
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Locally Subspace-Informed Neural Operators for Efficient
Multiscale PDE Solving

Anonymous authors
Paper under double-blind review

Abstract

We propose GMsFEM-NO, a novel hybrid framework that combines the
robustness of the Generalized Multiscale Finite Element Method (GMsFEM)
with the computational speed of neural operators (NOs) to create an efficient
method for solving heterogeneous partial differential equations (PDEs).
GMsFEM builds localized spectral basis functions on coarse grids, allowing
it to capture important multiscale features and solve PDEs accurately with
less computational effort. However, computing these basis functions is costly.
While NOs offer a fast alternative by learning the solution operator directly
from data, they can lack robustness. Our approach trains a NO to instantly
predict the GMsFEM basis by using a novel subspace-informed loss that
learns the entire relevant subspace, not just individual functions. This
strategy significantly accelerates the costly offline stage of GMsFEM while
retaining its foundation in rigorous numerical analysis, resulting in a solution
that is both fast and reliable. On standard multiscale benchmarks—including
a linear elliptic diffusion problem and the nonlinear, steady-state Richards
equation—our GMsFEM-NO method achieves a reduction in solution error
compared to standalone NOs and other hybrid methods. The framework
demonstrates effective performance for both 2D and 3D problems. A key
advantage is its discretization flexibility: the NO can be trained on a
small computational grid and evaluated on a larger one with minimal loss of
accuracy, ensuring easy scalability. Furthermore, the resulting solver remains
independent of forcing terms, preserving the generalization capabilities of
the original GMsFEM approach. Our results prove that combining NO
with GMsFEM creates a powerful new type of solver that is both fast and
accurate.

1 Introduction

Many practical multiscale problems involve highly heterogeneous properties with high-contrast
variations across multiple scales, posing significant challenges for the numerical solution of
partial differential equations (PDEs). A well-established approach for such problems is the
Generalized Multiscale Finite Element Method (GMsFEM) Efendiev et al. (2011; 2013);
Chung et al. (2016), which constructs localized spectral basis functions on coarse grids. By
solving local eigenproblems, GMsFEM captures fine-scale information, enabling accurate
coarse-scale solutions. However, this accuracy comes at a high computational cost due to
the expense of solving these local eigenproblems.
Recently, data-driven solvers, particularly neural operators (NOs) like Fourier Neural Opera-
tors (FNOs) Li et al. (2020); Kovachki et al. (2023); Fanaskov & Oseledets (2023); Tran et al.
(2021) and DeepONets Lu et al. (2021); Wang et al. (2021), have emerged as a powerful
alternative for accelerating PDE simulations Azizzadenesheli et al. (2024); Karniadakis et al.
(2021). While effective for problems with smooth coefficients, standard NOs often struggle to
efficiently capture the localized features of high-contrast heterogeneities, typically requiring
extensive data and large network architectures.
In this work, we introduce GMsFEM-NO, a hybrid framework that combines the robustness
of GMsFEM with the speed of neural operators. Our key innovation is a subspace-informed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

NO that learns to map a heterogeneous coefficient field directly to the low-dimensional
subspace spanned by the GMsFEM basis functions. Instead of learning individual basis
functions—which can be sensitive to small perturbations—we design a novel subspace-aware
loss function that enforces physical consistency at the subspace level. This approach offers
several advantages: it is more data-efficient than learning the full PDE solution, as the basis
functions are smoother and of lower dimension; and it is more robust than a pure NO, as
the final solution is obtained through a GMsFEM, ensuring legitimacy even with imperfect
basis predictions.
Our approach is distinct from existing hybrid methods Bhattacharya et al. (2024); Vasilyeva
et al. (2020); Wang et al. (2020); Liu et al. (2023); Kröpfl et al. (2022; 2025) that combine
machine learning with numerical homogenization/upscaling/macroscopic-modeling. Those
methods typically assume a known macroscopic equation form and learn effective coefficients,
which is infeasible for problems without scale separation and with high contrast. In con-
trast, GMsFEM-NO learns the macroscopic solution space itself, in the form of multiscale
basis functions, making it suitable for these more challenging settings. A related approach
Spiridonov et al. (2025) used a fully connected neural network to predict an additional
basis function for the steady-state Richards equation Richards (1931); Farthing & Ogden
(2017), supplementing an existing set of precomputed basis functions. While this approach
enhanced prediction accuracy, it failed to deliver computational efficiency gains because
traditional methods still generated most basis functions. Furthermore, the simplicity of the
fully connected architecture limited its ability to account for spatial variations, potentially
compromising prediction accuracy for high-contrast data. Another category of related work
aims to reduce the computational cost of PDE solving via reduced-order modeling (POD
Volkwein (2013), DeepPOD Franco et al., and PCANet Bhattacharya et al. (2021)). Deep-
POD and PCANet also leverage neural networks to learn compact solution representations,
providing a relevant baseline for comparing the efficiency of our method.
We validate GMsFEM-NO on two challenging benchmarks with high-contrast coefficients: a
linear elliptic diffusion problem and the nonlinear steady-state Richards equation. Results
showed that our approach is better than NO in terms of solution accuracy and requires less
training data to achieve similar accuracy. Additionally, it reduces basis-construction time by
more than 60 times compared to traditional GMsFEM.
Our main contributions are:

1. We introduce a novel hybrid approach (GMsFEM-NO) that combines the strengths
of NOs with GMsFEM (see Fig. 1).

2. A new subspace-informed loss function for learning stable and generalizable solution
subspaces.

3. The approach is evaluated on high-contrast PDEs and shown to deliver the same
results as GMsFEM at a fraction of the computational cost.

4. Demonstration of resolution invariance of GMsFEM-NO: effective training on low-
resolution data for application to high-resolution problems.

5. Superior in-distribution and out-of-distribution performance compared to standard
NOs, without requiring domain adaptation.

2 Locally Subspace-Informed Neural Operators

2.1 Diffusion equation

We consider the diffusion equation with heterogeneous coefficient

−∇ ·
(
κ(x)∇u(x)

)
= f(x), x ∈ Ω ≡ (0, 1)D, u(x)

∣∣
x∈∂Ω

= 0, (1)

where ∂Ω is a boundary of the unit hypercube Ω, and κ(x) is a heterogeneous field with
high contrast. In particular, we assume that κ(x) > ε > 0, while κ(x) can have very large
variations. For example, in this work we use κ(x) with values in range [1, 9600].

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Spectral problem

NO

κωi

κωi

(a)

(b)

Input dataset, κ
{
ψωi
j

}Nbf

j=1

{
ψ̃ωi
j

}Nbf

j=1

L

NO {
ψ̃ωi
j

}Nbf

j=1

R̃

Solve the coarse-scale system: A0u0 = f0, A0 = R̃AR̃>, f0 = R̃>b

Figure 1: Illustration of training (a) and inference (b) stages of the proposed GMsFEM-NO
method. NO is trained on heterogeneous fields κωi that defined on subdomain ωi to predict
subspace of basis functions {ψωi

j }Nbf
j=1, where Nbf is the number of basis functions. During

training the subspace-informed loss L is applied to align predicted subspace {ψ̃ωi
j }Nbf

j=1 with
{ψωi

j }Nbf
j=1. During inference stage (b), the predicted subspace forms the matrix R̃ that

projects matrix A and vectors to the coarse space.

