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ABSTRACT

We are interested in image manipulation via natural language text – a task that is
extremely useful for multiple AI applications but requires complex reasoning over
multi-modal spaces. Recent work on neuro-symbolic approaches e.g., The Neuro
Symbolic Concept Learner (NSCL) (Mao et al., 2019) has been quite effective
for solving Visual Question Answering (VQA) as they offer better modularity,
interpretability, and generalizability. We extend NSCL for the image manipula-
tion task and propose a solution referred to as NEUROSIM. Previous work either
requires supervised training data in the form of manipulated images or can only
deal with very simple reasoning instructions over single object scenes. In contrast,
NEUROSIM can perform complex multi-hop reasoning over multi-object scenes
and only requires weak supervision in the form of annotated data for VQA. NEU-
ROSIM parses an instruction into a symbolic program, based on a Domain Specific
Language (DSL) comprising of object attributes and manipulation operations, that
guides the manipulation. We design neural modules for manipulation, as well
as novel loss functions that are capable of testing the correctness of manipulated
object and scene graph representations via query networks trained merely on VQA
data. An image decoder is trained to render the final image from the manipulated
scene graph. Extensive experiments demonstrate that NEUROSIM, without using
target images as supervision, is highly competitive with SOTA baselines that make
use of supervised data for manipulation.

1 INTRODUCTION

The last decade has seen a significant growth in application of neural models to a variety of tasks
including those in computer vision (Chen et al., 2017; Krizhevsky et al., 2012), NLP (Wu et al.,
2016), robotics and speech (Yu & Deng, 2016). It has been observed that these models often lack
interpretability (Fan et al., 2021), and may not always be well suited to handle complex reasoning
tasks (Dai et al., 2019). On the other hand, classical AI systems can seamlessly perform complex
reasoning in an interpretable manner due to their symbolic representation (Pham et al., 2007; Cai &
Su, 2012). But these models are often found lacking in their ability to handle low level representations
and be robust to noise. A natural question then arises: Can we design models which capture the best of
both these paradigms? The answer lies in the recent development of Neuro-Symbolic models (Dong
et al., 2019; Mao et al., 2019; Han et al., 2019) which combine the power of (purely) neural with
(purely) symbolic representations. An interesting sub-class of these models work with a finite sized
domain specification language (DSL) and make use of deep networks to learn neural representations
of the concepts specified in the DSL. The learned representations are then used for performing
downstream reasoning via learning of symbolic programs. This line of work was first popularized by
Andreas et al. (2016); Hu et al. (2017); Johnson et al. (2017a), followed by Mao et al. (2019), who
look at the task of Visual Question Answering (VQA), and other follow-up works such as learning
meta-concepts (Han et al., 2019). Studies (Andreas et al., 2016; Hu et al., 2017; Mao et al., 2019)
have shown that these models have several desirable properties such as modularity, interpretability,
and improved generalizability.

Motivated by the above, our aim is to build neuro-symbolic models for the task of weakly supervised
manipulation of images comprising multiple objects, via complex multi-hop natural language in-
structions. Existing work includes weakly supervised approaches (Nam et al., 2018; Li et al., 2020)
that require textual descriptions of images during training and are limited to very simple scenes (or
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instructions). Supervised approaches (Zhang et al., 2021; El-Nouby et al., 2019), though capable of
handling multiple objects and complex multi-hop instructions, require explicit annotations in the form
of target manipulated images; ref. Section 2 for a survey. We are interested in a weakly supervised
solution that only makes use of data annotated for VQA, avoiding the high cost of getting supervised
annotations, in the form of target manipulated images. Our key intuition is: this task can be solved by
simply querying the manipulated representation without ever explicitly looking at the target image.

Neuro-symbolic 
Image Manipulator

(NEUROSIM)

Change the size of 
the thing behind the 
large ball to big

O ß scene()
O ß filter(O, large)
O ß filter(O, sphere)
O ß relate(O, behind)
O ß change_size(O, large)

Input:  Source image 𝑰

Output: Manipulated image 𝑰"
Input: Instruction Text 𝑻

Output: Manipulation program 𝑷

Figure 1: The problem setup.
Our solution builds on Neuro-Symbolic Concept Learner (NSCL) proposed by Mao et al. (2019)
for solving VQA. We extend this work to incorporate the notion of manipulation operations such
as change, add, and remove objects in a given image. As one of our main contributions, we design
novel neural modules and a training strategy that just uses VQA annotations as weakly supervised
data for the task of image manipulation. The neural modules are trained with the help of novel
loss functions that measure the faithfulness of the manipulated scene and object representations by
accessing a separate set of query networks, interchangeably referred to as quantization networks,
trained just using VQA data. The manipulation takes place through interpretable programs created
using primitive neural and symbolic operations from a Domain Specific Language (DSL). Separately,
a network is trained to render the image from a scene graph representation using a combination of L1

and adversarial losses as done by Johnson et al. (2018). The entire pipeline is trained without any in-
termediate supervision. We refer to our system as Neuro-Symbolic Image Manipulator (NEUROSIM).
Figure 1 shows an example of I/O pair for our approach.

For our experiment purposes, we extend CLEVR (Johnson et al., 2017b), a benchmark dataset for
VQA, to incorporate manipulation instructions and create a dataset referred to as Complex Image
Manipulation via Natural Language Instructions (CIM-NLI). We will release this dataset publicly
post acceptance. Our evaluation on CIM-NLI dataset shows that, despite being weakly supervised.
we are highly competitive or improve upon state-of-the-art supervised approaches (Zhang et al., 2021;
El-Nouby et al., 2019) for this task, generalize well to scenes with more objects, and specifically
perform well on instructions which involve multi-hop reasoning.

2 RELATED WORK

Table 1 categorizes the related work across three broad dimensions - problem setting, task complexity,
and approach. The problem setting comprises of two sub-dimensions: i) supervision type - self,
direct, or weak, ii) instruction format - text or UI-based. The task complexity comprises of following
sub-dimensions: ii) scene complexity – single or multiple objects, ii) instruction complexity - zero
or multi-hop instructions, iii) kinds of manipulations allowed - add, remove, or change. Finally,
approach consists of the following sub-dimensions: i) model – neural or neuro-symbolic and ii)
whether symbolic program is generated on the way or not.

Dong et al. (2017), TAGAN (Nam et al., 2018), and ManiGAN (Li et al., 2020) are close to us in terms
of the problem setting. These manipulate the source image using a GAN-based encoder-decoder
architecture. Their weak supervision differs from ours – We need VQA annotation, they need captions
or textual descriptions. The complexity of their natural language instructions is restricted to 0-hop.
Most of their experimentation is limited to single (salient) object scenes, and it is unclear how these
strategies would perform with multi-object situations with intricate relationships. Lastly, while
our approach requires only an explicit manipulation (delta) command during inference, existing
approaches require partial target image description, and it is unclear how their method can be extended
to the task where only the delta is given.

In terms of task complexity, the closest to us are approaches such as TIM-GAN (Zhang et al., 2021),
GeNeVA (El-Nouby et al., 2019), which build an encoder decoder architecture and work with a latent
representation of the image as well as the manipulation instruction. They require explicit annotations
in terms of manipulated images during training. We argue that this can require a significant more
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Prior Work
Problem Setting Task Complexity Approach
ST IF SC IC Operations Model Program

SIMSG SS UI MO† N/A change, remove, add N ✗

PGIM DS N/A MO†* N/A change (image level) NS ✓

GeNeVA DS Text# MO MH add N ✗

TIM-GAN DS Text# MO† ZH change, remove, add N ✗

Dong et. al WS Text# SO† ZH change N ✗

TAGAN WS Text# SO† ZH change N ✗

ManiGAN WS Text# SO† ZH change N ✗

NEUROSIM (ours) WS Text MO MH change, remove, add NS ✓

Table 1: Comparison of Prior Work. Abbreviations (column titles) ST:= Supervision Type, IF:= Instruction For-
mat, SC:= Scene Complexity, IC:=Instruction Complexity. Abbreviations (column values) SS:=Self Supervision,
DS:=Direct Supervision, WS:=Weak Supervision, #: Human Written, MO:= Multiple Objects, MO∗:= Multiple
Objects with Regular Patterns, SO:= Single Object, †: Natural Images, N/A:= Not applicable, MH:=Multi-Hop,
ZH:=Zero-Hop, N:= Neural, NS:= Neuro-Symbolic, ✓:= Yes, ✗:= No. See Section 2 for more details.

annotation effort, compared to our weak supervision setting, where we only need visual question
answer annotations. Unlike us, these approaches work with purely neural models, and as shown in
our experiments, their performance is heavily dependent on the amount of data available for training.

In terms of technique, the closest to our work are neuro-symbolic approaches for VQA such as
NSVQA (Yi et al., 2018), NSCL (Mao et al., 2019), Neural Module Networks (Andreas et al., 2016)
and its extensions (Hu et al., 2017; Johnson et al., 2017a). Clearly, while the modeling approach is
similar and consists of constructing latent programs, the desired task are different in two cases. Our
work extends the NSCL approach for the task of automated image manipulation.

A related task is text guided image retrieval, where goal is to retrieve (not manipulate) an image
from the database complying with the changes asked for in the input instruction (Vo et al., 2019;
Chen et al., 2020). Another line of research (Jiang et al., 2021; Shi et al., 2021) deals with editing
global features, such as brightness, contrast, etc., instead of object level manipulations like in our
case. Recent works (Ramesh et al., 2022; Saharia et al., 2022) on text to image generation using
diffusion models trained on massive (image, caption) data, are capable of generating photorealistic
images given text. These also have the capability of editing images e.g. using text-diffs (Ramesh
et al., 2022) but require captions for input images. Further, it is unclear how to extend this line of
work to language guided complex image manipulation settings where multi-hop reasoning may be
required; preliminary studies (Marcus et al., 2022) have highlighted their shortcomings in terms of
compositional reasoning and dealing with relations.

3 NEUROSIM: NEURO-SYMBOLIC IMAGE MANIPULATOR

3.1 MOTIVATION AND ARCHITECTURE OVERVIEW

What is the color of 
the apple on the tree?

Paint the red 
apples on the tree 

with blue color

Try

Learning knowledge of concepts, attributes, relational-concepts 
eg color, red, apple, tree, on the via many QnA pairs

Red ✔
Green ✖

Learning to manipulate an image via self correction using 
knowledge of concepts and attributes acquired before

✖

Are the apples 
blue? No

Retry

✔

Figure 2: Motivating example for our approach.

