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Abstract

Recent research on multi-criteria Chinese word001
segmentation (MCCWS) mainly focuses on002
building complex private structures, adding003
more handcrafted features, or introducing com-004
plex optimization processes. In this work, we005
show that through a simple yet elegant input-006
hint-based MCCWS model, we can achieve007
state-of-the-art (SoTA) performances on sev-008
eral datasets simultaneously. We further pro-009
pose a novel criterion-denoising objective that010
hurts slightly on F1 score but acheives SoTA011
recall on out-of-vocabulary words. Our result012
establishes a simple yet strong baseline for fu-013
ture MCCWS research.014

1 Introduction015

Chinese word segmentation (CWS) is a prelimi-016

nary step for performing Chinese NLP tasks. Re-017

searchers have proposed many CWS datasets to018

enhance word segmentation performance in dif-019

ferent text domains. However, due to the diver-020

gence in linguistic perspectives, the same text pas-021

sage can be segmented in entirely different ways022

across datasets. For example, in their written forms,023

Chinese human names have no spaces in between.024

Some datasets segment human names into last and025

first names, while others leave human names as026

a whole (see Table 1). The simplest way to ad-027

dress such an issue is through single-criterion CWS028

(SCCWS) model, i.e., to train different models for029

different datasets. But the cost of maintaining mul-030

tiple versions of the same model becomes cumber-031

some as recent deep learning models get deeper032

and larger. Thus, recent CWS works started to shift033

their focuses to multi-criterion Chinese word seg-034

mentation (MCCWS), which aims to fit one model035

for all CWS datasets (Chen et al., 2017; He et al.,036

2019; Gong et al., 2019; Huang et al., 2020b,a; Ke037

et al., 2020; Qiu et al., 2020; Ke et al., 2021).038

MCCWS can be seen as a multi-task learning039

problem (Chen et al., 2017) that benefits from040

Dataset Samples Labels
PKU 江-泽民 S-BE
MSRA 江泽民 BME
AS 何-樂-而-不-為 S-S-S-S-S
CITYU 何樂而不為 BMMME

Table 1: Actual samples from SIGHAN bakeoff 2005
datasets (Emerson, 2005) demonstrating labeling incon-
sistency. The hyphen “-” denotes segmentation. Labels
are defined in Section 3.1. In the first two rows, the
human name江泽民 (Jiang Zemin) in PKU dataset is
segmented into the last name 江 (Jiang) and the first
name泽民 (Zemin), but not in MSRA dataset. In the
last two rows, the idiom何樂而不為 (Why not do some-
thing?) is segmented in AS dataset but not in CITYU
dataset. More examples can be found in these datasets.

leveraging large amounts of heterogeneous data, 041

meanwhile dealing with subtle linguistic diver- 042

gence. Prior works are mainly divided into private- 043

structure-based and input-hint-based models. In a 044

typical SCCWS workflow, an input character se- 045

quence is first converted to character embeddings 046

and fed to an encoder to get contextualized repre- 047

sentation. The encoder output is then passed to a 048

decoder to generate the final prediction (see Fig- 049

ure 1(a)). In private-structure-based MCCWS, an 050

encoder-decoder pair is created for each dataset, but 051

an additional encoder is shared across datasets to 052

better leverage general knowledge (see Figure 1(b)). 053

In input-hint-based MCCWS, instead of creating 054

private structures for each dataset, all datasets share 055

one encoder-decoder pair, and a criterion-specific 056

hint is given as part of the input (see Figure 1(c)). 057

Despite its simplicity, input-hint-based MCCWS 058

models outperform private-structure-based MC- 059

CWS models. 060

Proven to be simple and effective, the input- 061

hint-based approach has become the most popular 062

choice of recent MCCWS works (He et al., 2019; 063

Gong et al., 2019; Huang et al., 2020a; Ke et al., 064

2020; Qiu et al., 2020; Ke et al., 2021). While 065
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Figure 1: (a) Typical SCCWS model, (b) private-structure-based MCCWS model, and (c) input-hint-based MCCWS
model. All three types of models share similar workflows. B,E,M,S are collectively defined as the output tagset
of a CWS model (see Section 3.1). The character sequence “何樂而不為” (Why not do something?) is used as
an input demonstration. [k] represents the criterion of the k-th dataset and is served as an input hint. SCCWS and
input-hint-based MCCWS models are nearly identical with the input being the only difference.

