 2 PDFuse-E

Require: T, {α}Tt=1,D, im, in

1: Sample zT ∼ N (0, I)
2: for i = T to 1 do
3: ϵ̂θ ← sθ(zt, t, c)

4: ẑt
0 ←

zt−
√
1−ᾱt ϵ̂θ√
ᾱt

5: if MICP step then
6: Ds ← Eq. (14)†

7: Dd ← Eq. (15)†

8: R ← (I− G)(Ds +Dd)
9: Fθ

(
ẑt
0, {yi}2i=1

)
← Eq. (11)†

10: PM
(
ẑt
0, {yi}2i=1

)
← 0

11: zt−1 ← Eq. (6)†

12: else if LGM step then
13: Fθ

(
ẑt
0, {yi}2i=1

)
← ẑt

0

14: PM
(
ẑt
0, {yi}2i=1

)
← Eq. (16)†

15: end if
16: end for
17: return D(zt−1) +R
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D Support image fusion with more than two source images

Since our method formulates the fusion process as a regularized latent diffusion conditioned
on multi-source images, it does not impose an explicit limit on the number of inputs. Conse-
quently, our approach can process an arbitrary number of source images in a single pass with
negligible additional computational or temporal overhead. We validated this capability on the
SICE multi-exposure dataset [2] by inputting three images with different exposure levels. It is
worth emphasizing that other methods can only process two images at a time, so they perform
multi-exposure fusion of three images in two separate stages via sequential pairing. In contrast,
our method achieves this in a single pass. The quantitative results are presented in Table 8.

Table 8: Quantitative comparison of multi-exposure image fu-
sion methods with 3 exposure inputs on the SICE dataset [2].
The red/blue/green denotes first, second and third best.

Methods EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑
U2Fusion 85.165 22.561 7.225 8.048 54.565 13.255 0.716 0.500
DeFusion 67.214 17.257 7.279 6.206 52.841 13.201 0.550 0.357
HSDS-MEF 95.637 29.464 6.994 9.367 73.821 13.486 2.989 0.351
TC-MoA 89.575 24.851 7.532 8.611 57.462 12.947 0.959 0.466
CCF 86.120 28.723 7.614 8.885 70.408 12.866 3.575 0.461
SAMT-MEF 89.485 29.514 7.425 9.378 58.071 13.055 1.225 0.430
EAT 36.849 9.384 6.501 3.146 40.089 13.937 1.700 0.347
PDFuse-B 112.422 30.975 7.708 10.930 68.581 12.771 2.349 0.489

From the experimental results, our ap-
proach achieves leading performance
on most evaluation metrics, demon-
strating that our regularization mecha-
nism can be generally applied to fuse
three or more source images. In ad-
dition, we further analyzed how the
runtime and the Edge Intensity (EI)
of the fused images produced by our
method, PDFuse, change as the num-
ber of input images with different ex-
posure settings varies. The quantita-
tive results are presented in Table 9.

Table 9: Comparison of Edge Intensity (EI) and Runtime versus the Number of Input Exposure
Sequences on the SICE Dataset.
Input Sequence Counts 2 3 4 5 6 7 8 9

Edge Intensity (EI)↑ 95.155 112.422 117.805 119.518 121.840 121.855 123.009 124.45
Runtime (s) 18.08 18.15 18.03 18.24 18.33 18.19 18.30 18.23

It can be observed that, for the same scene, as the number of input images with different exposure
settings increases, the scene information texture (EI) of the fused images gradually improves, while
the runtime remains essentially unchanged.

E More comprehensive experimental evaluations

To conduct more extensive experimental evaluations and further demonstrate our method’s generality,
we carried out additional assessments on larger benchmark datasets for infrared-visible image fusion,
multi-exposure image fusion, and multi-focus image fusion.