The key motivation behind
our approach comes from
the following hypothesis:
consider a learner L (e.g.,
a neural network or the stu-
dent in Fig 2) with sufficient
capacity trying to achieve
the task of manipulation
over Images I . Further, let
each image be represented in terms of its properties, or properties of its constituent parts (e.g. objects
like apple, leaf, tree as shown in Fig 2), where each property comes from a finite set S e.g, attributes
of objects in an image. Let the learner be provided with the prior knowledge (for e.g. through
Question Answering as in Fig 2) about properties (e.g., color) and their possible values (e.g., red).
Then, in order to learn the task of manipulation, it suffices to provide the learner with a query network,
which given a manipulated image Ĩ constructed by the learner via command C, can correctly answer
questions (i.e. query) about the desired state of various properties of the constituents of the image
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Ĩ . The query network can be internal to the learner (e.g., the student in Fig 2 can query himself for
checking the color of apples in the manipulated image). The learner can query repeatedly until it
learns to perform the manipulation task correctly. Note that the learner does not have access to the
supervised data corresponding to triplets of the form (Is, C, If ), where Is is the starting image, C is
the manipulation command, and If is the resulting final image, for the task of manipulation. Inspired
by this, we set out to test this hypothesis by building a model capable of manipulating images, without
target images as supervision.

Figure 3 captures a high level architecture of the proposed NEUROSIM pipeline. NEUROSIM allows
manipulating images containing multiple objects, via complex natural language instructions. Similar
to Mao et al. (2019), NEUROSIM assumes the availability of a domain-specific language (DSL) for
parsing the instruction text T into an executable program P . NEUROSIM is capable of handling
addition, removal, and change operations over image objects. It reasons over the image for locating
where the manipulation needs to take place followed by carrying out the manipulation operation. The
first three modules, namely i) visual representation network, ii) semantic parser, and iii) concept
quantization network are suitably customized from the NSCL and trained as required for our purpose.
In what follows, we describe the design and training mechanism of NEUROSIM.

[2] Semantic 
Parsing Module

O ß scene()
O ß filter(O, large)
O ß filter(O, sphere)
O ß relate(O, behind)
O ß change_size(O, large)

Program 𝑷

[1] Visual 
Representation 

Network

Scene graph 𝑮𝑰
for source image

Source image 𝑰

Scene graph 𝐆𝑰"
for target image

[5
] R

en
de

rin
g 

N
et

w
or

k

Change the size of 
the thing behind the 
large ball to big

Instruction Text 𝑻

Manipulated image 𝑰"

[3] Concept 
Quantization 

Network

[4] Manipulation 
Network

Program Executor

Figure 3: High level architecture of NEUROSIM.

3.2 MODULES INHERITED FROM NSCL

1] Visual Representation Network: Given input image I , this network converts it into a scene
graph GI = (N,E). The nodes N of this scene graph are object embeddings and the edges E are
embeddings capturing relationship between pair of objects (nodes). Node embeddings are obtained
by passing the bounding box of each object (along with the full image) through a ResNet-34 (He
et al., 2016b). Edge embeddings are obtained by concatenating the corresponding object embeddings.

2] Semantic Parsing Module: The input to this module is a manipulation instruction text T in
natural language. Output is a symbolic program P generated by parsing the input text. The symbolic
programs are made of operators, that are part of our DSL (Specified in Appendix Section A).

3] Concept Quantization Network: Any object in an image is defined by the set of visual attributes
(A), and set of symbolic values (Sa) for each attribute a ∈ A. E.g., attributes can be shape,
size, etc. Different symbolic values allowed for an attribute are also known as concepts. E.g.,
Scolor = {red, blue, green, . . .}. Each visual attribute a ∈ A is implemented via a separate neural
network fa(·) which takes the object embedding as input and outputs the attribute value for the object
in a continuous (not symbolic) space. Let fcolor : Rdobj −→ Rdattr represent a neural network for the
color attribute and consider o ∈ Rdobj as the object embedding. Then, vcolor = fcolor(o) ∈ Rdattr is
the embedding for the object o pertaining to the color attribute. Each symbolic concept s ∈ Sa

for a particular attribute a (e.g., different colors) is also assigned a respective embedding in the
same continuous space Rdattr . Such an embedding is denoted by cs. These concept embeddings are
initialized at random, and later on fine tuned during training. An attribute embedding (e.g. vcolor) can
be compared with the embeddings of all the concepts (e.g., cred, cblue, etc.) using cosine similarity, for
the purpose of concept quantization of objects.

Training for VQA: As a first step, we train all the above three modules via a curriculum learning
process (Mao et al., 2019). Semantic parser is trained jointly with the concept quantization networks
for generating programs corresponding to the question texts coming from the VQA dataset. The
corresponding output programs are composed of primitive operations coming from the DSL (e.g.
filter, count, etc.) and does not include constructs related to manipulation operations. This trains the
first three modules with high accuracy on the VQA task.
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3.3 NOVEL MODULES AND TRAINING PROCEDURE FOR NEUROSIM

NEUROSIM training starts with three sub-modules trained on the VQA task as described in Sec-
tion 3.2. Next, we extend the original DSL to include three additional functional sub-modules within
semantic parsing module, namely add, remove, and change. Refer to appendix section A for details
on the DSL. We now reset the semantic parsing module and train it again from scratch for generating
programs corresponding to image manipulation instruction text T . Such a program is subsequently
used by the downstream pipeline to reason over the scene graph GI and manipulate the image. In this
step, the semantic parser is trained using an off-policy program search based REINFORCE (Williams,
1992) algorithm. Unlike the training of semantic parser for the VQA task, in this step, we do not
have any final answer like reward supervision for training. Hence, we resort to a weaker form of
supervision. In particular, consider an input instruction text T and set of all possible manipulation
program templates Pt from which one can create any actual program P that is executable over the
scene graph of the input image. For a program P ∈ Pt, our reward is positive if this program P selects
any object (or part of the scene graph) to be sent to the manipulation networks (change/add/remove).
For e.g., consider the program change(filter(scene())), if after executing filter(scene()), we do not get
even a single object selected, then we give a negative reward, signifying that this program cannot be
correct, else we give a positive reward. Incorrect programs can also lead to object (objects) being
selected for manipulation, which is why this is a weak supervision. See Appendix C for more details.

Once semantic parser is retrained, we clamp the first three modules and continue using them for the
purpose of parsing instructions and converting images into their scene graph representations. Scene
graphs are manipulated using our novel module called manipulation network which is describe next.

4] Manipulation Network: This is our key module responsible for carrying out the manipulation
operations. We allow three kinds of manipulation operations – add, remove, and change. Each of
these operations are a composition of a quasi-symbolic and symbolic operation. A symbolic operation
corresponds to a function that performs the required structural changes (i.e. addition/deletion of a
node or an edge) in the scene graph GI against a given instruction. A quasi-symbolic operations is a
dedicated neural network that takes the relevant part of GI as input and computes new representations
of nodes and edges that are compatible with the changes described in the parsed instruction.
(a) Change Network: For each visual attribute a ∈ A (e.g. shape, size, . . . ), we have a separate
change neural network that takes the pair of (object embedding, embedding of the changed concept)
as input and outputs the embedding of the changed object. This is the quasi-symbolic part for the
change function, while the symbolic part is an identity mapping. For e.g., let gcolor : Rdobj+dattr −→ Rdobj

represent the neural network that changes the color of an object. Consider o ∈ Rdobj as the object
embedding and cred ∈ Rdattr as the concept embedding for the red color, then õ = gcolor(o; cred) ∈ Rdobj

represents the changed object embedding, whose color would be red. After applying the change
neural network, we obtain the changed representation of the object õ = ga(o; cs∗a), where s∗a is the
desired changed value for the attribute a. This network is trained using following losses.

ℓa = −
∑

∀s∈Sa

Is=s∗a
log [p(ha (õ) = s)] (1)

ℓa = −
∑

∀a′∈A,a′ ̸=a

∑
∀s∈Sa′

p(ha′(o) = s) log [p(ha′(õ) = s)] (2)

where, ha(x) gives the concept value of the attribute a (in symbolic form s ∈ Sa) for the object x. The
quantity p (ha(x) = s) denotes the probability that the concept value of the attribute a for the object
x is equal to s and is given as follows p (ha(x) = s) = expdist(fa(x),cs)/

∑
s̃∈Sa

expdist(fa(x),cs̃)

where, dist(a, b) = (a⊤b− t2)/t1 is the shifted and scaled cosine similarity, t1, t2 being constants.
The first loss term ℓa penalizes the model if the (symbolic) value of the attribute a for the manipulated
object is different from the desired value s∗a in terms of probabilities. The second term ℓa, on the
other hand, penalizes the model if the values of any of the other attributes a′, deviate from their
original values. Apart from these losses, we also include following additional losses.

ℓcycle = ∥o− ga(õ; cold)∥2; ℓconsistency = ∥o− ga(o; cold)∥2 (3)

ℓobjGAN = −
∑

o′∈O
[logD(o′) + log(1−D (ga(o

′; c)))] (4)

where cold is the original value of the attribute a of object o, before undergoing change. Intuitively the
first loss term ℓcycle says that, changing an object and then changing it back should result in the same
object. The second loss term ℓconsistency intuitively means that changing an object o that has value cold
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for attribute a, into a new object with the same value cold, should not result in any change. These
additional losses prevent the change network from changing attributes which are not explicitly taken
care of in earlier losses (1) and (2). For e.g., rotation or location attributes of the objects that are not
part of our DSL. We also impose an adversarial loss ℓobjGAN to ensure that the new object embedding
õ is from the same distribution as real object embeddings. See Appendix C for more details.
(b) Remove Network: The remove network takes the scene graph GI of the input image and removes
the subgraph from GI that contains the nodes (and incident edges) corresponding to the object(s) that
need to be removed, and returns a new scene graph GĨ which is reduced in size. The quasi-symbolic
function for the remove network is identity.
(c) Add Network: For adding a new object into the scene, add network requires the symbolic values
of different attributes, say {sa1

, sa2
, . . . , sak

}, for the new object, e.g., {red, cylinder, . . .}. It also
requires the spatial relation r (e.g. RightOf) of the new object with respect to an existing object
in the scene. The add function works by first predicting the object (node) embedding õnew for the
object to be added, followed by predicting edge embeddings for new edges incident on the new
node. New object embedding is obtained as follows: õnew = gaddObj({csa1

, csa2
, · · · , csak

}, orel, cr)
where, orel is the object embedding of an existing object, relative to which new object’s position r is
specified. After this, for each existing objects oi in the scene, an edge ẽnew,i is predicted between
the newly added object õnew and existing object oi in following manner: ẽnew,i = gaddEdge(õnew, oi).
Functions gaddObj(·) and gaddEdge(·) are quasi-symbolic operations. Symbolic operations in add
network comprises adding the above node and the incident edges into the scene graph.