existing works kept adding complex features and066

structures, we show that without such complexity,067

we can still achieve state-of-the-art (SoTA) results068

across 10 CWS datasets. We do this by jointly069

training MCCWS with a criterion classification ob-070

jective on a simple model. In particular, we used a071

pre-trained Chinese BERT (Devlin et al., 2019) as072

our encoder and a softmax decoder. Neither hand-073

crafted features nor complex non-greedy decoding074

algorithms were used.075

One problem remains for input-hint-based MC-076

CWS models. When fitting on a training set or077

evaluating a test set, each character sequence is078

sampled from a particular dataset, so one would al-079

ways know which criterion-specific hint was given080

as input. However, when performing inference,081

one would not know the source of a given char-082

acter sequence. Therefore, one has to choose the083

criterion in such cases manually. With hundreds084

of linguistic rules (Emerson, 2005), it is difficult085

for non-linguists to determine which criterion to086

use. Thus, inspired by the masked language model,087

we proposed a novel criterion-denoising objective088

to make our MCCWS model automatically choose089

a suitable criterion for each input. We show that090

adding such a denoising objective surprisingly re-091

tains near SoTA performance on the F1-score, and092

even outperforms SoTA performance on the recall093

of out-of-vocabulary (OOV) words.094

2 Related Works095

After Xue (2003) proposed to treat CWS as a char-096

acter tagging problem, many works followed the097

same problem formulation to address CWS. Chen098

et al. (2017) is the first to propose a multi-criteria099

learning framework for CWS. They proposed mul- 100

tiple private-structure-based MCCWS models and 101

trained them in an adversarial setting. A criterion 102

discriminator was used in their adversarial training 103

so that common knowledge across datasets could 104

be shared through different private structures. But 105

the nature of adversarial training forces their cri- 106

terion discriminator to predict each criterion with 107

equal probability (Goodfellow et al., 2014; Chen 108

et al., 2017). Thus their criterion discriminator 109

failed to provide accurate criterion prediction and 110

cannot be used to choose a suitable criterion for 111

each input. 112

Inspired by the success of the BiLSTM-based 113

SCCWS model (Ma et al., 2018) and input-hint- 114

based multilingual neural machine translation sys- 115

tem (Johnson et al., 2017), He et al. (2019) pro- 116

posed to build an input-hint-based MCCWS on top 117

of the BiLSTM. They added two artificial tokens 118

representing a criterion and put them at the begin- 119

ning and the end of an input sentence. Such a sim- 120

ple idea advanced the SoTA performance on seven 121

datasets simultaneously. Gong et al. (2019) pro- 122

posed switch-LSTMs, which can dynamically route 123

between multiple BiLSTMs to encode criterion- 124

specific features when given different input hints. 125

Their work set the SoTA limit that can be achieved 126

via LSTM architecture. 127

After the remarkable effectiveness of pre-trained 128

language models was found, MCCWS works 129

started to replace LSTM encoders with Trans- 130

former encoders (Vaswani et al., 2017). Huang 131

et al. (2020a) used RoBERTa (Liu et al., 2019) to 132

build an input-hint-based MCCWS model, which 133

advanced SoTA performance. Huang et al. (2020b) 134
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shows that adding private structures on top of a135

large pre-trained model can push SoTA even fur-136

ther. Ke et al. (2021) pre-trained an input-hint-137

based MCCWS on BERT (Devlin et al., 2019) with138

meta-learning (Finn et al., 2017), but only after fine-139

tuning did they become the new SoTA on SCCWS140

models.141

Ke et al. (2020) and Qiu et al. (2020) are the142

most similar to ours among many MCCWS works.143

We use a nearly identical input-hint-based model144

as in Qiu et al. (2020). However, like all the works145

mentioned before, they do not include a criterion146

classification objective, and therefore fail to pro-147

vide a way to choose criteria automatically. Ke148

et al. (2020) is the only work using criterion clas-149

sification objective, but we further simplified its150

model structure, which outperforms their models151

on average F1-score. We further proposed a novel152

criterion-denoising objective that helps choose cri-153

teria automatically. By trading off 0.06% F1-score154

on average, we achieved the new SoTA on the OOV155

recall, which improved by a large margin compared156

to the previous SoTA (1.75%).157

In summary, previous research on MCCWS ei-158

ther did not provide a way to choose a criterion or159

always manually chose a criterion. In our work,160

we proposed a simple yet elegant way to make our161

MCCWS model automatically choose a suitable162

criterion for the given character sequence. Compar-163

ing our works to others, we find that (1) our model164

has the simplest structure and is the easiest to im-165

plement among other works; (2) we achieved MC-166

CWS SoTA performance on several CWS datasets167

and on average F1-score over 10 datasets; (3) we168

improved SoTA OOV recall by a large margin.169

3 MCCWS170

In this section, we describe the detail of our method-171

ology. We first give a formal definition of input-172

hint-based MCCWS (Section 3.1). Then we intro-173

duce our MCCWS model (Section 3.2). Finally,174

we formally define our criterion-denoising objec-175

tive and describe how to jointly train our MCCWS176

on top of the proposed denoising objective (Sec-177

tion 3.3).178

3.1 Problem Definition179

Let x be a character sequence. Denote the i-th180

character of sequence x as xi, and the i-th output181

corresponds to x as yi. Each yi belongs to a tagset182

T = {B,M,E,S} where B,M,E represent the be-183

ginning, the middle, and the end of a word, and S 184

represents a word with a single character. When 185

receiving a character sequence x, a SCCWS model 186

will pass x to its encoder (with parameter θenc) 187

to generate the contextualized representation of x, 188

then feed the encoder output to its decoder (with 189

parameter θdec) to generate prediction y based on 190

x, following the constraint of the tagset T (see 191

Figure 1(a)). Typically, a decoder such as the con- 192

ditional random field (CRF) (Lafferty et al., 2001) 193

will search through all possible combinations and 194

return the combination with the highest probability: 195

y∗ = argmax
y∈T |x|

Pr(y | x; θenc, θdec), (1) 196

where |x| denotes the number of characters of x. 197

The goal of a SCCWS model with parameters θenc 198

and θdec is to maximize the probability of y given 199

x over all pairs of (x, y) in a CWS dataset D. One 200

can achieve this by minimizing the negative log- 201

likelihood L over dataset D: 202
203

L(D, θenc, θdec) 204

= min−
∑

(x,y)∈D

log Pr(y |x; θenc; θdec). (2) 205

Now suppose there are K different CWS 206

datasets {Dk}Kk=1. When receiving a character se- 207

quence x from the k-th dataset Dk, an input-hint- 208

based MCCWS model will combine x with the k-th 209

criterion token [k] to form a new sequence (see Fig- 210

ure 1(c)). The new sequence is then processed as 211

in Equation (1). Therefore, we can rewrite Equa- 212

tion (2) to define the minimization objective of an 213

input-hint-based MCCWS model with parameters 214

θenc and θdec: 215
216

L({D}Kk=1, θenc, θdec) 217

= min−
K∑
k=1

∑
(x,y)∈Dk

log Pr(y |x, [k]; θenc; θdec).