E.1 More evaluations for infrared-visible fusion

We conducted additional evaluations on four widely used infrared–visible fusion benchmarks: the
TNO, FMB [23], MSRS [40], and RoadScene [46] datasets. Two experimental groups were estab-
lished. In the first group, our base model (PDFuse-B) was compared with current state-of-the-art
fusion methods. In the second group, our enhanced model (PDFuse-E), which integrates degradation
operators, was evaluated against leading fusion methods capable of handling degraded inputs. The
TNO dataset comprises 42 image pairs from diverse scenes; MSRS employs a 300-image test set; and
RoadScene and FMB were each assessed on randomly sampled subsets of 200 and 150 image pairs,
respectively. Quantitative results for these four datasets are shown in Fig. 14, Fig. 15, Fig. 16, and
Fig. 17. PDFuse-E consistently improves target saliency, preserves fine texture details, and enhances
overall visual quality. Furthermore, numerical comparisons in Table 11 and Table 10 demonstrate
that both PDFuse-B and PDFuse-E achieve the highest mean scores across all evaluated metrics.

E.2 More evaluations for multi-exposure image fusion
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Table 10: Overall quantitative evaluation of infrared–visible image fusion on the MSRS dataset and
RoadScene Dataset using our PDFuse-B and PDFuse-E methods, with the upper subplot showing
methods unable to handle degradation and the lower subplot showing degradation-handling methods.
The red/blue/green indicates the best, runner-up and third best. Rank is the mean ranking across all
metrics.

MSRS Dataset RoadScene Dataset

Method EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ Rank↓
U2Fusion (TPAMI’22) 23.306 6.838 4.919 2.093 19.753 6.799 56.238 11.783 6.843 4.801 32.461 7.438 7.3
DeFusion (ECCV’22) 28.744 7.928 6.355 2.535 36.603 5.362 42.430 8.607 6.898 3.390 36.378 7.383 6.4
DDFM (ICCV’23) 25.981 6.942 6.074 2.330 28.055 5.644 51.476 11.555 7.189 4.494 41.711 7.093 6.1
EMMA (CVPR’24) 38.692 10.818 6.614 3.462 42.959 5.104 72.728 16.376 7.446 6.298 56.223 6.835 2.0
TC-MoA (CVPR’24) 39.342 10.875 6.600 3.562 39.557 5.118 60.408 12.089 7.142 4.973 40.554 7.139 3.8
CCF (NeurIPS’24) 27.831 8.201 6.063 2.568 27.248 5.655 53.424 13.076 7.291 4.640 46.030 6.990 5.0
DCEvo (CVPR’25) 38.405 10.808 6.519 3.451 41.519 5.199 65.582 14.940 7.139 5.553 44.560 7.142 4.0
PDFuse-B (Ours) 44.223 12.630 6.703 3.959 43.429 5.014 76.644 16.670 7.210 6.535 46.422 7.071 1.4

DDBF (CVPR’24) 51.530 13.959 6.945 4.523 51.864 4.772 45.102 10.307 5.834 3.521 23.518 8.447 4.4
Text-IF (CVPR’24) 38.081 9.473 6.967 3.332 42.122 4.750 74.194 16.701 7.422 6.496 50.543 6.859 3.1
MRFS (CVPR’24) 27.905 8.456 6.411 2.405 37.081 5.307 51.052 11.096 7.386 4.226 53.377 6.896 4.2
TIMFusion (TPAMI’24) 41.059 10.943 6.957 3.567 42.832 4.760 47.159 10.562 6.994 3.879 40.723 7.287 4.0
Text-DiFuse (NeurIPS’24) 39.538 10.740 7.082 3.413 52.621 4.635 45.382 9.982 7.310 3.714 50.807 6.971 3.4
PDFuse-E (Ours) 83.659 20.623 7.363 7.484 49.770 4.355 95.914 22.383 7.238 8.359 47.386 7.043 1.9

Table 11: Overall quantitative evaluation of infrared–visible image fusion on the TNO dataset and
FMB Dataset using our PDFuse-B and PDFuse-E methods, with the upper subplot showing methods
unable to handle degradation and the lower subplot showing degradation-handling methods. The
red/blue/green indicates the best, runner-up and third best. Rank is the mean ranking across all
metrics.

