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ABSTRACT

Diffusion models (DMs) excel in unconditional generation, as well as on applica-
tions such as image editing and restoration. The success of DMs lies in the iter-
ative nature of diffusion: diffusion breaks down the complex process of mapping
noise to data into a sequence of simple denoising tasks. Moreover, we are able to
exert fine-grained control over the generation process by injecting guidance terms
into each denoising step. However, the iterative process is also computationally in-
tensive, often taking from tens up to thousands of function evaluations. Although
consistency trajectory models (CTMs) enable traversal between any time points
along the probability flow ODE (PFODE) and score inference with a single func-
tion evaluation, CTMs only allow translation from Gaussian noise to data. This
work aims to unlock the full potential of CTMs by proposing generalized CTMs
(GCTMs), which translate between arbitrary distributions via ODEs. We discuss
the design space of GCTMs and demonstrate their efficacy in various image ma-
nipulation tasks such as image-to-image translation, restoration, and editing.

1 INTRODUCTION

Diffusion-based generative models (DMs) learn the scores of noise-perturbed data distributions,
which can be used to translate samples between two distributions by numerically integrating an
SDE or a probability flow ODE (PFODE) (Ho et al., 2020; Dhariwal & Nichol, 2021; Song et al.,
2021). They have achieved remarkable progress over recent years, even surpassing well-known
generative models such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) or
Variational Autoencoders (VAEs) (Kingma & Welling, 2014) in terms of sample quality. Moreover,
diffusion models have found wide application in areas such as image-to-image translation (Saharia
et al., 2022), image restoration (Chung et al., 2022; 2023), image editing (Meng et al., 2022), etc.

The success of DMs can largely be attributed to the iterative nature of diffusion, arising from its
foundation on differential equations – multi-step generation grants high-quality image synthesis by
breaking down the complex process of mapping noise to data into a composition of simple denoising
steps. We are also able to exert fine-grained control over the generation process by injecting minute
guidance terms into each step (Chung et al., 2022; Ho & Salimans, 2022). Indeed, guidance is an
underlying principle behind numerous diffusion-based image editing and restoration algorithms.

However, its iterative nature is also a curse, as diffusion inference often demands from tens to thou-
sands of number of neural function evaluations (NFEs) per sample, rendering practical usage diffi-
cult. Consequently, there is now a large body of works on improving the inference speed of DMs.
Among them, distillation refers to methods which train a neural network to translate samples along
PFODE trajectories generated by a pre-trained teacher DM in one or two NFEs. Representative dis-
tillation methods include progressive distillation (PD) (Salimans & Ho, 2022), consistency models
(CMs) (Song et al., 2023), and consistency trajectory models (CTMs) (Kim et al., 2024b).

In contrast to PD or CMs which only allow traversal to the terminal point of the PFODE, CTMs
enable traversal between any pair of time points along the PFODE as well as score inference, all in
a single inference step. Thus, in theory, CTMs are more amenable to guidance, and are applicable
to a wider variety of downstream image manipulation tasks. Yet, there is a lack of works exploring
the effectiveness of CTMs in such context.

In this work, we take a step towards unlocking the full potential of CTMs. To this end, we first pro-
pose generalized CTMs (GCTMs) which generalize the theoretical framework behind CTMs with
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Figure 1: An illustration of GCTM and its applications – solid arrows can be implemented by
a single forward pass of the GCTM network. GCTMs learn to traverse the Flow Matching ODE
which is capable of interpolating two arbitrary distributions q(x0) and q(x1). GCTMs allow (a)
one-step inference of ODE velocity, (b) one-step traversal between arbitrary time intervals of the
ODE, (c) improved gradient-guidance by using exact posterior sample instead of posterior mean,
and (d) one-step generation of varying outputs x0 given a fixed input x1.

Flow Matching (Lipman et al., 2023; Pooladian et al., 2023; Tong et al., 2024) to enable translation
between two arbitrary distributions. Next, we discuss the design space of GCTMs, and how each
design choice influences the downstream task performance. Finally, we demonstrate the power of
GCTMs on a variety of image manipulation tasks. Our contributions can be summarized as follows.

• Generalization of theory. We propose GCTMs, which uses conditional flow matching
theory to enable one-step translation between two arbitrary distributions (Theorem 1). This
stands in contrast to CTMs, which is only able to learn PFODEs from Gaussian to data. In
fact, we prove CTM is a special case of GCTM when one side is Gaussian (Theorem 2).

• Elucidation of design space. We clarify the design components of GCTMs, and explain
how each component affects downstream task performance (Section 4.1). In particular,
flexible choice of couplings enable GCTM training in both unsupervised and supervised
settings, allowing us to accelerate zero-shot and supervised image manipulation algorithms.

• Empirical verification. We demonstrate the potential of GCTMs on unconditional genera-
tion, image-to-image translation, image restoration, image editing, and latent manipulation.
We show that GCTMs achieve competitive performance even with NFE = 1.

2 RELATED WORK

Diffusion model distillation. Despite the success of diffusion models (DMs) in generation tasks,
DMs require large number of function evaluations (NFEs). As a way to improve the inference speed,
the distillation method is proposed to predict the previously trained teacher DM’s output, e.g., score
function. Progressive distillation (PD) (Salimans & Ho, 2022) progressively reduces the NFEs by
training the student model to learn predictions corresponding to two-steps of the teacher model’s
deterministic sampling path. Consistency models (CMs) (Song et al., 2023) perform distillation
by reducing the self-consistency function over the generative ODE. The above methodologies only
consider the output of the ODE path. In contrast, consistency trajectory model (CTM) (Kim et al.,
2024b) simultaneously learns the integral and infinitesimal changes of the PFODE trajectory. Our
paper extends CTM to learn the PFODE trajectory between two arbitrary distributions.

Zero-shot image restoration via diffusion. Image restoration such as super-resolution, deblurring,
and inpainting can be formulated as inverse problems, which obtain true signals from given obser-
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vations. With the advancements in DMs serving as powerful priors, diffusion based inverse solvers
have been explored actively. DDRM (Kawar et al., 2022) performs denoising steps on the spectral
space of a linear corrupting matrix. DPS (Chung et al., 2022) and ΠGDM (Song et al., 2022) pro-
pose posterior sampling by estimating the likelihood distribution through Jensen’s approximation
and Gaussian assumption, respectively. While diffusion-based inverse solvers facilitate zero-shot
image restoration, they often need prolonged sampling times. CoSIGN (Zhao et al., 2024) addresses
this problem by using CMs as generative priors, but we show that GCTMs can be better priors.