(3)

218

Observe that the negative log-likelihood of y is con- 219

ditioned on both x and [k], and the minimization is 220

performed on all K datasets simultaneously instead 221

of a single dataset. 222

3.2 Model Definition 223

Input Format. For each dataset Dk and each 224

character sequence x ∈ Dk, let 225

x = [[CLS]; [k];x; [SEP]] (4) 226
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be the new sequence formed by concatenating the227

[CLS] token, the k-th criterion token [k], character228

sequence x, and the [SEP] token. x is treated as a229

sequence with 3 + |x| characters and fed into our230

MCCWS encoder.231

Encoder. We used a pre-trained Chinese BERT1232

as our encoder, and we denote the output of BERT233

as h:234

h = BERT(x; θenc) ∈ R(3+|x|)×dmodel , (5)235

where dmodel is the hidden dimension of BERT.236

Devlin et al. (2019) includes all details of BERT.237

Both [CLS] and [SEP] tokens are only used to follow238

the BERT input format with no further computa-239

tions done on both tokens. We note that we neither240

use any private structures nor handcrafted features.241

Thus, our encoder architecture can be considered242

as the simplest among other MCCWS works.243

Decoder. To keep our model simple, we choose244

a greedy decoding algorithm over a non-greedy245

one. We use one linear layer followed by a softmax246

normalization as our decoder. The output of BERT247

encoder h, with starting index 3, is fed directly into248

our decoder:249
250

yi−2 = softmax(W h · hi + bh) ∈ R4251

for all i ∈ {3, . . . , |x|+ 2}. (6)252

W h ∈ R4×dmodel and bh ∈ R4 are trainable pa-253

rameters, and 4 is the size of tagset T . Our de-254

coder will generate a sequence of probability vec-255

tors y = (y1, . . . ,y|x|) ∈ R|x|×4. Since we use256

greedy decoding, we optimize our input-hint-based257

MCCWS model with cross-entropy loss instead of258

negative log-likelihood. So we change Equation (3)259

as follows:260
261

L({D}Kk=1, θenc, θdec)262

= min−
K∑
k=1

∑
(x,y)∈Dk

|x|∑
i=1

1yi ⊙ logyi, (7)263

where 1yi denotes the one-hot encoding corre-264

sponding to yi, ⊙ denotes the Hadamard product,265

and logyi denotes performing log operation on266

probability vector yi in an element-wise fashion.267

1Pre-trained model checkpoint is available at https://
huggingface.co/bert-base-chinese.

Criterion Classification To make our model re- 268

member the meaning of criterion hint [k] during the 269

forward pass, we introduce a criterion classification 270

task. We let our model predict which criterion hint 271

it received. So we pick h2, the output of BERT 272

that corresponds to the criterion token [k], and feed 273

it into a criterion classifier which consists of one 274

linear layer (different from our decoder) following 275

a softmax normalization: 276

c = softmax(W c · h2 + bc) ∈ RK . (8) 277

Both W c ∈ RK×dmodel and bc ∈ RK are train- 278

able parameters. Our criterion classifier is set to 279

minimize cross-entropy loss, just like Equation (7): 280
281

Lc({D}Kk=1, θenc, θdec) 282

= min−
K∑
k=1

∑
(x,y)∈Dk

1[k] ⊙ log c, (9) 283

where 1[k] denotes the one-hot encoding that cor- 284

responds to [k] and log c denotes the element-wise 285

log operation on the probability vector c. 286

Total Loss Combining Equations (7) and (9), we 287

get our final loss Lfinal: 288
289

Lfinal({D}Kk=1, θenc, θdec) 290

= L({D}Kk=1, θenc, θdec) 291

+ Lc({D}Kk=1, θenc, θdec). (10) 292

We jointly train both objectives on our input-hint- 293

based MCCWS model. Surprisingly, this joint 294

objective gives us SoTA performance on several 295

datasets. 296

3.3 Criterion Denoising 297

To avoid manually giving criterion tokens, we de- 298

sign a criterion-denoising objective to make our 299

model choose the suitable criterion for each in- 300

put. We define a token [UNC], which stands for 301

“unknown criterion,” and we randomly replace each 302

pairing criterion [k] with [UNC]. In this situation, 303

the goal of our criterion classifier (see Equation (8)) 304

is to find the best fitting criterion for the given input 305

x. So Equation (9) becomes a denoising objective, 306

in a similar way to the masked language model 307

objective used in BERT. After training with [UNC], 308

the model can choose a suitable criterion for x and 309

perform CWS simultaneously, all in just a single 310

forward pass. We show that such an auto mecha- 311

nism does not harm the performance, making our 312

model effective and practical. 313
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4 Experiments314