The add network is trained in a self-supervised manner. For this, we pick a training image and create
it’s scene graph. Next, we randomly select an object o from this image and quantize it’s concepts,
along with a relation with any other object oi in the same image. We then use our remove network to
remove this object o from the scene. Finally, we use the quantized concepts and the relation that were
gathered above and add this object o back into the scene graph using gaddObj(·) and gaddEdge(·). Let the
embedding of the object after adding it back is õnew. Training losses for this network are as follows:

ℓconcepts = −
∑k

j=1
log

(
p(haj

(õnew) = saj
)
)
; ℓrelation = − log(p(hr(õnew, oi) = r)) (5)

ℓobjSup = ∥o− õnew∥2; ℓedgeSup =
∑

i∈O
∥eold,i − ẽnew,i∥2 (6)

ℓedgeGAN = −
∑

∀i∈O
[logD({o; eold,i; oi}) + log(1−D ({õnew; ẽnew,i; oi}))] (7)

where saj
is the required (symbolic) value of the attribute aj for the original object o, and r is the

required relational concept. O is the set of the objects in the image, eold,i is the edge embedding for
the edge between original object o and its neighboring object oi. Similarly, ẽnew,i is the corresponding
embedding of the same edge but after when we have (removed + added back) the original object. The
loss terms ℓconcepts and ℓrelation ensure that the added object comprises desired values of attributes and
relation, respectively. Since we had first removed and then added the object back, we already have the
original edge and object representation, and hence we use them in loss terms given in equation 6. We
use adversarial loss equation 7 for generating real (object, edge, object) triples and also a loss similar
to equation 4 for generating real objects. For optimizing the generator in eq. equation 4 equation 7
modified GAN loss (Goodfellow et al., 2014) is used.

3.4 IMAGE RENDERING FROM SCENE GRAPH

5] Rendering Network: Design and training methodology for this module closely follows
Johnson et al. (2018). We take multiple images {I1, I2 · · · In} and generate their scene graph
{GI1 , GI2 · · ·GIn} using the visual representation network described earlier. Each of these scene
graphs is then processed by a graph convolutional network and passed through a mask regression
network followed by a box regression network to generate a coarse 2-dimensional structure (scene
layout). A Cascaded Refinement Network (CRN) (Chen & Koltun, 2017) is then employed to
generate an image from the the scene layout. A min-max adversarial training procedure is used to
generate realistic images as formulated in GAN (Goodfellow et al., 2014), using two discriminators
– i) A patch-based image discriminator that ensures the quality of overall image, and ii) An object
discriminator that ensures the quality of object appearance.
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4 EXPERIMENTS

Datasets: Among the existing datasets, CSS (Vo et al., 2019) contains simple 0-hop instructions and
is primarily designed for the text guided image retrieval task. CRIR (Chen et al., 2020) extends CSS
to include multi-hop instructions but is not open source. Other datasets such as i-CLEVR (El-Nouby
et al., 2019) and CoDraw are designed for iterative image editing (El-Nouby et al., 2019). i-CLEVR
contains only "add" instructions and CoDraw doesn’t contain multi-hop instructions. Hence we
created our own multi-object multi-hop instruction based image manipulation dataset, referred to
as CIM-NLI. This dataset was generated with the help of CLEVR toolkit (Johnson et al., 2017b)
– details of the generation process are described in the Appendix B. CIM-NLI consists of (Source
image I , Instruction text T , Target image Ĩ∗) triplets. The dataset contains a total of 18K, 5K, 5K
unique images and 54K, 14K, 14K instructions in the train, validation and test splits respectively.
Refer Appendix B for more details about the dataset splits.

Baselines: Weakly supervised baselines (Li et al., 2020; Nam et al., 2018) for this task are designed
for a problem setting different from ours – single salient object scenes, simple 0-hop instructions
(Refer Section 2 for details). Further, they require paired images and their textual descriptions as
annotations. We, therefore, do not compare with them in our experiments. Instead, we compare our
model with purely supervised approaches such as TIM-GAN (Zhang et al., 2021) and GeNeVA (El-
Nouby et al., 2019). In order to make a fair and meaningful comparison between the two kinds
(supervised and weakly-supervised) approaches, we carve out the following set-up. Assume the
cost required to create one single annotated example for image manipulation task be αm while the
corresponding cost for the VQA task be αv. Let α = αm/αv. Let βm be the number of annotated
examples required by a supervised baseline for reaching a performance level of ηm on the image
manipulation task. Similarly, let βv be the number of annotated VQA examples required to train
NEUROSIM to reach the performance level of ηv. Let β = βm/βv. We are interested in figuring
out the range of β for which performance of our system (ηv) is at least as good as the baseline (ηm).
Correspondingly we can compute the ratio of the labelling effort required, i.e., α ∗ β, to reach these
performance levels. If α ∗ β > 1, our system achieves the same or better performance, with lower
annotation cost. See Appendix F, G for computational resources and hyperparameters respectively.

Evaluation Metrics: For evaluation on image manipulation task, we use two metrics - i) FID, ii)
Recall@k. FID (Heusel et al., 2017) measures the realism of the generated images. Recall@k

measures the semantic similarity of gold manipulated image Ĩ∗ and system produced manipulated
image Ĩ . For computing Recall@k, we use Ĩ as a query and retrieve images from a corpus comprising
the entire test set (gold manipulated images) and the source image I corresponding to Ĩ . similar to
Zhang et al. (2021), the query image and the corpus images are embedded into a latent space through
an autoencoder trained on CLEVR dataset. Cosine similarity is used for ranking retrieved images.

Method
β = 0.054 β = 0.07 β = 0.1 β = 0.2 β = 0.54

FID R1 R3 FID R1 R3 FID R1 R3 FID R1 R3 FID R1 R3

GeNeVA 22.0 6.6 58.7 – – – – – – – – – 10.3 4.6 64.4

TIM-GAN 4.8 31.9 74.2 4.4 32.6 80.0 4.3 38.5 82.5 4.9 47.4 86.4 4.0 58.1 90.2

NEUROSIM 13.8 45.3 65.5 13.7 45.8 66.7 14.0 45.6 66.7 14.1 45.6 67.9 13.8 45.5 66.7

Table 2: Performance comparison of NEUROSIM with TIM-GAN and GeNeVA with varying β levels. The ‘-’
entries for GeNeVA were not computed due to excessive training time; it’s performance is low even when using
full data. We always use 100K VQA examples (5K Images, 20 questions per image) for our weakly supervised
training. R1, R3 correspond to Recall@1,3 respectively. FID: lower is better; Recall: higher is better.

4.1 PERFORMANCE WITH VARYING DATASET SIZE

Table 2 compares the performance of NEUROSIM system with TIM-GAN and GeNeVA with varying
levels of β on CIM-NLI. Despite being weakly supervised, NEUROSIM performs significantly better
than both the baselines for β ≤ 0.1 ( alternatively α ≥ 10) and very close to its closest competitor
for β = 0.2 ( alternatively α = 5), using the R@1 performance metric. This clearly demonstrates
the strength of our approach in learning to manipulate while only making use of VQA annotations.
We hypothesize that, in most cases, NEUROSIM will be preferable since, we expect the cost of
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annotating an output image for manipulation to be significantly higher than the cost of annotating a
VQA example. FID scores for NEUROSIM could potentially be improved by a doing a joint training
of VQA module along with image decoder loss, and is a direction for future work.

4.2 PERFORMANCE WITH INCREASING REASONING HOPS

Method Hops
ZH MH

GeNeVA (54K) 6.3 6.4 (+0.1)

GeNeVA (5.4K)) 8.5 9.9 (+1.4)

TIM-GAN (54K) 84.0 76.2 (-7.8)

TIM-GAN (5.4K) 56.4 41.6 (-14.8)

NEUROSIM (5.4K) 64.5 63.0 (-1.5)

Table 3: R1 results for 0-hop (ZH) vs multi-hop
(MH) instruction guided image manipulation.

Table 3 compares baselines with NEUROSIM for
performance over instructions requiring 0-hop ver-
sus multi-hop (1− 3 hops) reasoning. When deal-
ing with multi-hop instructions, we see a massive
drop of 14.8 and 7.8 points in the performance
of TIM-GAN trained on 10% (5.4Kdata points)
and Full (54Kdata points) CIM-NLI data respec-
tively. NEUROSIM trained on 10% data, with-
out output image supervision, sees a performance
drop of only 1.5 points implying that it is much
better at handling the complex reasoning involved.

4.3 ZERO-SHOT GENERALIZATION TO LARGER SCENES

We developed another dataset called CIM-NLI-LARGE, consisting of scenes having 10−13 objects
(See Appendix B for details). We study the combinatorial generalization ability of NEUROSIM
and the baselines when the models are trained on CIM-NLI containing scenes with 3− 8 objects
only and evaluated on CIM-NLI-LARGE. Table 5 captures such a comparison. NEUROSIM does
significantly better than TIM-GAN and GeNeVA trained on 10% (5.4Kdata points) of CIM-NLI
data for e.g. it improves over TIM-GAN R1 score by 33.5 points. NEUROSIM nearly matches TIM-
GAN’s performance trained on full CIM-NLI data. This demonstrates the superior generalization
capabilities of our weakly supervised model compared to supervised baselines.

TIM-GAN Input Image Instruction NEUROSIM GeNeVA

Remove the large object in
front of the gray rubber
cylinder.

Remove the matte cylinder
left of the small object that
is behind the tiny cube.

There is a rubber thing in
front of the red matte ball;
change the shape of it to
cylinder.

There is a large sphere, add
a small purple matte ball
behind it.