Image translation via diffusion. The seminal work Pix2Pix (Isola et al., 2017) achieves image-
to-image translation with conditional GANs. SDEdit (Meng et al., 2022) avoids mode collapse and
learning instabilities with GANs by utilizing DMs to translate edited images along SDEs. Palette
(Saharia et al., 2022) proposed conditional DMs for image-to-image translation tasks. To address the
Gaussian prior constraint with DMs, Schrödinger bridge (SB) (Liu et al., 2023; Kim et al., 2024a),
direct diffusion bridge (DDB) (Delbracio & Milanfar, 2023), or denoising diffusion implicit bridge
(DDIB) (Su et al., 2023) methods have been proposed to learn SDEs or ODEs between arbitrary
two distributions. However, such models often require large NFEs. This has inspired models which
distill conditional ODE trajectories (Mei et al., 2024; Xiao et al., 2024), DDB trajectories (He et al.,
2024), or DDIB trajectories (Starodubcev et al., 2024). GCTMs are more general in the sense that
they enable velocity evaluation and translation between two arbitrary timesteps.

3 BACKGROUND

3.1 DIFFUSION MODELS (DMS)

DMs (Song et al., 2021; Ho et al., 2020) learn to reverse the process of corrupting data into Gaussian
noise. Formally, the corruption process can be described by a forward SDE

dxτ =
√
2τ dwτ (1)

defined on the time interval τ ∈ (0,∞). Given x0 distributed according to a data distribution p(x0),
(1) sends x0 to Gaussian noise as τ increases from 0 to∞. The reverse of the corruption process
can be described by the reverse SDE

dxτ = −2τ∇ log p(xτ ) dτ +
√
2τ dw̄τ (2)

or its deterministic counterpart, the probability flow ODE (PFODE)

dxτ = −τ∇ log p(xτ ) dτ = τ−1(xτ − Ep(x0|xτ )[x0]) dτ (3)

where p(xτ ) is the distribution of xτ following (1), and w̄σ is the standard Wiener process in
reverse-time. Given noise xτ̂ ∼ N (xτ̂ |0, τ̂2I) ≈ p(xτ̂ ) for some large τ̂ , xτ following (2) or (3)
is distributed p(xτ ) as τ decreases from τ̂ to 0. Thus, DMs are able to generate data from noise by
approximating the scores∇ log p(xτ ) via score matching and numerically integrating (2) or (3).

3.2 CONSISTENCY TRAJECTORY MODELS (CTMS)

CTMs (Kim et al., 2024b) learn to translate samples between arbitrary time points of PFODE tra-
jectories, i.e., the goal of CTMs is to learn the integral of the PFODE

G(xτ , τ, σ) := xτ +
∫ σ

τ
u−1(xu − Ep(x0|xu)[x0]) du (4)

for σ ≤ τ , where the terminal distribution p(xσ̂) is assumed to be Gaussian. The parametrization{
G(xτ , τ, σ) =

σ
τ xτ +

(
1− σ

τ

)
g(xτ , τ, σ)

g(xτ , τ, σ) := xτ + τ
τ−σ

∫ σ

τ
u−1(xu − Ep(x0|xu)[x0]) du

(5)

enables both traversal along the PFODE as well as score inference, since

lim
σ→τ

g(xτ , τ, σ) = Ep(x0|xτ )[x0] (6)

so we may define g(xτ , τ, τ) := Ep(x0|xτ )[x0].
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Given a pre-trained DM, CTMs approximate g with a neural net gθ by simultaneously minimizing a
distillation loss and a denoising score matching (DSM) loss. The distillation loss is

LCTM(θ) := E0≤σ≤u<τ≤σ̂Ep(xτ )

[
d
(
Gθ(xτ , τ, σ), Gsg(θ)(xτ→u, u, σ)

)]
(7)

where Gθ is the G-function with gθ in place of g, d(·, ·) is a measure of similarity between inputs,
sg is the stop-gradient operation, and xτ→u is the integral of the PFODE from time τ to u starting
from xτ using score estimates from the pre-trained diffusion model. Minimization of (7) causes Gθ

to adhere to PFODE trajectories generated by the pre-trained diffusion model. The DSM loss is
LDSM(θ) := E0≤τ≤τ̂Ep(x0)N (ϵ|0,I)Ep(xτ |x0,ϵ)

[
∥x0 − gθ(xτ , τ, τ)∥22

]
(8)

where p(xτ |x0, ϵ) = δx0+τϵ(xτ ) and δy(·) is a Dirac delta at y. Minimization of (8) causes gθ to
satisfy (6) (Vincent, 2011). This loss acts as a regularization which improves score accuracy, and is
crucial for sampling with large NFEs (Kim et al., 2024b). Thus, the final CTM training objective is

LCTM(θ) + λDSMLDSM(θ), (9)
and it is possible to further improve sample quality by adding a GAN loss.

3.3 FLOW MATCHING (FM)

FM (Lipman et al., 2023; Tong et al., 2024; Pooladian et al., 2023) is another technique for learning
PFODEs between two distributions q(x0) and q(x1). Specifically, let q(x0,x1) be a joint distribu-
tion of q(x0) and q(x1). Define

q(xt|x0,x1) := δ(1−t)x0+tx1
(xt), q(xt) := Eq(x0,x1)[q(xt|x0,x1)] (10)

where t ∈ (0, 1). Then, by Theorem 3.1 in Tong et al. (2024), the ODE given by
dxt = Eq(x0,x1|xt)[x1 − x0] dt (11)

generates the probability path q(xt), i.e., with terminal condition x1 ∼ q(x1), xt following (11) is
distributed according to q(xt). Analogous to DSM, the velocity term in (11) can be approximated
by a neural network vϕ which solves a regression problem (see Theorem 3.2 in Tong et al. (2024))

min
ϕ

Eq(x0,x1,xt)

[
∥(x1 − x0)− vϕ(xt, t)∥22

]
. (12)

However, unlike diffusion whose terminal distribution p(xσ̂) is Gaussian, q(x1) can be arbitrary.
We provide a complete proof of correctness of this section in Appendix C.1.