4.1 Datasets315

We perform experiments on 10 CWS datasets (this316

means K = 10). Four datasets are from the317

SIGHAN2005 bakeoff (Emerson, 2005), including318

AS, CITYU, PKU, and MSRA; SXU is from the319

SIGHAN2008 bakeoff (Jin and Chen, 2008); the320

rest are CNC2, CTB6 (Xue et al., 2005), UD (Ze-321

man et al., 2018), WTB (Wang et al., 2014) and322

ZX (Zhang et al., 2014). Following Emerson323

(2005), we report the F1-score and OOV recall.324

Our preprocessing mainly follows the works325

of He et al. (2019) and Chen et al. (2017), as done326

by others. We first convert all full-width charac-327

ters into half-width. Then, we replace different328

consecutive digits into one token (we do the same329

for alphabets). Unlike others who set the maxi-330

mum sentence length to 128 or lower to speed up331

the training process, we decide to utilize the full332

computing power of BERT and include as many333

characters in the same context as possible. So we334

set the maximum sentence length to 512. For sen-335

tences longer than 512, we try to find the nearest336

punctuation as our delimiter, otherwise, we split on337

the 512th character. The statistics for all datasets338

can be found in Appendix A.339

4.2 Hyperparameters340

We use PyTorch (Paszke et al., 2019) to im-341

plement our model. We fine-tune BERT with342

AdamW (Loshchilov and Hutter, 2019) on the343

pre-trained checkpoint bert-base-chinese344

provided by huggingface (Wolf et al., 2019) (this345

means dmodel = 768 and the number of parame-346

ters is around 110M). Moving average coefficients347

(β1, β2) of AdamW are set to (0.9, 0.999). The348

learning rate is set to 2 × 10−5, and the weight349

decay coefficient is set to 0.01. We schedule the350

learning rate with linear warmup and linear decay.351

The warmup ratio is set to 0.1, and the total training352

step is set to 170000. Dropout (Srivastava et al.,353

2014) is applied with a probability of 0.1. We set354

the batch size to 32, and use gradient accumulation355

with two steps (this is almost equivalent to setting356

the batch size to 64). We use label smoothing only357

on the decoder but not on the criterion classifier,358

and we set the smoothing value to 0.1. We pick the359

checkpoint with the highest F1 on the development360

set to calculate test set F1. For each experiment361

2http://corpus.zhonghuayuwen.org/

reported later, we ran each over 5 random seeds 362

and reported only the best result. The results of 363

all trials are listed in Appendix A. All experiments 364

were run on a single Intel Xeon Silver 4216 CPU 365

and an Nvidia RTX 3090 GPU. 366

4.3 Main Results 367

SoTA F1-score. Table 2 shows our results on 368

F1 over 10 CWS datasets. Our MCCWS model 369

(denoted as “Ours”) achieves SoTA results on 5 370

out of 10 datasets. Since not all works performed 371

experiments on all the same 10 datasets, we also 372

report average results on the most common 4 (de- 373

noted as Avg.4) and 6 (denoted as Avg.6) datasets. 374

Results show that our model is ranked 2nd under 375

Avg.4 and Avg.6, which is only 0.14% and 0.05% 376

less than the best-performing model respectively. 377

We note that Huang et al. (2020b) used a private- 378

structure-based MCCWS with CRF decoder, there- 379

fore, has way more parameters than our proposed 380

model. Nevertheless, our model achieves the SoTA 381

performance on average over 10 datasets (denoted 382

as Avg.10). Therefore, despite the simplicity, our 383

model still performs well against strong baselines. 384

Noisy but near SoTA. In Section 3.3, we pro- 385

posed a criterion-denoising objective. We ran- 386

domly select 10% criterion tokens for each mini- 387

batch and replace them with [UNC]. Table 2 shows 388

the performance of our criterion denoising MC- 389

CWS model (denoted as ours+10%[UNC]). We see 390

that the denoising version of our model beats the 391

previous SoTA on Avg.10 and even achieved the 392

new SoTA on two datasets. This shows that our 393

criterion-denoising objective does not hinder the 394

performance, but helps our model advance to near 395

SoTA results. 396

SoTA OOV Recall. Table 3 shows our results 397

on OOV recall over 10 CWS datasets. Our models 398

achieve SoTA results on 8 out of 10 datasets with or 399

without criterion-denoising objective. CWS task is 400

challenging when the word boundary is ambiguous, 401

which can only be eased by giving enough context. 402

Thus, we attribute the remarkable OOV recall im- 403

provement to our preprocessing step, for which we 404

set the maximum input length to 512, giving our 405

model enough context to identify unseen words. 406

We will further discuss this result in Section 4.4. 407

But with the help of our criterion-denoising ob- 408

jective, we see that OOV recall is boosted even 409

higher, showing the effectiveness of our criterion- 410

denoising objective. 411

5
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MCCWS Models AS CITYU CNC CTB6 MSRA PKU SXU UD WTB ZX Avg.4 Avg.6 Avg.10
Model-I+ADVa 94.64 95.55 - 96.18 96.04 94.32 96.04 - - - 95.14 95.46 -
BiLSTM+CRF-4b 95.40 96.20 - - 97.40 95.90 - - - - 96.26 - -
BiLSTM+CRF-8b 95.47 95.60 - 95.84 97.35 95.78 96.49 - - - 96.05 96.09 -
Switch-LSTMsc 95.22 96.22 - 97.62 97.78 96.15 97.25 - - - 96.34 96.71 -
RoBERTa+softmaxd - - 97.19 97.56 98.29 96.85 97.56 97.69 - 96.46 - - -
BERT+CRFe 97.00 97.80 97.30 97.80 98.50 97.3 97.50 97.80 93.20 97.10 97.65 97.65 97.13
Transformer+CRFf 96.44 96.91 - 96.99 98.05 96.41 97.61 - - - 96.95 97.07 -
Unified BiLSTMg 95.47 95.60 - 95.84 97.35 95.78 96.49 - - - 96.05 96.09 -
Unified BERTg 96.90 97.07 - 97.20 98.45 96.89 97.81 - - - 97.33 97.39 -
METASEGh 97.04 98.12 97.25 97.87 98.02 96.76 97.51 83.84 89.53 88.48 97.49 97.55 -
Ours 96.65 98.15 97.43 97.84 98.36 96.86 97.73 98.28 93.94 97.14 97.51 97.60 97.24
Ours+10%[UNC] 96.66 98.08 97.35 97.93 98.21 96.89 97.61 98.07 93.85 97.14 97.46 97.56 97.18
Ours+10%[UNC]+auto 96.64 97.30 97.01 96.89 92.78 95.08 93.43 97.98 92.26 96.05 95.45 95.35 95.54