There is a large cyan shiny
thing that is on the right
side of the small purple
matte ball; change the
shape of it to sphere.

Ground Truth 

Figure 4: Visual comparison of NEUROSIM results with TIM-GAN and GeNeVA.

4.4 QUALITATIVE ANALYSIS AND INTERPRETABILITY

Figure 4 shows anecdotal examples for visually comparing NEUROSIM with baselines. Note,
GeNeVA either performs the wrong operation on the image (row #1, 2, 4, and 5) or simply copies the
input image to output without any modifications (row #3). TIM-GAN often makes semantic errors
which show its lack of reasoning – for example, removing the wrong objects in row #3. Compared to
baselines, NEUROSIM produces semantically more meaningful image manipulation. NEUROSIM
can easily recover occluded objects (row #4). All models make rendering errors such as partial
removal of objects, shape distortion (rows #2, 4, and 5). More results are in Section H of appendix.

8
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NEUROSIM produces interpretable output programs, showing the steps taken by the model to edit
the images. Some examples and errors are shown in Appendix J. This highlights the ease of detecting
failures of NEUROSIM, which is not possible with neural baselines.

4.5 HUMAN EVALUATION

For the human evaluation study, in each instance, we provided evaluators with four images (1)
input image, (2) ground-truth image, (3) manipulated image generated by NEUROSIM (5.4K), and
(4) manipulated image generated by TIM-GAN (54K). Images generated by the two systems are
randomly shuffled to avoid any annotation bias. Evaluators were asked two simple binary (yes:1/no:0)
questions about each system. The questions evaluated: (Q1) does the system perform the desired
change mentioned in the input instruction, (Q2) does the system introduces any undesired changes
other than the required ones. See Appendix Table 20 for the exact text of the questions. There were a
total of 7 evaluators, and each was given the same set of 30 random image quadruples. Table 4 shows
the average scores of evaluators across different questions. NEUROSIM performs much better on Q1
despite TIM-GAN using full annotation data, implying better semantic manipulation by NEUROSIM.
TIM-GAN does significantly better on Q2 demonstrates its ability to generate better images. The
average Fleiss’ kappa score (Fleiss et al., 2013) is 0.796, implying high inter-evaluator agreement.

Qn. NEUROSIM TIM-GAN
5.4K 54K

Q1 0.43 0.31

Q2 0.14 0.77

Table 4: Average human eval-
uation scores.

Method R1 R3

GeNeVA 54K 5.0 65.8

GeNeVA 5.4K 8.2 64.6

TIM-GAN 54K 66.3 92.4

TIM-GAN 5.4K 30.2 80.7

NEUROSIM 5.4K 63.7 89.1

Table 5: Performance on gen-
eralization to Larger Scenes

Method R1 R3

Text-Only 0.2 0.4
Image-Only 34.1 83.6
Concat 39.5 86.9
TIRG 34.8 84.6
NEUROSIM 85.8 92.9

Table 6: Quality assessment of
GĨ via image retrieval task.

4.6 QUANTITATIVE ASSESSMENT OF MANIPULATED SCENE GRAPH GĨ

We strongly believe image rendering module of NEUROSIM pipeline and encoder modules used for
computing Recall@k adds some amount of inefficiencies resulting in lower R1 and R3 scores for
us. Therefore, we decide to assess the quality of manipulated scene graph GĨ that gets generated in
our pipeline. For this, we consider the task of text guided image retrieval as proposed by Vo et al.
(2019). In this task, an image from the database has to retrieved which would be the closest match to
the desired manipulated image but no manipulated image needs to be generated. Therefore, we use
our manipulated scene graph GĨ as the latent representation of the input instruction and image for
image retrieval. We retrieve images from the database based on a novel graph edit distance between
NEUROSIM generated GĨ of the desired manipulated images, and scene graphs of the images in
the database. This distance is defined using the Hungarian algorithm (Kuhn, 1955) with a simple
cost defined between any 2 nodes of the graph. See Appendix D for a detailed explanation. Table 6
captures the performance of NEUROSIM and other popular baselines for the image retrieval task.
From this table, we observe that NEUROSIM significantly outperforms supervised learning baselines
by a margin of about 50% without ever using output image supervision. This result demonstrates that
NEUROSIM edits the scene graph in a meaningful way.

Refer to Appendix D, K, for additional results and ablations respectively.

5 CONCLUSION

We present an neuro-symbolic, interpretable approach NEUROSIM to solve image manipulation
task using weak supervision of VQA annotations, building on existing work on neuro-symbolic
VQA (Mao et al., 2019). Unlike previous approaches, ours is the first work that can handle multi-
object scenes with complex instructions requiring multi-hop reasoning, and solve the task without
any output image supervision. Our experiments on a newly created dataset of image manipulation
demonstrates the potential of our approach compared to supervised baselines. Directions for future
work include carefully understanding the nature of errors made by our symbolic programs, and have
a human in the loop to provide feedback to the system for correction. Another direction would be
experimenting with more complex and real image datasets; recent works on Neuro-symbolic VQA
for real images Li et al. (2019) can be a good starting point.

9
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6 ETHICS STATEMENT

All the datasets used in this paper were synthetically generated and do not contain any personally
identifiable information or offensive content. The ideas and techniques proposed in this paper are
useful in designing interpretable natural language-guided tools for image editing, computer-aided
design, and video games. One of the possible adverse impacts of AI-based image manipulation is
the creation of deepfakes Vaccari & Chadwick (2020) (using deep learning to create fake images).
To counter deepfakes, several researchers Dolhansky et al. (2020); Mirsky & Lee (2021) have also
looked into the problem of detecting real vs. fake images.

7 REPRODUCIBILITY STATEMENT

Code for baselines in all our experiments are publicly available, as stated in Section 4. All the
training details (e.g., data splits, data processing steps, hyperparameters) are provided in Section 4,
Appendix B, and Appendix G. We use the CLEVR dataset (Johnson et al., 2017b) and CLEVR
toolkit (code to generate the dataset) for creating the new datasets introduced in this work. These are
publicly available to use. Data creation methodology has been explained in Appendix B. Code for
NEUROSIM will be open-sourced post acceptance.
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APPENDIX

A DOMAIN SPECIFIC LANGUAGE (DSL)

Table 7 captures the DSL used by our NEUROSIM pipeline. The first 5 constructs in this table
are common with the DSL used in Mao et al. (2019). The last 3 operations (Change, Add, and
Remove) were added by us to allow for the manipulation operations. Table 8 show the type system

Operation Signature [Output← Input]) Semantics

Scene ObjSet← () Returns all objects in the scene.

Filter ObjSet← (ObjSet, ObjConcept) Filter out a set of objects from ObjSet that have
concept (e.g. red) specified in ObjConcept.

Relate ObjSet← (ObjSet, RelConcept, Obj)
Filter out a set of objects from ObjSet that
have concept specified relation concept (e.g.
RightOf) with object Obj.

Query ObjConcept← (Obj, Attribute) Returns the Attribute value for the object Obj.

Exist Bool← (ObjSet) Checks if the set ObjSet is empty.

Change Obj← (Obj, Concept)
Changes the attribute value of the input object
(Obj), corresponding to the input concept, to
Concept

Add
Graph←
(Graph, RelConcept, Obj, ConceptSet)

Adds an object to the input graph, generating
a new graph having the object with attribute
values as ConceptSet, and present in relation
RelConcept of the input Obj

Remove Graph← (Graph, ObjSet) Removes the input objects and their edges from
the input graph to output a new graph

Table 7: Extended Domain Specific Language (DSL) used by NEUROSIM.

used by the DSL in this work. The first 5 types are inherited from Mao et al. (2019) while the last
one is an extension of the type system for handling the inputs to the Add operator.

Type Remarks

ObjConcept Concepts for any given object, such as blue, cylinder, etc.

Attribute Attributes for any given object, such as color, shape, etc.

RelConcept Relational concepts for any given object pair, such as RightOf, LeftOf, etc.

Object Depicts a single object

ObjectSet Depicts multiple objects

ConceptSet A set of elements of ObjConcept type

Table 8: Extended type system for the DSL used by NEUROSIM.
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B DATASET DETAILS

B.1 CIM-NLI DATASET

This dataset was generated with the help of CLEVR toolkit (Johnson et al., 2017b) by using following
recipe.

1. First, we create a source image I and the corresponding scene data by using Blender (Community,
2018) software.

2. For each source image I created above, we generate multiple instruction texts T ’s using its scene
data. These are generated using templates, similar to question templates proposed by Johnson
et al. (2017b).

3. For each such (I, T ) pair, we attach a corresponding symbolic program P (not used by NEU-
ROSIM though) as well as scene data for the corresponding changed image.

4. Finally, for each (I, T ) pair, we generate the target gold image Ĩ∗ using Blender software and its
scene data from previous step.

Below are some of the important characteristics of the CIM-NLI dataset.

• Each source image I comprises several objects and each object comprises four visual attributes -
color, shape, size, and material.

• Each instructions text T comprises one of the following three kinds of manipulation operations -
add, remove, and change.

• An add instruction specifies color, shape, size, and material of the object that needs to be added.
It also specifies a direct (or indirect) relation with one or more existing objects (called reference
object(s)). The number of relations that are required to traverse for nailing down the target object is
referred to as # of reasoning hops and we have allowed instructions with up to 3-hops reasoning.
We do not generate any 0-hop instruction for add due to ambiguity of where to place the object
inside the scene.

• A change instruction first specifies zero or more attributes to uniquely identify the object that needs
to be changed. It may also specify a direct (or indirect) relation with one or more existing reference
objects. Lastly, it specifies the target values of an attribute for the identified object which needs to
be changed.

• A remove instruction specifies zero or more attributes of the object(s) to be removed. Additionally,
it may specify a direct (or indirect) relation with one or more existing reference objects.

Table 9 captures the fine grained statistics about the CIM-NLI dataset. Specifically, it further splits
each of the train, validation, and test set across the instruction types - add, remove, and change.

B.2 CIM-NLI-LARGE DATASET

We created another dataset called CIM-NLI-LARGE to test the generalization ability of NEUROSIM
on images containing more number of objects than training images. CIM-NLI-LARGE tests the
zero-shot transfer ability of both NEUROSIM and baselines on scenes containing more objects.