4 GENERALIZED CONSISTENCY TRAJECTORY MODELS (GCTMS)

We now present GCTMs, which generalize CTMs to enable translation between arbitrary distribu-
tions. We begin with a crucial proposition which proves we can parametrize the solution to the FM
ODE (11) in a form analogous to CTMs. The proof is deferred to Appendix C.2.
Proposition 1. The ODE (11) is equivalent to

dxt = t−1(xt − Eq(x0|xt)[x0]) dt (13)

defined on t ∈ (0, 1). Hence, we can express the solution to (11) as{
G(xt, t, s) =

s
txt +

(
1− s

t

)
g(xt, t, s),

g(xt, t, s) := xt +
t

t−s

∫ s

t
u−1(xu − Eq(x0|xu)[x0]) du.

(14)

There are two differences between (5) and (14). First, the time variables t and s now lie in the
unit interval (0, 1) instead of (0,∞), and second, p(x0|xu) is replaced with q(x0|xu). The second
difference is what enables translation between arbitrary distributions, as q(x0|xu) recovers clean
images x0 given images xu perturbed by arbitrary type of vectors (e.g., Gaussian noise, images,
etc.), while p(x0|xu) recovers clean images x0 only for Gaussian-perturbed samples xu. We call
a neural network gθ which approximates g in (14) a GCTM, and we can train such a network by
optimizing the FM counterparts of LCTM and LDSM:

LGCTM(θ) := E0≤s≤u<t≤1Eq(xt)

[
d
(
Gθ(xt, t, s), Gsg(θ)(xt→u, u, s)

)]
, (15)

LFM(θ) := E0≤t≤1Eq(x0,x1)Eq(xt|x0,x1)

[
∥x0 − gθ(xt, t, t)∥22

]
. (16)

The next proposition shows that the PFODE (3) learned by CTMs is a special case of the ODE (13)
learned by GCTMs, so GCTMs indeed generalize CTMs. The proof is deferred to Appendix C.3.
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Proposition 2. Consider the choice of q(x0,x1) = p(x0) · N (x1|0, I). Let

t := τ/(1 + τ), xt := xτ/(1 + τ) (17)

where τ ∈ (0,∞) and xτ follows the PFODE (3). Then

Ep(x0|xτ )[x0] = Eq(x0|xt)[x0] (18)

and xt follows the ODE

dxt = t−1(xt − Eq(x0|xt)[x0]) dt (19)

on t ∈ (0, 1). Furthermore, let GCTM, gCTM denote CTM solutions and let GGCTM, gGCTM denote
GCTM solutions. Then with s = σ/(1 + σ),{

GCTM(xτ , τ, σ) = GGCTM(xt, t, s) · (1 + s),

gCTM(xτ , τ, τ) = gGCTM(xt, t, t).
(20)

In short, (18) shows the equivalence of scores, and (19) shows the equivalence of ODEs. Thus, given
gθ trained with LFM and LGCTM with the setting of Prop. 2, we are able to evaluate diffusion scores
and simulate diffusion PFODE trajectories with a simple change of variables (17), as shown in (20).

Given GCTM’s capability to replicate CTM, we will now outline the key components of GCTM
that enable its significant extension for various downstream tasks. This flexibility offers a notable
advantage of GCTM over CTM.

4.1 THE DESIGN SPACE OF GCTMS

Coupling q(x0,x1). In contrast to diffusion which only uses the trivial coupling q(x0,x1) =
q(x0)q(x1) in LDSM(θ), FM allows us to use arbitrary joint distributions of q(x0) and q(x1) in
LFM(θ). Intuitively, q(x0,x1) encodes our inductive bias for what kind of pairs (x0,x1) we wish
the model to learn, since FM ODE is distributed q(xt) at each time t, and q(xt) is the distribution of
(1−t)x0+tx1 for (x0,x1) ∼ q(x0,x1). Here, we list three valid couplings of GCTM as examples
(see Alg. 1 for code). In contrast, CTM only uses a special case of the independent coupling.

• Independent coupling:

q(x0,x1) = q(x0)q(x1) (21)

This coupling reflects no prior assumption about the relation between x0 and x1. As shown
earlier, diffusion models use this type of coupling with standard normal q(x1).

• Minibatch entropic optimal transport (EOT) coupling: in practice, FM loss (16) is approx-
imated by an average over minibatch of pairs (x0,x1). We can consider minibatch EOT
coupling samples (Pooladian et al., 2023) which are generated by sampling {xi

0}Ki=1 from
q(x0), sampling {xi

1}Ki=1 from q(x1), running the Sinkhorn algorithm (Cuturi, 2013) (see
Alg. 3) to create a doubly-stochastic EOT matrix PEOT between the two batches, and
sampling (x0,x1) pairs from PEOT. As observed by Pooladian et al. (2023), minibatch
EOT coupling can accelerate flow matching optimization by reducing gradient variance,
and we expect similar benefits for GCTM training as well.

• Supervised coupling:

q(x0,x1) =
∫
q(x0)q(H|x0)δHx0(x1) dH (22)

where H ∼ q(H|x0) is a random operator, possibly dependent on x0, which maps ground-
truth data x0 to observations x1, i.e., x1 = Hx0. For instance, in the context of learning
an inpainting model, H is could be a random masking operator.

Gaussian perturbation. The cardinality of the support of q(x1) must be larger than or equal to the
cardinality of the support of q(x0) for there to be a well-defined ODE from q(x1) to q(x0). This
is because the ODE trajectory given an initial condition is unique, so a single sample x1 ∼ q(x1)
cannot be transported to multiple points in the support of q(x0). A simple way to address this
problem is to add small Gaussian noise to q(x1) samples such that q(x1) is supported everywhere.
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Algorithm 1 q(x0,x1) Sampling

1: Assume m = 1, . . . ,M , Batch size M
2: if Coupling is Independent then
3: {xm

0 }m ∼ q(x0), {xm
1 }m ∼ q(x1)

4: Return {(xm
0 ,xm

1 )}m
5: else if Coupling is Minibatch EOT then
6: {xm

0 }m ∼ q(x0), {xm
1 }m ∼ q(x1)

7: Return SK({xm
0 }m, {xm

1 }m, τ)
8: else if Coupling is Supervised then
9: {xm

0 }m ∼ q(x0), Hm ∼ q(H|xm
0 )

10: Return {(xm
0 ,Hmxm

0 )}m
11: end if

Algorithm 2 GCTM Training

1: while training do
2: Sample times {t̂m}m, {(tm, sm, um)}m
3: With Alg. 1, {(xm

0 ,xm
1 )}m ∼ q(x0,x1)

4: xm
t̂m
← (1− t̂m)xm

0 + t̂mxm
1

5: xm
tm ← (1− tm)xm

0 + tmxm
1

6: LFM(θ) = 1
M

∑
m ∥xm

0 − gθ(x
m
t̂m

, t̂m, t̂m)∥22
7: x̃m

sm ← Gsg(θ)(x
m
tm→um , um, sm)

8: LGCTM(θ) = 1
M

∑M
m=1 d(Gθ(x

m
tm , tm, sm), x̃m

sm)
9: Minimize LGCTM(θ) + λFMLFM(θ)

10: end while

(a) Indep. N = 4, FID = 24.7 (b) OT N = 4, FID = 18.2 (c) OT N = 32, FID = 5.32

Figure 2: CIFAR10 unconditional samples with NFE = 1.

