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Abstract

We propose GMSFEM-NO, a novel hybrid framework that combines the
robustness of the Generalized Multiscale Finite Element Method (GMsFEM)
with the computational speed of neural operators (NOs) to create an efficient
method for solving heterogeneous partial differential equations (PDEs).
GMsFEM builds localized spectral basis functions on coarse grids, allowing
it to capture important multiscale features and solve PDEs accurately with
less computational effort. However, computing these basis functions is costly.
While NOs offer a fast alternative by learning the solution operator directly
from data, they can lack robustness. Our approach trains a NO to instantly
predict the GMsFEM basis by using a novel subspace-informed loss that
learns the entire relevant subspace, not just individual functions. This
strategy significantly accelerates the costly offline stage of GMsFEM while
retaining its foundation in rigorous numerical analysis, resulting in a solution
that is both fast and reliable. On standard multiscale benchmarks—including
a linear elliptic diffusion problem and the nonlinear, steady-state Richards
equation—our GMsFEM-NO method achieves a reduction in solution error
compared to standalone NOs and other hybrid methods. The framework
demonstrates effective performance for both 2D and 3D problems. A key
advantage is its discretization flexibility: the NO can be trained on a
small computational grid and evaluated on a larger one with minimal loss of
accuracy, ensuring easy scalability. Furthermore, the resulting solver remains
independent of forcing terms, preserving the generalization capabilities of
the original GMsFEM approach. Our results prove that combining NO
with GMsFEM creates a powerful new type of solver that is both fast and
accurate.

1 Introduction

Many practical multiscale problems involve highly heterogeneous properties with high-contrast
variations across multiple scales, posing significant challenges for the numerical solution of
partial differential equations (PDEs). A well-established approach for such problems is the
Generalized Multiscale Finite Element Method (GMsFEM) [Efendiev et al.| (2011} |2013));
Chung et al.| (2016)), which constructs localized spectral basis functions on coarse grids. By
solving local eigenproblems, GMsFEM captures fine-scale information, enabling accurate
coarse-scale solutions. However, this accuracy comes at a high computational cost due to
the expense of solving these local eigenproblems.

Recently, data-driven solvers, particularly neural operators (NOs) like Fourier Neural Opera-
tors (FNOs) |[Li et al.| (2020)); [Kovachki et al.| (2023); |Fanaskov & Oseledets| (2023)); [Tran et al.
(2021) and DeepONets [Lu et al.| (2021); Wang et al.| (2021), have emerged as a powerful
alternative for accelerating PDE simulations |Azizzadenesheli et al.| (2024); Karniadakis et al.
(2021)). While effective for problems with smooth coefficients, standard NOs often struggle to
efficiently capture the localized features of high-contrast heterogeneities, typically requiring
extensive data and large network architectures.

In this work, we introduce GMsFEM-NO, a hybrid framework that combines the robustness
of GMsFEM with the speed of neural operators. Our key innovation is a subspace-informed
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NO that learns to map a heterogeneous coefficient field directly to the low-dimensional
subspace spanned by the GMsFEM basis functions. Instead of learning individual basis
functions—which can be sensitive to small perturbations—we design a novel subspace-aware
loss function that enforces physical consistency at the subspace level. This approach offers
several advantages: it is more data-efficient than learning the full PDE solution, as the basis
functions are smoother and of lower dimension; and it is more robust than a pure NO, as
the final solution is obtained through a GMsFEM, ensuring legitimacy even with imperfect
basis predictions.

Our approach is distinct from existing hybrid methods [Bhattacharya et al.| (2024); |Vasilyeva
et all] (2020); [Wang et al.| (2020)); [Liu et al.| (2023); [Kropfl et al.| (2022; 2025)) that combine
machine learning with numerical homogenization/upscaling/macroscopic-modeling. Those
methods typically assume a known macroscopic equation form and learn effective coefficients,
which is infeasible for problems without scale separation and with high contrast. In con-
trast, GMsFEM-NO learns the macroscopic solution space itself, in the form of multiscale
basis functions, making it suitable for these more challenging settings. A related approach
Spiridonov et al.| (2025)) used a fully connected neural network to predict an additional
basis function for the steady-state Richards equation Richards (1931)); [Farthing & Ogden
(2017)), supplementing an existing set of precomputed basis functions. While this approach
enhanced prediction accuracy, it failed to deliver computational efficiency gains because
traditional methods still generated most basis functions. Furthermore, the simplicity of the
fully connected architecture limited its ability to account for spatial variations, potentially
compromising prediction accuracy for high-contrast data. Another category of related work
aims to reduce the computational cost of PDE solving via reduced-order modeling (POD
Volkwein| (2013)), DeepPOD [Franco et al., and PCANet Bhattacharya et al.| (2021))). Deep-
POD and PCANet also leverage neural networks to learn compact solution representations,
providing a relevant baseline for comparing the efficiency of our method.

We validate GMSFEM-NO on two challenging benchmarks with high-contrast coefficients: a
linear elliptic diffusion problem and the nonlinear steady-state Richards equation. Results
showed that our approach is better than NO in terms of solution accuracy and requires less
training data to achieve similar accuracy. Additionally, it reduces basis-construction time by
more than 60 times compared to traditional GMsFEM.

Our main contributions are:
1. We introduce a novel hybrid approach (GMsFEM-NO) that combines the strengths
of NOs with GMSFEM (see Fig. [I]).

2. A new subspace-informed loss function for learning stable and generalizable solution
subspaces.

3. The approach is evaluated on high-contrast PDEs and shown to deliver the same
results as GMSFEM at a fraction of the computational cost.

