
AutoGDA: Automated Graph Data Augmentation
for Node Classification

Tong Zhao∗♠♥, Xianfeng Tang♣, Danqing Zhang♣, Haoming Jiang♣, Nikhil Rao♣,
Yiwei Song♣, Pallav Agrawal♣, Karthik Subbian♣, Bing Yin♣, Meng Jiang♠

♠ University of Notre Dame, Notre Dame, IN, USA
♥ Snap Inc., Seattle, WA, USA

♣ Amazon.com Inc., Palo Alto, CA, USA

Abstract

Graph data augmentation has been used to improve generalizability of graph
machine learning. However, by only applying fixed augmentation operations on
entire graphs, existing methods overlook the unique characteristics of communities
which naturally exist in the graphs. For example, different communities can have
various degree distributions and homophily ratios. Ignoring such discrepancy
with unified augmentation strategies on the entire graph could lead to sub-optimal
performance for graph data augmentation methods. In this paper, we study a novel
problem of automated graph data augmentation for node classification from the
localized perspective of communities. We formulate it as a bilevel optimization
problem: finding a set of augmentation strategies for each community, which
maximizes the performance of graph neural networks on node classification. As the
bilevel optimization is hard to solve directly and the search space for community-
customized augmentations strategy is huge, we propose a reinforcement learning
framework AutoGDA that learns the local-optimal augmentation strategy for each
community sequentially. Our proposed approach outperforms established and
popular baselines on public node classification benchmarks as well as real industry
e-commerce networks by up to +12.5% accuracy.

1 Introduction

Data augmentation methods are widely used to improve the generalizability and robustness of machine
learning (ML) models [1]. They aim to create plausible variations of existing data without the need
of additional human efforts. It has been proved that customized data augmentation, i.e., customizing
augmentation strategies for each (batch of) object, are beneficial for ML models [2–4]. For example,
customized augmentation strategies [2, 5] have shown improved performance over having a uniform
augmentation on the entire dataset. To this end, automated data augmentation methods efficiently
seek the optimal customized augmentation strategies for samples/batches [2, 4–6].

Recently, with graph neural networks (GNNs) [7–10] emerging as one of the preferred approaches for
learning on graph structured data, graph data augmentation methods [11–17] have shown promising
results in improving GNNs. For example, DropEdge [18] randomly removes a fraction of edges in
each training epoch to promote GNN’s robustness during test-time inference. The AdaEdge [11]
approach iteratively adds (or removes) edges between nodes that are predicted to have the same (or
different) labels with high confidence. GAugM and GAugO [13] manipulate the graph structure
according to edge probabilities learned by link predictors. Despite the promising improvements on
various node classification tasks, existing graph data augmentation approaches are manually designed
for the entire graph and only explore graph properties and characteristics globally.
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It is more involved to apply automated data augmentation on graphs compared to images and text,
because of the unique properties of graph data bring a great challenge to the effort. While existing
automated augmentation approaches [2, 5] assume that samples are independent and identically
distributed (i.i.d.) in the dataset, nodes in the graph are naturally connected and are dependent on each
other in a non-Euclidean manner. Therefore, it is not straightforward to apply existing automated
augmentation methods for graph data. On the other side, the unique properties of graph data may give
us some clue to design new and effective solutions. Nodes in the graph are naturally grouped into
communities [19, 20], providing a natural separation of data objects (nodes) for node classification.
Chiang et al. [21] show that nodes from the same community are the most important neighbors for
aggregation-based graph learning algorithms. As communities in graphs such as social networks are
usually disparate in characteristics [22–24] such as density, centrality, homophily, etc., we argue that
data augmentation strategies should be localized (community-specific) to achieve optimal results.
However, how to augment graph data according to the localized characteristics of communities in the
graph remains underexplored.

To address the aforementioned challenges, we propose to tackle down the problem of automated
graph data augmentation from the local perspective, i.e., communities in graphs. We first analyze
the disparate characteristics of communities using benchmark datasets. Motivated by observations
and insights, we define automated graph data augmentation as a bilevel optimization problem,
that is, to learn the augmentation strategies that lead to the best node classification performance
of GNNs. As finding the optimal augmentation strategies requests combinatorial optimization, it
is impractical in real world due to huge computational cost. We propose AutoGDA that learns
community-customized augmentation strategies with a reinforcement learning (RL) approach, in-
spired by the auto-augmentation literature in computer vision [2, 5]. Specifically, given communities
in a graph, AutoGDA relies on an RL-agent to sequentially pick up the optimal strategy from several
graph data augmentation operations for each community. The RL-agent in AutoGDA generalizes the
learning and selection of augmentation method from one community to another, and thus automates
and accelerates the process of finding localized augmentation strategies.

We conduct extensive experiments across different GNN backbones and datasets to evaluate AutoGDA
against state-of-the-art baselines. We demonstrate that AutoGDA with traditional community detec-
tion algorithms (e.g., the Louvain method [25]) and existing graph data augmentation operations
(DropEdge [18], GAugM [13], and AttrMask [26]) can achieve consistent performance improvements
over the baselines. Specifically, AutoGDA shows up to 12.5% over the best-performed baseline
method. Moreover, we show that the graph representations learned by AutoGDA are robust against
graph adversarial attacks [27].