TNO Dataset FMB Dataset

Method EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ Rank↓
U2Fusion (TPAMI’22) 36.194 7.799 6.292 3.245 23.687 6.862 36.109 10.196 6.590 3.221 28.391 6.605 6.4
DeFusion (ECCV’22) 28.289 5.775 6.461 2.365 29.091 6.693 26.921 7.777 6.338 2.300 25.656 6.857 7.8
DDFM (ICCV’23) 37.096 8.665 6.871 3.421 35.093 6.283 27.841 8.542 6.597 2.470 29.014 6.598 5.1
EMMA (CVPR’24)) 51.375 11.375 7.149 4.694 45.575 6.004 46.795 14.383 6.747 4.201 34.037 6.448 1.8
TC-MoA (CVPR’24) 41.128 9.250 6.777 3.613 34.397 6.377 44.411 14.045 6.756 3.974 32.412 6.439 3.5
CCF (NeurIPS’24) 36.462 9.448 6.804 3.448 34.708 6.350 27.560 9.029 6.452 2.467 26.145 6.743 6.0
DCEvo (CVPR’25) 41.786 10.038 6.767 3.752 36.215 6.387 42.498 13.715 6.697 3.773 34.042 6.498 3.8
PDFuse-B (Ours) 52.487 12.116 7.025 4.787 40.033 6.129 47.835 14.440 6.713 4.242 34.401 6.482 1.6

DDBF (CVPR’24) 52.946 14.652 6.394 4.965 35.384 6.760 44.657 15.434 5.627 3.842 20.175 7.568 4.2
Text-IF (CVPR’24) 48.113 11.547 7.051 4.480 43.358 6.103 47.461 15.063 6.660 4.235 31.488 6.535 3.2
MRFS (CVPR’24) 39.513 9.223 7.174 3.549 45.977 5.979 36.958 11.831 6.740 3.257 34.313 6.456 3.4
TIMFusion (TPAMI’24) 41.144 9.749 7.095 3.831 44.298 6.059 41.952 13.396 6.571 3.743 29.232 6.624 3.7
Text-DiFuse (NeurIPS’24) 32.669 7.230 6.991 2.738 47.074 6.162 36.024 11.676 6.920 3.162 37.415 6.275 4.1
PDFuse-E (Ours) 79.869 18.300 7.079 7.499 40.303 6.075 72.684 21.307 6.549 6.557 32.504 6.646 2.5

Table 12: Quantitative comparison of multi-exposure image
fusion methods on the SICE dataset [2]. The red/blue/green
denotes first, second and third best. Rank is the mean ranking
across all metrics.

Methods EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑ Rank↓
U2Fusion 77.570 21.379 7.119 7.341 50.364 5.461 0.799 0.475 4.5
DeFusion 73.184 20.298 7.102 6.884 50.023 5.478 0.030 0.426 6.4
HSDS-MEF 68.284 24.476 7.262 8.278 51.805 5.318 0.725 0.477 3.5
TC-MoA 69.101 17.624 7.154 6.436 45.080 5.426 0.423 0.485 5.8
CCF 74.602 24.061 7.328 7.478 56.988 5.252 1.186 0.461 3.1
SAMT-MEF 76.682 24.253 7.205 7.811 47.788 5.375 0.612 0.486 3.6
EAT 61.909 19.253 7.063 6.245 43.476 5.517 0.345 0.426 7.6
PDFuse-B 90.641 26.568 7.461 8.828 58.199 5.119 0.877 0.482 1.4

We randomly selected 200 images
from the SICE dataset [2] for further
evaluation. The qualitative results are
presented in Fig. 18, while the quan-
titative findings are summarized in
Table 12. Our fusion method out-
performs current state-of-the-art ap-
proaches in overall exposure balance,
color fidelity, and detail preservation,
and also demonstrates superior perfor-
mance across the aggregate evaluation
metrics. To enhance the comparison
comprehensiveness, we additionally introduce MEF-SSIM [32] for evaluation. MEF-SSIM is a
structural similarity evaluation metric specifically designed for MEF, which has been widely adopted
and recognized in the MEF field. This metric performs perception-driven quality assessment by
measuring the consistency between the fusion result and the ideal structures of multi-source exposure
images. The quantitative experimental results are shown in Table 13.