Table 2: The F1-score (in percentage) on all 10 datasets. The F1-scores other than ours are directly recorded from
their papers. Avg.4: Average over AS, CITYU, MSRA, and PKU; Avg.6: Average over AS, CITYU, CTB6, MSRA,
PKU, and SXU; Avg.10: Average over 10 datasets; a: (Chen et al., 2017); b: (He et al., 2019); c: (Gong et al.,
2019); d: (Huang et al., 2020a); e: (Huang et al., 2020b); f : (Qiu et al., 2020); g: (Ke et al., 2020); h: (Ke et al.,
2021); Ours: Our model without criterion-denoising objective; Ours+10%[UNC]: Our model with criterion-denoising
objective and randomly replacing 10% of criterion with [UNC]; Ours+10%[UNC]+auto: Same as Our+10%[UNC] but
use [UNC] token to perform evaluation.

MCCWS Models AS CITYU CNC CTB6 MSRA PKU SXU UD WTB ZX Avg.4 Avg.6 Avg.10
Model-II+ADVa 75.37 81.05 - 82.19 72.76 73.13 76.88 - - - 75.578 76.897 -
Switch-LSTMsb 77.33 73.58 - 83.89 64.20 69.88 78.69 - - - 71.248 74.595 -
RoBERTa+softmaxc - - 59.44 88.02 81.75 82.35 85.73 91.40 - 82.51 - - -
Transformer+CRFd 76.39 86.91 - 87.00 78.92 78.91 85.08 - - - 80.283 82.202 -
Unified BERTe 79.26 87.27 - 87.77 83.35 79.71 86.05 - - - 82.398 83.902 -
METASEGf 80.89 90.66 61.90 89.21 83.03 80.90 85.98 93.59 85.00 87.33 83.870 85.112 83.849
Ours 79.07 91.61 66.15 91.40 88.82 82.87 87.27 93.75 85.63 87.20 85.593 86.840 85.377
Ours+10%[UNC] 79.60 92.28 66.28 91.66 88.00 83.44 87.60 92.74 86.24 88.14 85.830 87.097 85.598
Ours+10%[UNC]+auto 80.12 91.26 65.64 89.83 64.24 78.28 80.57 93.07 83.49 85.94 78.475 80.717 81.244

Table 3: The OOV recall (in percentage) on all 10 CWS datasets. The OOV recalls other than ours are directly
recorded from their papers. Avg.4: Average over AS, CITYU, MSRA, and PKU; Avg.6: Average over AS,
CITYU, CTB6, MSRA, PKU, and SXU; Avg.10: Average over 10 datasets; a: (Chen et al., 2017); b: (Gong
et al., 2019); c: (Huang et al., 2020a); d: (Qiu et al., 2020); e: (Ke et al., 2020); f : (Ke et al., 2021); Ours: Our
model without criterion-denoising objective; Ours+10%[UNC]: Our model with criterion-denoising objective and
randomly replacing 10% of criterion with [UNC]; Ours+10%[UNC]+auto: Same as Our+10%[UNC] but use [UNC] token
to perform evaluation.

Auto Mechanism In Section 3.3, we claimed that412

our criterion-denoising objective could be used for413

choosing criteria automatically. We do this by pair-414

ing each input sequence on the test set with [UNC]415

and performing the evaluation. Table 2 shows that416

most datasets maintain their performances almost417

on par with the original even when using [UNC],418

and the average F1-score remains competitive with419

other baselines. This suggests that some common420

knowledge is shared throughout the 10 heteroge-421

neous datasets, and our model can learn and lever-422

age this knowledge.423

4.4 Ablation Study424

Increase Criterion Denoising Rate. This sec-425

tion studies what happens when the criterion de-426

noising rate increases. Figure 2 shows that both the 427

average F1-score and the average OOV recall de- 428

crease as criterion noise increases. This is expected 429

as in the masked language model experiment of 430

BERT, where increasing the masked rate results in 431

fine-tune performance drop. However, as shown 432

in Figure 2, using [UNC] to perform inference only 433

gets affected slightly by different denoising rates. 434

This suggests that when using criterion-denoising 435

objective, our model learns to segment on the most 436

common patterns showed across datasets. Thus, 437

our model is robust to diverse inputs, which proven 438

itself to be a “general CWS model” that shares 439

knowledge across different CWS datasets. 440
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Figure 2: Left: Trade-off between denoising rate and the average F1-score. Right: Trade-off between denoising rate
and the average OOV recall. use [k]: Use criterion-specific token [k] to perform inference; use [UNC]: Use [UNC] to
perform inference.

Figure 3: Left: Trade-off between the maximum sentence length constraint used in training and the average F1-score.
Right: Trade-off between the maximum sentence length constraint used in training and the average OOV recall. test
maximum length = x: Use the same maximum length constraint to perform inference. test maximum length = 512:
Ignore the maximum length constraint and use up to 512 characters to perform inference.