Our main contributions are as follows.

• We tackle down the problem of automated graph data augmentation for supervised node classifi-
cation by proposing community-customized augmentations from a localized perspective. To
the best of our knowledge, we are the first to investigate community-customized graph data
augmentation for the task of node classification.

• We propose AutoGDA, an RL-based framework that automatically learns optimal community
customized graph data augmentation strategies. The AutoGDA framework is flexible on the
augmentation operations and can be easily generalized to heterogeneous graphs.

• We conduct extensive experiments on six benchmark datasets (including two real industrial graph
anomaly detection benchmarks) with three widely used GNN backbones to validate AutoGDA.
The experimental results show that (1) AutoGDA consistently outperforms state-of-the-art graph
data augmentation baselines across all datasets, and (2) AutoGDA learns robust representations
that give comparable or better classification performance than state-of-the-art graph defensing
methods against adversarial attacks.

2 Preliminaries and Problem Definition

Notations Let G = (V, E) be an undirected graph of N nodes, where V = {v1, v2, . . . , vN} is the
set of nodes and E ⊆ V × V is the set of edges. We denote the adjacency matrix as A ∈ {0, 1}N×N ,
where Ai,j = 1 indicates nodes vi and vj are connected. We denote the node feature matrix as
X ∈ RN×F , where F is the number of features and xi (the i-th row of X) indicates the feature
vector of node vi. We denote the node labels for classification as y ∈ {1, . . . ,M}N , where M
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is the number of classes. We denote the set of graph communities as C = {C1, C2, . . . , CNc}
where Nc is the number of communities and each community Ck is defined by a set of nodes VCk
s.t. VCi ∩ VCj = ∅, ∀i, j ∈ {1, 2, . . . , Nc} and i 6= j. We denote the subgraph containing the
community Ck as GCk = (VCk, ECk), where ECk ⊆ VCk × VCk is the set of edges within this
subgraph. With a bit of notation abuse, we use the union symbol to denote the combination of
subgraphs, i.e., G =

⋃Nc
k=1GCk.

Graph Neural Networks Without the loss of generality, we take the commonly used graph convolu-
tional network (GCN) [7] as an example when explaining GNNs in the following sections. The graph
convolution operation of each GCN layer is defined as H(l) = σ(D̃−

1
2 ÃD̃−

1
2H(l−1)W(l)), where

l is the layer index, Ã = A + I is the adjacency matrix with added self-loops, D̃ is the diagonal
degree matrix D̃ii =

∑
j Ãij , H

(0) = X, W(l) is the learnable weight matrix at the l-th layer, and
σ(·) denotes a nonlinear activation such as ReLU.

Graph Data Augmentation We follow prior literature [13] to classified graph data augmentation
methods for node classification into two categories: stochastic operations for original-graph setting
and deterministic operations for modified-graph setting. Let h : G→ Gm be a graph data augmenta-
tion operation that generates a variant Gm of the original graph G. In the original-graph setting, h can
be stochastic and applying it for T times results with T graph variants Gm, such that G∪{Gim}Ti=1 is
used in training while only G is used for inference. On the other hand, in the modified-graph setting,
h is deterministic and outputs one Gm, such that Gm replaces G for both training and inference.

In this work, we consider four typical state-of-the-art graph data augmentation operations for node
classification: A = {DROPEDGE, ATTRMASK, GAUGM_ADD, GAUGM_RM}2, which include
both stochastic and deterministic operations and they apply on both graph structure and the node
features. It’s worth noting that our proposed AutoGDA is not limited to these four augmentation
operations and can take any graph data augmentation operations in A.

DROPEDGE [18] and ATTRMASK [26] are stochastic augmentation operations, where they ran-
domly drop (mask) a given percentage of edges (node attributes) in each training epoch of GNN.
DROPEDGE implies the graph structure has certain robustness to the edge connectivity and also
alleviates the well-known over-smoothing problem of GNNs [18]. ATTRMASK encourages GNNs
to recover masked node attributes with their context information in the local neighborhood. On the
other hand, GAUGM_ADD and GAUGM_RM [13] are deterministic augmentation operations that
deterministically modify the graph structure to promote the graph’s homophily and hence improve
the model’s performance for node classification [13]. GAUGM_ADD, and GAUGM_RM use the
predicted edge probabilities for all node pairs by VGAE [28] and add new edges (remove existing
edges) with highest (lowest) edge probabilities.

Each of the above four augmentation operations has one parameter controlling the percentage
magnitude of the augmentation, resulting with a 1004 searching space when finding the optimal
strategy for each dataset. As we separate the graph into multiple communities and aim to search for
the optimal community customized augmentation strategy, the searching space would be 1004×Nc ,
where Nc is the number of communities. As Nc gets larger, the searching space becomes infeasible
for traditional parameter searching methods such as grid search. Therefore, a new efficient approach
for automated graph augmentation search is desired.