2.2 Steady-State Richards’ equation

The steady-state version of Richards’ equation, which describes water movement in unsatu-
rated porous media, takes the following form:

−∇ ·
(
κ
(
x, u(x)

)
∇u(x)

)
= f(x), x ∈ Ω ≡ (0, 1)D, u(x)

∣∣
x∈∂Ω

= 0, (2)

where κ
(
x, u(x)

)
is unsaturated hydraulic conductivity, u(x) is the water pressure and f(x)

is a source or sink term.
We consider the Haverkamp model Haverkamp et al. (1977) to define κ

(
x, u(x)

)
:

κ
(
x, u(x)

)
= Ks(x) Kr(u(x)) = κ(x)

1

1 + |u|
,

where κ(x) is a heterogeneous field with high contrast that denotes the permeability of
soils, Kr(u) represents the relative hydraulic conductivity, Ks(x) stands for the saturated
hydraulic conductivity. All the multiscale heterogeneity is incorporated in κ(x) without
regard to u, and 1

1 + |u|
includes all the non-linearity.

2.3 Generalized Multiscale Finite Element Method

2.3.1 Multiscale space approximation

Multiscale methods Efendiev & Hou (2009) form a broad class of numerical techniques. They
are based on constructing multiscale basis functions in local domains to capture fine-scale
behavior.
Let TH be a coarse mesh of the domain Ω ⊂ RD (with D = 2 or 3), such that TH =

⋃Nc

i=1Ki,
where each Ki is a coarse cell and Nc is the number of coarse cells. Let Th be a fine grid
obtained by a refinement of TH , with h� H. We denote by {xi}Nv

i=1 the nodes of the coarse
mesh TH , where Nv is the number of nodes of the coarse mesh. Let ωi be the subdomain

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

defined as the collection of coarse cells containing the coarse grid node xi (see Fig. 2 in
Appendix A):

ωi =
⋃
j

{
Kj ∈ TH : xi ∈ Kj

}
.

To ensure accurate approximations on the coarse mesh TH , we construct spectral multiscale
basis functions following the GMsFEM. GMsFEM contains two stages:

Offline stage:

1. Coarse and Local Domain Definition: Define the coarse grid TH and generate the
associated local domains ωi for i = 1, . . . , Nv.

2. Local Spectral Problem Solving: In each local domain ωi, solve a local spectral
problem to obtain a set of eigenvectors

{
φωi
j

}N
j=1

, where N is the number of coarse
eigenvectors.

3. Multiscale Basis Function Construction: Select the first Nbf eigenvectors from each
ωi and multiply them by a partition of unity function χi Babuska & Lipton (2011);
Babuška et al. (2008); Strouboulis et al. (2000) to create the final multiscale basis
functions

{
ψωi
j

}Nbf

j=1
, where Nbf 6 N .

4. Global System Assembly: Map the local degrees of freedom to global and form a
restriction matrix R.

Online stage:

1. Projection: Use R to project the fine-scale system onto the coarse space.

2. Solution: Compute the solution within the coarse multiscale space.

3. Reconstruction: Obtain the fine-scale approximation by applying the prolongation
operator R> to the coarse-scale solution.

2.3.2 Spectral problem

We denote by V h(Ω) the usual finite element discretization of piecewise linear continuous
functions with respect to the fine grid Th. For each local domain ωi, we define the Neumann
matrix Aωi

h by

v>h A
ωi

h wh =

∫
ωi

κ(x)∇vh · ∇wh dx, ∀vh, wh ∈ V h(ωi)

and the Mass matrix Sωi

h by

v>h S
ωi

h wh =

∫
ωi

κ(x)vhwh dx, ∀vh, wh ∈ V h(ωi).

We consider the finite dimensional symmetric eigenvalue problem

Aωi

h φ = λSωi

h φ

and denote its eigenvalues and eigenvectors by
{
λωi
j

}N
j=1

and
{
φωi
j

}N
j=1

, respectively. Note
that λωi

1 = 0 corresponds to the constant eigenvector φωi
1 = const. We order eigenvalues as

λωi
1 6 λωi

2 6 . . . 6 λωi
j 6

The eigenvectors
{
φωi
j

}N
j=1

form an Sωi

h -orthonormal basis of V h(ωi).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3.3 Solving of the coarse-scale system

For each local domain ωi, we select eigenvectors corresponding to the Nbf 6 N smallest
eigenvalues and define a multiscale subspace

span
{
ψωi
j = χiφ

ωi
j

∣∣ j = 1, . . . , Nbf, i = 1, . . . , Nv

}
(3)

and define the restriction matrix R> =
[
ψω1
1 , . . . , ψω1

Nbf
, . . . , ψ

ωNv
1 , . . . , ψ

ωNv

Nbf

]
. Coarse-grid

solution is the finite element projection of the fine-scale solution into the space (3). More
precisely, multiscale solution u0 is given by

A0u0 = f0,

where A0 = RAR> is the projected system matrix, f0 = R>b is projected right-hand side.
The reconstructed fine-scale solution is u = R>u0.

2.4 Neural Operator

Here we consider one type of NO that employs Fourier modes, but there are no restrictions
on using other types of NOs. Fourier neural operators (FNOs) are a class of NOs motivated
by Fourier spectral methods. Originally, Li et al. (2020) formulate each operator layer as

L`
(
z(`)
)
= σ

[
W (`)z(`) + b(`) +K(`)

(
z(`)
)]
, (4)

where W (`)z(`) + b(`) is an affine point-wise map,

K(`)
(
z(`)
)
= IFFT

(
R(`) · FFT(z)

)
is a kernel integral operator. The Fourier domain weight matrices

{
R(`)

}L
`=1

require
O(LH2MD) parameters, where H is the hidden size, M is the number of the top Fourier
modes that are kept, and D is the dimension of the problem.
In Factorised FNO (F-FNO) Tran et al. (2021), the operator layer in (4) is changed

L`
(
z(`)
)
= z(`) + σ

[
W

(`)
2 σ

(
W

(`)
1 K(`)

(
z(`)
)
+ b

(`)
1

)
+ b

(`)
2

]
,

where K(`)
(
z(`)
)
=
∑

d∈D

[
IFFT

(
R(`)

d ·FFTd

(
z(`)
))]

. In this case, the number of parameters
is O(LH2MD). Therefore, the FFNO reduces model complexity and scales efficiently to
deeper networks.

2.5 Proposed method

2.5.1 GMsFEM-NO algorithm

We propose an efficient hybrid method for generating basis functions in the GMsFEM using
NOs, significantly accelerating the offline stage.
Local domains vary in shape and orientation (see Appendix A), where orientation refers
to the relative placement of the coarse node xi shared by all cells in the local domain. We
address this variability by categorizing the local domains based on their geometry: into
full, half, and corner types in 2D, and into full, half, quarter, and corner types in 3D (see
Appendix A). Before training, we normalize the orientation of each local domain by rotating
both the input data and the target basis functions, ensuring a standardized coarse node
xi position within each group. This preprocessing step guarantees consistency in the input
structure for the NO.
We train separate NOs, each specialized for one domain group (see Appendix B). Each NO
predicts Nbf basis functions for local domains within its assigned category. This group-specific
approach improves prediction accuracy by accounting for geometric variations across local
domain types.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For test data, we first decompose the computational domain into local domains. The
corresponding NO then generates the required basis functions. The predicted basis functions
are extended to the domain Ω (with zeros padded outside their respective local domains)
and vectorized to construct the restriction matrix R. Finally, the online stage of GMsFEM
is executed to compute the multiscale solution.
This approach substantially reduces offline computational costs while maintaining the
accuracy and flexibility of GMsFEM, making it particularly suitable for problems with
heterogeneous or highly varying coefficients.