Each image in CIM-NLI-LARGE dataset comprises of 10− 13 objects as opposed to 3− 8 objects
in CIM-NLI dataset which was used to train NEUROSIM. The CIM-NLI-LARGE dataset consists
of 1K unique input images. We have created 3 instructions for each image resulting in a total of
3K instructions. The number of add instructions is significantly less since there is very little free
space available in the scene to add new objects. To create scenes with 12 and 13 objects, we made all
objects as small size and the minimum distance between objects was reduced so that all objects could
fit in the scene. Table 10 captures the statistics about this dataset.

B.3 MULTI-HOP INSTRUCTIONS

In what follows, we have given examples of the instructions that require multi-hop reasoning to nail
down the location/object to be manipulated in the image.
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Operation Split # (I, T, Ĩ∗)
# reasoning hops # objects

min mean max min mean max

train 17827 1 2.00 3 3 5.51 8

Add valid 4459 1 2.00 3 3 5.50 8

test 4464 1 2.00 3 3 5.45 8

train 15999 0 1.50 3 3 5.50 8

Remove valid 5000 0 1.50 3 3 5.50 8

test 5000 0 1.50 3 3 5.48 8

train 19990 0 1.50 3 3 5.45 8

Change valid 4996 0 1.50 3 3 5.56 8

test 4998 0 1.50 3 3 5.52 8

Table 9: Statistics of CIM-NLI dataset introduced in this paper.

Operation # (I, T, Ĩ∗)
# reasoning hops # objects

min mean max min mean max

Add 393 1 2.0 3 10 11.53 13

Remove 524 0 1.50 3 10 11.48 13

Change 2083 0 1.51 3 10 11.50 13

Table 10: Statistics of CIM-NLI-LARGE dataset.

• Remove the tiny green rubber ball. (0-hop)

• There is a block right of the tiny green rubber ball, remove it. (1-hop)

• Remove the shiny cube left of the block in front of the gray thing. (2-hop)

• Remove the small thing that is left of the brown matte object behind the tiny cylinder that is behind
the big yellow metal block. (3-hop)

C MODEL DETAILS

C.1 SEMANTIC PARSER

C.1.1 DETAILS ON PARSING

We begin by extending the type system of Mao et al. (2019) and add ConceptSet because our add
operation takes as input a set of concepts depicting attribute values of the new object being added
(refer Table 8 for the details). Next, in a manner similar to Mao et al. (2019), we use a rule based
system for extracting concept words from the input text. We, however, add an extra rule for extracting
ConceptSet from the input sentence. Rest of the semantic parsing methodology remains the same
as given in Mao et al. (2019), with the difference being that our training is weakly supervised (refer
Section 3.3 of the main paper).
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C.1.2 TRAINING

As explained in Section 3.3 of the main paper, for training with weaker form of supervision, we
use an off-policy program search based REINFORCE (Williams, 1992) algorithm for calculating
the exact gradient. For this, we define a set of all possible program templates Pt. For a given
input instruction text T , we create a set of all possible programs {PT } from Pt. For e.g. given a
template {remove(relate(·, filter(·, scene())))}, this is filled in all possible ways, with concepts,
conceptSet, attributes and relational concepts extracted from the input sentence to get programs for
this particular template. All such programs created using all templates form the set PT . All PT are
executed over the scene graph of the input image. A typical program structure in our work is of the
form manip_op(reasoning()), where manip_op represents the manipulation operator, for example
change, add, or remove; and reasoning() either selects objects for change or remove, or it selects a
reference object for adding another object in relation to it. After a hyperparameter search for the
reward (refer Section G of the appendix), we assign a reward of +8 if the reasoning() part of the
program leads to an object being selected for change/remove instruction or a related object being
selected for add instruction. If no such object is selected, we give a reward of +2. Reward values were
decided on the basis of validation set accuracy. We find that with this training strategy, we achieve
the validation set accuracy of 95.64%, where this accuracy is calculated based on whether a program
lead to an object being selected or not. Note, this is a proxy to the actual accuracy. For finding the
actual accuracy, we would need a validation set of (instruction, ground truth output program) pairs,
but we do not use this supervised data for training or validation.

C.2 MANIPULATION NETWORK

In what follows, we provide finer details of manipulation network components.

Change Network: As described in Section 3.3 of the main paper, we have a change neural network
for each attribute. For changing the current attribute value of a given object o, we use the following
neural network: õ = ga(o; cs∗a), where s∗a is the desired changed value for the attribute a. õ is the
new representation of the object. We model ga(·) by a single layer neural network without having
any non-linearity. The input dimension of this neural network is (256 + 64) because we concatenate
the object representation o ∈ R256 with the desired concept representation d ∈ R64. We pass this
concatenated vector through ga(·) to get the revised representation of the object: õ ∈ R256.

The loss used to train the weights of the change network is a weighted sum of losses equation 1 to
equation 4 given in the main paper. This leads to the overall loss function given below.

Loverall_change = λ1 ℓa + λ2 ℓa + λ3 ℓcycle + λ4 ℓconsistency + λ5 ℓobjGAN (8)

where, ℓobjGAN above is the modified GAN loss (Goodfellow et al., 2014). Here λ1 = 1,
λ2 = 1/((num_attrs − 1) ∗ (num_concepts)), λ3 = λ4 = 103, and λ5 = 1/(num_objects). Here,
(num_objects) is the number of objects in input image, (num_attrs) is the total number of attributes
for each object, and (num_concepts) are the total number of concepts in the NSCL (Mao et al., 2019)
framework.

The object discriminator is a neural network with input dimension 256 and a single 300 dimensional
hidden layer with ReLU activation function. This discriminator is trained using standard GAN
objective ℓobjGAN. See Fig 5a for an overview of the change operator

Remove Network: The remove network is a symbolic operation as described in Section 3.3 of
the main paper. That is, given an input set of objects, the remove operation deletes the subgraph of
the scene graph that contains the nodes corresponding to removed objects and the edges incident on
those nodes. See Fig 5c for an overview of the remove operator.

Add Network: The neural operation in the add operator comprises of predicting the object rep-
resentation for the newly added object using a function gaddObj(·). This function is modeled as a
single layer neural network without any activation. The input to this network is a concatenated vector
[[csa1

, csa2
, · · · , csak

], orel, cr], where [csa1
, csa2

, · · · , csak
] represents the concatenation of all the

concept vectors of the desired new objects. The vector orel is the representation of the object with
whom the relation (i.e. position) of the new object has been specified and cr is the concept vector for
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(a) Change operator overview.

(b) Add operator overview.

(c) Remove operator overview.

Figure 5: Overview of new operators (change, add and remove) added to the DSL.

that relationship. The input dimension of gaddObj(·) is (k ∗ 64 + 256 + 64) and the output dimension
is 256. For predicting representation of newly added edges in the scene graph, we us edge predictor
gaddEdge(·). The input to this edge predictor function is the concatenated representation of the objects

17



Under review as a conference paper at ICLR 2023

which are linked by the edge. The input dimension of gaddEdge(·) is (256 + 256) and the output
dimension is 256.

The loss used to train the add network weights is a weighted sum of losses equation 5 to equation 7
along with an object discriminator loss. The overall loss is given by the following expression.

Loverall_add = λ1ℓconcepts + λ2ℓrelation + λ3ℓobjSup + λ4ℓedgeSup +

λ5ℓedgeGAN + λ6ℓobjGAN (9)

where, ℓobjGAN and ℓedgeGAN above denotes the modified GAN loss (Goodfellow et al., 2014). Here
λ1 = λ2 = 1/(num_attrs), λ3 = λ4 = 103, λ5 = 1/(num_objects).

The object discriminator is a neural network with input dimension as 256 and a single 300 dimensional
hidden layer with ReLU activation function. This discriminator is trained using the standard GAN
objective ℓobjGAN. Note, ℓobjGAN has 2 parts – i) the loss for the generated (fake) object embedding
using the add network, and ii) the loss for the real objects (all the unchanged object embeddings of
the image). The former is unscaled but the latter one is scaled by a factor of 1/(num_objects).

The edge discriminator is a neural network with input dimension as (256 ∗ 3) and a single 300
dimensional hidden layer with ReLU activation function. As input to this discriminator network, we
pass the concatenation of the two objects and the edge connecting them. This discriminator is trained
using the standard GAN objective ℓedgeGAN. See Fig 5b for an overview of the add operator

D ADDITIONAL RESULTS

D.1 DETAILED PERFORMANCE FOR ZERO-SHOT GENERALIZATION ON LARGER SCENES

Table 11 below is a detailed version of the table 5 in the main paper. This table compares the
performance of NEUROSIM with baseline methods TIM-GAN and GeNeVA for the zero-shot
generalization to larger scenes (with ≥ 10 objects), while the models were trained on images with
3− 8 objects. Relative to the main paper’s table 5, this table offers separate performance numbers for
each of the add, remove and change instructions.

Method
Train
Data
Size

Add Change Remove

R1 R3 R1 R3 R1 R3

GeNeVA 54K 0.5 64.6 4.9 69.9 9.0 50.0

GeNeVA 5.4K 0.0 60.1 8.2 69.2 14.3 49.6

TIMGAN 54K 12.5 77.4 73.4 95.2 78.2 92.2

TIMGAN 5.4K 1.0 70.0 32.1 84.4 44.7 74.0

NEUROSIM 5.4K 3.8 46.6 68.2 95.8 90.7 94.3

Table 11: Detailed performance scores for NEUROSIM, TIM-GAN, and GeNeVA for zero-shot
generalization to larger scenes (with ≥ 10 objects) from CIM-NLI-LARGE dataset, while models
are trained on images with 3− 8 objects. Table has separate performance numbers for add, remove,
and change instructions. Along with each method, we have also written the number of data points
from CIM-NLI dataset that were used for training. R1 and R3 correspond to Recall@1 and Recall@3,
respectively.

D.2 IMAGE RETRIEVAL TASK

A task that is closely related to the image manipulation task is the task of Text Guided Image Retrieval,
proposed by Vo et al. (2019). Through this experiment, our is to demonstrate that NEUROSIM is
highly effective in solving this task as well. In what follows, we provide details about this task,
baselines, evaluation metric, how we adapted NEUROSIM for this task, and finally performance
results in Table 12. This table is a detailed version of the Table 6 in the main paper.
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Task Definition: Given an Image I , a text instruction T , and a database of images D, the task is
to retrieve an image from the database that is semantically as close to the ground truth manipulated
image as possible.