Problem Definition Following the definition of previous literature [13, 18] on graph data augmenta-
tion for node classification, the problem of finding a hand-crafted graph data augmentation strategy
can be defined as follows. Given the graph dataG, a set of graph data augmentation operationsA, and
GNN model f : G→ ŷ, find the best strategy of applying A on G such that the node classification
performance of f on G is maximized.

In this work, as we propose to find the best augmentation strategy for each community in the graph,
the problem of automated graph data augmentation is then defined as: given the graph data G, graph
communities C inG (the community detection method for generating C is treated as a hyperparameter),
a set of graph data augmentation operations A, and GNN model f : G→ ŷ, find the best strategy of
applyingA on the subgraphs of each communityCk ∈ C such that the node classification performance

2To differentiate from the baseline methods (normal font), we use the small caps font to denote the augmen-
tation operations.
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Figure 1: Graph communities detected by the Louvain method on the PubMed dataset show diverse
distribution on different characteristics of graph structure.

Policy PolicyPolicy
Community 1 Community 3Community 2

GNN GNN GNN

Val. Accuracy Val. Accuracy Val. Accuracy
Reset the graph and 
update policy with Val. Accuracies as rewards

Action 1 Action 2 Action 3

Figure 2: Overview of one iteration of our proposed AutoGDA on an example graph with three
communities. In each step, the policy network takes the observation of one graph community as input
and outputs the augmentation strategy for it. The GNN is then fine-tuned with the augmented graph
and the validation accuracy is used as the reward to update the policy network.

of f on G is maximized. The main difference between our problem definition and the previous
literature is the use of graph communities C to find the best data augmentation strategies.

3 Automated Graph Data Augmentation
Section 3.1 shows our motivation of customizing graph data augmentation strategies for different
communities. Section 3.2 models automated graph data augmentation as a bilevel optimization
problem. Section 3.3 presents the reinforcement learning-based framework AutoGDA.

3.1 Motivation

Community structures naturally exist in graphs [19, 20] and graph community detection has been
extensively studied in the past few decades [29]. Graph community detection methods (e.g., the
Louvain method [25]) separates the set of nodes in the graph into disjoint subsets such that the quality
of the communities, which is usually measured by modularity [20], are maximized. Thus, the nodes
within the same community are more densely connected and also more important to each other for
node classification [21, 30] comparing with the nodes in different communities.

Our idea is based on the observation that different communities in the same graph mostly show
disparate data distribution, which was also shown in previous literature [22–24]. The structure of
communities commonly varies in terms of density, centrality, etc. For example, Figure 1 shows the
characteristics of communities (detected by Louvain) on the PubMed graph [7]. Figures 1(a), 1(b),
and 1(c) show the distributions of averaged degree, number of triangles, and centrality, respectively.
Figure 1d presents the homophily ratio [31] of community subgraphs, where the homophily ratio
is calculated by the fraction of edges which connect nodes that have the same class label. Previous
works [11, 13] have shown that the graph homophily is strongly correlated with node classification
performance of GNNs, because semi-supervised graph learning methods are mainly based on the
homophily assumption [32]. From Figure 1 we observe that the communities disparate with different
distributions under different measurements.

Moreover, for certain deterministic graph data augmentation methods such as GAugM [13]. The
minority communities may be ignored during the augmentation process. For example, GAugM [13]
modifies the graph structure according to the edge probabilities given an trained edge predictor,
in which it adds missing edges with highest probabilities and remove existing edges with lowest
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probabilities. However, it is possible that all of the modification would happen in only one or few
graph communities, which shows the strongest homophily patterns.

With the above observations on the disparate characteristics of graph communities, we argue that
the state-of-the-art methods that apply the augmentation operations on the whole graph may not be
the best practice of graph data augmentation. Auto-augmentation literature in computer vision [2, 5]
has shown that customizing augmentation operations for data objects/batches is more effective than
using the same strategy for the entire dataset. Although it is infeasible to learn the best operation
for each data object (node) for node classification due to the dependent nature of graph data, graph
data augmentation could benefit from having customized augmentation strategy for each community.
The next sub-section formulates the problem of automated graph data augmentation via community
customization.

3.2 Bilevel Optimization Formulation

We formulate the problem of automated graph data augmentation in a similar way to the auto-
augmentation problem in vision tasks [2, 5]: it aims to find a set of graph data augmentation
operations for each community in the graph, which maximizes the performance of a graph neural
network model on the task of (semi-)supervised node classification.

Let the graph data augmentation policy network be defined as gθ : G→ {0, 1, . . . , 99}|A|, which is
a multi-layer perceptron (MLP) that is parameteraized by θ. The policy takes a (sub)graph as input
and outputs the augmentation strategy for this (sub)graph, which in our case is the four percentage
magnitudes for A = {DROPEDGE, ATTRMASK, GAUGM_ADD, GAUGM_RM}. Let aug(gθ(G))
be a function that applies the augmentation strategy gθ(G) on (sub)graph G, then the automated
graph data augmentation process for subgraph GCk is formulated as

G′Ck = aug
(
gθ(GCk)

)
(1)

where G′Ck denotes the subgraph GCk after augmentation.