2.5.2 Subspace-informed loss functions

The selection of an appropriate loss function is critical when training NOs. We propose a
Subspace Alignment Loss (SAL) that directly optimizes the geometric consistency of the
learned subspaces. Let Ri =

[
ψi
1, . . . , ψ

i
Nbf

]> represent the target subspace basis and R̃i

denote the predicted subspace. The SAL measures alignment between subspaces using their
orthonormalized bases QRi and QR̃i :

LSAL = Ei

[
Nbf −

∥∥Q>
RiQR̃i

∥∥2
F

]
, (5)

where the Frobenius norm term ‖Q>
RiQR̃i‖2F quantifies the subspace overlap, achieving

its maximum value Nbf when subspaces are perfectly aligned. Appendix C proves SAL’s
theoretical foundation and provides error bounds connecting subspace alignment to solution
accuracy.
While SAL ensures subspace coherence, it may overlook finer discrepancies in how functions
are projected onto the subspaces. To enforce consistency in projection behavior, we introduce
a Projection Regularization term. This term evaluates the discrepancy between projections
of a randomized test vector vi onto the target and predicted subspaces, governed by their
projection matrices PRi and PR̃i :

LSAL-PR = LSAL + λ · Ei,c

∥∥ (PRi − PR̃i

)
vi
∥∥2
2
, c ∼ N (0, I), (6)

where vi =
∑Nbf

k=1 ckψ
i
k, PRi = QRiQ>

Ri , PR̃i = QR̃iQ
>
R̃i

, and λ is a hyperparameter.

We compare proposed loss functions (5), (6) with conventional one which is L2 loss. Since
basis functions are defined only up to their sign (see Appendix ??), the conventional L2 loss
is adapted to account for this invariance, resulting in the Relative Basis Function L2 Loss
(RBFL2):

LRBFL2 = Ei,j

[
min

(
‖ψi

j − ψ̃i
j‖22

‖ψi
j‖22

,
‖ψi

j + ψ̃i
j‖22

‖ψi
j‖22

)]
, (7)

where ψi
j and ψ̃i

j denote the j-th target and predicted basis functions for the i-th local
domain ωi. The minimization over ±ψ̃i

j ensures invariance to sign permutations.

3 Results

We use datasets of 2D coefficients at resolutions of 1002 and 2502, and 3D coefficients at
503 and 1003 (see example in Appendix E). The domain is partitioned into Nv subdomains
corresponding to coarse grids (e.g., Nv = 36 for 5 × 5, 121 for 10 × 10, 216 for 5 × 5 × 5,
729 for 8 × 8 × 8). For all grid sizes except 100 × 100 × 100, we used 1000 samples (800
train, 200 test). For the 100× 100× 100 grid, we used 150 train and 50 test samples due to
computational constraints. The different local domain types occur with varying frequencies
within a single sample (see Appendix B). For training NOs, we utilize the first 8 basis
functions (Nbf) per subdomain as training targets.
To evaluate method robustness, we consider two right-hand side configurations:

• Uniform unit forcing term
f(x) = 1. (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• Spatially variable forcing (see Appendix E) defined by

f(x) ∼ γ · N
(
α ·
(
I −∆

)−β
)
. (9)

To measure quality of the obtained solutions on fine grid, we use the following metrics:

L2 = En


√√√√∫Ω ∣∣unh − ũnh

∣∣2dx∫
Ω

∣∣unh∣∣2dx
 , H1 = En


√√√√∫Ω ∣∣∇unh −∇ũnh

∣∣2dx∫
Ω

∣∣∇unh∣∣2dx
 .

All experiments were performed on a single Nvidia Tesla H100 80Gb HBM3. The comparison
of our approach with baseline methods is presented in Appendix F.

3.1 LRBFL2 vs. LSAL, LSAL-PR

To determine the optimal training configuration for the NOs predicting basis function
subspaces, we performed a grid search over architectural parameters and training hyperpa-
rameters. Full specifications (except loss function type) are in Appendix G. Loss function
results for Nbf = 8 are shown in Table 1. For Nbf = 4, results are in Appendix I.
As shown in Table 1, LRBFL2

underperforms compared to our proposed subspace alignment
losses (LSAL, LSAL-PR). For the Richards equation with simple right-hand side (8) and
Nbf = 8, our proposed loss improves the relative L2 metric by a factor of 1.8. Notably, the
projection regularization term in LSAL-PR yielded nearly identical results to LSAL. While
projection regularization had a minimal impact on smaller grids—likely because the subspace
alignment term alone suffices—its effect became significant for larger problems. For the 2502

grid using Richards’ equation with right-hand side (8), it reduced the L2 error from 1.82%
to 1.72% (see Table 3).

Table 1: Performance comparison of loss functions for NO training (100×100 grid, Nv = 36).

LRBFL2
LSAL LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8
Diffusion, 8 1.75% 14.83% 1.06% 11.57% 1.06% 11.65%

Diffusion, 9 3.53% 21.77% 2.82% 19.07% 2.81% 19.03%

Richards, 8 3.46% 15.04% 1.88% 11.10% 1.87% 11.25%

Richards, 9 3.77% 22.38% 2.99% 19.61% 2.99% 19.60%

3.2 GMsFEM vs. GMsFEM-NO

In this section, we compare the performance of the original GMsFEM and our proposed
GMsFEM-NO methods in terms of solution accuracy (quantified by L2 and H1 metrics)
and computational efficiency for basis functions generation. For large-scale 3D simulations
(100× 100× 100 grid), we employed the GMsFEM-NO method with the SAL loss. Although
the SAL-PR loss offers benefits for smaller problems (see Appendix D), its computational
cost becomes prohibitive at this scale, making the standard SAL loss the practical choice.
As shown in Tables 2, 3, 4 and 5, GMsFEM-NO achieves nearly identical L2 and H1 errors
to GMsFEM across all datasets and grid sizes. While GMsFEM-NO shows slightly better
results for some configurations, this is likely due to statistical variation. The same behaviour
is observed for the time-dependent equation and the diffusion equation with mixed boundary
conditions (see Appendix K and L); these experiments were conducted solely on the 250×250
grid.
Table 6 compares the time required to generate 8 basis functions using the GMsFEM offline
stage and GMsFEM-NO for different grid sizes and Nv values. GMsFEM-NO employs
several NOs, one for each local domain type. The proposed method achieves more than 60×

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of GMsFEM and GMsFEM-NO for 2D (100 × 100,
Nv = 36).

GMsFEM GMsFEM-NO
Nbf Dataset L2 H1 L2 H1

8
Diffusion, 8 1.15% 11.68% 1.06% 11.57%

Diffusion, 9 2.82% 19.07% 2.81% 19.03%

Richards, 8 2.03% 11.68% 1.87% 11.25%

Richards, 9 3.09% 20.20% 2.99% 19.60%

Table 3: Performance comparison of GMsFEM and GMsFEM-NO for 2D (250 × 250,
Nv = 121).

GMsFEM GMsFEM-NO, LSAL GMsFEM-NO, LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8
Diffusion, 8 1.12% 14.01% 1.13% 13.92% 1.05% 14.07%

Diffusion, 9 1.60% 21.49% 1.62% 22.50% 1.60% 22.03%

Richards, 8 1.79% 14.57% 1.82% 14.27% 1.72% 14.53%

Richards, 9 1.62% 21.76% 1.62% 22.62% 1.60% 22.13%

Table 4: Performance comparison of GMsFEM and GMsFEM-NO for 3D (50 × 50 × 50,
Nv = 216).