4. Demonstration of resolution invariance of GMsFEM-NOQO: effective training on low-
resolution data for application to high-resolution problems.

5. Superior in-distribution and out-of-distribution performance compared to standard
NOs, without requiring domain adaptation.

2 Locally Subspace-Informed Neural Operators

2.1 Diffusion equation

We consider the diffusion equation with heterogeneous coefficient

V- (s(0)Vul@)) = f(@), @€Q=(0, DP, ()| 0, (1)

zed
where 0f) is a boundary of the unit hypercube Q, and k(z) is a heterogeneous field with
high contrast. In particular, we assume that x(z) > ¢ > 0, while k(z) can have very large
variations. For example, in this work we use x(x) with values in range [1, 9600].
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Figure 1: Tllustration of training (a) and inference (b) stages of the proposed GMsFEM-NO
method. NO is trained on heterogeneous fields k“¢ that defined on subdomain w; to predict
subspace of basis functions {1/1"”}N ' where Nyt is the number of basis functions. During

J=0
N"‘ with

{ww’}N"f During inference stage (b), the predicted subspace forms the matrix R that
prOJeCtb matrix A and vectors to the coarse space.

training the subspace-informed loss £ is applied to align predicted subspace {w“”}

2.2 Steady-State Richards’ equation

The steady-state version of Richards’ equation, which describes water movement in unsatu-
rated porous media, takes the following form:

~V - (k(z,u(z))Vu(z)) = f(z), ze€Q=(0, 1)", u(ﬂc)’ggeaQ =0, (2)

where «(z,u(z)) is unsaturated hydraulic conductivity, u(z) is the water pressure and f(x)
is a source or sink term.

We consider the Haverkamp model Haverkamp et al| (1977) to define x(z,u(z)):

1
1+ |ul’

Az, u(2)) = K. (@) K, (u()) = x(a)

where k(z) is a heterogeneous field with high contrast that denotes the permeability of
soils, K, (u) represents the relative hydraulic conductivity, K(z) stands for the saturated
hydraulic conductivity. All the multiscale heterogeneity is incorporated in k(x) without

regard to u, and includes all the non-linearity.

+ Jul

2.3 Generalized Multiscale Finite Element Method

2.3.1 Multiscale space approximation

Multiscale methods Efendiev & Houl (2009) form a broad class of numerical techniques. They
are based on constructing multiscale basis functions in local domains to capture fine-scale
behavior.

Let Tz be a coarse mesh of the domain Q C R (with D = 2 or 3), such that Ty = vazcl K,
where each K is a coarse cell and NV, is the number of coarse cells. Let 7} be a fine grid
obtained by a refinement of 7y, with h < H. We denote by {xl}fvzl the nodes of the coarse

mesh 7, where N, is the number of nodes of the coarse mesh. Let w; be the subdomain
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defined as the collection of coarse cells containing the coarse grid node z; (see Fig. [2| in
Appendix :

wi:U{KjETH:xiEFj}.

J

To ensure accurate approximations on the coarse mesh 7z, we construct spectral multiscale
basis functions following the GMsFEM. GMsFEM contains two stages:

Offline stage:
1. Coarse and Local Domain Definition: Define the coarse grid Ty and generate the
associated local domains w; for i = 1,..., N,.

2. Local Spectral Problem Solving: In each local domain w;, solve a local spectral
problem to obtain a set of eigenvectors {(b‘;’ };,V:l, where N is the number of coarse
eigenvectors.

3. Multiscale Basis Function Construction: Select the first Ny¢ eigenvectors from each
w; and multiply them by a partition of unity function x; [Babuska & Lipton| (2011);
Babuska et al.| (2008)); [Strouboulis et al.| (2000)) to create the final multiscale basis

. N
functions {w;’ }j:bfl, where Nps < N.

4. Global System Assembly: Map the local degrees of freedom to global and form a
restriction matrix R.

Online stage:

1. Projection: Use R to project the fine-scale system onto the coarse space.
2. Solution: Compute the solution within the coarse multiscale space.
3. Reconstruction: Obtain the fine-scale approximation by applying the prolongation

operator R' to the coarse-scale solution.

2.3.2 Spectral problem

We denote by V() the usual finite element discretization of piecewise linear continuous
functions with respect to the fine grid 7;. For each local domain w;, we define the Neumann
matrix Ay by

vp Ay, = / k(x)Vup, - Vwy, dz, Yo, wy, € V(w;)
w;
and the Mass matrix S}* by
U;TS;‘;'iwh = / k() )vpwy dz,  Yop,w, € V(w;).
w;
We consider the finite dimensional symmetric eigenvalue problem
A2 = A8
and denote its cigenvalues and eigenvectors by { A} }jvzl and {¢}" };\/:17 respectively. Note

that Aj* = 0 corresponds to the constant eigenvector ¢7* = const. We order eigenvalues as

AN <L <A <

The eigenvectors {(b‘]‘" };Vzl form an S}’-orthonormal basis of V" (w;).

4
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2.3.3 Solving of the coarse-scale system

For each local domain w;, we select eigenvectors corresponding to the Nps < N smallest
eigenvalues and define a multiscale subspace

span{w;‘” :Xigb;?” j=1,..., Ny, i = 1,...,Nv} (3)

.. . T _ w1 w1 WNy WNy 1
and define the restriction matrix R' = [ TN } Coarse-grid

solution is the finite element projection of the fine-scale solution into the space . More
precisely, multiscale solution ug is given by

Aouo = fo,

where Ag = RART is the projected system matrix, fo = R"b is projected right-hand side.
The reconstructed fine-scale solution is u = R uo.