We denote the GNN model as fω : G → ŷ, which is parameteraized by ω. It takes the graph as
input and outputs the predicted node labels ŷ. Let the ytr and yval be the node labels for training set
and validation set, respectively. The objective of obtaining the best augmentation policy (solving for
θ) could be described as a bilevel optimization problem [33]. The inner level is the model weight
optimization, which is solving for the optimal ωθ given a fixed augmentation policy (gθ):

ωθ = arg min
ω

L
(
fω

( Nc⋃
k=1

aug
(
gθ(GCk)

))
,ytr

)
, (2)

where L denotes the loss function (cross entropy).

The outer level is the augmentation policy optimization, which is optimizing the policy parameter θ
using the result of the inner level problem. Here we take the validation performance (accuracy) as the
optimization objective. Then we have the problem formulated as below:

θ∗ = arg max
θ

ACC

(
fωθ

( Nc⋃
k=1

aug
(
gθ(GCk)

))
,yval

)
,

where ωθ = arg min
ω

L(ω, θ) (Eq. (2)),
(3)

where θ∗ denotes the parameter of the optimal policy, and ACC(f(G),yval) denotes the validation
accuracy.

3.3 AutoGDA Framework

As the graph data augmentation operationsAmodifies the graph structure and also affects the training
of the GNN model, when applying the augmentation operations community by community, the
graph data augmentation can be formulated as a sequential process on the graph. Figure 2 illustrates
the sequential process: in each step of the iteration, the policy network takes the observation of a
community and outputs the action containing the set of augmentation magnitudes which will be
applied on this community. We finetune the GNN model after applying the augmentations and take
the validation accuracy as rewards.
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Parameter Sharing As the solving of bilevel optimization problems is extremely time consuming
due the repeated solving of the inner loop [33], we utilize the weight sharing scheme for automated
augmentation proposed by Tian et al. [5]. At the start of each episode, we reset the current graph to
the original graph, pretrain the GNN model on the original graph (without optimizing the outer loop
or applying any data augmentation operation), and obtain ω̄. That is,

ω̄ = arg min
ω

L(fω(G),ytr) (4)

In each step of this episode, instead of training a new GNN model from scratch to get ωθ, we load
the parameters ω̄ from pretraining and finetune the GNN model for only a small number of epochs
with the given actions (augmentation strategy) to get ω̄θ. Therefore, the outer level for optimizing the
augmentation policy parameters becomes

θ∗ = arg max
θ

ACC

(
fω̄θ

( Nc⋃
k=1

aug
(
gθ(GCk)

))
,yval

)
. (5)

Reinforcement Learning (RL) Environment The set of graph data augmentation operations A
contains both stochastic and deterministic augmentation operations, where the stochastic operations
(DROPEDGE, ATTRMASK) affect the GNN model in training and the deterministic operations
(GAUGM_ADD, GAUGM_RM) directly modifies the graph structure. Therefore, as we apply the
augmentation strategy on each community, the node/graph representation obtained by GNN trained
with the augmentations also changes. This process forms a Markov decision process, whose length is
equal to the number of communities.

In the RL environment, we take the current graph with the given augmentation strategy as the state
and use the graph representation of one community as the observation for one step. That is, for each
graph community Ck, the observation is the pooled graph representation of the subgraph GCk, i.e.,
the element-wise mean of the node representations for all nodes in VCk. As the output dimension of
GNN’s last layer is the number of unique labels, which is usually very small, we take the output of the
GNN’s second last layer as the node representations. The policy network gθ takes the observation (i.e.,
graph representation of the community) as input and outputs the magnitudes of different augmentation
operations for the community. Note that the augmentation operation would not be applied if its
magnitude is zero.

For optimizing our proposed method, we opt for simplicity and employ the widely-used Proximal
Policy Optimization (PPO) [34] algorithm. We use the validation performance of the GNN model
after finetuning in step as the reward to the RL policy.

Algorithm 1: AutoGDA
Input : G, C, ytr, yval
/* Policy Optimization */

1 for episode in range(n_episodes) do
2 Pretrain GNN and obtain ω̄ by Eq. (4) ;
3 {G′C1, . . . , G

′
CNc
} = {GC1, . . . , GCNc} ;

4 for k in {1, 2, . . . , Nc} do
5 G′Ck = aug(gθ(GCk)) ; // Eq. (1)
6 Load ω̄ ;
7 Finetune GNN with

⋃Nc
k=1G

′
Ck and get ω̄θ ;

8 Use val. ACC to update θ ; // Eq. (5)
9 end

10 end
11 θ∗ = θ ;

/* Inference */
12 G∗ =

⋃Nc
k=1 aug(gθ∗(GCk)) ;