Reduce Maximum Sentence Length. As shown441

in Table 3, our model’s OOV recall outperformed442

others by a large margin. We suspect that it is443

due to our preprocessing step, which allows our444

model to take inputs up to 512 characters. Figure 3445

shows that the longer a model’s character sequence446

is allowed to take, the better the performance on447

the average F1-score and the average OOV recall.448

Performance on input length longer than 256 stays449

mostly the same since only a few sequences have450

their length longer than 256 (the average sentence451

length on all 10 datasets is 37.09, see Appendix A).452

However, we found an easy fix for models trained453

on shorter sentences: That is, allow input sequence454

length up to 512. Despite not being trained on such455

a long sequence, we found that all models’ perfor-456

mance increased after feeding longer input. This is 457

consistent with the common sense that longer input 458

reduces the chance of ambiguity and thus performs 459

better on CWS. 460

Case Study We provide examples to demonstrate 461

our MCCWS model’s capability of segmenting dif- 462

ferently when given different criterion tokens. Ta- 463

ble 4 shows that in some cases, one sentence can 464

be segmented in at least five different ways, which 465

proves that our model can perform CWS based on 466

various criteria. Table 5 shows that in some other 467

cases, most criteria agree with each other, which 468

proves that our model can leverage the common 469

knowledge shared across datasets. We leave more 470

examples in Appendix A for interested readers. 471
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Original Sentence 也是言之有據

AS-gold 也-是-言-之-有-據
CITYU-gold 也是-言之有據
AS-infer 也-是-言-之-有-據
CITYU-infer 也是-言之有據
CNC-infer 也是-言之有據
CTB6-infer 也-是-言之有據
MSRA-infer 也是-言之有據
PKU-infer 也-是-言之有據
SXU-infer 也-是-言之有據
UD-infer 也是-言-之有據
WTB-infer 也是-言之有據
ZX-infer 也-是-言-之-有據
[UNC]-infer 也是-言之有據

Table 4: Examples showcasing that one sentence can
have multiple segmentation criteria, and our MCCWS
model can deal with these linguistic divergences. We
found five different ways to segment the same sen-
tence “也是言之有據” (Claims are justified). Dk-gold:
Ground truth segmentation labeled in dataset Dk. Dk-
infer: Inference result of our MCCWS model with cri-
terion token [k]. [UNC]-infer: Inference result of our
MCCWS model with unknown criterion token [UNC].
The hyphen “-” denotes segmentation.

5 Conclusion472

In this paper, we proposed a simple yet effective473

input-hint-based MCCWS model which achieves474

several SoTA results across 10 CWS datasets. We475

also proposed a novel criterion-denoising objective476

which makes our model capable of choosing cri-477

terion automatically for each character sequence.478

Experiment results show that our novel denoising479

objective does not suffer dramatic performance loss480

but helps our MCCWS model retain near SoTA per-481

formance and even outperform previous work on482

OOV recall by a large margin. Our model can serve483

as a simple and robust baseline for MCCWS work484

or as the starting point to further fine-tune into SC-485

CWS models. In the future, we will try to gather486

more CWS datasets and perform more extensive487

experiments on more datasets.488

Limitations489

Unfortunately, we cannot access most490

SIGHAN2008 bakeoff datasets, which were491

proprietary but used by many previous works. This492

makes the comparison in Table 2 a little unfair.493

We argue that we replaced these non-accessible494

datasets with the ones publicly accessible (includ-495

ing UD, WTB, and ZX). We note that Huang et al.496

Original Sentence 江泽民总书记

MSRA-gold 江泽民-总书记
PKU-gold 江-泽民-总书记
AS-infer 江泽民-总书记
CITYU-infer 江泽民-总书记
CNC-infer 江泽民-总书记
CTB6-infer 江泽民-总书记
MSRA-infer 江泽民-总书记
PKU-infer 江-泽民-总书记
SXU-infer 江泽民-总书记
UD-infer 江-泽民-总-书记
WTB-infer 江泽民-总书记
ZX-infer 江泽民-总书记
[UNC]-infer 江泽民-总书记

Table 5: Examples showcasing that our model can lever-
age shared common knowledge across datasets. We
found three different ways to segment the same sentence
“江泽民总书记” (General Secretary Jiang Zemin). We
define symbols in the same way as in Table 4.

(2020b) faced the same limitation as us. Thus they 497

also replaced datasets just as we did, which makes 498

them the only directly comparable work to ours. 499
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strate our input-hint-based MCCWS model’s capa-672
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Dataset Split #C #S #W #UC #UW OOV% Avg.SL

AS
train 7,453,690 638,058 4,898,372 5,957 124,512 0 11.68
dev 805,692 70,895 551,209 4,353 32,000 1.86 11.36
test 193,723 14,429 122,610 3,579 18,093 3.73 13.43

CITYU
train 2,132,370 47,718 1,317,626 4,799 60,650 0 44.69
dev 220,243 5,301 138,004 3,234 16,372 3.79 41.55
test 66,353 1,492 40,936 2,643 8,633 7.38 44.47

CNC
train 8,908,376 207,001 5,841,321 6,643 113,223 0 43.04
dev 1,109,292 25,875 727,783 5,109 47,773 0.76 42.87
test 1,107,772 25,876 726,038 5,154 47,268 0.75 42.81

CTB6
train 1,108,461 24,416 678,811 4,201 42,086 0 45.40
dev 82,765 1,904 51,229 2,491 8,639 4.89 43.47
test 86,157 1,975 52,861 2,538 8,747 5.17 43.62

MSRA
train 3,615,524 78,227 2,144,776 5,023 71,399 0 46.22
dev 363,425 8,691 223,615 3,676 22,515 2.57 41.82
test 180,988 3,985 106,873 2,805 11,858 2.12 45.42