2.4 Neural Operator

Here we consider one type of NO that employs Fourier modes, but there are no restrictions
on using other types of NOs. Fourier neural operators (FNOs) are a class of NOs motivated
by Fourier spectral methods. Originally, |[Li et al.| (2020]) formulate each operator layer as

L0) =0 [WM)Z(@ 1O 4 @ (Zw))}, (4)
where W20 4 p(® ig an affine point-wise map,

KO (=) = IFFT (R - FFT(2))

is a kernel integral operator. The Fourier domain weight matrices {R(Z)}Ll require

O(LH?MP) parameters, where H is the hidden size, M is the number of the top Fourier
modes that are kept, and D is the dimension of the problem.

In Factorised FNO (F-FNO) [Tran et al.| (2021)), the operator layer in is changed
£(20) = 2 o [ (WO () 1 0{7) 4],

where () (z(e)) = ZdeD [IFFT (REIZ) -FFTy (z(e)))} . In this case, the number of parameters

is O(LH?M D). Therefore, the FFNO reduces model complexity and scales efficiently to
deeper networks.

2.5 Proposed method
2.5.1 GMsFEM-NO algorithm

We propose an efficient hybrid method for generating basis functions in the GMsFEM using
NOs, significantly accelerating the offline stage.

Local domains vary in shape and orientation (see Appendix , where orientation refers
to the relative placement of the coarse node x; shared by all cells in the local domain. We
address this variability by categorizing the local domains based on their geometry: into
full, half, and corner types in 2D, and into full, half, quarter, and corner types in 3D (see
Appendix |A]). Before training, we normalize the orientation of each local domain by rotating
both the input data and the target basis functions, ensuring a standardized coarse node
x; position within each group. This preprocessing step guarantees consistency in the input
structure for the NO.

We train separate NOs, each specialized for one domain group (see Appendix . Each NO
predicts Ny basis functions for local domains within its assigned category. This group-specific
approach improves prediction accuracy by accounting for geometric variations across local
domain types.
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For test data, we first decompose the computational domain into local domains. The
corresponding NO then generates the required basis functions. The predicted basis functions
are extended to the domain € (with zeros padded outside their respective local domains)
and vectorized to construct the restriction matrix R. Finally, the online stage of GMsFEM
is executed to compute the multiscale solution.

This approach substantially reduces offline computational costs while maintaining the
accuracy and flexibility of GMsFEM, making it particularly suitable for problems with
heterogeneous or highly varying coefficients.

2.5.2 Subspace-informed loss functions

The selection of an appropriate loss function is critical when training NOs. We propose a
Subspace Alignment Loss (SAL) that directly optimizes the geometric consistency of the

learned subspaces. Let R* = [¢1,... 71/J§vbf]—r represent the target subspace basis and R!

denote the predicted subspace. The SAL measures alignment between subspaces using their
orthonormalized bases Qr: and Qg;:

LsaL = E; [Nbf ~ |Qr Qg H ; (5)

where the Frobenius norm term ||Q}.Q §1||2F quantifies the subspace overlap, achieving
its maximum value Nps when subspaces are perfectly aligned. Appendix [C] proves SAL’s
theoretical foundation and provides error bounds connecting subspace alignment to solution
accuracy.

While SAL ensures subspace coherence, it may overlook finer discrepancies in how functions
are projected onto the subspaces. To enforce consistency in projection behavior, we introduce
a Projection Regularization term. This term evaluates the discrepancy between projections
of a randomized test vector v’ onto the target and predicted subspaces, governed by their
projection matrices Pri and Pg;:

LsaL-pr = LsaL + A+ Eic|| (Pri — P.) o' 37 c~N(0,1), (6)

; N ; .
where v* = )" " ex ¥y, Pri = Qgi },,Pﬁi = Qﬁngi, and A is a hyperparameter.

We compare proposed loss functions , @ with conventional one which is Lo loss. Since
basis functions are defined only up to their sign (see Appendix ?7), the conventional Lo loss
is adapted to account for this invariance, resulting in the Relative Basis Function Lo Loss

(RBFLy):
. (Hw;’- — G55 v+ &;H%)] -
Il i3 ’
where w;- and 1;; denote the j-th target and predicted basis functions for the i-th local

LrBrL, = E;i ;

domain w;. The minimization over ¢ ensures invariance to sign permutations.

3 Results

We use datasets of 2D coefficients at resolutions of 1002 and 2502, and 3D coefficients at
50% and 100% (see example in Appendix . The domain is partitioned into IV, subdomains
corresponding to coarse grids (e.g., N, = 36 for 5 x 5, 121 for 10 x 10, 216 for 5 X 5 X 5,
729 for 8 x 8 x 8). For all grid sizes except 100 x 100 x 100, we used 1000 samples (800
train, 200 test). For the 100 x 100 x 100 grid, we used 150 train and 50 test samples due to
computational constraints. The different local domain types occur with varying frequencies
within a single sample (see Appendix . For training NOs, we utilize the first 8 basis
functions (Nyf) per subdomain as training targets.