13 Reset and train GNN with G∗ and get ŷtest ;
Output :ŷtest

Summary Algorithm 1 summarizes
the whole process of AutoGDA. In
each episode of the policy optimiza-
tion stage, we first pretrain the GNN
model by Eq. (4) and reset the graph.
The subgraphs G′Ck in line 3 are for
tracking the augmented communities.
Then for each community, we first ob-
tain and apply its augmentations strat-
egy given by the policy (line 5), then
load the pretrained parameters ω̄ for
the GNN model, finetune it with the
current augmentation strategies, and
use the validation accuracy as reward
to update the policy. After the policy
network is sufficiently trained, we get
the final graph data augmentation strat-
egy for the whole graph (all commu-
nities) by the trained policy gθ∗ . Fi-
nally, we reset GNN and train it with⋃Nc
k=1 aug(gθ∗(GCk)) to get the predicted labels ŷtest.
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Table 1: Summary statistics and experimental setup for the datasets.

Cora CiteSeer PubMed Flickr ECom20k ECom43k

# Nodes 2,708 3,327 19,717 7,575 20,799 43,117
# Edges 5,278 4,552 44,338 239,738 47,661 117,469
# Features 1,433 3,703 500 12,047 132 132
# Classes 7 6 3 9 2 2
# Training nodes 140 120 60 757 2,275 4,209
# Validation nodes 500 500 500 1,515 2,275 4,209
# Test nodes 1,000 1,000 1,000 5,303 6,825 12,627

Table 2: Node classification accuracy across GNN architectures and public benchmarks. Bolded are
the best performance and the comparable ones (within the standard deviation of the best performance).

GNN Method Cora CiteSeer PubMed Flickr

GCN

Original 81.5±0.4 70.3±0.5 79.0±0.3 61.2±0.4
+AdaEdge 81.9±0.7 72.8±0.7 79.8±0.4 61.2±0.5
+DropEdge 82.0±0.8 71.8±0.2 79.3±0.3 61.4±0.7
+FLAG 80.2±0.3 68.1±0.5 78.5±0.2 62.3±0.4
+GAugM 83.5±0.4 72.3±0.4 80.2±0.3 68.2±0.7
+GAugO 83.6±0.5 73.3±1.1 79.3±0.4 62.2±0.3
+AutoGDA 84.4±0.3 73.0±0.4 81.6±0.5 71.4±0.5

GSAGE

Original 81.3±0.5 70.6±0.5 78.3±0.6 57.4±0.5
+AdaEdge 81.5±0.6 71.3±0.8 78.5±0.2 57.7±0.7
+DropEdge 81.6±0.5 70.8±0.5 78.7±0.7 58.4±0.7
+FLAG 79.2±0.9 67.9±1.4 77.4±0.3 48.5±0.6
+GAugM 83.2±0.4 71.2±0.4 78.7±0.3 65.2±0.4
+GAugO 82.0±0.5 72.7±0.7 79.4±0.9 56.3±0.6
+AutoGDA 83.2±0.5 72.5±0.4 80.0±0.5 73.4±0.6

GAT

Original 83.0±0.7 72.5±0.7 79.0±0.3 46.9±1.6
+AdaEdge 82.0±0.6 71.1±0.8 79.1±0.6 48.2±1.0
+DropEdge 81.9±0.6 71.0±0.5 78.9±0.6 50.0±1.6
+FLAG 79.6±0.6 67.7±0.7 78.2±0.5 48.9±1.1
+GAugM 82.1±1.0 71.5±0.5 79.0±0.5 63.7±0.9
+GAugO 82.2±0.8 71.6±1.1 78.5±0.8 51.9±0.5
+AutoGDA 84.8±0.2 73.2±0.4 79.8±0.6 65.1±0.9

For the edges which connect nodes that belong to different communities, we make them an optional
special community of edges (CNc+1) in AutoGDA. In the case we use this community, it only
disjoint with others in edges (i.e., VCNc+1 ∩ (∪Nck=1VCk) = ∅ and ECNc+1 = E\(∪Nck=1ECk)), so we
only apply DROPEDGE and GAUG_RM on it as the other two augmentation operations are covered
by other communities.

4 Experiments
In this section, we evaluate the performance of the proposed AutoGDA across different GNN
backbones and datasets, and over alternative graph data augmentation methods.

4.1 Experimental Setup

Datasets We evaluate with 4 public benchmark datasets across domains: citation networks with
strong homophily (Cora, CiteSeer, PubMed [7]) and social networks that exhibits heterophily [31]
(Flickr [35]). We also evaluate with 2 real industry application benchmarks ECom20K and ECom43K
for the task of graph anomaly detection. The statistics of all datasets are provided in Table 1.

Baselines We evaluate the AutoGDA and baselines using 3 widely used GNN architectures: GCN [7],
GraphSAGE [8], and GAT [36]. We compare the node classification performance of AutoGDA with
that achieved by standard GNN, as well as four state-of-the-art graph data augmentation baselines:
AdaEdge [11], DropEdge [18], GAugM [13], and GAugO [13]. To evaluate the robustness of
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Figure 3: Relative improvements over GNNs for accuracy on two real-world industry anomaly
detection datasets.