GMsFEM GMsFEM-NO, LSAL GMsFEM-NO, LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8
Diffusion, 8 3.07% 20.72% 3.10% 20.39% 3.10% 20.39%

Diffusion, 9 5.08% 25.26% 5.01% 24.92% 5.00% 24.86%

Richards, 8 4.04% 15.43% 4.12% 15.37% 4.14% 15.39%

Richards, 9 5.02% 24.89% 5.02% 24.92% 5.00% 24.89%

Table 5: Performance comparison of GMsFEM and GMsFEM-NO for 3D (100× 100× 100,
Nv = 729).

GMsFEM GMsFEM-NO, LSAL

Nbf Dataset L2 H1 L2 H1

8
Diffusion, 8 1.62% 14.76% 1.68% 14.98%

Diffusion, 9 3.0% 12.55% 3.04% 12.84%

Richards, 8 2.54% 17.83% 2.57% 17.91%

Richards, 9 2.55% 17.85% 2.57% 17.91%

speedup, demonstrating its computational superiority. Basis calculation speedup grows with
grid size and dimensionality.
While GMsFEM-NO reduces the cost of the traditional GMsFEM offline stage over many
subsequent simulations, it does not eliminate cost of train data generation and training. The
breakeven point, defined as the number of inference samples required to offset these initial
costs, is derived in the Appendix M.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Basis generation time: GMsFEM-NO vs. standard GMsFEM offline stage.

Grid Nv GMsFEM, sec. GMsFEM-NO, sec.
100× 100 36 16.87 0.28
250× 250 121 210.5 0.31

50× 50× 50 216 935.4 0.84
100× 100× 100 729 10547.2 1.33

3.3 Standalone NOs vs. GMsFEM-NO

In this section, we compare GMsFEM-NO against standalone SOTA NOs, including F-FNO,
GNOT Hao et al. (2023) and Transolver++ Luo et al. (2025). While these standalone models
offer fast inference, their accuracy deteriorates significantly on high-contrast datasets. As
shown in Table 7 (250×250 grid), GMsFEM-NO achieves superior accuracy; for Richards’
equation with a complex source term (9), it reduces the relative L2 error by 2.8× compared
to the best standalone NO. Full training details are in Appendix H.
A critical advantage of GMsFEM-NO over the standalone NO lies in its independence from
the right-hand side terms of the PDE. The standalone NO exhibits catastrophic failure when
tested on out-of-distribution forcing terms, as evidenced in Table 13 in Appendix J.
Since each coefficient contains multiple local domains of each type, GMsFEM-NO requires
fewer samples than F-FNO for training. As shown in Table 8, when Ntrain is reduced
below 800, the error for F-FNO begins to increase significantly. In contrast, GMsFEM-NO’s
accuracy remains stable across the range of 800 to 400 samples. Even with only 200 samples,
the performance degradation for GMsFEM-NO remains small; for example, on Richards’
equation with the simple right-hand side (8), the error increases only modestly from 1.85%
to 2.07%.

Table 7: Performance comparison of NOs and GMsFEM-NO (250× 250 grid)

Nbf Dataset F-FNO GNOT Transolver++ GMsFEM-NO

8
Diffusion, 8 1.02% 1.26% 1.15% 1.05%

Diffusion, 9 4.51% 14.29% 6.63% 1.60%

Richards, 8 2.44% 2.34% 2.17% 1.72%

Richards, 9 4.45% 14.69% 8.82% 1.60%

Table 8: Comparison of F-FNO and GMsFEM-NO performance across different training
dataset sizes for 250× 250.

Dtrain Diffusion, 8 Diffusion, 9 Richards, 8 Richards, 9

200
GMsFEM-NO 1.33% 1.77% 2.07% 1.77%

F-FNO 2.85% 11.56% 6.52% 11.49%

400
GMsFEM-NO 1.15% 1.63% 1.85% 1.62%

F-FNO 1.60% 8.16% 4.17% 8.41%

600
GMsFEM-NO 1.12% 1.61% 1.78% 1.61%

F-FNO 1.21% 4.92% 3.27% 5.43%

800
GMsFEM-NO 1.13% 1.62% 1.82% 1.62%

F-FNO 1.02% 4.51% 2.44% 4.45%

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

3.4 GMsFEM-NO for different grids

Table 9 demonstrates the resolution invariance of GMsFEM-NO by training the model on
a coarse grid and testing it on a finer grid (500× 500), with results compared against the
standard GMsFEM solution computed directly on the fine grid. We used a 10× 10 coarse
grid (121 subdomains) for all experiments. The results demonstrate the stability of the
proposed method. GMsFEM-NO performs effectively when evaluated on a grid resolution
higher than its training resolution, a key advantage enabled by the neural operator’s ability
to generalize to different discretizations.

Table 9: Evaluation of GMsFEM-NO trained on coarse grid and tested on finer grid, with
comparison to standard GMsFEM.

Diffusion, 8 Diffusion, 9 Richards, 8 Richards, 9
Train grid Test grid GMsFEM-NO

100 500 2.42% 2.97% 4.70% 3.49%

250 500 1.45% 1.79% 2.25% 1.97%

GMsFEM
500 1.17% 1.46% 1.93% 1.66%

4 Conclusion

In this work, we propose GMsFEM-NO, a novel method for solving multiscale PDEs that
employs NOs to predict the multiscale basis function subspaces in the GMsFEM offline stage,
replacing the conventional solution of local eigenvalue problems. We validated the method
on standard 2D and 3D benchmarks: a linear elliptic diffusion problem and the nonlinear
steady-state Richards equation. Additionally, we demonstrated its efficacy for time-dependent
equations and problems with mixed boundary conditions in 2D. GMsFEM-NO achieves more
than 60× speedup in basis generation compared to standard GMsFEM.
A key contribution is a novel subspace alignment loss function, which enables direct learning
of the basis function subspace and improves the L2 accuracy over conventional LRBFL2

loss. The GMsFEM-NO framework remains independent of the PDE’s right-hand side,
allowing it to maintain consistent performance across varying forcing terms. This contrasts
with standalone NOs, which exhibit errors exceeding 100% on out-of-distribution data.
Furthermore, GMsFEM-NO demonstrates greater data efficiency, requiring half the training
samples of a comparable NO. A significant advantage is the method’s discretization invariance:
GMsFEM-NO performs effectively when evaluated on grid resolutions higher than those
used for training, demonstrating strong generalization across different computational meshes.
By preserving the mathematical structure of multiscale methods while leveraging NO speed,
this work establishes a practical paradigm for heterogeneous PDE simulation.
The primary limitation of our method is its current restriction to structured grids due to
the chosen NO architecture. Additionally, our experiments focused on relatively small grid
sizes, which may not fully represent large-scale applications. While we successfully tested
our approach on time-dependent equations and problems with mixed boundary conditions
in 2D, the study was primarily focused on steady-state problems with Dirichlet boundary
conditions.
Future work will expand this framework in several key directions. First, we will target more
complex PDEs. Second, extending the framework to irregular domains is a critical next
step. This is well-supported theoretically, as the GMsFEM methodology is established for
unstructured meshes, and can be integrated with geometry-aware NOs like Transolver++.
Alongside these goals, we will also investigate performance on finer grid resolutions and the
impact of coarse-grid sizing to fully realize the method’s potential for large-scale, real-world
simulations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References
Jørg E Aarnes and Yalchin Efendiev. Mixed multiscale finite element methods for stochastic

porous media flows. SIAM Journal on Scientific Computing, 30(5):2319–2339, 2008.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi,
and Anima Anandkumar. Neural operators for accelerating scientific simulations and
design. Nature Reviews Physics, 6(5):320–328, 2024.