To evaluate method robustness, we consider two right-hand side configurations:

e Uniform unit forcing term

f(z) = 1. (8)
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o Spatially variable forcing (see Appendix [E)) defined by

f(x)wwj\f(a-(I—A)*ﬁ). (9)
To measure quality of the obtained solutions on fine grid, we use the following metrics:
Jo |y — g |*da _ Jo [V — Vg |*da
- fQ‘uZFdx ’ - Ja !VUZ}2de

All experiments were performed on a single Nvidia Tesla H100 80Gb HBM3. The comparison
of our approach with baseline methods is presented in Appendix

3.1 LRBFL, V8. LsAL; LSAL-PR

To determine the optimal training configuration for the NOs predicting basis function
subspaces, we performed a grid search over architectural parameters and training hyperpa-
rameters. Full specifications (except loss function type) are in Appendix (G| Loss function
results for Nys = 8 are shown in Table [Il For Ny = 4, results are in Appendix

As shown in Table |l Lrprr, underperforms compared to our proposed subspace alignment
losses (LsaL, Lsar-pr). For the Richards equation with simple right-hand side and
Nyt = 8, our proposed loss improves the relative Ly metric by a factor of 1.8. Notably, the
projection regularization term in Lgar.-pr yielded nearly identical results to Lgar,. While
projection regularization had a minimal impact on smaller grids—Ilikely because the subspace
alignment term alone suffices—its effect became significant for larger problems. For the 2502
grid using Richards’ equation with right-hand side , it reduced the Ls error from 1.82%
to 1.72% (see Table [3).

Table 1: Performance comparison of loss functions for NO training (100 x 100 grid, N,, = 36).

LRBFL, Lsar LgAL-PR
Nyps  Dataset Lo H, Lo Hy Lo H;
Diffusion, 1.75% 14.83% 1.06% 11.57% 1.06% 11.65%
8 Diffusion, |§| 3.53% 21.77% 2.82% 19.07% 2.81% 19.03%
Richards, 3.46% 15.04% 1.88% 11.10% 1.87% 11.25%
Richards, |§| 3.77%  22.38% 2.99% 19.61% 2.99% 19.60%

3.2 GMsFEM vs. GMsFEM-NO

In this section, we compare the performance of the original GMsFEM and our proposed
GMsFEM-NO methods in terms of solution accuracy (quantified by Lo and H; metrics)
and computational efficiency for basis functions generation. For large-scale 3D simulations
(100 x 100 x 100 grid), we employed the GMSFEM-NO method with the SAL loss. Although
the SAL-PR loss offers benefits for smaller problems (see Appendix @, its computational
cost becomes prohibitive at this scale, making the standard SAL loss the practical choice.

As shown in Tables and [5] GMsFEM-NO achieves nearly identical Ly and H; errors
to GMSFEM across all datasets and grid sizes. While GMsFEM-NO shows slightly better
results for some configurations, this is likely due to statistical variation. The same behaviour
is observed for the time-dependent equation and the diffusion equation with mixed boundary
conditions (see Appendix [K|and ; these experiments were conducted solely on the 250 x 250
grid.

Table [6] compares the time required to generate 8 basis functions using the GMSFEM offline
stage and GMsFEM-NO for different grid sizes and N, values. GMsFEM-NO employs
several NOs, one for each local domain type. The proposed method achieves more than 60x
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Table 2: Performance comparison of GMsFEM and GMsFEM-NO for 2D (100 x 100,
N, = 36).

GMsFEM GMsFEM-NO

Ny  Dataset Lo H, Lo H,
Diffusion,[§] 1.15% 11.68% 1.06% 11.57%

8 Diffusion,[J] 2.82% 19.07% 2.81% 19.03%
Richards,[§] 2.03% 11.68% 1.87% 11.25%
Richards, [9] 3.09% 20.20% 2.99% 19.60%

Table 3: Performance comparison of GMsFEM and GMsFEM-NO for 2D (250 x 250,
N, =121).

GMsFEM GMSFEM—NO, ESAL GMSFEM—NO, ESAL—PR

Ny Dataset Lo H, Lo H, Lo Hy
Diffusion, 1.12% 14.01% 1.13% 13.92% 1.05% 14.07%
8  Diffusion,[t] 1.60% 21.49% 1.62% 22.50% 1.60% 22.03%
Richards, 1.79% 14.57% 1.82% 14.27% 1.72% 14.53%
Richards, [9] 1.62% 21.76% 1.62% 22.62% 1.60% 22.13%

Table 4: Performance comparison of GMsFEM and GMsFEM-NO for 3D (50 x 50 x 50,
N, = 216).

GMsFEM GMSFEM—NO, ESAL GMSFEM—NO, ESAL—PR

Ny Dataset Lo H, Lo H, Lo Hy
Diffusion, 3.07% 20.72% 3.10% 20.39% 3.10% 20.39%
8  Diffusion, |§| 5.08% 25.26% 5.01% 24.92% 5.00% 24.86%
Richards, 4.04% 1543% 4.12% 15.37% 4.14% 15.39%
Richards, |§| 5.02% 24.89% 5.02% 24.92% 5.00% 24.89%

Table 5: Performance comparison of GMsFEM and GMsFEM-NO for 3D (100 x 100 x 100,
N, = T729).

GMsFEM GMSFEM-NO, Lgar,
Ny Dataset Lo H; Lo H,
Diffusion, 1.62% 14.76% 1.68% 14.98%
8  Diffusion,[)] 3.0% 12.55% 3.04% 12.84%
Richards, 2.54% 17.83% 2.57% 17.91%
Richards, [ 2.55% 17.85% 2.57% 17.91%

speedup, demonstrating its computational superiority. Basis calculation speedup grows with
grid size and dimensionality.

While GMsFEM-NO reduces the cost of the traditional GMsFEM offline stage over many
subsequent simulations, it does not eliminate cost of train data generation and training. The
breakeven point, defined as the number of inference samples required to offset these initial
costs, is derived in the Appendix
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Table 6: Basis generation time: GMsFEM-NO vs. standard GMsFEM offline stage.