Table 3: Node classification accuracy against different levels of adversarial attacks. Bolded are the
best performance and the comparable ones (within the standard deviation of the best performance).

Attack Method DICE [40] Metattack [27]
Dataset Ptb. Rate 10% 30% 50% 10% 30% 50%

Cora

GCN [7] 78.4±0.6 73.6±0.9 66.8±1.2 70.2±0.9 32.6±2.0 16.6±0.8
GAugO [13] 78.8±0.4 74.0±0.3 67.3±0.5 72.5±1.1 57.1±0.7 40.6±1.1
GNN-Jaccard [38] 73.1±0.5 66.4±0.5 66.9±0.4 72.1±0.7 51.6±0.5 38.4±0.7
ElasticGNN [39] 79.8±0.8 74.5±0.8 67.6±1.4 74.3±1.2 49.0±1.3 35.4±1.4
AutoGDA 80.2±0.7 74.7±0.3 67.9±0.9 74.5±1.0 63.2±1.9 53.7±1.2

CiteSeer

GCN [7] 65.8±1.1 60.1±0.8 56.5±0.8 38.4±1.0 15.9±0.8 10.7±1.9
GAugO [13] 67.0±0.5 60.9±0.4 56.5±0.9 50.2±0.9 34.3±0.6 29.1±1.2
GNN-Jaccard [38] 66.5±1.3 59.8±0.7 54.1±1.0 43.7±1.2 27.0±0.7 19.8±0.4
ElasticGNN [39] 66.7±1.4 59.7±0.8 56.3±1.4 47.5±1.3 31.8±0.3 23.5±4.3
AutoGDA 67.8±1.1 62.1±1.3 57.6±1.1 61.5±1.6 52.6±1.3 47.8±1.7

PubMed

GCN [7] 73.9±0.3 67.1±0.3 63.6±0.7 67.2±0.4 41.3±1.5 27.5±1.7
GAugO [13] 74.6±0.4 67.8±0.3 64.8±0.5 71.6±0.9 51.8±0.7 40.7±1.0
GNN-Jaccard [38] 73.7±0.4 67.3±0.5 64.2±0.4 68.2±0.4 41.9±0.9 29.1±1.1
ElasticGNN [39] 75.5±0.6 68.7±0.7 65.4±0.7 71.6±0.5 49.8±0.4 40.1±0.8
AutoGDA 75.1±0.8 68.6±0.5 65.6±0.4 73.1±1.2 55.9±1.8 42.2±1.6

AutoGDA under graph adversarial attacks [37], we evaluate AutoGDA and state-of-the-art graph
defensing methods (GNN-Jaccard [38] and ElasticGNN [39]) against graph adversarial attacks:
DICE [40] and Metattack [27].

4.2 Experimental Results

We show comparative results of AutoGDA and baseline methods in Tables 2 and 3 and Figure 3.
Table 2 is organized per GNN architecture (row), per dataset (column), and different methods (within-
row). Table 3 is organized per dataset (row), per graph adversarial attack method (column), per
attack level (within-column), and different methods (within-row). For customer privacy concern,
relative improvements instead of the performances are reported in Figure 3. We bold the best
and comparable performances. In short, our proposed AutoGDA consistently achieve the best or
comparable performances in all combinations of GNN architectures and datasets.

Effectiveness on graph data augmentation From Table 2 and Figure 3 we observe that our pro-
posed AutoGDA achieves improvements over all three GNN architectures (averaged across datasets):
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Table 4: Ablation experiments using GCN on PubMed.

PubMed

DropEdge 79.3±0.3
AutoGDA with DROPEDGE (single community) 79.3±0.4
AutoGDA with DROPEDGE 79.4±0.2
GAugM 80.2±0.3
AutoGDA with GAUGM (single community) 80.2±0.3
AutoGDA with GAUGM 81.2±0.4
AutoGDA (single community) 80.4±0.3
AutoGDA 81.6±0.5
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Figure 4: AutoGDA learns diverse augmentation strategies for different communities in the PubMed
graph.

AutoGDA improves 5.0% (GCN), 6.1% (GraphSAGE), and 7.5% (GAT), repsectively. From the
dataset perspective, AutoGDA also achieves improvements over all 6 datasets (averaged across GNN
architectures): AutoGDA improves 2.7%, 2.2%, 2.1%, 27.6%, 0.8%, and 1.7% respectively for each
dataset (Cora, CiteSeer, PubMed, Flickr, ECom20k, ECom43k). Notably, AutoGDA is especially
effective on social networks (Flickr), which are naturally more heterophily. Although GAugM [13]
outperformed all other baselines with large margin, AutoGDA still significantly improved from
GAugM by combining the advantages of different augmentations and learning the best combined
strategy. Finally, we note that AutoGDA outperforms all graph data augmentation baselines: specifi-
cally, AutoGDA improves 5.6%, 5.4%, 6.1% 2.0%, and 4.7% respectively over AdaEdge, DropEdge,
FLAG, GAugM, and GAugO (averaged across datasets and GNNs). We reason that learning cus-
tomized augmentation for each graph community and combining several state-of-the-art graph data
augmentation operations both contributed to the performance improvement of AutoGDA.