We emphasize that Gaussian perturbation allows GCTMs to achieve one-to-many generation when
we use the supervised coupling. Concretely, consider the scenario where there are multiple labels
x0 ∼ q(x0|x1) which correspond to an observed x1. Then, the perturbation ϵ added to x1 acts as a
source of randomness, allowing the GCTM network to map x1 + ϵ to distinct labels x0 for distinct
ϵ. This stands in contrast to simply regressing the neural network output of x1 to corresponding
labels x0 ∼ q(x0|x1) with ℓ2 loss, as this will cause the network to map x1 to the blurry posterior
mean Eq(x0|x1)[x0] instead of a sharp image x0. Indeed, in Section 5.2, we observe blurry outputs
if we use regression instead of GCTMs.

Time discretization. In practice, to optimize LGCTM(θ), we sample time variables s, t, u from a
discretization t0 < t1 < · · · < tN of the unit interval [0, 1], and simulate xt→u with respect to the
discretization as well. Given the success of the EDM time discretization Karras et al. (2022) for fast
sampling of diffusion models, we propose using the EDM time discretization converted to FM time
discretization via change of variables in Proposition 2,

t0 = 0, ti =
τi

τi+1 where τi = (σ
1/ρ
min + i

N (σ
1/ρ
max − σ

1/ρ
min))

ρ. (23)

We fix ρ = 7 and σmin = 0.002 as proposed in Karras et al. (2022), and control σmax. We note
that σmax controls the amount of emphasis on time near t = 1, i.e., larger σmax places more time
discretization points near t = 1.

5 EXPERIMENTS

We now explore the possibilities of GCTMs on unconditional generation, image-to-image transla-
tion, image restoration, image editing, and latent manipulation. In particular, GCTM admits NFE =
1 sampling via xt 7→ Gθ(xt, t, 0). Due to the similarities between CTMs and GCTMs as detailed
in Thm. 1, GCTMs can be trained using CTM training methods. In fact, we run Alg. 2 with the
method in Section 5.2 of (Kim et al., 2024b) to train all GCTMs without pre-trained teacher models.
A complete description of training settings are deferred to Appendix A.

5.1 FAST UNCONDITIONAL GENERATION

In the scenario where we do not have access to data pairs, we must resort to either the indepen-
dent coupling or the OT coupling. Here, we show that the optimal transport coupling can sig-
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Method NFE Time
(ms)

Edges→Shoes Night→Day Facades

FID ↓ IS ↑ LPIPS ↓ FID ↓ IS ↑ LPIPS ↓ FID ↓ IS ↑ LPIPS ↓
Regression 1 87 54.3 3.41 0.100 189.2 1.85 0.373 121.8 3.28 0.274
Pix2Pix (Isola et al., 2017) 1 33 77.0 3.17 0.208 158.0 1.68 0.418 134.1 2.74 0.288
Palette (Saharia et al., 2022) 5 166 334.1 1.90 0.861 350.2 1.16 0.707 259.3 2.47 0.394
I2SB(Liu et al., 2023) 5 284 53.9 3.23 0.154 145.8 1.79 0.376 135.2 2.51 0.269
GCTM 1 87 40.3 3.54 0.097 148.8 2.00 0.317 111.3 2.99 0.230

Table 2: I2I translation results (64× 64 resolution). Best is in bold, second best is underlined.
Pix2Pix Palette I2SB Regression GCTM x0 x1

Figure 4: Qualitative evaluation of I2I translation (64 × 64 resolution) on Edges→Shoes (top),
Night→Day (middle) and Facades (bottom). NFE = 5 for I2SB and Palette.

nificantly accelerate the convergence speed of GCTMs during training, especially when we use
a smaller number of timesteps N in time discretization during GCTM training (see Section 4.1).

Figure 3: Training acceleration.

Method Teacher FID ↓
CTM ✓ 5.28

✗ 9.00
CM ✓ 3.55

✗ 8.70
iCM ✗ 2.51

GCTM (OT) ✗ 5.32

Table 1: FID at NFE = 1.

Using small N may be of interest when we wish to trade-
off training speed for performance, since per-iteration
training cost of GCTMs increases linearly with N . For
instance, when t = 1 and u = s = 0 in the GCTM loss
(15), we need to integrate along the entire time interval
(0, 1), which requires N steps of ODE integration.

In Figure 3, we observe up to ×2.5 acceleration in terms
of training iterations when we use OT coupling instead of
independent coupling. Indeed, in Figure 2, OT coupling
samples are visually sharper than independent coupling
samples. We postulate this is because (1) OT coupling
leads to straighter ODE trajectories, so we can accurately
integrate ODEs with smaller N , and (2) lower variance
from OT pairs leads to smaller variance in loss gradients,
as discussed in (Pooladian et al., 2023).

In Table 1, we compare the Fréchet Inception Distance
(FID) (Heusel et al., 2017) of GCTM and relevant base-
lines on CIFAR10 with NFE = 1. In the setting where we
do not use a pre-trained teacher diffusion model, GCTM with OT coupling outperforms all methods
with the exception of iCM (Song & Dhariwal, 2024), which is an improved variant of CM. Moreover,
GCTM is on par with CTM trained with a teacher. Here, the numbers for CTM are our reproduced
results without GAN loss for fair comparison. We speculate that further tuning of hyper-parameters
or addition of a GAN loss could push the performance of GCTMs to match that of iCMs.