PKU
train 1,616,528 17,255 1,004,155 4,569 48,758 0 93.68
dev 170,803 1,917 105,792 3,019 13,613 3.15 89.10
test 168,992 1,949 104,372 2,881 12,456 3.31 86.71

SXU
train 744,162 15,407 474,758 4,026 28,207 0 48.30
dev 85,470 1,711 53,480 2,206 6,460 6.23 49.95
test 179,688 3,654 113,527 2,776 11,600 4.93 49.18

UD
train 147,295 3,997 98,608 3,390 15,930 0 36.85
dev 19,027 500 12,663 1,922 4,040 10.95 38.05
test 18,080 500 12,012 1,806 3,748 11.05 36.16

WTB
train 22,512 813 14,774 1,635 3,045 0 27.69
dev 2,875 95 1,843 770 837 18.39 30.26
test 2,838 92 1,860 733 731 15.05 30.85

ZX
train 96,647 2,373 67,648 2,289 6,770 0 40.73
dev 28,309 788 20,393 1,651 3,184 7.85 35.93
test 47,992 1,394 34,355 1,787 4,126 6.45 34.43

All
train 25,845,565 1,035,265 16,540,849 9,286 310,538 0 24.97
dev 2,887,901 117,677 1,886,011 7,134 95,398 1.30 24.54
test 2,052,583 55,346 1,315,444 6,789 77,145 1.21 37.09

Table 6: Dataset statistics (after preprocessing) for training, development, and test sets. #C: Number of characters.
#S: Number of sentences. #W: Number of words. #UC: Number of unique characters. #UW: Number of unique
words. OOV%: Out-of-vocabulary words rate. Avg.SL: Average sentence length.

Dataset Provider License
AS SIGHAN2005 Research Purpose

CITYU SIGHAN2005 Research Purpose
CNC CNCorpus Research Purpose
CTB6 StanfordCoreNLP Apache License
MSRA SIGHAN2005 Research Purpose
PKU SIGHAN2005 Research Purpose
SXU Shan Xi University Research Purpose
UD UD Project BY-NC-SA 4.0

WTB Wang et al. (2014) Research Purpose
ZX Zhang et al. (2014) Research Purpose

Table 7: All datasets’ licenses.
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Experiments Seeds AS CITYU CNC CTB6 MSRA PKU SXU UD WTB ZX Avg.10

Ours

927 96.65 98.15 97.43 97.84 98.36 96.86 97.73 98.28 93.94 97.14 97.238
4332 96.66 98.10 97.44 97.96 98.47 96.95 97.70 98.19 93.69 97.00 97.216
6664 96.58 98.05 97.44 97.84 98.41 96.91 97.72 98.23 93.42 97.20 97.180
7155 96.73 98.02 97.45 97.91 98.37 96.90 97.79 98.30 93.56 97.03 97.206
8384 96.68 98.05 97.44 97.83 98.37 96.89 97.65 98.21 93.55 97.04 97.171
Avg.5 96.660 98.074 97.440 97.876 98.396 96.902 97.718 98.242 93.632 97.082 97.202
Std.5 0.049 0.046 0.006 0.051 0.041 0.029 0.045 0.042 0.176 0.075 -

Ours+10%[UNC]

927 96.66 98.16 97.39 97.88 98.28 96.85 97.67 98.04 93.65 97.07 97.165
4332 96.65 97.99 97.37 97.90 98.26 96.88 97.63 97.93 93.32 97.04 97.097
6664 96.66 98.08 97.35 97.93 98.21 96.89 97.61 98.07 93.85 97.14 97.179
7155 96.77 98.00 97.36 97.93 98.27 96.83 97.64 98.11 93.54 97.03 97.148
8384 96.65 98.00 97.38 97.93 98.29 96.87 97.61 98.30 93.63 96.94 97.160
Avg.5 96.678 98.046 97.370 97.914 98.262 96.864 97.632 98.090 93.598 97.044 97.150
Std.5 0.046 0.066 0.014 0.021 0.028 0.022 0.022 0.121 0.172 0.065 -

Ours+10%[UNC]+auto

927 96.63 97.26 96.92 96.87 95.35 95.35 92.94 97.94 92.45 96.29 95.800
4332 96.60 97.22 96.92 96.84 95.19 95.50 93.54 97.92 92.72 96.39 95.884
6664 96.64 97.30 97.01 96.89 92.78 95.08 93.43 97.98 92.26 96.05 95.542
7155 96.70 97.34 96.91 96.83 95.12 95.49 93.53 97.94 92.48 96.05 95.839
8384 96.64 97.17 96.86 96.88 95.52 95.44 93.24 98.06 92.48 96.23 95.852
Avg.5 96.642 97.258 96.924 96.862 94.792 95.372 93.336 97.968 92.478 96.202 95.783
Std.5 0.032 0.059 0.048 0.023 1.015 0.155 0.225 0.050 0.146 0.134 -

Table 8: F1 results of 5 different trials. Experiment names are the same as in Table 2. Seed: Random seed set in an
experiment. Avg.10: Average over 10 datasets. Avg.5: Average over 5 trials. Std.5: Standard deviation over 5 trials.