Note, for each such (I, T ) pair, some image from the database, say Ĩ ∈ D, is assumed to be the
ideal image that should ideally be retrieved at rank-1. This, so called desired gold retrieval image
might even be an image which is the ideal manipulated version of the original images I in terms of
satisfying the instruction T perfectly. Or, image Ĩ may not be such an ideal manipulated image but it
still may be the image in whole corpus D that comes closest to the ideal manipulated image.

In practice, while measuring the performance of any such system for this task, the gold manipulated
image for (I, T ) pair is typically inserted into the database D and such an image then serves as the
desired gold retrieval image Ĩ .

Baselines: Our baselines includes popular supervised learning systems designed for this task. The
first baseline is TIRG proposed by Vo et al. (2019) where they combine image and text to get a joint
embedding and train their model in a supervised manner using embedding of the desired retrieved
image as supervision. For completeness, we also include comparison with other baselines – Concat,
Image-Only, and Text-Only – that were introduced by Vo et al. (2019).

A recent model proposed by Chen et al. (2020) uses symbolic scene graphs (instead of embeddings)
to retrieve images from the database. Motivated by this, we also retrieve image via the scene graph
that is generated by the manipulation module of NEUROSIM. However, unlike Chen et al. (2020),
the nodes and edges in our scene graph have associated vectors and make a novel use of them while
retrieving. We do not compare our performance with Chen et al. (2020) since it’s code is unavailable
and we haven’t been able to reproduce their numbers on datasets used in their paper. Moreover, Chen
et al. (2020) uses full supervision of the desired output image (which is converted to a symbolic scene
graph), while we do not.

Evaluation Metric: We use Recall@k (and report results for k = 1, 3) for evaluating the perfor-
mance of text guided image retrieval algorithms which is standard in the literature.

Retrieval using Scene Graphs: We use the scene graph generated by NEUROSIM as the latent
representation to retrieve images from the database. We introduce a novel yet simple method to
retrieve images using scene graph representation. For converting an image into the scene graph, we
use the visual representation network of NEUROSIM. Given the scene graph G for the input image I
and the manipulation instruction text T , NEUROSIM converts the scene graph into the changed scene
graph GĨ , as described in Section C in Appendix. Now, we use this graph GĨ as a query to retrieve
images from the database D. For retrieval, we use the novel graph edit distance (GED) between GĨ
and the scene graph representation of the database images. The scene graph for each database image
is also obtained using the visual representation network of NEUROSIM. The graph edit distance is
given below.

GED(GĨ , GD) =

{
∞ |NĨ | ≠ |ND̃|
minπ∈Π

∑
∀i∈{1,2,··· ,|NĨ |}

c(ni, yi) otherwise.

where, GĨ = (NĨ , VĨ) and GD = (ND, VD). ni and yi are the node embeddings of the query graph
GĨ and scene graph GD of an image from the database. c(a, b) is the cosine similarities between
embeddings a and b. This GED is much simpler than that defined in Chen et al. (2020), since it does
not need any hand designed cost for change, removal, or addition of nodes, or different attributes
values. It can simply rely on the cosine similarities between node embeddings. We use the Hungarian
algorithm (Kuhn, 1955) for calculating the optimal matching π of the nodes, among all possible
matching Π. We use the negative of the cosine similarity scores between nodes to create the cost
matrix for the Hungarian algorithm to process. This simple yet highly effective approach (See Table
6 in the main paper and Table 12 in the appendix), can be improved by more sophisticated techniques
that include distance between edge embeddings and including notion of subgraphs in the GED. We
leave this as future work. This result shows that our manipulation network edits the scene graph in a
desirable manner, as per the input instruction.
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Method
Train
Data
Size

Add Change Remove

1 2 3 0 1 2 3 0 1 2 3

Text-Only 54K 0.4 0.3 0.3 0.1 0.0 0.1 0.1 0.1 0.3 0.3 0.0

Image-Only 54K 35.3 33.4 32.3 20.1 23.2 16.9 19.8 46.3 41.3 53.1 57.8

Concat 54K 36.3 33.3 31.8 37.3 40.4 34.2 37.9 41.8 41.0 50.0 55.0

TIRG 54K 35.6 31.8 33.5 22.0 25.1 18.8 22.0 46.6 42.7 52.5 56.1

NEUROSIM 5.4K 96.2 95.3 95.3 83.3 82.9 81.3 78.7 79.6 77.4 86.4 82.2

Table 12: Performance scores (Recall@1) on the Image Retrieval task, comparing NEUROSIM with
TIM-GAN and GeNeVA with increase in reasoning hops, for add, remove, and change instructions.
Along with each method, number of data points from CIM-NLI used for training are written.

Method Instruction
β = 0.054 β = 0.07 β = 0.1 β = 0.2 β = 0.54

R1 R3 R1 R3 R1 R3 R1 R3 R1 R3

GeNeVA

add 0.0 57.3 – – – – – – 0.7 63.6

change 5.9 36.3 – – – – – – 4.1 39.4

remove 13.2 82.3 – – – – – – 8.7 89.3

TIM-GAN

add 1.9 70.7 4.9 74.0 8.6 76.7 10.3 77.1 13.1 78.6

change 41.0 72.1 42.9 73.5 49.8 77.3 62.5 84.2 78.3 92.3

remove 49.6 79.5 47.0 91.9 53.9 93.1 65.3 96.8 78.0 98.5

NEUROSIM

add 4.9 30.9 6.4 34.8 5.7 34.7 5.9 38.9 5.6 35.0

change 57.2 79.4 57.3 79.3 57.2 79.3 57.2 79.4 57.1 79.3

remove 69.6 82.5 69.5 82.5 69.5 82.6 69.5 82.5 69.6 82.5

Table 13: Detailed performance comparison of NEUROSIM with TIM-GAN (Zhang et al., 2021)
and GeNeVA (El-Nouby et al., 2019) with varying β levels, split across add, remove and change
instructions. The ’-’ entries for GeNeVA were not computed due to excessive training time; it’s
performance is abysmal even when using full data. We always use 100K VQA examples (5K Images,
20 questions per image) for our weakly supervised training. R1 and R3 correspond to Recall@1 and
3, respectively. For Recall, higher the score is better.

D.3 DETAILED MULTI-HOP REASONING PERFORMANCE

Table 14 below provides a detailed split of the performance numbers reported in Table 3 of the main
paper across i) number of hops (0− 3 hops) and ii) type of instructions (add/remove/change). We
observe that for change and remove instructions, NEUROSIM improves over TIM-GAN and GeNeVA
trained on 5.4K CIM-NLI data points by a significant margin (∼ 20% on 3-hop change/remove
instructions). However, NEUROSIM lags behind TIM-GAN when the entire CIM-NLI labelled data
is used to train TIM-GAN. We also observe that all the models perform poorly on the add instructions,
as compared to change and remove instructions.

D.4 DETAILED PERFORMANCE FOR DIFFERENT COST RATIOS β

Table 2 in Section 4 of the main paper showed the performance of NEUROSIM compared with
TIM-GAN and GeNeVA for various values of β, where β is the ratio of the number of annotated
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Method
Train
Data
Size

Add Change Remove

1 2 3 0 1 2 3 0 1 2 3

GeNeVA 54K 1.1 0.5 0.5 3.6 4.2 4.7 3.9 9.0 8.0 8.3 9.4

GeNeVA 5.4K 0.0 0.0 0.0 4.7 7.1 5.6 6.1 12.3 11.3 15.5 13.5

TIM-GAN 54K 7.6 16.1 15.7 85.8 74.1 78.0 75.4 82.2 68.3 81.9 79.7

TIM-GAN 5.4K 1.4 2.3 1.9 54.5 36.4 38.7 34.5 58.3 40.9 50.9 48.2

NEUROSIM 5.4K 4.6 5.0 5.1 59.5 57.9 55.8 55.7 69.6 66.6 71.8 70.4

Table 14: Performance scores (Recall@1) for NEUROSIM with TIM-GAN and GeNeVA with
increase in reasoning hops, for add, remove, and change instructions. Along with each method,
number of data points from CIM-NLI used for training are written.

(with output image supervision) image manipulation examples required by the supervised baselines,
to the number of annotated VQA examples required to train NEUROSIM. In Table 13, we show a
detailed split of the performance, for the add, change, and remove operators, across the same values
of β as taken before.

We find that for the change operator, NEUROSIM performs better than TIM-GAN by a margin of
∼ 8% (considering Recall@1) for β ≤ 0.1. For the remove operator, NEUROSIM performs better
than TIM-GAN by a margin of ∼ 4% (considering Recall@1) for β ≤ 0.2. Overall, NEUROSIM
performs similar to TIM-GAN, for β = 0.2, for remove and change operators. All models perform
poorly on the add operator as compared to the change and remove operators. We find that having
full output image supervision allows TIM-GAN to reconstruct (copy) the unchanged objects from
the input to the output for all the operators. This results in a higher recall in general but it’s effect
is most pronounced in the Recall@3. NEUROSIM, on the other hand, suffers from rendering errors
which makes the overall recall score (especially Recall@3) lower. We believe that improving image
rendering quality would significantly improve the performance of NEUROSIM and we leave this as
future work.

D.5 RESULTS ON DATASETS FROM DIFFERENT DOMAINS

D.5.1 MINECRAFT DATASET

Dataset Creation: We create a new dataset having (Image, instruction) by building over the Minecraft
dataset used in Yi et al. (2018). Specifically, we create zero and one hop remove instructions and
one hop add instructions similar the creation of CIM-NLI. This dataset contains scenes and objects
from the Minecraft video game and is used in prior works for testing Neuro-Symbolic VQA systems
like NSCL Mao et al. (2019) and NS-VQA Yi et al. (2018). The setting of the Minecraft worlds
dataset is significantly different from CLEVR in terms of concepts and attributes of objects and visual
appearance.