5.2 FAST IMAGE-TO-IMAGE TRANSLATION

Unlike previous distillation methods such as CM or CTM, GCTM can learn ODEs between arbitrary
distributions, enabling image-to-image translation. To numerically validate this theoretical improve-
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Method NFE Time
(ms)

SR2 - Bicubic Deblur - Gaussian Inpaint - Center

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DPS 32 1079 31.19 0.935 0.015 27.88 0.878 0.041 24.69 0.876 0.042
CM 32 1074 30.80 0.930 0.010 27.85 0.871 0.027 23.02 0.857 0.050

0-
Sh

ot
GCTM 32 1382 31.61 0.939 0.015 28.19 0.885 0.037 24.47 0.876 0.042

Regression 1 87 33.46 0.964 0.015 31.19 0.942 0.015 28.76 0.922 0.028
Palette 5 166 17.88 0.556 0.234 17.81 0.571 0.234 16.12 0.489 0.357
I2SB 5 284 26.74 0.869 0.033 26.20 0.853 0.038 26.01 0.874 0.038

Su
pe

rv
.

GCTM 1 87 32.37 0.954 0.009 30.56 0.935 0.009 27.37 0.896 0.027

Table 3: Quantitative evaluation of image restoration on FFHQ (64× 64 resolution).

ment, we train GCTMs on three translation tasks Edges→Shoes, Night→Day, and Facades (Isola
et al., 2017), scaled to 64×64, with the supervised coupling. We consider three baseline methods:
ℓ2-regression, Pix2Pix (Isola et al., 2017), Palette (Saharia et al., 2022) and I2SB(Liu et al., 2023).
To evaluate translation performance, we use FID and Inception Score (IS) (Barratt & Sharma, 2018)
to rate translation quality and LPIPS (Zhang et al., 2018) to assess faithfulness to input. We control
NFEs such that all methods have similar inference times, and calculate all metrics on validation set.

In Table 2, we see GCTM shows strong performance on all tasks. SDE-based methods I2SB and
Palette show poor performance at low NFEs, even when trained with pairs. Qualitative results
in Figure 4 are in line with the metrics. Baselines produce blurry or nonsensical samples, while
GCTM produces sharp and realistic images that are faithful to the input. In Table 5, we show results
on higher resolution (256× 256) data, and observe similar trends.

5.3 FAST IMAGE RESTORATION

Figure 5: Reg. vs. GCTM.

We consider two settings on the FFHQ 64 × 64 dataset, where we
either know or do not know the corruption operator. In the former
case, we train an unconditional GCTM with the independent cou-
pling, with which we implement three zero-shot image restoration
algorithms: DPS, CM-based image restoration, and the guided gen-
eration algorithm illustrated in Figure 1, where the loss is given as
inconsistency between observations (see Append. B.2 for pseudo-
codes and a detailed discussion of the differences). In the latter case,
we train a GCTM with the supervised coupling and ℓ2-regression,
I2SB and Palette for comparison. Notably, GCTM is the only
model applicable to both situations, thanks to the flexible choice
of couplings. We again control NFEs such that all methods have
similar inference speed.

Table 3 presents the numerical results in both settings. In the zero-shot setting, we see GCTM
outperforming both DPS and CM. In particular, CM is slightly worse than DPS. Sample quality
degradation due to error accumulation for CMs at large NFEs have already been observed in un-
conditional generation (e.g., see Fig. 9 in (Kim et al., 2024b)), and we speculate a similar problem
occurs for CMs in image restoration as well. On the other hand, GCTMs avoid this problem, as
they are able to traverse to a smaller time using the ODE velocity approximated via gθ. In the su-
pervised setting, we see regression attains the best PSNR and SSIM. This is a natural consequence
of perception-distortion trade-off. Specifically, regression minimizes the MSE loss, so it leads to
best distortion metrics (Delbracio & Milanfar, 2023) while producing blurry results. GCTM, which
provides best results if we exclude regression on distortion metrics (PSNR and SSIM) and best re-
sults on perception metrics (LPIPS), strikes the best balance between perception and distortion. For
instance, in Fig. 5 inpainting results, regression sample lacks detail (e.g., wrinkles) while GCTM
sample is sharp. We show more samples in Appendix E. In particular, in Table 6, we demonstrate
image restoration task of GCTM on ImageNet with higher resolution (256× 256 resolution) images
to demonstrate its scalability.

5.4 FAST IMAGE EDITING

In this section, we demonstrate that GCTM can perform realistic and faithful image editing without
any special purpose training. Figure 6 shows image editing with an Edges→Shoes model and an
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Figure 6: Image editing with GCTM, NFE = 1.

(a) Controlling latent vector strength γ (b) Mixing latent vectors

Figure 7: Latent manipulation with image-to-image GCTM, NFE = 1.

unconditional FFHQ model. On Edges→Shoes, to edit an image, a user creates an edited input,
which is an edge image painted to have a desired color and / or modified to have a desired outline.
We then interpolate the edited input and the original edge image to a certain time point t = s and
send it to time t = 0 with GCTM to produce the output. On FFHQ, analogous to SDEdit (Meng
et al., 2022), we interpolate an edited image with Gaussian noise and send it to time t = 0 with
GCTM to generate the output. In contrast to previous image editing models such as SDEdit, GCTM
requires only a single step to edit an image. Moreover, we observe that GCTM faithfully preserves
source image structure while making the desired changes to the image.
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5.5 FAST LATENT MANIPULATION

In this section, we demonstrate that GCTMs have a highly controllable latent space. Since there
are plenty of works on latent manipulation with unconditional diffusion models, we focus on latent
manipulation with GCTMs trained for image-to-image translation. For an image-to-image transla-
tion GCTM trained with Gaussian perturbation in Section 4.1, we assert that the perturbation added
to x1 can be manipulated to produce desired outputs x0. In other words, the perturbation acts as
a “latent vector” which controls the factors of variation in x0. To test this hypothesis, in Figure
7, we display outputs Gθ(x1 + γϵ, 1, 0) for particular choices of ϵ. In the left panel, we observe
generated outputs increasingly adhere to the texture of latent ϵ as we increase guidance strength
γ. Interestingly, GCTM generalizes well to latent vectors unseen during training, such as leopard
spots or the color red. In the right panel, we explore the effect of linearly combining red, green, and
blue latent vectors. We see that the desired color change is reflected faithfully in the outputs. These
observations validate our hypothesis that image-to-image GCTMs have an interpretable latent space.

5.6 ABLATION STUDY

Figure 8: Ablation study of GCTM.

We now perform an ablation study on the design choices
of Section 4.1. We have already illustrated the power of
using appropriate couplings in previous sections, so we
explore the importance of σmax. A robust choice for σmax

for unconditional generation is well-known to be σmax =
80 (Karras et al., 2022; Kim et al., 2024b), and we found
using this choice to perform sufficiently well for GCTMs
when learning to translate noise to data with independent
or OT couplings. So, we restrict our attention to image-
to-image translation.