Robustness against graph adversarial attacks From Table 3 we observe the proposed AutoGDA
is able to effectively learn robust representation under graph adversarial attacks. Although the
recently baseline ElasticGNN [39] also achieved good performance against Random Injection and
DICE [40], AutoGDA outperformed ElasticGNN with large margins under Metattack [27]. In short,
our proposed AutoGDA achieved the best performance for 21 our of 27 combinations of datasets and
graph adversarial attack methods.

Necessity of community adaptive augmentations Table 4 shows ablation experiments on PubMed
using GCN. We compare the performances of AutoGDA using only one augmentation operations
versus using all augmentation operations in A, and we also compare the performances of AutoGDA
with single community (viewing the whole graph as the only community) versus our default setting
(using Louvain method for community detection). We note that when using only one augmentation
operation (combining GAUGM_ADD and GAUGM_RM as GAUGM) and under single community
setting, AutoGDA performs parameter search on the existing graph data augmentation methods. We
also observe from Table 4 that the default AutoGDA (with multiple graph communities) consistently
outperform the single community setting, showing the community customized augmentation strategy
is crucial for the performance improvement.

Case Study Figure 4 showcases the learned augmentation strategies for seven different communities
on PubMed dataset by our proposed AutoGDA with GCN. We observe that our propose AutoGDA is
able to learn diverse augmentations strategies for different communities in the graph.
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5 Related Work

Graph Neural Networks GNNs enjoy widespread use in modern graph-based machine learning
due to their flexibility to incorporate node features, custom aggregations and inductive operation,
unlike earlier works which were based on embedding lookups [41–43]. In recent years, many spectral
GNN variants [7, 44–48] were proposed following the initial idea of convolution based on spectral
graph theory [49]. As spectral GNNs usually requires (expensive) operations on the full adjacency
matrix, spatial GNNs which perform graph convolution with neighborhood aggregation became
prominent [8, 36, 50–52] owing to their scalability and flexibility [53]. Several other works also
proposed advanced architectures which add residual connections to facilitate deep GNN training
[54, 55]. GraphMix [56] proposed to regularize the GNN model with a fully connected network.
More recently, graph neural architecture search (NAS) methods [57, 58] utilizing reinforcement
learning were proposed to learn the optimal GNN architecture.

Graph Data Augmentation As GNNs have emerged as a rising approach for learning with graph data,
Graph Data Augmentation (GDA) [17, 59–62] for GNNs were proposed and studied in recent years.
Due to the complex, non-Euclidean structure of graphs, most GDA work focused on manipulating
the graph structure [13, 63, 63]. DropEdge [18] randomly drops a fraction of edges during each
training epoch, in a way similar to Dropout [64]. Following DropEdge, several works [65–67]
proposed methods that learns to drop instead of dropping at random. Graph structure learning
methods [46, 68–71] can also be viewed as graph data augmentation as they learn from graphs whose
structures are partially or totally unknown. AdaEdge [11] and BGCN [72] are iterative methods
that updates the graph structure with the prediction of GNNs. Zhao et al. [13] showed that graph
homophily critically affects message passing-based GNNs and proposed GAugM and GAugO that
manipulate the graph structure with the edge probabilities given by VGAE [28] to augment the
graph data. Kong et al. [12] and Tang et al. [15] proposed augmentation methods that operates on
the node features. Graph structual learning methods [70, 73, 74] search for better graph structure
that augments the initial graph structure, with the goal of optimizing the graph for downstream
tasks. Aside from the methods that directly use GDA for semi-supervised node classification, several
works that used GDA in self-supervised graph learning were also proposed. NodeAug [75] and
Grand [32] used augmentation with self-supervised consistency loss as an additional term to the
cross entropy loss. GraphCL [26] used augmentation in self-supervised graph contrastive learning for
graph classification. Eland [16] proposed action sequence augmentation for graph anomaly detection.
Zhao et al. [76] studied counterfactual data augmentation for link prediction.

Automated Data Augmentation Several automated data augmentation approaches [2–4, 6, 77]
have been proposed in CV in the past few years. These methods seek to find the optimal data
augmentation policies for each given dataset automatically. Cubuk et al. [2] formulated the automated
data augmentation problem as a discrete search problem and proposed a reinforcement learning
framework to search the best augmentation operations via proxy tasks (i.e., a smaller model). Several
works [3, 4, 6] were then proposed to improve the efficiency of automated data augmentation. Cubuk
et al. [78] showed that the models with different number of parameters benefits from different
magnitude of augmentation operations and proposed RandAug that searches for one augmentation
magnitude that is used for all operations. Tian et al. [5] proposed the Augmentation-Wise Weight
Sharing method that enables a fast evaluation process on the original model while not sacrificing
the efficiency. Recently, several automated augmentation methods [79–81] have been proposed for
self-supervised graph representation learning. Luo et al. [82] studied automated data augmentation for
the task of graph classification. Nevertheless, automated data augmentation is rather under-explored
for (semi-)supervised node classification tasks.