Grid N, GMsFEM, sec. GMsFEM-NO, sec.
100 x 100 36 16.87 0.28
250 x 250 121 210.5 0.31
50 x 50 x 50 216 935.4 0.84
100 x 100 x 100 729 10547.2 1.33

3.3 Standalone NOs vs. GMsFEM-NO

In this section, we compare GMsFEM-NO against standalone SOTA NOs, including F-FNO,
GNOT 2023) and Transolver+- (2025)). While these standalone models
offer fast inference, their accuracy deteriorates significantly on high-contrast datasets. As
shown in Table [7] (250x250 grid), GMsFEM-NO achieves superior accuracy; for Richards’
equation with a complex source term @, it reduces the relative L2 error by 2.8 x compared
to the best standalone NO. Full training details are in Appendix

A critical advantage of GMsFEM-NO over the standalone NO lies in its independence from
the right-hand side terms of the PDE. The standalone NO exhibits catastrophic failure when
tested on out-of-distribution forcing terms, as evidenced in Table [13|in Appendix

Since each coefficient contains multiple local domains of each type, GMSFEM-NO requires
fewer samples than F-FNO for training. As shown in Table when Nipain is reduced
below 800, the error for F-FNO begins to increase significantly. In contrast, GMsFEM-NQ’s
accuracy remains stable across the range of 800 to 400 samples. Even with only 200 samples,
the performance degradation for GMsFEM-NO remains small; for example, on Richards’
equation with the simple right-hand side , the error increases only modestly from 1.85%
to 2.07%.

Table 7: Performance comparison of NOs and GMsFEM-NO (250 x 250 grid)

Npe  Dataset F-FNO GNOT Transolver++ GMsFEM-NO
Diffusion, 1.02%  1.26% 1.15% 1.05%
8  Diffusion,[)] 4.51%  14.29% 6.63% 1.60%
Richards, 2.44%  2.34% 2.17% 1.72%
Richards, [ ~ 4.45%  14.69% 8.82% 1.60%

Table 8: Comparison of F-FNO and GMsFEM-NO performance across different training
dataset sizes for 250 x 250.

Dirain Diffusion, Diffusion, |§| Richards, Richards, |§|
200 GMsFEM-NO 1.33% 1.77% 2.07% 1.77%
F-FNO 2.85% 11.56% 6.52% 11.49%
400 GMsFEM-NO 1.15% 1.63% 1.85% 1.62%
F-FNO 1.60% 8.16% 4.17% 8.41%
600 GMsFEM-NO 1.12% 1.61% 1.78% 1.61%
F-FNO 1.21% 4.92% 3.27% 5.43%
300 GMsFEM-NO 1.13% 1.62% 1.82% 1.62%
F-FNO 1.02% 4.51% 2.44% 4.45%
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3.4 GMsFEM-NO for different grids

Table [9] demonstrates the resolution invariance of GMsFEM-NO by training the model on
a coarse grid and testing it on a finer grid (500 x 500), with results compared against the
standard GMsFEM solution computed directly on the fine grid. We used a 10 x 10 coarse
grid (121 subdomains) for all experiments. The results demonstrate the stability of the
proposed method. GMsFEM-NO performs effectively when evaluated on a grid resolution
higher than its training resolution, a key advantage enabled by the neural operator’s ability
to generalize to different discretizations.

Table 9: Evaluation of GMsFEM-NO trained on coarse grid and tested on finer grid, with
comparison to standard GMsFEM.

Diﬁusion, Diffusion,@ Richards, Richards,@

Train grid Test grid GMsFEM-NO
100 500 2.42% 2.97% 4.70% 3.49%
250 500 1.45% 1.79% 2.25% 1.97%
GMsFEM
500 1.17% 1.46% 1.93% 1.66%

4 Conclusion

In this work, we propose GMsFEM-NO, a novel method for solving multiscale PDEs that
employs NOs to predict the multiscale basis function subspaces in the GMsFEM offline stage,
replacing the conventional solution of local eigenvalue problems. We validated the method
on standard 2D and 3D benchmarks: a linear elliptic diffusion problem and the nonlinear
steady-state Richards equation. Additionally, we demonstrated its efficacy for time-dependent
equations and problems with mixed boundary conditions in 2D. GMsFEM-NO achieves more
than 60x speedup in basis generation compared to standard GMsFEM.

A key contribution is a novel subspace alignment loss function, which enables direct learning
of the basis function subspace and improves the Lo accuracy over conventional Lrprr.,
loss. The GMsSsFEM-NO framework remains independent of the PDE’s right-hand side,
allowing it to maintain consistent performance across varying forcing terms. This contrasts
with standalone NOs, which exhibit errors exceeding 100% on out-of-distribution data.
Furthermore, GMsFEM-NO demonstrates greater data efficiency, requiring half the training
samples of a comparable NO. A significant advantage is the method’s discretization invariance:
GMSFEM-NO performs effectively when evaluated on grid resolutions higher than those
used for training, demonstrating strong generalization across different computational meshes.
By preserving the mathematical structure of multiscale methods while leveraging NO speed,
this work establishes a practical paradigm for heterogeneous PDE simulation.

The primary limitation of our method is its current restriction to structured grids due to
the chosen NO architecture. Additionally, our experiments focused on relatively small grid
sizes, which may not fully represent large-scale applications. While we successfully tested
our approach on time-dependent equations and problems with mixed boundary conditions
in 2D, the study was primarily focused on steady-state problems with Dirichlet boundary
conditions.