Experiment: We use the above dataset for testing the addition and removal of objects using NeuroSIM
(See Fig 6). We train NeuroSIM’s decoder to generate images from scene graphs of the minecraft
dataset. We assume access to a parser that gives us programs for an instruction. For removal, we use
the same remove network as described above, while for addition, we assume access to the features
of object to be added, which is added to the scene graph of the image and the decoder decodes the
final image. See Figure 6 for a set of successful examples on the Minecraft dataset. We see that using
our method, one can add and remove objects from the scene successfully, without using any output
image as supervision during training. Though we have assumed the availability of parser in the above
set-up, training it jointly with other modules should be straightforward, and can be achieved using
our general approach described in Section 3 of the main paper.
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Figure 6: Results for addition and removal of objects from images of the minecraft dataset

D.5.2 REAL WORLD DATASET: GQA

To show that our proposed approach NEUROSIM can work on real-world images, we experimented
with the GQA dataset (Hudson & Manning, 2019). This dataset was originally used for benchmarking
the task of VQA, and contains real world scenes having multiple objects, with different concepts and
attributes.

1] Zero-Shot Domain Transfer

Our first experiment was to check the performance of NEUROSIM (trained only on synthetic
images from CLEVR dataset) on real-world images without any retraining/fine-tuning. For this, we
handpicked a few real images from GQA dataset and performed following steps:

1. Generated a scene graph for the image using our existing visual representation network
(without retraining it).

2. Next, we queried for the color of an object in the image using our query network.
3. Next, we changed the color of the given object through our existing manipulation network.
4. Finally, rendered the image using the representation of the changed object.

Figure 7 shows probabilities obtained when we query the representation of real-world objects using
our pretrained query networks before and after applying the pretrained change network to these object
representations. From this zero-shot experiment, our query network and manipulation networks is
able to disentangle attributes such as the object’s color and also change it. However, because the
rendering module is never trained on real images, it struggles to generate the real images. It seems
to map the object with the shapes it learned during CLEVR training. Training the image rendering
module using graph-based representations on real images (e.g. object representations obtained using
Faster RCNN) is likely to eliminate the above problem and is part of our future and ongoing work.
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Figure 7: Examples of querying an object representation before and after the application of change
operation by NEUROSIM trained only on synthetic images from CLEVR dataset. Example images
are taken from GQA dataset Hudson & Manning (2019).

2] Training on Real World Dataset

• We trained our image rendering module (Section 3.4) from scratch on the GQA dataset.
During training, the scene graph of an input image is constructed by extracting image
objects’ representation vectors by exploiting pre-trained Faster RCNN Ren et al. (2015) and
ResNet He et al. (2016a). This scene graph is fed as input to the rendering module. We want
to emphasize that the rendering module is not trained fully to convergence due to a lack of
computational resources and time during the discussion phase.

• Next, we performed inference on the above trained image rendering module using unseen
sample images from the dataset. Following ideas from Mao et al. (2019) and Li et al. (2021)
we used a pre-trained ResNet classifier as our program parser, for selecting objects in a given
scene as well as tagging their class labels (e.g. horse, elephant, etc.) and corresponding
probabilities. This is similar to the concept quantization step described in the main paper.
For reinforcing the interpretability benefits of our model, we have shown the output of
remove operation on these examples in Fig 8 as well as the steps taken by the model to
achieve this. For each example in this figure,

– The leftmost image is the source image that needs to be manipulated.
– The rightmost (bottom) image is obtained after rendering the scene graph of the source

image. The purpose of this image is to show the baseline quality of the rendering
module.

– The rightmost (top) image is obtained after manipulation operation (removal of a single
object in this case) is performed by NEUROSIM.

Fig 8 shows that after applying the remove operation to an object in the given image, NEUROSIM
is able to reconstruct the image without that object while keeping the rest of the scene intact (when
compared with baseline rendered image). We believe a more comprehensive training of the image
rendering module to convergence will result in better-quality visuals.

We have demonstrated the remove operation on real-world images through the above experiment.
We believe this result is still significant, since ours is the the first work in this direction to achieve
complex image manipulation through text. Performing the add and change operations on real-world
images is future work.
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Figure 8: Examples of the application of remove operation on real images. Please note that the
programs are applied on the scene graphs. For better visualization, program steps have been shown
on the full image.

D.5.3 SUMMARY OF RESULTS

We have shown proof-of-concept experiments on two additional datasets: Minecraft (artificial),
GQA (real). The goal of our experiments was to demonstrate that our technique has the potential to
generalize beyond CLEVR based datasets, including on real images. Doing a more comprehensive
set of experiments, such as training the parser on Minecraft along with other modules, as well as,
working with change and add instruction on the real dataset, and possibly exploring other powerful
decoding techniques (such as based on recent diffusion models Ramesh et al. (2022); Saharia et al.
(2022)), is a direction for future work.
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E END-TO-END TRAINING

The main objective of this work is to make use of weakly supervised VQA data for the image
manipulation task without using output image supervision. But a natural extension of our work is to
use output image supervision as well, to improve the performance of NEUROSIM. We devised an
experiment to compare how much performance boost can be obtained by utilizing ground truth output
(manipulated) images as the supervision for different modules of NEUROSIM. This experiment
demonstrates the value of end-to-end training for NEUROSIM and how it can exploit the supervised
data. We refer to this variant as NEUROSIM(e2e). We begin with a pre-trained NEUROSIM model
trained with VQA annotations and then fine-tune it using supervised manipulation data. The detailed
results are given in Table 15. This experiment demonstrates that with a small amount of supervised
data, the performance of NEUROSIM can be significantly improved (e.g., more than 9 points increase
for the change instruction with only 5.4K supervision examples)

Instruction Model
# of CIM-NLI examples used for training

5.4K 7K 10K 20K 54K

Change

GeNeVA 5.9 - - - 4.1

TIM-GAN 41.0 42.9 49.8 62.5 78.3

NEUROSIM 57.2 57.3 57.2 57.2 57.1

NEUROSIM(e2e) 66.2 66.3 66.6 67.4 69.6

Add

GeNeVA 0.0 - - - 0.7

TIM-GAN 1.9 4.9 8.6 10.3 13.1

NEUROSIM 4.9 6.4 5.7 5.9 5.6

NEUROSIM(e2e) 8.8 8.9 9.2 10.5 10.6

Remove

GeNeVA 13.2 - - - 8.7

TIM-GAN 49.6 47.0 53.9 65.3 78

NEUROSIM 69.6 69.5 69.5 69.5 69.6

NEUROSIM(e2e) 69.6 69.5 69.5 69.5 69.6

Table 15: Performance comparison of NEUROSIM(e2e) with baselines. NEUROSIM(e2e) refers to
NEUROSIM trained end-to-end by utilizing ground truth manipulated images as the supervision for
NEUROSIM modules.

Given the significant increase in performance of NEUROSIM when using supervised data, we also
test it’s generalization capability (Analogous to Section 4.2, 4.3), and quality of scene graph retrieval
(Analogous to Section 4.5).

From Table 16, we see that NEUROSIM(e2e) shows improved zero-shot generalization to larger
scenes. Even when trained on just 5.4k CIM-NLI data, NEUROSIM(e2e) improves over TIM-GAN-
54k by 3.9 R@1 points. A 5.3 point improvement over TIM-GAN is observed when full CIM-NLI
data is used.

Next, we measure drop in performance with increasing reasoning hops. From Table 17, we see
that NEUROSIM(e2e) achieves the lowest drop when compared to TIM-GAN. NEUROSIM(e2e)
improves over weakly supervised NEUROSIM baseline by 6.6 R@1 points.

Finally, we measure quality of scene graph via retrieval. From Table 18, we see that supervised training
significantly improves the scene graph quality, thus improving retrieval performance. Supervised
training improves retrieval by 7.3 R@1 points over weakly supervised NEUROSIM baseline.

25



Under review as a conference paper at ICLR 2023

Model
Train
Data
Size

R1 R3

TIM-GAN 5.4K 30.2 80.7

TIM-GAN 54K 66.3 92.4

NEUROSIM 5.4K 63.7 89.1

NEUROSIM(e2e) 5.4K 70.2 92.6

NEUROSIM(e2e) 54K 71.6 91.7

Table 16: Zero-shot generalization to larger scenes (Extension of Table 5 of main paper).

Method
Train
Data
Size

Hops Drop in
PerformanceZH MH

TIM-GAN 5.4K 56.4 41.6 -14.8

TIM-GAN 54K 84.0 76.2 -7.8

NEUROSIM 5.4K 64.5 63.0 -1.5

NEUROSIM(e2e) 5.4K 69.4 67.3 -2.1

NEUROSIM(e2e) 54K 71.1 69.6 -1.5

Table 17: Performance with increasing reasoning hops (Extension of Table 3 of main paper).

These findings suggest that NEUROSIM(e2e) significantly outperforms other supervised approaches
in almost all settings. One can fine-tune the image decoder and the visual representation network to
further enhance the findings, which should greatly enhance the outcomes.

F COMPUTATIONAL RESOURCES

We trained all our models and baselines on 1 Nvidia Volta V100 GPU with 32GB memory and 512GB
system RAM. Our image decoder training takes about 4 days of training time. Training of the VQA
task takes 5− 7 days of training time and training the Manipulation networks take 4− 5 hours of
training time.

Model R1 R3

Text-Only 0.2 0.4

Image-Only 34.1 83.6

Concat 39.5 86.9

TIRG 34.8 84.6

NEUROSIM 85.8 92.9

NEUROSIM(e2e) 93.1 96.7

Table 18: Quality of scene graph measured via retrieval (Extension of Table 6 of main paper)
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G HYPERPARAMETERS AND VALIDATION ACCURACIES

G.1 TRAINING FOR VQA TASK

The hyperparameters for the VQA task are kept same as default values coming from the prior
work (Mao et al., 2019). We refer the readers to Mao et al. (2019) for more details. We obtained a
question answering accuracy of 99.3% after training on the VQA task.

G.2 TRAINING SEMANTIC PARSER

The semantic parser is trained to parse instructions. Learning of this module happens using the
REINFORCE algorithm as described in Section C of this appendix. During REINFORCE algorithm,
we search for positive rewards from the set {7, 8, 10}, and negative rewards from the set {0, 2, 3}.
We finally choose a positive reward of 8 and negative reward of 2. For making this decision, we first
train the semantic parser for 20 epochs and then calculate its accuracy by running it on the quantized
scenes from the validation set. For a particular output program, we say it is correct if it leads to
an object being selected (see Section C of the appendix for more information) and this is how the
accuracy of the semantic parser is calculated. This accuracy is a proxy for the real accuracy. An
alternative is to use annotated ground truth programs for calculating accuracy and then selecting
hyperparameters. However, we do not use ground truth programs. All other hyperparameters are
kept the same as used by Mao et al. (2019) to train the parser on VQA task. We obtain a validation
accuracy of 95.64% after training the semantic parser for manipulation instructions.