E.3 More evaluations for multi-focus image fusion
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Table 13: Comparison with advanced methods based on the MEF-SSIM metric on the SICE dataset.
Methods U2Fusion DeFusion HSDS-MEF TC-MoA CCF SAMT EAT PDFuse
MEF-SSIM 0.8030 0.8297 0.8164 0.8838 0.7963 0.8617 0.8574 0.8856

Table 14: Quantitative comparison of multi-focus image
fusion methods on the Lytro dataset. The red/blue/green
denotes first, second and third best. Rank is the mean ranking
across all metrics.

Methods EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑ Rank↓
U2Fusion 62.670 14.890 7.304 5.589 51.853 7.673 0.373 0.648 5.8
DeFusion 48.944 11.117 7.468 4.421 54.483 7.509 0.330 0.597 6.6
ZMFF 74.427 18.921 7.525 6.755 56.800 7.452 0.467 0.740 4.3
DB-MFIF 75.006 19.641 7.537 6.895 57.654 7.439 0.576 0.778 3.1
TC-MoA 75.280 19.443 7.548 6.895 58.340 7.428 0.726 0.733 2.8
CCF 53.997 13.526 7.592 4.767 62.389 7.384 1.338 0.598 3.8
PDFuse-B 81.497 19.854 7.613 7.266 61.799 7.364 0.818 0.616 1.8

We further present a comprehensive
evaluation of multi-focus image fu-
sion performance on the widely-used
Lytro dataset [27], with qualitative re-
sults in Fig. 14 and quantitative results
in Table 14. Our method not only
demonstrates superior performance
over the peer CCF approach but also
outperforms all other competing algo-
rithms, achieving the highest average
ranking across every quantitative met-
ric.

F Extended application

F.1 Evaluations for medical multimodal image fusion

Table 15: Quantitative comparison of medical image
fusion methods on the Havard medicine dataset. The
red/blue/green denotes first, second and third best. Rank is
the mean ranking across all metrics.

Methods EI↑ SF↑ EN↑ AG↑ SD↑ TE↓ SCD↑ Qcb↑ Rank↓
U2Fusion 50.292 19.931 4.335 4.762 73.959 1.443 1.015 0.550 5.1
DeFusion 56.435 19.537 4.497 5.321 52.312 1.282 0.542 0.284 5.6
DDFM 46.170 19.226 4.038 4.465 63.580 1.740 0.995 0.574 6.0
EMMA 67.381 23.162 4.995 6.449 82.784 0.783 1.409 0.494 2.6
TC-MoA 57.787 25.956 4.480 5.668 74.192 1.298 1.242 0.291 4.3
CCF 64.751 22.358 5.187 6.015 87.586 0.592 1.474 0.385 2.6
PDFuse-B 76.292 32.205 4.540 7.279 90.330 1.238 1.516 0.503 1.7

To further validate the generality of
our approach, we performed extended
evaluations in the context of medi-
cal multimodal image fusion. Specif-
ically, we employed the CT–MRI
fusion subset of the Harvard Med-
ical School dataset as a representa-
tive benchmark. Our method was
compared against both state-of-the-
art multimodal fusion algorithms and
widely used general-purpose image fu-
sion techniques. Qualitative comparisons are presented in Fig. 20, and quantitative results are sum-
marized in Table 15. The results demonstrate that the proposed approach not only preserves critical
anatomical structures with high fidelity but also accurately reflects regional variations in metabolic
activity.

F.2 Evaluations for complex weather degradation scenarios

We extracted challenging complex-weather degradation scenes from the M3FD infrared–visible
image fusion dataset, which was captured using a dual-lens optical camera and a dual-lens infrared
sensor. This dataset contains adverse environmental conditions such as haze combined with low light,
low light accompanied by headlight glare, and haze mixed with noise. To evaluate our proposed
PDFuse-E method, we compared it with two cascaded schemes. In the first scheme, the visible image
was pre-enhanced using the DA-RCOT restoration method [43] before being fused with DCEvo. In
the second scheme, the visible image was pre-enhanced using the OneRestore method [10] and then
fused with DCEvo. The quantitative comparison results are presented in Table 16.

Table 16: Quantitative comparison on challenging complex-weather degradation scenes from the
M3FD dataset.