Future work will expand this framework in several key directions. First, we will target more
complex PDEs. Second, extending the framework to irregular domains is a critical next
step. This is well-supported theoretically, as the GMsFEM methodology is established for
unstructured meshes, and can be integrated with geometry-aware NOs like Transolver—++-.
Alongside these goals, we will also investigate performance on finer grid resolutions and the
impact of coarse-grid sizing to fully realize the method’s potential for large-scale, real-world
simulations.

10
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A Coarse grid

The notation w; refers to the i-th local domain, where the index corresponds to the numbering
of points on the coarse grid. Fig. [2| shows examples of local domains wg, wsg, and w3y,
representing the full, half, and corner types in 2D. In 3D, there are four types: full (8 cells),
half (4 cells), quarter (2 cells), and corner (1 cell), where the cell is a cube. Each local
domain is discretized with a fine grid.

B Training GMsFEM-NO

We train separate specialized NOs for each geometric domain type: three for 2D problems
(full, half, corner) and four for 3D problems (full, half, quarter, corner), as illustrated for the
2D case in Fig. (a—c). Each NO predicts the Nyt basis functions for all local domains of its
assigned type.

The number of local domains for each geometric type can be calculated based on the coarse
grid dimensions. For a 2D grid with 36 domains (5 x 5 cells), the counts are: 16 full, 16 half,
and 4 corner domains. For a finer 2D grid with 121 domains (10 x 10 cells), the counts are:
81 full, 36 half, and 4 corner domains. In 3D, for a grid with 216 domains (5 x 5 x 5 cells),
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TH (Coarse Grid)

W34

w20

Figure 2: Ilustration of a 5 x 5 coarse grid Ty showing local domains of different types: the
corner type wy (1 cell), half type wsq (2 cells), and full type waq (4 cells), where the cell is a
square.

the distribution is: 64 full, 96 half, 48 quarter, and 8 corner domains. In 3D, for a finer grid
with 729 domains (8 x 8 x 8 cells), the distribution is: 343 full, 294 half, 84 quarter, and 8
corner domains.

Input dataset, x“i '
e — Multiscale basis functions, w‘;’l

NO; | —»

EE——
— [ NOy | —

(a)
(b) L‘*
W NO3 | —» ﬂT

Figure 3: Multiscale basis generation algorithm for three subdomain types w;: (a) full, (b)
half, (¢) corner - using dedicated NOs per type with further extension to €.

C Subspace Alignment Loss (SAL)

To understand the relationship between the proposed Lgart, and classical Grassmannian
geometry [Bendokat et al|(2024); Mandolesi| (2023]), we begin with the orthogonal projection
matrices. For a subspace R spanned by a set of basis vectors, we compute an orthonormal
basis Qg via the thin QR decomposition. The orthogonal projection matrix onto R is then

given by Pr = QRQE.

The Grassmannian distance between two k-dimensional subspaces R and R is defined using
these projection matrices. The distance derivation proceeds as follows:

|Pr — Pg||% = tr(Pr) — 2tr(PrPg) + tr(Ps) = dim(R) + dim(R) — 2tr(PrPy)
= 2(k - tr(QrQRQFAT) )-
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The matrix QEQ 5 contains the cosines of the principal angles between the subspaces.
Therefore,

1Pr = Pyl = 2(k - Qa7 )-

Consequently, the Grassmannian distance simplifies to:
~ 1 2
(.7 = S P Pyl = i Q-

This derivation confirms that minimizing Lgar, is equivalent to minimizing the expected
Grassmannian distance between the true and predicted subspaces.

In considering the theoretical soundness of our approach, we note that a formal upper bound
linking principal angles to the final error would further strengthen the framework. When the
SAL loss is small, it ensures that the learned solution remains close to the exact solution.
To formalize this, let Qrc represent the multiscale solution computed using GMsFEM and
@ ¢ denote the learned solution. The error can then be bounded as follows:

u—Qpcll® < [lu— Qrell? + |Qre — Qpel® =
|u—Qrel?+c¢"(Qr—Qp) " (Qr — Qp)c= (10)
Ju— Qrel” +2¢" (I — (Qr)"Qp)e.

The first term is GMSFEM error (which is small), and the second term is small if I —(Qr)” Qg
is small. The norm above can play an important role in the proof. Since the GMsFEM error
is done in energy norm, in general, one needs to take the energy norm, which is non-local
and can slow down computations.

This error estimate gives a bound between the learned solution and the angle between the
spaces. To estimate the angle via the solution error is more difficult. Indeed, these questions
need to be addressed in the future and will help to choose the appropriate loss functions.

D Lsar-rr

The primary role of Lgay, is to enforce geometric alignment between the learned subspace

R and the target GMsFEM subspace R'. However, this loss has a specific limitation: it is
invariant to rotations within the subspace. If Qz; = Q:U for any unitary matrix U (s.t.

U'v=1 ), the subspaces are considered identical under this metric, as:

Not — || Qi Qg

This geometric alignment may overlook finer discrepancies in how specific functions are
projected. The Lga1.-pr (@ term was introduced to address this theoretical gap by directly
enforcing projection consistency. It tests the subspaces with random vectors v* drawn from
the target subspace R’. Since v’ lies in R?, its projection via the true basis is itself: Priv® = v'.
The discrepancy (I — Py, )v® thus represents the projection error. Minimizing this forces
the learned subspace to correctly capture arbitrary vectors from the target subspace, going
beyond mere geometric overlap.

=Nt = Uz =0

E Input data

We use the Karhunen-Loéve expansion (KLE) [Wong| (1971)); [Aarnes & Efendiev| (2008));
[Vasilyeva et al.|(2021)) to generate stochastic permeability fields. This method decomposes a
random field into deterministic spatial functions and random coefficients.