In Figure 8, we display the learning curves on
Edges→Shoes for GCTMs trained without and with
Gaussian perturbation, and σmax ∈ {80, 500}. We observe that GCTM trained without pertur-
bation and σmax = 80 exhibits unstable dynamics, and is unable to minimize the FID below 30. On
other hand, GCTM trained with perturbation and σmax = 80 surpasses the model trained without
perturbation. This demonstrates Gaussian perturbation is indeed crucial for one-to-many generation,
as noted in the last paragraph of Section 4.1. Finally, GCTM with both perturbation and σmax = 500
minimizes FID the fastest. This shows high-curvature regions for image-to-image ODEs lie near x1,
so we need to use a large σmax which places more discretization points near t = 1.

6 CONCLUSION

Our work marks a significant advancement in the realm of ODE-based generative models, par-
ticularly on the transformative capabilities of Consistency Trajectory Models (CTMs). While the
iterative nature of diffusion has proven to be a powerful foundation for high-quality image synthesis
and nuanced control, the computational demands associated with numerous neural function eval-
uations (NFEs) per sample have posed challenges for practical implementation. Our proposal of
Generalized CTMs (GCTMs) extends the reach of CTMs by enabling one-step translation between
arbitrary distributions, surpassing the limitations of traditional CTMs confined to Gaussian noise to
data transformations. Through an insightful exploration of the design space, we elucidate the impact
of various components on downstream task performance, providing a comprehensive understanding
that contributes to a broadly applicable and stable training scheme. Empirical validation across di-
verse image manipulation tasks demonstrates the potency of GCTMs, showcasing their ability to
accelerate and enhance diffusion-based algorithms. In summary, our work not only contributes to
theoretical advancements but also delivers tangible benefits, showcasing GCTMs as a key element
in unlocking the full potential of diffusion models for practical, real-world applications in image
synthesis, translation, restoration, and editing.
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A FULL EXPERIMENT SETTINGS

A.1 TRAINING

In this section, we introduce training choices which provided reliable performance across all exper-
iments in our paper.

Bootstrapping scores. In all our experiments, we train GCTMs without a pre-trained score model.
So, analogous to CTMs, we use velocity estimates given by an exponential moving average θEMA

of θ to solve ODEs. We use exponential moving average decay rate 0.999.

Time discretization. In practice, we discretize the unit interval into a finite number of timesteps
{tn}Nn=0 where

t0 = 0 < t1 < · · · < tN = 1 (24)

and learn ODE trajectories integrated with respect to the discretization schedule. EDM (Karras et al.,
2022), which has shown robust performance on a variety of generation tasks, solves the PFODE on
the time interval (σmin, σmax) for 0 < σmin < σmax according to the discretization schedule

σn = (σ
1/ρ
min + (n/N)(σ1/ρ

max − σ
1/ρ
min))

ρ (25)

for n = 0, . . . , N and ρ = 7. Thus, using the change of time variable (17) derived in Theorem 1,
we convert PFODE EDM schedule to FM ODE discretization

t0 = 0, tn = σn/(1 + σn) for n = 1, . . . , N − 1, tN = 1. (26)

In our experiments, we fix σmin = 0.002 and control σmax. We note that σmax controls the amount
of emphasis on time near t = 1, i.e., larger σmax places more time discretization points near t = 1.

Number of discretization steps N . CTMs use fixed N = 18. In contrast, analogous to iCMs, we
double N every 100k iterations, starting from N = 4.

Time t̂ distribution. For unconditional generation, we sample

t = σ/(1 + σ), log σ ∼ N (−1.2, 1.22) (27)

in accordance with EDM. For image-to-image translation, we sample

t ∼ beta(3, 1). (28)

Network conditioning. We use the EDM conditioning, following CTMs.

Distance d. CTMs use d defined as

d(xt, x̂t) = LPIPS(GθEMA
(xt, t, 0), GθEMA

(x̂t, t, 0)) (29)

which compares the perceptual distance of samples projected to time t = 0. In contrast, following
iCMs, we use the pseudo-huber loss

d(xt, x̂t) =
√
∥xt − x̂t∥22 + c2 − c (30)

where c = 0.00054
√
d, where d is the dimension of xt.

Batch size. We use batch size 128 for 32 × 32 resolution images and batch size 64 for 64 × 64
resolution images.

Optimizer. We use the Adam optimizer (Kingma & Ba, 2015) with learning rate

η = 0.0002/(128/batch size) (31)

and default (β1, β2) = (0.9, 0.999).

Coefficient for LFM(θ). We use λFM = 0.1 for all experiments.

Network. We modify SongUNet provided at https://github.com/NVlabs/edm to accept
two time conditions t and s by using two time embedding layers.

ODE Solver. We use the second order Heun solver to calculate LGCTM(θ).

Gaussian perturbation. We apply a Gaussian perturbation from a normal distribution multiplied
by 0.05 to sample x1, excluding inpainting task.
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A.2 EVALUATION

In this section, we describe the details of the evaluation to ensure reproducibility of our experiments.

Datasets. In unconditional generation task, we compare our GCTM generation performance us-
ing CIFAR10 training dataset. In image-to-image translation task, we evaluate the performance of
models using test sets of Edges→Shoes, Night→Day, Facades from Pix2Pix. In image restoration
task, we use FFHQ and apply following corruption operators H from I2SB to obtain measurement:
bicubic super-resolution with a factor of 2, Gaussian deblurring with σ = 0.8, and center inpainting
with Gaussian. We then assess model performance using test dataset.

Baselines. For I2I translation tasks (64 × 64 resolution), we com-
pare three baselines: Pix2Pix from https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix, Palette model from https://github.com/
Janspiry/Palette-Image-to-Image-Diffusion-Models, and I2SB from
https://github.com/NVlabs/I2SB. In the case of Pix2Pix, during training, we op-
timize the generator and discriminator with 256 × 256 resolution images using the recommended
hyper-parameters. During inference, we apply bilinear interpolation to generator output images to
resize them to 64 × 64. For other baselines, we modify the model image resolution to 64 × 64
and use the recommended hyper-parameters. Same configuration is used in supervised image
restoration task.

Metrics details. We calculate FID using https://github.com/mseitzer/pytorch-fid
and IS from https://github.com/pytorch/vision/blob/main/torchvision/
models/inception.py. We assess LPIPS from https://github.com/richzhang/
PerceptualSimilarity with AlexNet version 0.1. In generation task, we employ the en-
tire training dataset to obtain FID scores, and in the other task, we sample 5,000 test datasets. To
obtain PSNR and SSIM, we convert the data type of model output to uint8 and normalize it. We
use https://github.com/scikit-image/scikit-image for PSNR and SSIM.