Ivo Babuska and Robert Lipton. Optimal local approximation spaces for generalized
finite element methods with application to multiscale problems. Multiscale Modeling &
Simulation, 9(1):373–406, 2011.

Ivo Babuška, Victor Nistor, and Nicolae Tarfulea. Generalized finite element method for
second-order elliptic operators with dirichlet boundary conditions. Journal of Computa-
tional and Applied Mathematics, 218(1):175–183, 2008.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are
competitive for operator learning. Journal of Computational Physics, 496:112549, 2024.

Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A grassmann manifold handbook:
Basic geometry and computational aspects. Advances in Computational Mathematics, 50
(1):6, 2024.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model
reduction and neural networks for parametric pdes. The SMAI journal of computational
mathematics, 7:121–157, 2021.

Kaushik Bhattacharya, Nikola B Kovachki, Aakila Rajan, Andrew M Stuart, and Margaret
Trautner. Learning homogenization for elliptic operators. SIAM Journal on Numerical
Analysis, 62(4):1844–1873, 2024.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization
algorithms. Advances in neural information processing systems, 36:49205–49233, 2023.

Eric T Chung, Yalchin Efendiev, Guanglian Li, and Maria Vasilyeva. Generalized multiscale
finite element methods for problems in perforated heterogeneous domains. Applicable
Analysis, 95(10):2254–2279, 2016.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu,
Claudio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo
Hessel, Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King,
Markus Kunesch, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman,
George Papamakarios, John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent
Sartran, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš
Stanojević, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The
DeepMind JAX Ecosystem, 2020. URL http://github.com/google-deepmind.

Yalchin Efendiev and Thomas Y Hou. Multiscale finite element methods: theory and
applications, volume 4. Springer Science & Business Media, 2009.

Yalchin Efendiev, Juan Galvis, and Xiao-Hui Wu. Multiscale finite element methods for
high-contrast problems using local spectral basis functions. Journal of Computational
Physics, 230(4):937–955, 2011.

Yalchin Efendiev, Juan Galvis, and Thomas Y Hou. Generalized multiscale finite element
methods (gmsfem). Journal of computational physics, 251:116–135, 2013.

Vladimir Sergeevich Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady
Mathematics, volume 108, pp. S226–S232. Springer, 2023.

11

http://github.com/google-deepmind

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matthew W Farthing and Fred L Ogden. Numerical solution of richards’ equation: A review
of advances and challenges. Soil Science Society of America Journal, 81(6):1257–1269,
2017.

Nicola Rares Franco, Andrea Manzoni, Paolo Zunino, and Jan S Hesthaven. Deep orthogonal
decomposition: a continuously adaptive neural network approach to model order reduction
of parametrized partial differential equations.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for
operator learning. In International Conference on Machine Learning, pp. 12556–12569.
PMLR, 2023.

Roland Haverkamp, Michel Vauclin, Jaoudat Touma, PJ Wierenga, and Georges Vachaud.
A comparison of numerical simulation models for one-dimensional infiltration. Soil Science
Society of America Journal, 41(2):285–294, 1977.

Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of nonlinear
problems using neural networks. Journal of Computational Physics, 363:55–78, 2018.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees
and filtered transformations. Differentiable Programming workshop at Neural Information
Processing Systems 2021, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between
function spaces with applications to pdes. Journal of Machine Learning Research, 24(89):
1–97, 2023.

Fabian Kröpfl, Roland Maier, and Daniel Peterseim. Operator compression with deep neural
networks. Advances in Continuous and Discrete Models, 2022(1):29, 2022.

Fabian Kröpfl, Daniel Peterseim, and Elisabeth Ullmann. Neural network localized orthogonal
decomposition for numerical homogenization of diffusion operators with random coefficients.
arXiv preprint arXiv:2509.12896, 2025.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. arXiv preprint arXiv:2010.08895, 2020.

Burigede Liu, Eric Ocegueda, Margaret Trautner, Andrew M Stuart, and Kaushik Bhat-
tacharya. Learning macroscopic internal variables and history dependence from microscopic
models. Journal of the Mechanics and Physics of Solids, 178:105329, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators
for identifying differential equations based on the universal approximation theorem of
operators. arXiv preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via deeponet based on the universal approximation theorem
of operators. Nature machine intelligence, 3(3):218–229, 2021.

Huakun Luo, Haixu Wu, Hang Zhou, Lanxiang Xing, Yichen Di, Jianmin Wang, and
Mingsheng Long. Transolver++: An accurate neural solver for pdes on million-scale
geometries. arXiv preprint arXiv:2502.02414, 2025.

André LG Mandolesi. Asymmetric geometry of total grassmannians. arXiv preprint
arXiv:2310.17865, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning custom-made basis functions
for partial differential equations. arXiv preprint arXiv:2111.05307, 2021.

Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning-based spectral methods for
partial differential equations. Scientific Reports, 13(1):1739, 2023.

Lorenzo Adolph Richards. Capillary conduction of liquids through porous mediums. physics,
1(5):318–333, 1931.

Denis Spiridonov, Sergei Stepanov, and Tina Mai. Prediction of discretization of online
gmsfem using deep learning for richards equation. Journal of Computational and Applied
Mathematics, 454:116167, 2025.

Theofanis Strouboulis, Ivo Babuška, and Kevin Copps. The design and analysis of the
generalized finite element method. Computer methods in applied mechanics and engineering,
181(1-3):43–69, 2000.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier
neural operators. arXiv preprint arXiv:2111.13802, 2021.

Maria Vasilyeva, Wing T Leung, Eric T Chung, Yalchin Efendiev, and Mary Wheeler.
Learning macroscopic parameters in nonlinear multiscale simulations using nonlocal
multicontinua upscaling techniques. Journal of Computational Physics, 412:109323, 2020.

Maria Vasilyeva, Aleksei Tyrylgin, Donald L Brown, and Anirban Mondal. Preconditioning
markov chain monte carlo method for geomechanical subsidence using multiscale method
and machine learning technique. Journal of Computational and Applied Mathematics,
392:113420, 2021.

Stefan Volkwein. Proper orthogonal decomposition: Theory and reduced-order modelling.
Lecture Notes, University of Konstanz, 4(4):1–29, 2013.

Min Wang, Siu Wun Cheung, Wing Tat Leung, Eric T Chung, Yalchin Efendiev, and Mary
Wheeler. Reduced-order deep learning for flow dynamics. the interplay between deep
learning and model reduction. Journal of Computational Physics, 401:108939, 2020.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
partial differential equations with physics-informed deeponets. Science advances, 7(40):
eabi8605, 2021.

Eugene Wong. Stochastic processes in information and dynamical systems. (No Title), 1971.

A Coarse grid

The notation ωi refers to the i-th local domain, where the index corresponds to the numbering
of points on the coarse grid. Fig. 2 shows examples of local domains ω0, ω20, and ω34,
representing the full, half, and corner types in 2D. In 3D, there are four types: full (8 cells),
half (4 cells), quarter (2 cells), and corner (1 cell), where the cell is a cube. Each local
domain is discretized with a fine grid.