Experiments Seeds AS CITYU CNC CTB6 MSRA PKU SXU UD WTB ZX Avg.10

Ours

927 79.07 91.61 66.15 91.40 88.82 82.87 87.27 93.75 85.63 87.20 85.377
4332 79.52 91.77 66.05 91.78 88.34 83.80 87.29 93.68 85.63 87.74 85.560
6664 78.45 91.48 66.57 91.69 88.24 83.39 87.17 93.68 86.54 88.05 85.526
7155 80.52 91.16 66.17 91.86 88.34 83.23 87.55 93.41 85.63 87.56 85.543
8384 79.88 91.26 66.13 91.02 89.06 83.00 87.00 93.07 84.40 87.60 85.242
Avg.5 79.488 91.456 66.214 91.550 88.560 83.258 87.256 93.518 85.566 87.630 85.450
Std.5 0.703 0.223 0.183 0.307 0.321 0.325 0.179 0.252 0.681 0.275 -

Ours+10%[UNC]

927 79.26 92.09 66.82 91.60 88.41 83.31 87.15 93.07 85.32 87.60 85.463
4332 79.07 91.03 65.96 91.40 87.73 83.39 86.76 93.07 83.49 87.78 84.968
6664 79.60 92.28 66.28 91.66 88.00 83.44 87.60 92.74 86.24 88.14 85.598
7155 80.63 91.48 65.71 91.80 88.62 83.67 87.41 93.07 85.63 87.83 85.585
8384 79.07 91.38 66.98 91.75 88.48 82.92 87.60 94.01 85.63 87.65 85.547
Avg.5 79.525 91.652 66.350 91.642 88.248 83.346 87.304 93.192 85.262 87.800 85.432
Std.5 0.585 0.464 0.487 0.139 0.331 0.244 0.318 0.429 0.935 0.189 -

Ours+10%[UNC]+auto

927 79.50 90.62 65.44 89.86 74.94 79.29 77.58 92.94 83.18 86.66 82.001
4332 79.11 90.24 64.77 89.78 74.01 79.57 79.14 93.00 81.35 87.11 81.808
6664 80.12 91.26 65.64 89.83 64.24 78.28 80.57 93.07 83.49 85.94 81.244
7155 80.44 90.71 64.62 89.89 73.71 79.65 79.48 92.94 84.71 85.98 82.213
8384 79.67 90.20 66.07 90.10 76.79 79.03 78.57 93.07 84.71 87.29 82.550
Avg.5 79.768 90.606 65.308 89.892 72.738 79.164 79.068 93.004 83.487 86.596 81.963
Std.5 0.467 0.384 0.542 0.110 4.383 0.493 0.989 0.058 1.237 0.559 -

Table 9: OOV recalls of 5 different trials. Experiment names are the same as in Table 3. Seed: Random seed set in
an experiment. Avg.10: Average over 10 datasets. Avg.5: Average over 5 trials. Std.5: Standard deviation over 5
trials.
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Original Sentence 何樂而不為

AS-gold 何-樂-而-不-為
CITYU-gold 何樂而不為

AS-infer 何-樂-而-不-為
CITYU-infer 何樂而不為
CNC-infer 何-樂-而-不-為
CTB6-infer 何-樂而-不為
MSRA-infer 何樂而不為
PKU-infer 何樂而不為
SXU-infer 何樂而不為
UD-infer 何-樂-而-不-為
WTB-infer 何樂而不為
ZX-infer 何-樂-而-不-為
[UNC]-infer 何樂而不為

Table 10: More examples showcase the capability of our
input-hint-based MCCWS model. This example is the
same one used in Table 1. We found three different ways
to segment the same sentence “何樂而不為” (Why not
do something?). We define symbols in the same way as
in Table 4.

Original Sentence 一去不復返

AS-gold 一-去-不復-返
CITYU-gold 一去不復返
CNC-gold 一去不復返
MSRA-gold 一去不復返
PKU-gold 一去不復返

AS-infer 一-去-不復-返
CITYU-infer 一去不復返
CNC-infer 一去不復返
CTB6-infer 一-去-不復-返
MSRA-infer 一去不復返
PKU-infer 一去不復返
SXU-infer 一去不復返
UD-infer 一-去-不復-返
WTB-infer 一去-不復返
ZX-infer 一-去-不-復-返
[UNC]-infer 一去-不復返

Table 11: More examples showcase the capability of
our input-hint-based MCCWS model. We found four
different ways to segment the same sentence “一去不
復返” (Once gone is gone). We define symbols in the
same way as in Table 4.

Original Sentence 四月二十六日

AS-gold 四月-二十六日
CITYU-gold 四月-二十六-日
CNC-gold 四-月-二十六-日
MSRA-gold 四月二十六日

AS-infer 四月-二十六日
CITYU-infer 四月-二十六-日
CNC-infer 四-月-二十六-日
CTB6-infer 四月-二十六日
MSRA-infer 四月二十六日
PKU-infer 四月-二十六日
SXU-infer 四-月-二十六-日
UD-infer 四-月-二十六-日
WTB-infer 四月-二十六日
ZX-infer 四月-二十六日
[UNC]-infer 四月-二十六-日

Table 12: More examples showcase the capability of
our input-hint-based MCCWS model. We found four
different ways to segment the same sentence “四月二十
六日” (April 26). We define symbols in the same way
as in Table 4.

Original Sentence 並不足以

AS-gold 並-不-足以
CITYU-gold 並-不足以
CNC-gold 並不-足以
AS-infer 並-不-足以
CITYU-infer 並-不足以
CNC-infer 並不-足以
CTB6-infer 並不-足以
MSRA-infer 並不-足以
PKU-infer 並-不足以
SXU-infer 並-不足以
UD-infer 並-不-足-以
WTB-infer 並不-足以
ZX-infer 並-不-足以
[UNC]-infer 並-不-足以

Table 13: More examples showcase the capability of
our input-hint-based MCCWS model. We found four
different ways to segment the same sentence “並不足
以” (Not enough). We define symbols in the same way
as in Table 4.
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