G.3 TRAINING MANIPULATION NETWORKS

The architecture details of the manipulation network are present in Section C of this appendix. We
use batch size of 32, learning rate of 10−3, and optimize using AdamW (Loshchilov & Hutter, 2017)
with weight decay of 10−4. Rest of the hyperparameters are kept the same as used in Mao et al.
(2019). During training, at every 5th epochs, we calculate the manipulation accuracy by using the
query networks that were trained while training the NEUROSIM on VQA data. This serves as a proxy
to the validation accuracy.

• For the change network training, we use the query accuracy of whether the attribute that was
suppose to change for a particular object, has changed correctly or not. Also, whether any other
attribute has changed or not.

• For the add network training, we use the query accuracy of whether the attributes of the added
object are correct or not. Also, whether the added object is in a correct relation with reference
object or not.

We obtained a validation accuracy (based on querying) of 95.9% for the add network and an accuracy
of 99.1% for the change network.

G.4 IMAGE DECODER TRAINING

The architecture of the image decoder is similar to Johnson et al. (2018) but our input scene graph
(having embeddings for nodes and edges) is directly processed by the graph neural network. We use
a batch size of 16, learning rate of 10−5, and optimize using Adam (Kingma & Ba, 2014) optimizer.
The rest of the hyperparameters are same as Johnson et al. (2018). We train the image decoder for a
fixed set of 1000K iterations.

H QUALITATIVE ANALYSIS

Figures 9,10,11 compare the images generated by NEUROSIM, TIM-GAN, and GeNeVA on add,
change and remove instructions respectively. NEUROSIM’s advantage lies in semantic correctness of
manipulated images. For example, see Figure 9 row #3,4; Figure 10 row #2; 11 all images. In these
images, NEUROSIM was able to achieve semantically correct changes, while TIM-GAN, GeNeVA
faced problems like blurry, smudged objects while adding them to the scene, removing incorrect
objects from the scene, or not changing/partially changing the object to be changed. Images generated
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TIM-GAN Input Image Instruction NEUROSIM GeNeVA

There is a shiny thing that is on 
the right side of the shiny block, 
add a big gray metallic ball in 
front of it.

There is a rubber thing behind 
the matte thing in front of the 
tiny rubber object, add a tiny 
blue shiny sphere behind it.

Add a small gray rubber cylinder 
that is in front of the big cube.

Ground Truth 

Add a large gray metallic 
cylinder that is in front of the 
small rubber object behind the 
tiny green matte cylinder.

There is a purple shiny object in 
front of the purple metal ball, 
add a large red matte ball to the 
left of it.

Figure 9: Visual comparison of NEUROSIM with TIM-GAN and GeNeVA for the add operator. The
red bounding boxes in the ground truth output image indicate the objects required to add to the input
image.

TIM-GAN Input Image Instruction NEUROSIM GeNeVA

There is a rubber thing in front 
of the red matte ball; change the 
shape of it to cylinder. 

Change material of the rubber 
object in front of the small 
rubber thing that is left of the 
tiny gray matte sphere that is in 
front of the yellow block to shiny.

There is a small matte thing; 
change the color of it to purple.

Ground Truth 

There is a cylinder that is behind 
the small metallic cylinder; 
change the size of it to tiny.

There is a tiny cylinder that is to 
the left of the small blue thing to 
the left of the big green metallic 
cylinder; change the material of 
it to matte.

Figure 10: Visual comparison of NEUROSIM with TIM-GAN and GeNeVA for the change operator.
The red bounding boxes in the input and ground truth output image indicate the objects required to be
changed.

by TIM-GAN are better in quality as compared to NEUROSIM. We believe the reason for this is
that TIM-GAN, being fully supervised, only changes a small portion of the image and has learnt to
copy a significant portion of the input image directly to the output. How ever this doesn’t insure the
semantic correctness of TIM-GAN’s manipulation, as described above with examples where it makes
errors. The images generated by NEUROSIM look slightly worse since the entire image is generated
from object based embeddings in the scene graph. Improving neural image rendering from scene
graphs can be a promising step to improve NEUROSIM.
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TIM-GAN Input Image Instruction NEUROSIM GeNeVA

There is a large metal object left 
of the metallic object that is to 
the right of the large metallic 
thing in front of the sphere, 
remove it.

Ground Truth 

Remove the large shiny object 
that is behind the big purple 
cylinder.

There is a big sphere in front of 
the big ball behind the blue 
thing, remove it.

There is a metallic thing in front 
of the small gray rubber thing, 
remove it

There is a shiny cube, remove it.

Figure 11: Visual comparison of NEUROSIM with TIM-GAN and GeNeVA for the remove operator.
The red bounding boxes in the input image indicate objects required to be removed.

I ERRORS

Figure 12: Types of errors in NEUROSIM.

Figure 12 captures the images generated by our model where it has made error. The kind of errors
that NEUROSIM makes can be broadly classified into three categories.

• [Rendering Errors] This set includes images generated by our model which are semantically
correct but suffer from rendering errors. The common rendering errors include malformed cubes,
partial cubes, change in position of objects, and different lighting.

• [Logical Errors] This set includes images generated by our model which have logical errors. That
is, manipulation instruction has been interpreted incorrectly and a different manipulation has been
performed. This happens mainly due to an incorrect parse of the input instruction into the program,
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or manipulation network not trained to the perfection. For example, change network changing
attributes which were supposed to remain unchanged.

• [VQA Errors] The query networks are not ideal and have errors after they are trained on the VQA
task. This in turn causes errors in supervision (obtained from query networks) while training the
manipulation networks and leads to a less than optimally trained manipulation network. Also,
during inference, object embeddings may not be perfect due to the imperfections in the visual
representation network and that leads to incorrect rendering.

J INTERPRETABILITY OF NEUROSIM

NEUROSIM allows for interpretable image manipulation through programs which are generated as an
intermediate representation of the input instruction. This is one of the major strengths of NEUROSIM,
since it allows humans to detect where NEUROSIM failed. This is not possible with purely neural
models, that behave as a black-box. Knowing about the failure cases of NEUROSIM also means that
it can be selectively trained to improve certain parts of the network (for eg individually training on
change instructions to improve the change command, if the model is performing poorly on change
instructions). We now assess the correctness of intermediate programs using randomly selected
qualitative examples present in Figure 13. Since no wrong program was obtained in the randomly
selected set, we find 2 more data points manually, to show some wrong examples.

K ABLATIONS

Table 19 shows the performance of NEUROSIM while certain loss terms are removed while learning
of the networks. This depicts the importance of loss terms that we have considered. In particular we
test the performance of the network by removing edge adversarial loss used by add network (row 2),
object adversarial losses for both add and change networks (row 3, 5), self supervision losses used by
add network (row 4), cyclic (row 6) and consistency (row 7) losses used by change network.

Loss R1 R3

ℓ 45.3 65.5

ℓ− ℓaddedgeGAN 43.7 66.0

ℓ− ℓaddobjGAN 44.3 60.2

ℓ− ℓaddobjSup − ℓaddedgeSup 44.1 57.9

ℓ− ℓchangeobjGAN 44.9 61.5

ℓ− ℓchangecycle 36.5 51.1

ℓ− ℓchangeconsistency 31.0 44.8

Table 19: Ablations conducted by removing some loss terms. ℓ is the total loss before any ablation.
For each loss term being removed, the superscript denotes which network it belongs to (add or
change). Ablations are conducted for the setting where β = 0.054 (see main paper Section 4 for the
definition of β)

L HUMAN EVALUATION

Table 20 for the questions asked to human evaluators for the human evaluation study. See Section 4.5
of the main paper for more details.
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Figure 13: Qualitative examples of generated programs by NEUROSIM.
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Question 1:

[Change] Are all the attributes (color, shape, size, material, and relative position)
of the changed object mentioned in the instructions identical between the ground
truth image and the system-generated image?

[Add] Are all the attributes (color, shape, size, material, and relative position)
of the added object mentioned in the instructions identical between the ground
truth image and the system-generated image?

[Remove] Are same objects removed in ground truth image and the system-
generated image?

Question 2:

[Change] Are all the attributes (color, shape, size, material, and relative position)
of the remaining objects identical between the ground truth image and the
system-generated image?

[Add] Are all the attributes (color, shape, size, material, and relative position)
of the remaining objects identical between the ground truth image and the
system-generated image?

[Remove] Are all the attributes (color, shape, size, material, and relative posi-
tion) of the remaining objects identical between the ground truth image and the
system-generated image?

Table 20: Questions asked to human evaluators for evaluating NEUROSIM and TIM-GAN. Note that
there are some variations in the questions for Change, Add, and Remove instructions dues to different
semantic nature of the instructions.

32


	Introduction
	Related Work
	NeuroSIM: Neuro-Symbolic Image Manipulator
	Motivation and Architecture Overview
	Modules Inherited from NSCL
	Novel Modules and Training Procedure for NeuroSIM
	Image Rendering from Scene Graph

	Experiments
	Performance with varying dataset size
	Performance with increasing reasoning hops
	Zero-shot Generalization to Larger Scenes
	Qualitative Analysis and Interpretability
	Human Evaluation
	Quantitative Assessment of Manipulated Scene Graph GI"0365I

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Domain Specific Language (DSL)
	Dataset Details
	CIM-NLI Dataset
	CIM-NLI-LARGE Dataset
	Multi-hop Instructions

	Model Details
	Semantic Parser
	Details on Parsing
	Training

	Manipulation Network

	Additional Results
	Detailed Performance for Zero-Shot Generalization on Larger Scenes
	Image Retrieval Task
	Detailed Multi-hop Reasoning Performance
	Detailed Performance for Different Cost Ratios 
	Results on Datasets from different domains
	Minecraft Dataset
	Real World Dataset: GQA
	Summary of Results


	End-to-end Training
	Computational Resources
	Hyperparameters and Validation Accuracies
	Training for VQA Task
	Training Semantic Parser
	Training Manipulation Networks
	Image Decoder Training

	Qualitative Analysis
	Errors
	Interpretability of NeuroSIM
	Ablations
	Human Evaluation