Sampling time. To compare inference speed, we measure the average time between the model
taking in one batch size as input and outputting it.

B ALGORITHMS

B.1 OPTIMAL TRANSPORT

Algorithm 3 Sinkhorn-Knopp (SK)

1: Input: {xm
0 }Mm=1, {xm

1 }Mm=1, τ
2: Compute cost matrix C ∈ RM×M subject to Ci,j = ∥xi

0 − xj
1∥22

3: Solve PEOT = argminP ⟨P ,C⟩ − τH(P ) such that P1 = P⊤1 = 1
n1 with Algorithm 1 in

Cuturi (2013)
4: Treat PEOT as a discrete distribution over {1, . . . ,M} × {1, . . . ,M}
5: Sample {(im, jm)}Mm=1 ∼ PEOT

6: Return: {(xim

0 ,xjm

1 )}Mm=1

B.2 IMAGE RESTORATION

In Alg. 4, we describe three zero-shot image restoration algorithms, DPS, CM, and GCTM. DPS
uses the posterior mean Eq(x0|x′

ti
)[x0] to both traverse to a smaller time ti−1 and to approximate

measurement inconsistency. As the posterior mean generally do not lie in the data domain, using it
to calculate measurement inconsistency can be problematic. Indeed, approximation error in DPS is
closely related to the discrepancy between the posterior mean and x′

ti→0 (see Theorem 1 in (Chung
et al., 2022) for a formal statement). On the other hand, CM uses the ODE terminal point x′

ti→0 to
traverse to a smaller time ti−1 and to approximate measurement inconsistency. While CM can have
better guidance gradients as x′

ti→0 lie within the data domain, using x′
ti→0 to traverse to ti−1 can

accumulate truncation error and degrade sample quality. For instance, see Figure 9 (a) in (Kim et al.,
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Algorithm 4 Zero-shot Image Restoration

1: Input: Measurement x1, corruption H , discretization {ti}Mi=0
2: x′

tM ∼ N (0, I)
3: for i = M to 1 do
4: ϵ ∼ N (0, I)
5: if Method is DPS then
6: x̂0 = gθ(x

′
ti , ti, ti)

7: x′
ti−1

= (1− ti−1)x̂0 + ti−1ϵ
8: else if Method is CM then
9: x̂0 = Gθ(x

′
ti , ti, 0)

10: x′
ti−1

= (1− ti−1)x̂0 + ti−1ϵ
11: else if Method is GCTM then
12: Evaluate score and ODE endpoint in parallel by t = (ti, ti), s = (ti, 0) :
13: x̃0, x̂0 = gθ(x

′
ti , ti, ti), Gθ(x

′
ti , ti, 0)

14: x′
ti−1

= (1− ti−1)x̃0 + ti−1ϵ
15: end if
16: x′

ti−1
← x′

ti−1
− λ∇x′

ti
||x1 −Hx̂0||22

17: end for
18: Return: x′

0

2024b). GCTM mitigates both problems by enabling parallel evaluation of posterior mean and ODE
endpoint, as shown in Line 12-13 of Alg. 4.

B.3 IMAGE EDITING

Algorithm 5 Image Editing

1: Input: (x0,x1) ∼ q(x0,x1), t
2: x̂t = (1− t)Edit(x0) + tx1

3: Return: Gθ(x̂t, t, 0)

C PROOFS

C.1 CORRECTNESS OF SECTION 3.3

We show that our exposition in Section 3.3 adheres to Conditional Flow Matching (CFM) theory.
Specifically, the notations

z, q(z), pt(x|z), ut(x|z) (32)

in Section 3 of Tong et al. (2024) are expressed in our paper as

(x0,x1), q(x0,x1), q(xt|x0,x1), x1 − x0, (33)

respectively. It follows that pt(x) and ut(x) in Tong et al. (2024) are expressed in our notation as

pt(x) :=

∫
pt(x|z)q(z) dz =

∫
q(xt|x0,x1)q(x0,x1) dx0 dx1 = q(xt) (34)

and

ut(x) := Eq(z)
ut(x|z)pt(x|z)

pt(x)
= Eq(x0,x1)

(x1 − x0)q(xt|x0,x1)

q(xt)
= Eq(x0,x1|xt)[x1 − x0]

(35)

respectively. By Theorem 3.1 in Tong et al. (2024), the ODE Eq. (11) indeed generates q(xt), and
Eq. (12) is equivalent to the CFM objective Eq. (10) in Tong et al. (2024).
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C.2 PROOF OF PROPOSITION 1

Proof. We observe that the velocity term in (11) may be expressed as

Eq(x0,x1|xt)[x1 − x0] = Eq(x0,x1|xt)[(xt − x0)/t] (36)

= Eq(x0|xt)[(xt − x0)/t] (37)

= (xt − Eq(x0|xt)[x0])/t (38)

since x1 is determined given x0 and xt. This shows the equivalence between (11) and (13). Eq.
(14) is then a straightforward consequence of the equivalence between ODEs.

C.3 PROOF OF PROPOSITION 2

Proof. We first show equivalence of scores. We note that

xτ 7→ xt (39)

is a bijective transformation, so by change of variables,

q(xt|x0) = (1 + τ) · N (xτ |x0, τI) = (1 + τ) · p(xτ |x0) (40)

and marginalizing out x0, we get

q(xt) = (1 + τ) · p(xτ ). (41)

It follows by Bayes’ rule that

p(x0|xτ ) =
p(xτ |x0)p(x0)

p(xτ )
(42)

=
(1 + τ)−1q(xt|x0)q(x0)

(1 + τ)−1q(xt)
(43)

=
q(xt|x0)q(x0)

q(xt)
(44)

= q(x0|xt) (45)

and thus

Ep(x0|xτ )[x0] = Eq(x0|xt)[x0]. (46)

for all τ ∈ (0,∞) and xτ . We now show the equivalence of ODEs. Diffusion PFODE is

dxτ =
xτ − Ep(x0|xτ )[x0]

τ
dτ. (47)

With the change of variable

xt = xτ/(1 + τ), (48)

we have

dxt = −
xτ

(1 + τ)2
dτ +

1

1 + τ
dxτ (49)

= − xτ

(1 + τ)2
dτ +

xτ − Ep(x0|xτ )[x0]

τ(1 + τ)
dτ (50)

= − xt

1 + t
dτ +

(1 + t)xt − Ep(x0|xτ )[x0]

t(1 + t)
dτ (51)

=
xt − Ep(x0|xτ )[x0]

τ(1 + τ)
dτ (52)

=
xt − Eq(x0|xt)[x0]

τ(1 + τ)
dτ (53)
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where we have used equivalence of scores at the last line. We then make the change of time variable

t = τ/(1 + τ) =⇒ dt =
1

(1 + τ)2
dτ (54)

which gives us

dxt =
xt − Eq(x0|xt)[x0]

τ/(1 + τ)
dt (55)

=
xt − Eq(x0|xt)[x0]

t
dt. (56)

For the first equality in (20), transform PFODE variables (xτ , τ) into FM ODE variables (xt, t) with
(17), transport xt to xs with GGCTM, and then transform FM ODE variables (xs, s) into PFODE
variables (xσ, σ) with the inverse of (17). Second equality in (20) follows directly from (18).