1. Covariance Function. We assume the covariance function has an exponential form:

R(ZIJ, y) = 0'12% eXp(—A2)7

15



Under review as a conference paper at ICLR 2026
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for 2D case and |2

T — xa]? — 21 — 222
:|1l22|+\yll2y2 _~_\1122|)
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for 3D case with correlation lengths I, [y, and variance a?{:

AQ

o For the 2D case: [, =0.02, I, = 0.6, 0% = 2;
« For the 3D case: [, =0.02, I, =0.6, [, =0.2, 012% =2.

2. Eigenvalue Problem. The eigenfunctions ¢ and eigenvalues A; are obtained by solving
the homogeneous Fredholm integral equation:

/Q Riz,y)bu(y)dy = Medn(2), k=1,2,...,

3. Random Field Construction. The random field is represented as:

L
Yo(z,w) = > v/ ele(w)r (@),
k=1

where 0 (w) are scalar random variables, and L is chosen to capture most of the field’s energy
by retaining the largest eigenvalues.

4. Permeability Field Generation. Each stochastic permeability field is defined as:
K(z,w) = exp(a - ¢(z,w)),

where ¢(z,w) represents the heterogeneous porosity field derived from Y7 (z,w), and a; > 0
is a scaling parameter that controls the contrast.

This KLE framework provides a systematic approach for generating realistic permeability
fields with prescribed spatial correlation structures. An example of a 2D input coefficient
field x(x) is shown in Fig.

The spatially variable forcing term is defined by
-8B
fl@)~y N (a (1-2)77),
where N denotes a Gaussian random field. The parameters are set as follows:

e For the 2D case: v = 2000, « =1, and [ = 0.5;
e For the 3D case: v =2000, « =2, and 5 =1.

An example of a 2D right-hand side f(x) is shown in Fig.

F  Baselines vs. GMsFEM-NO

We compare GMsFEM-NO with several baselines:

1. POD |Volkwein| (2013). Classical global intrusive POD.

2. Intrusive POD with DeepONet/FFNO or POD basis [Meuris et al.| (2021)), Meuris
et all (2023). First selected neural network is trained on standard regression problem.
After that one extract basis from trained network and uses similar to intrusive POD
to form reduced model. For FENO [Tran et al.| (2021) basis is extracted from the
last hidden layer, for DeepONet |Lu et al.|(2019) basis is extracted from trunk net.

3. PCA-Net Hesthaven & Ubbiali| (2018]), Bhattacharya et al. (2021)). POD is used to
compress features and targets, MLP is used as processor.

16



Under review as a conference paper at ICLR 2026

9600
8400 A
/ ¢ 36
7200
2.7
6000 3 18
4800 0.9
3600 i n 0.0
2400 - -09
]
1200 -18
o . -2.7
0 i v

(a) Input coefficient, x(x) with values in range
[1, 9600] (b) Right-hand side, f(z)

Figure 4: Example of input coefficient and right-hand side.

4. Kernel Batlle et al. (2024). Vector RKHS method is used to map sampled input
functions to sampled output functions.

5. DeepPOD A DL-based techniques used to directly learn optimal basis
with projector-based loss.

We use dataset with spatially variable forcing term @D covered in more details in Appendix@
Neural networks was trained and evaluated on grid 100 x 100.

For each selected baseline we perform sweep over hyperparameters:

1. Intrusive POD with FFNO basis. Architecture is defined by the number of features
in the hidden layer, number of modes used by spectral convolution, and number
of layers. Number of features in the hidden layer was fixed to 64, number of
modes was selected from the set [10, 14, 16], number of layers — from the set [3,4, 5].
Optimisation was performed with Lion optimiser Chen et al.| (2023) with exponential
decay 0.5 with number of transition steps selected from [100,200], and learning rate
selected from [5-107°,107%]. We optimise for 1000 epoch with batch size 10. In all
architectures we used GELU activation function.

2. Intrusive POD with DeepONet basis. Architecture is defined by trunk and branch
nets. As trunk net we used convolution architecture with spatial downsampling
by a factor of 2 along each dimension after each layer, simultaneously, the number
of channels was multiplied by 2 after each layer, as branch net we used standard
MLP. We apply optimisation similar to the one of FFNO, but select learning rate
from [1072,107%]. Number of trunk network layers was fixed to 4, trunk encoder
transformed 2 input features to either 4 or 5 features, kernel size of convolution in
trunk was selected among [3,7]. In the branch net we vary number of layers [3, 4]
and the number of basis vectors [100, 200] in the last layer.

3. DeepPOD Grid search for DeepPOD was exactly the same as for Intrusive POD
with FFNO.

4. PCANet. For PCANet the optimisation was similar to Intrusive POD with DeepONet,
but with 3000 epochs. We vary the sizes of POD encoder and decoder among
[100, 300, 500] and [100, 300, 500]. For MLP processor we vary the number of layers
[3,4, 5] and the number of hidden neurons [100, 300, 500].

5. Kernel. We closely followed code provided by authors. As kernels we used Matern,
RBF. We combined the method with POD and performed a grid search over the
number of modes: [50, 100, 150,200] for both features and targets.

Comparison of regression-based approaches with GMsFEM-NO appears in Table We
observe significant overfitting for kernel-based method and PCA-Net.