6 Conclusions
In this paper, we studied the problem of community-customized data augmentation for node classifi-
cation. Our work showed that different communities require different augmentation strategies for the
best node classification performance due to their disparate characteristics. We proposed an automated
graph data augmentation framework AutoGDA that adopted reinforcement learning to automatically
learn the optimal augmentation strategy for each community. Through extensive experiments on
benchmark graph datasets from multiple domains, our proposed approach AutoGDA achieved up to
12.5% accuracy improvement over the state-of-the-art graph data augmentation baselines.
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A Additional Dataset Details
In this section, we provide some additional, relevant dataset details.

Citation networks. Cora, CiteSeer and PubMed are citation networks that are commonly used as
benchmarks in GNN-related prior works [7, 11, 13, 18, 36]. In these citation networks, the nodes are
published papers; the features are preprocessed (e.g., bag-of-words) vectors of the corresponding
paper title and/or abstract; the edges represent the citation relation between papers; the labels are the
category of each paper.

Social networks. Flickr is an online social network platform, where users can also follow each
other as well as posting images and videos. The user-specified list of interest tags are used as user
features and the groups that users joined are used as labels [35].

E-commerce networks. ECom20k and ECom43k are e-commerce networks that were constructed
with customer purchase/review records from a leading international e-commerce website. The
network contains four types of nodes: customers, sellers, products, and reviews, in which customer
purchases products from sellers and leave reviews to products. They are two graphs constructed with
records in different time periods. The task for these two datasets is abusive customer detection and
the customers with golden labels are split into train/validation/test sets for node classification. The
node features contains original node attributes as well as the one-hot encoded vectors of the node
types. As the golden labels are limited and severely biased, the datasets are sampled with snowball
sampling [83] with labeled abusive customers to ensure the relative independence of the graph. The
node attributes used is anonymized and do not contain any personally identifiable information.

Validation Method. For Cora, Citeseer, PubMed, and Flickr, we follow the commonly used semi-
supervised setting in most GNN literature [7, 13, 36]. For ECom20k and ECom43k, we use 20/20/60%
for train/validation/test splitting.

B Implementation Details
All the experiments in this work were conducted on either an AWS EC2 P4 Instance3 or a G4dn
Instance4. The P4 instance is equipped with 48 Intel Cascade Lake processor cores (96 vCPUs), 1.1
TB of RAM, and 8 Nvidia A100 GPU cards (40 GB of RAM each). The G4dn instance is equipped
with 48 Intel Cascade Lake vCPUs, 192 GB of RAM, and 4 Nvidia T4 GPU cards (16 GB of RAM
each). Note that although the EC2 instances are equipped with multiple GPU cards, AutoGDA only
need one GPU to run all the experiments.

We report test accuracy averaged over 20 runs along with respective standard deviations. For baseline
methods with same datasets in their original paper, we directly use their reported performances –
numbers reported in the original paper are more preferred than the reproduced results in other papers.

B.1 Baseline methods

For the new reproduced results in this work, all original GNN architectures are implemented in DGL5

with Adam optimizer. For a fair comparison, we use hidden size of 128 for all methods. For baseline
methods, we implemented AdaEdge [11] and DropEdge [18] with PyTorch and DGL, and used the
official code packages6 from the authors for GAugM and GAugO [13]. The hyperparameters for all
baseline methods are tuned according to with the same range as in the proposed AutoGDA, and the
hyperparameters for GAugM and GAugO [13] are tuned with the script by their authors.

B.2 AutoGDA variants

As the same as for the baselines, all GNNs in AutoGDA are implemented with DGL and we used
hidden size of 128. We use the public PPO [34] implementation in the stable-baselines3

3https://aws.amazon.com/ec2/instance-types/p4/
4https://aws.amazon.com/ec2/instance-types/g4/
5https://www.dgl.ai/
6https://github.com/zhao-tong/GAug
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Figure 5: AutoGDA is robust to the choices of community detection algorithms as well as the number
of communities. The number of communities can be decided with the modularity measurement.

package7 and implement our RL environment with gym8. All parameters for PPO algorithm are set
as default from stable-baselines3. We use the Louvain method [25] as the default community
detection method for all experiments in Section 4 except the ones in the sensitivity analysis (Figure 5).
The number of communities is treated as a hyperparameter and determined with the help of modularity
measurement as described in the following sensitivity analysis.

C Additional Experimental Results
Sensitivity of AutoGDA . Figure 5a shows the sensitivity analysis of our proposed AutoGDA on
the choices of community detection methods and the number of communities. Figure 5b shows the
modularity measurement for the two community detection methods (Louvain [25] and METIS [84])
at different number of communities. We observe that AutoGDA is generally good when 8 ≤ Nc ≤ 10
for the PubMed dataset, which is also where the modularity curve converge. Thus, a good number of
communities for AutoGDA is generally easy to find with the help of the modularity measurement.

7https://github.com/DLR-RM/stable-baselines3
8https://github.com/openai/gym
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