D LIMITATION, SOCIAL IMPACTS, AND REPRODUCIBILITY

Limitations. GCTMs are yet unable to reach state-of-the-art unconditional generative performance.
We speculate further tuning of hyper-parameters in the manner of iCMs could improve the perfor-
mance, and leave this for future work.

Social impacts. GCTM generalizes CTM to achieve fast translation between any two distributions.
Hence, GCTM may be used for beneficial purposes, such as fast medical image restoration. How-
ever, GCTM may also be used for malicious purposes, such as generation of malicious images, and
this must be regulated.

Reproducibility. We will open-source our code upon acceptance. Moreover, we have submitted
experiment codes as a supplementary material.

E ADDITIONAL EXPERIMENTS

E.1 COMPARING I2I PERFORMANCE WITH OTHER BASELINE MODELS

We compare the image-to-image (I2I) performance of our model with two baseline approaches:
EGSDE (Zhao et al., 2022) and BBDM (Li et al., 2023). Since BBDM, an I2I framework based
on the Brownian Bridge process, leverages a latent diffusion model, we train it with a pixel-space
diffusion model for a fair comparison. Both BBDM and EGSDE are trained on the Edges→Shoes
dataset. As shown in Table 4, our GCTM outperforms all baselines across various metrics, even
when evaluated with fewer sampling steps.

In addition, we visualize the image editing results in Fig. 9. While EGSDE generates realistic
images, it fails to faithfully preserve the given conditions. BBDM, on the other hand, struggles
to perform robustly on (unseen) conditional images. In contrast, GCTM produces realistic images
while accurately maintaining the original conditions.

Method NFE Time (ms) FID ↓ IS ↑ LPIPS ↓
BBDM (Li et al., 2023) 5 75 43.7 3.43 0.099
EGSDE (Zhao et al., 2022) 500 2590 198.1 2.87 0.476
GCTM 1 87 40.3 3.54 0.097

Table 4: Evaluation of I2I translation on Edges→Shoes with other baslines.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: Comparison on image editing with GCTM and other baselines

E.2 CONTROLLABLE IMAGE EDITING

In this section, we demonstrate that effectiveness of image editing can be controlled. In Algorithm
5, we control the time point t to determine how much of the edited image to reflect. In Fig. 10,
the results visualize how t effect the output of model output. We observe that the larger t, the more
realistic the image, and the smaller t, the more faithful the edit feature. We set t = 0.95 and t = 0.4
at supervised coupling and independent coupling, respectively.

Figure 10: Controllability of image editing by t.
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E.3 HIGH-RESOLUTION IMAGE-TO-IMAGE TRANSLATION

To verify the robustness of our framework to scalability of resolution, we experiment with image-to-
image translation of the Facades dataset with 256× 256 resolution (Fig. 11). In Table 5, we see that
GCTM achieves high performance despite using fewer NFEs compared to the baselines, generating
realistic, diverse, and faithful translated images.

Method NFE Facades-256

FID ↓ IS ↑ LPIPS ↓
Pix2Pix (Isola et al., 2017) 1 117.2 1.60 0.414
Palette (Saharia et al., 2022) 5 396.7 1.14 1.089
I2SB(Liu et al., 2023) 5 128.6 2.23 0.454
GCTM 1 107.0 2.24 0.426

Table 5: Quantitative evaluation of I2I translation with 256× 256 resolution images. Best is in bold,
and second best is underlined.

Figure 11: Qualitative comparison of I2I task on Facades 256×256.
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E.4 HIGH-RESOLUTION IMAGE RESTORATION

In Table 6, we demonstrate image restoration task of GCTM on ImageNet with higher resolution
images. As diffusion-based solvers for inverse problems, both DPS (Chung et al., 2022) and DDS
(Chung et al., 2024) require a sufficient number of NFEs to achieve effective reconstruction. Specif-
ically for DPS, using significantly fewer NFEs than the 1000 NFEs suggested in the original paper,
combined with the absence of measurement noise, disrupts the reconstruction process, resulting
in outputs that are worse than GCTM. Although DDS shows improved performance compared to
DPS, it requires more NFEs to achieve comparable performance with GCTM, which emphasizes
the efficiency of GCTM in solving image restoration tasks.

Method NFE SR4 - Bicubic Deblur - Gaussian Inpaint - Center

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
DPS 10 10.37 0.357 0.727 10.27 0.256 0.830 9.98 0.247 0.841

50 16.15 0.392 0.654 19.19 0.520 0.523 13.61 0.526 0.522
DDS 10 19.79 0.569 0.491 21.12 0.634 0.394 13.09 0.503 0.531

50 21.25 0.571 0.409 23.33 0.704 0.245 13.57 0.485 0.511
GCTM 1 26.70 0.771 0.223 34.65 0.948 0.032 21.56 0.808 0.229

Table 6: GCTM evaluation of image restoration on ImageNet with 256 × 256 resolution. Best is in
bold, and second best is underlined.

Figure 12: Qualitative comparison of image restoration task on ImageNet 256×256.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.5 ADDITIONAL IMAGE-TO-IMAGE TRANSLATION SAMPLES

Figure 13: Additional results on image-to-image translation task on Edges→Shoes (top), Facades
(middle) and Night→Day (bottom).
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E.6 ADDITIONAL IMAGE RESTORATION SAMPLES

x1 GCTM x0

Figure 14: Additional results of supervised image restoration task on FFHQ 64×64.
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Figure 15: Additional results of zero-shot image restoration task on FFHQ 64×64.

Figure 16: Qualitative comparison of zero-shot algorithms on FFHQ 64×64.
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