B Training GMsFEM-NO

We train separate specialized NOs for each geometric domain type: three for 2D problems
(full, half, corner) and four for 3D problems (full, half, quarter, corner), as illustrated for the
2D case in Fig. 3 (a-c). Each NO predicts the Nbf basis functions for all local domains of its
assigned type.
The number of local domains for each geometric type can be calculated based on the coarse
grid dimensions. For a 2D grid with 36 domains (5× 5 cells), the counts are: 16 full, 16 half,
and 4 corner domains. For a finer 2D grid with 121 domains (10× 10 cells), the counts are:
81 full, 36 half, and 4 corner domains. In 3D, for a grid with 216 domains (5× 5× 5 cells),

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

T H (Coarse Grid)

ω0

ω20

ω34

Figure 2: Illustration of a 5× 5 coarse grid TH showing local domains of different types: the
corner type ω0 (1 cell), half type ω34 (2 cells), and full type ω20 (4 cells), where the cell is a
square.

the distribution is: 64 full, 96 half, 48 quarter, and 8 corner domains. In 3D, for a finer grid
with 729 domains (8× 8× 8 cells), the distribution is: 343 full, 294 half, 84 quarter, and 8
corner domains.

Input dataset, κωi

NO1

NO2

NO3

(a)

(b)

(c)

Multiscale basis functions, ψωi
j

Figure 3: Multiscale basis generation algorithm for three subdomain types ωi: (a) full, (b)
half, (c) corner - using dedicated NOs per type with further extension to Ω.

C Subspace Alignment Loss (SAL)

To understand the relationship between the proposed LSAL (5) and classical Grassmannian
geometry Bendokat et al. (2024); Mandolesi (2023), we begin with the orthogonal projection
matrices. For a subspace R spanned by a set of basis vectors, we compute an orthonormal
basis QR via the thin QR decomposition. The orthogonal projection matrix onto R is then
given by PR = QRQ

>
R.

The Grassmannian distance between two k-dimensional subspaces R and R̃ is defined using
these projection matrices. The distance derivation proceeds as follows:∥∥PR − PR̃

∥∥2
F
= tr

(
PR

)
− 2tr

(
PRPR̃

)
+ tr

(
PR̃

)
= dim(R) + dim(R̃)− 2tr

(
PRPR̃

)
= 2
(
k − tr

(
QRQ

>
RQR̃Q

>
R̃

))
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The matrix Q>
RQR̃ contains the cosines of the principal angles between the subspaces.

Therefore,

∥∥PR − PR̃

∥∥2
F
= 2
(
k −

∥∥Q>
RQR̃

∥∥2
F

)
.

Consequently, the Grassmannian distance simplifies to:

d(R, R̃) =
1√
2

∥∥PR − PR̃

∥∥
F
=

√
k −

∥∥Q>
RQR̃

∥∥2
F
.

This derivation confirms that minimizing LSAL is equivalent to minimizing the expected
Grassmannian distance between the true and predicted subspaces.
In considering the theoretical soundness of our approach, we note that a formal upper bound
linking principal angles to the final error would further strengthen the framework. When the
SAL loss is small, it ensures that the learned solution remains close to the exact solution.
To formalize this, let QRc represent the multiscale solution computed using GMsFEM and
QR̃c denote the learned solution. The error can then be bounded as follows:

‖u−QR̃c‖
2 ≤ ‖u−QRc‖2 + ‖QRc−QR̃c‖

2 =

‖u−QRc‖2 + c>(QR −QR̃)
>(QR −QR̃)c =

‖u−QRc‖2 + 2c>(I − (QR)
>QR̃)c.

(10)

The first term is GMsFEM error (which is small), and the second term is small if I−(QR)
TQR̃

is small. The norm above can play an important role in the proof. Since the GMsFEM error
is done in energy norm, in general, one needs to take the energy norm, which is non-local
and can slow down computations.
This error estimate gives a bound between the learned solution and the angle between the
spaces. To estimate the angle via the solution error is more difficult. Indeed, these questions
need to be addressed in the future and will help to choose the appropriate loss functions.

D LSAL-PR

The primary role of LSAL (5) is to enforce geometric alignment between the learned subspace
R̃i and the target GMsFEM subspace Ri. However, this loss has a specific limitation: it is
invariant to rotations within the subspace. If QR̃i = QRiU for any unitary matrix U (s.t.
U>U = I), the subspaces are considered identical under this metric, as:

Nbf −
∥∥Q>

RiQR̃i

∥∥2
F
= Nbf −

∥∥U∥∥2
F
= 0

This geometric alignment may overlook finer discrepancies in how specific functions are
projected. The LSAL-PR (6) term was introduced to address this theoretical gap by directly
enforcing projection consistency. It tests the subspaces with random vectors vi drawn from
the target subspace Ri. Since vi lies in Ri, its projection via the true basis is itself: PRivi = vi.
The discrepancy

(
I − PR̃i

)
vi thus represents the projection error. Minimizing this forces

the learned subspace to correctly capture arbitrary vectors from the target subspace, going
beyond mere geometric overlap.

E Input data

We use the Karhunen-Loève expansion (KLE) Wong (1971); Aarnes & Efendiev (2008);
Vasilyeva et al. (2021) to generate stochastic permeability fields. This method decomposes a
random field into deterministic spatial functions and random coefficients.
1. Covariance Function. We assume the covariance function has an exponential form:

R(x, y) = σ2
R exp(−∆2),

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

with
∆2 =

|x1 − x2|2

l2x
+

|y1 − y2|2

l2y
,

for 2D case and
∆2 =

|x1 − x2|2

l2x
+

|y1 − y2|2

l2y
+

|z1 − z2|2

l2z
,

for 3D case with correlation lengths lx, ly, lz and variance σ2
R:

• For the 2D case: lx = 0.02, ly = 0.6, σ2
R = 2;

• For the 3D case: lx = 0.02, ly = 0.6, lz = 0.2, σ2
R = 2.

2. Eigenvalue Problem. The eigenfunctions φk and eigenvalues λk are obtained by solving
the homogeneous Fredholm integral equation:∫

Ω

R(x, y)φk(y)dy = λkφk(x), k = 1, 2, . . . ,

3. Random Field Construction. The random field is represented as:

YL(x, ω) =
L∑

k=1

√
λkθk(ω)φk(x),

where θk(ω) are scalar random variables, and L is chosen to capture most of the field’s energy
by retaining the largest eigenvalues.
4. Permeability Field Generation. Each stochastic permeability field is defined as:

κ(x, ω) = exp(ak · φ(x, ω)),

where φ(x, ω) represents the heterogeneous porosity field derived from YL(x, ω), and ak > 0
is a scaling parameter that controls the contrast.
This KLE framework provides a systematic approach for generating realistic permeability
fields with prescribed spatial correlation structures. An example of a 2D input coefficient
field κ(x) is shown in Fig. 4a.
The spatially variable forcing term is defined by

f(x) ∼ γ · N
(
α ·
(
I −∆

)−β
)
,

where N denotes a Gaussian random field. The parameters are set as follows:

• For the 2D case: γ = 2000, α = 1, and β = 0.5;
• For the 3D case: γ = 2000, α = 2, and β = 1.

An example of a 2D right-hand side f(x) is shown in Fig. 4b.

F Baselines vs. GMsFEM-NO

We compare GMsFEM-NO with several baselines:

1. POD Volkwein (2013). Classical global intrusive POD.
2. Intrusive POD with DeepONet/FFNO or POD basis Meuris et al. (2021), Meuris

et al. (2023). First selected neural network is trained on standard regression problem.
After that one extract basis from trained network and uses similar to intrusive POD
to form reduced model. For FFNO Tran et al. (2021) basis is extracted from the
last hidden layer, for DeepONet Lu et al. (2019) basis is extracted from trunk net.