Methods EI↑ SF↑ AG↑ EN↑ SD↑ TE↓ SCD↑ Qcb↑
DA-RCOT + DCEVo 67.56 17.94 6.31 6.78 32.71 6.89 1.57 0.51
OneRestore + DCEvo 105.45 27.90 9.86 7.14 42.20 6.53 0.96 0.45
PDFuse-E 96.07 24.54 9.08 6.88 35.14 6.79 1.35 0.49
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From the table, we observe that the OneRestore + DCEvo method achieves the best performance on
several non-reference metrics such as EI, SF, and AG, but yields relatively low scores on full-reference
metrics like SCD and Qcb. In contrast, the DA-RCOT + DCEvo method performs best on SCD
and Qcb, yet falls behind on non-reference metrics such as EI and SF. While our method does not
outperform the others on any single metric, it achieves a more balanced overall performance. For
example, our scores on non-reference metrics like EI and AG are very close to those of OneRestore
+ DCEvo and significantly higher than those of DA-RCOT + DCEvo. At the same time, our full-
reference scores on SCD and Qcb remain relatively high.

From a qualitative perspective as illustrated in Fig. 10, in low-light and extreme haze-degraded scenes,
both OneRestore and DA-RCOT struggle to restore visibility in the hazy regions of the visible image,
resulting in fused outputs that retain heavy haze and hinder the integration of infrared information.
While our PDFuse-E method also cannot directly restore haze in the visible image, the interference
operator set adjusts the global exposure structure, effectively suppressing haze brightness and thus
reducing its fusion weight. This enables the fused output to preserve rich infrared texture information
in those regions.

Figure 10: Qualitative comparison under complex weather degradations.

G Limitation

Although our method is the first training-free, general, and robust image fusion framework based
on pretrained latent diffusion models and achieves good performance across multiple tasks, it also
shares a common limitation with most diffusion model methods, namely, relatively low runtime
efficiency. In Table 17, we provide the memory usage and runtime efficiency of various methods.
Regarding runtime efficiency, several diffusion model methods perform poorly. Although our method
runs faster compared to similar approaches like CCF and DDFM, there remains significant room for
improvement compared to other architectural methods.

Table 17: Statistical results of parameters and runtime.
Methods U2Fusion DeFusion TC-MoA EMMA DCEvo DDFM CCF PDFuse-B PDFuse-E
Memory usage/M 2.51 30.04 1299.23 5.79 7.65 2108.82 2108.82 2033.68 2033.68
Runtime/Second 1.50 0.92 1.14 1.12 0.74 57.69 96.94 18.43 18.81

H Broader impacts

This paper proposes a training-free, generalizable, and robust image fusion method leveraging a pre-
trained latent diffusion model to generate high-quality fused images that serve both visual perception
and machine decision-making. Specifically, the study aims to advance the exploration and application
of latent diffusion models in the field of image fusion, addressing two major challenges currently
faced by image fusion tasks: generalization and robustness. It is foreseeable that this work will have
a positive impact across various domains, particularly facilitating the advancement of information
fusion technologies toward practical applications such as autonomous driving and intelligent medical
diagnosis. The proposed approach poses minimal risks and is unlikely to have any significant negative
effects.
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Figure 11: Center zoomed-in views of qualitative infrared–visible image fusion results.

Figure 12: Center zoomed-in views of qualitative multi-exposure image fusion results.

Figure 13: Center zoomed-in views of qualitative multi-focus image fusion results.
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Figure 14: Qualitative comparison of PDFuse-B, PDFuse-E, and state-of-the-art methods on the TNO
dataset.

Figure 15: Qualitative comparison of PDFuse-B, PDFuse-E, and state-of-the-art methods on the FMB
dataset.

Figure 16: Qualitative comparison of PDFuse-B, PDFuse-E, and state-of-the-art methods on the
MSRS dataset.
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Figure 17: Qualitative comparison of PDFuse-B, PDFuse-E, and state-of-the-art methods on the
RoadScene dataset.

Figure 18: Qualitative comparison of PDFuse-B and state-of-the-art methods on the SICE dataset.

Figure 19: Qualitative comparison of PDFuse-B and state-of-the-art methods on the Lytro dataset.
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Figure 20: Qualitative comparison of PDFuse-B and state-of-the-art methods on the Havard medicine
dataset.
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