3. PCA-Net Hesthaven & Ubbiali (2018), Bhattacharya et al. (2021). POD is used to
compress features and targets, MLP is used as processor.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Input coefficient, κ(x) with values in range
[1, 9600] (b) Right-hand side, f(x)

Figure 4: Example of input coefficient and right-hand side.

4. Kernel Batlle et al. (2024). Vector RKHS method is used to map sampled input
functions to sampled output functions.

5. DeepPOD Franco et al.. A DL-based techniques used to directly learn optimal basis
with projector-based loss.

We use dataset with spatially variable forcing term (9) covered in more details in Appendix E.
Neural networks was trained and evaluated on grid 100× 100.
For each selected baseline we perform sweep over hyperparameters:

1. Intrusive POD with FFNO basis. Architecture is defined by the number of features
in the hidden layer, number of modes used by spectral convolution, and number
of layers. Number of features in the hidden layer was fixed to 64, number of
modes was selected from the set [10, 14, 16], number of layers – from the set [3, 4, 5].
Optimisation was performed with Lion optimiser Chen et al. (2023) with exponential
decay 0.5 with number of transition steps selected from [100, 200], and learning rate
selected from [5 · 10−5, 10−4]. We optimise for 1000 epoch with batch size 10. In all
architectures we used GELU activation function.

2. Intrusive POD with DeepONet basis. Architecture is defined by trunk and branch
nets. As trunk net we used convolution architecture with spatial downsampling
by a factor of 2 along each dimension after each layer, simultaneously, the number
of channels was multiplied by 2 after each layer, as branch net we used standard
MLP. We apply optimisation similar to the one of FFNO, but select learning rate
from [10−3, 10−4]. Number of trunk network layers was fixed to 4, trunk encoder
transformed 2 input features to either 4 or 5 features, kernel size of convolution in
trunk was selected among [3, 7]. In the branch net we vary number of layers [3, 4]
and the number of basis vectors [100, 200] in the last layer.

3. DeepPOD Grid search for DeepPOD was exactly the same as for Intrusive POD
with FFNO.

4. PCANet. For PCANet the optimisation was similar to Intrusive POD with DeepONet,
but with 3000 epochs. We vary the sizes of POD encoder and decoder among
[100, 300, 500] and [100, 300, 500]. For MLP processor we vary the number of layers
[3, 4, 5] and the number of hidden neurons [100, 300, 500].

5. Kernel. We closely followed code provided by authors. As kernels we used Matern,
RBF. We combined the method with POD and performed a grid search over the
number of modes: [50, 100, 150, 200] for both features and targets.

Comparison of regression-based approaches with GMsFEM-NO appears in Table 10. We
observe significant overfitting for kernel-based method and PCA-Net.
Intrusive techniques are compared in Figure 5. We see that bases extracted from DeepONet
and FFNO are generally not appealing. FFNO slightly improves over global POD (weak

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Regression-based methods.

method train error test error
GMsFEM-NO 2.6% 2.8%
PCANet 6% 24%
kernel 7% 100%

baseline) for ' 64 basis functions. DeepONet fails to reach accuracy of global POD. The
most competative approach is DeepPOD. Note however, that DeepPOD becomes comparable
to GMsFEM-NO with 8 sparse (localised) basis functions only when it uses 20 dense basis
functions. With 30 basis functions DeepPOD outperforms GMsFEM-NO with 8 basis
functions.

10 50 100 150 200
Nbasis

2.2
2.8

6.5
9

23

81

re
la

tiv
e

er
ro

r,
%

POD
DeepONet
FFNO
DeepPOD
GMsFEM(8)

Figure 5: Comparison of accuracy for intrusive techniques. Number of basis functions for
GMsFEM is fexed to 8. DeepONet and FFNO mean Intrusive POD with DeepONet/FFNO
basis.

G GMsFEM-NO Training Details

For F-FNO training to predict basis functions subspace, we used AdamW optimizer Loshchilov
& Hutter (2017) with cosine decay learning rate scheduler. The initial learning rate was
1 · 10−3. We trained NO for 600 epochs. The best number of random test vectors vi is 10
(see the Table 11). For the rest of the hyperparameters, we performed a grid search:

1. Batch size [8, 16, 32] .

2. Number of operator layers [4, 5] .

3. Number of modes used in F-FNO kernel:
• For 2D:

– for full domains
[
[16, 16], [18, 18]

]
;

– for half domains
[
[8, 8], [10, 10], [14, 8], [14, 10]

]
;

– for corner domains
[
[6, 6], [8, 8], [10, 10]

]
.

• For 3D:
– for full domains

[
[6, 6, 6], [8, 8, 8]

]
;

– for half domains
[
[8, 8, 4], [6, 6, 3]

]
;

– for quarter domains
[
[8, 4, 4], [6, 3, 3]

]
.

– for corner domains
[
[4, 4, 4], [3, 3, 3]

]
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Performance GMsFEM-NO for 2D (100× 100, Nv = 36).

GMsFEM-NO, LSAL-PR

vi = 5 vi = 10 vi = 15 vi = 20

Dataset L2 H1 L2 H1 L2 H1 L2 H1

Diffusion, 8 1.09% 11.90% 1.06% 11.65% 1.31% 12.34% 1.10% 12.13%

Diffusion, 9 2.84% 19.14% 2.81% 19.03% 2.88% 19.38% 2.87% 19.37%

Richards, 8 1.91% 11.21% 1.87% 11.25% 1.98% 11.75% 1.94% 11.64%

Richards, 9 2.91% 20.06% 2.99% 19.60% 2.96% 20.33% 2.94% 20.26%

4. Number of channels in the FFNO kernel [64, 128] .

The source code containing the optimal parameters will be made publicly available upon
acceptance. We use JAX, Optax DeepMind et al. (2020) and Equinox Kidger & Garcia
(2021) in all experiments.

H F-FNO, GNOT, Transolver++ Training Details

H.1 F-FNO Training Details

For F-FNO Tran et al. (2021), we used the following training protocol. We employed the
AdamW optimizer Loshchilov & Hutter (2017) with a cosine decay learning rate scheduler
and trained for 600 epochs, using a base learning rate of 10−3. We performed a grid search
over the following hyperparameters:

1. Batch size: [8, 16, 32] ;

2. Number of modes in F-FNO kernel: [14, 16] ;

3. Number of operator layers: [4, 5] ;

4. Number of channels in F-FNO kernel: [64, 128] .

The optimal hyperparameters were: batch size 8, 5 operator layers, 16 modes, and 128
channels.

H.2 GNOT Training Details

For GNOT Hao et al. (2023), we employed the following training protocol: AdamW optimizer
with a onecycle learning rate scheduler for 600 epochs, using a base learning rate of 10−3.
We conducted a grid search over hyperparameters that were previously found optimal for
different 2D problems in Hao et al. (2023):

1. Batch size: [4, 8]

2. Number of attention layers: [3, 4]

3. Hidden size of attention and input embeddings: [96, 128, 192]

4. Number of MLP layers: [3, 4]

5. Hidden size of MLP: [128, 192]
6. Number of heads: [4, 8]

7. Number of experts: [3, 4]

The optimal configuration was: batch size 4, 4 attention layers, hidden size of 128 for
attention, MLP, and input embeddings, 8 heads, 4 experts, and 4 MLP layers.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H.3 Transolver++ Training Details

For Transolver++ Luo et al. (2025), we employed the following training protocol: AdamW
optimizer with a onecycle learning rate scheduler for 600 epochs, using a base learning rate
of 10−3. We conducted a grid search over hyperparameters previously identified as optimal
for 2D problems in Luo et al. (2025):

1. Batch size: [4, 8]

2. Number of layers: [4, 8]

3. Hidden size: [128, 256]

4. Number of MLP layers: [1, 2]

5. Number of heads: [4, 8]

6. Slices: [32, 64]

The optimal configuration was: batch size 4, 8 layers, hidden size 256, 2 MLP layers, 8 heads,
and 64 slices.

I Results of GMsFEM-NO for Nbf = 4

Table 12: Performance comparison of loss functions for NO training (100×100 grid, Nv = 36).

LRBFL2
LSAL LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

4
Diffusion, 8 2.72% 19.10% 2.39% 18.01% 2.40% 18.01%

Diffusion, 9 6.03% 29.10% 5.76% 28.40% 5.78% 28.43%

Richards, 8 3.87% 16.26% 3.14% 15.01% 3.17% 15.02%

Richards, 9 9.78% 34.39% 6.11% 29.37% 6.13% 29.42%

For the Richards equation with complex right-hand side (9) and Nbf = 4 basis functions, our
proposed loss improves the relative L2 metric by a factor of 1.6.
We did not conduct further experiments with GMsFEM-NO using Nbf = 4 because its
performance was insufficient and it underperformed compared to the standalone neural
operator.

J Out-of-distribution results

Unlike standalone NOs, which suffer from catastrophic failure when applied to out-of-
distribution forcing terms (Table 13), GMsFEM-NO is fundamentally independent of the
right-hand side, ensuring robust performance. Retraining the NO for new right-hand side
terms requires computationally expensive recalculation of solutions, highlighting a key
limitation of standalone NO learning.

Table 13: Out-of-distribution results for the NO: training and testing on PDEs with different
right-hand sides.

Train, Dtrain Test, Dtest 100× 100 250× 250

Diffusion, 8 Diffusion, 9 218% 174%
Diffusion, 9 Diffusion, 8 1392% 1632%
Richards, 8 Richards, 9 196% 113%
Richards, 9 Richards, 8 6503% 6554%

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

K Heat equation for 2D

We consider the heat equation with heterogeneous coefficient
∂u

∂t
−∇ ·

(
κ(x)∇u(x)

)
= f(x), x ∈ Ω×

(
0, Tmax

]
,

u = 0, x ∈ ∂Ω×
(
0, Tmax

]
,

u
∣∣
t=0

= 0, x ∈ Ω,

where time parameters: ∆t = 2.5 · 10−6, Tmax = 5 · 10−4. We consider two right-hand side
configurations:

• Uniform unit forcing term
f(x) = 1; (11)

• Spatially variable forcing defined by
f(x) = sin(πx) cos(πy). (12)

Table 14: Performance comparison of GMsFEM and GMsFEM-NO for Heat equation for
2D (250× 250, Nv = 121).

GMsFEM GMsFEM-NO, LSAL

Nbf Dataset L2 H1 L2 H1

8 Heat, 11 0.72% 10.81% 0.78% 13.06%

Heat, 12 1.13% 19.92% 1.17% 21.57%

The results, presented in the Table 14, show that our proposed GMsFEM-NO method with
LSAL maintains high accuracy for this time-dependent problem, with relative L2 errors below
1.2%. This demonstrates the successful application of our framework to time-dependent
problems.

L Diffusion equation with Mixed Boundary Conditions

We consider the diffusion equation with heterogeneous coefficient
−∇ ·

(
κ(x)∇u(x)

)
= f(x), x ∈ Ω ≡ (0, 1)2,

u = 0, x ∈ ΓD,

κ(x)
∂u

∂n
= α ·

(
u− uconst

)
, x ∈ ΓR,

where the boundary is partitioned into a Dirichlet part ΓD =
{
x ∈ ∂Ω

∣∣ y = 0
}

and a Robin
part ΓR =

{
x ∈ ∂Ω

∣∣ y = 1
}

with parameters: Robin coefficient α = 1, uconst = 1.

Table 15: Performance comparison of GMsFEM and GMsFEM-NO for equation with mixed
boundary conditions for 2D (250× 250, Nv = 121).

GMsFEM GMsFEM-NO, LSAL

Nbf Dataset L2 H1 L2 H1

8 Diffusion, 8 1.11% 7.98% 1.22% 12.10%

Diffusion, 9 1.09% 7.72% 1.23% 12.31%

Our framework demonstrates robust performance when extended to problems with mixed
boundary conditions, maintaining high accuracy even in these more complex scenarios. As
shown in Table 15, the GMsFEM-NO method with LSAL achieves relative L2 errors of
approximately 1.2% for diffusion problems with Robin boundary conditions. This represents
a significant extension beyond the homogeneous Dirichlet conditions typically considered in
multiscale methods

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

M Time

The core objective of GMsFEM-NO is to reduce the cost of the traditional GMsFEM offline
stage over many subsequent simulations. To provide full transparency, we have performed a
detailed analysis that compares two practical scenarios: training models sequentially (one
after another on one GPU) and in parallel. The breakeven point x is the number of inference
samples where the total time of GMsFEM-NO (including training data generation and
training) equals that of using standard GMsFEM for all samples:

Tdata + Ttrain + Tinf · x = TGMsFEM · x,

where Tdata is the wall-clock time for generating training data via traditional GMsFEM,
Ttrain is the total wall-clock time for training NO (which varies by scenario), TGMsFEM is the
wall-clock time for a single offline GMsFEM basis generation, and Tinf is the wall-clock time
for a single GMsFEM-NO inference. The results are in the Table 16.
Even with sequential training, the method pays off for multi-query scenarios. The benefit
is larger for large-scale 3D problems, where the breakeven point remains low (159 samples)
due to the high cost of the traditional GMsFEM solver.

Table 16: Performance comparison of sequential and parallel implementations

Problem Performance Metrics
Configuration TGMsFEM Tinf Samples Implementation Ttrain x

100× 100 16.87 0.28 800 Sequential 37800 −3270

16.87 0.28 800 Parallel 12600 −1570

250× 250 210.5 0.31 800 Sequential 43200 −1040

210.5 0.31 800 Parallel 14400 −870

50× 50× 50 935.4 0.84 800 Sequential 86400 −1090

935.4 0.84 800 Parallel 21600 −820

100× 100× 100 10547.2 1.33 150 Sequential 100800 −159

10547.2 1.33 150 Parallel 25200 −152

22

	Introduction
	Locally Subspace-Informed Neural Operators
	Diffusion equation
	Steady-State Richards’ equation
	Generalized Multiscale Finite Element Method
	Multiscale space approximation
	Spectral problem
	Solving of the coarse-scale system

	Neural Operator
	Proposed method
	GMsFEM-NO algorithm
	Subspace-informed loss functions

	Results
	LRBFL2 vs. LSAL, LSAL-PR
	GMsFEM vs. GMsFEM-NO
	Standalone NOs vs. GMsFEM-NO
	GMsFEM-NO for different grids

	Conclusion
	Coarse grid
	Training GMsFEM-NO
	Subspace Alignment Loss (SAL)
	LSAL-PR
	Input data
	Baselines vs. GMsFEM-NO
	GMsFEM-NO Training Details
	F-FNO, GNOT, Transolver++ Training Details
	F-FNO Training Details
	GNOT Training Details
	Transolver++ Training Details

	Results of GMsFEM-NO for Nbf=4
	Out-of-distribution results
	Heat equation for 2D
	Diffusion equation with Mixed Boundary Conditions
	Time