Intrusive techniques are compared in Figure o} We see that bases extracted from DeepONet
and FFNO are generally not appealing. FFNO slightly improves over global POD (weak
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Table 10: Regression-based methods.

method train error test error
GMsFEM-NO 2.6% 2.8%
PCANet 6% 24%
kernel 7% 100%

baseline) for ~ 64 basis functions. DeepONet fails to reach accuracy of global POD. The
most competative approach is DeepPOD. Note however, that DeepPOD becomes comparable
to GMSFEM-NO with 8 sparse (localised) basis functions only when it uses 20 dense basis

functions. With 30 basis functions DeepPOD outperforms GMsFEM-NO with 8 basis
functions.

8l o
e POD
° e DeepONet
e FFNO
X -\ e DeepPOD
s 23 "N GMSFEM(8)
= \\
(0] \~o
2 e
56.5 —
(O]
= [ )
28f
2.2% te
10 50 100 150 200

Nbasis

Figure 5: Comparison of accuracy for intrusive techniques. Number of basis functions for

GMSFEM is fexed to 8. DeepONet and FFNO mean Intrusive POD with DeepONet/FFNO
basis.

G  GMsFEM-NO Training Details

For F-FNO training to predict basis functions subspace, we used AdamW optimizer Loshchilov
& Huttel] (2017)) with cosine decay learning rate scheduler. The initial learning rate was
1-1073. We trained NO for 600 epochs. The best number of random test vectors v* is 10
(see the Table . For the rest of the hyperparameters, we performed a grid search:

1. Batch size [8,16,32].
2. Number of operator layers [4, 5]
3. Number of modes used in F-FNO kernel:

e For 2D:
~ for full domains [[16, 16], [18 18]];
— for half domains [[8,8], [10,10],[14, 8], [14, 10][;
— for corner domains [[6,6], (8, 8], [10, 10]].

e For 3D:

— for full domains [[6, 6,6],[8,8, 8]];

— for half domains [[8,8,4],[6,6,3]];

— for quarter domains [[8, 4,4],[6, 3, 3]]
3

— for corner domains [[4,4,4],[ 73,3]}.
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Table 11: Performance GMsFEM-NO for 2D (100 x 100, N,, = 36).

GMsFEM-NO, LgaL-pr
vi=5 vt =10 vl =15 vl =20
Dataset Lo H; Lo H, Lo H, Lo H,
Diffusion, 1.09% 11.90% 1.06% 11.65% 1.31% 12.34% 1.10% 12.13%
Diffusion, EI 2.84% 19.14% 2.81% 19.03% 2.88% 19.38% 2.87% 19.37%
Richards, 1.91% 11.21% 1.87% 11.25% 1.98% 11.75% 1.94% 11.64%
Richards, |§| 2.91% 20.06% 2.99% 19.60% 2.96% 20.33% 2.94% 20.26%

4. Number of channels in the FFNO kernel [64,128].

The source code containing the optimal parameters will be made publicly available upon
acceptance. We use JAX, Optax [DeepMind et al.| (2020) and Equinox Kidger & Garcia

(2021)) in all experiments.

H F-FNO, GNOT, Transolver++ Training Details

H.1 F-FNO Training Details

For F-FNO [Tran et al. (2021)), we used the following training protocol. We employed the
AdamW optimizer [Loshchilov & Hutter]| (2017) with a cosine decay learning rate scheduler
and trained for 600 epochs, using a base learning rate of 10~3. We performed a grid search
over the following hyperparameters:

1. Batch size: [8,16,32];

2. Number of modes in F-FNO kernel: [14,16];

3. Number of operator layers: [4,5];

4. Number of channels in F-FNO kernel: [64,128].

The optimal hyperparameters were: batch size 8, 5 operator layers, 16 modes, and 128
channels.

H.2 GNOT Training Details

For GNOT (2023)), we employed the following training protocol: AdamW optimizer

with a onecycle learning rate scheduler for 600 epochs, using a base learning rate of 1073.
We conducted a grid search over hyperparameters that were previously found optimal for

different 2D problems in w @:

Batch size: [4, 8]

Number of attention layers: [3,4]

Hidden size of attention and input embeddings: [96, 128, 192]
Number of MLP layers: [3,4]

Hidden size of MLP: [128,192]

Number of heads: [4, 8]

Number of experts: [3,4]

A A

The optimal configuration was: batch size 4, 4 attention layers, hidden size of 128 for
attention, MLP, and input embeddings, 8 heads, 4 experts, and 4 MLP layers.
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H.3 Transolver++ Training Details

For Transolver++ |[Luo et al.| (2025]), we employed the following training protocol: AdamW
optimizer with a onecycle learning rate scheduler for 600 epochs, using a base learning rate
of 1072, We conducted a grid search over hyperparameters previously identified as optimal
for 2D problems in |Luo et al.| (2025):

Batch size: [4, 8]

Number of layers: [4, 8]
Hidden size: [128,256]
Number of MLP layers: [1, 2]
Number of heads: [4, 8]
Slices: [32, 64]

A o e

The optimal configuration was: batch size 4, 8 layers, hidden size 256, 2 MLP layers, 8 heads,
and 64 slices.

I Results of GMSFEM-NO for Nys =4

Table 12: Performance comparison of loss functions for NO training (100 x 100 grid, N, = 36).

LRBFL, LsaL LsAL-PR
Ny Dataset Lo H, Lo H, Lo H;
Diffusion, 2.72% 19.10% 2.39% 18.01% 2.40% 18.01%
4 Diffusion, |§| 6.03% 29.10% 5.76% 28.40% 5.78% 28.43%
Richards, 3.87™% 16.26% 3.14% 15.01% 3.17% 15.02%
Richards, |§| 9.78% 34.39% 6.11% 29.37% 6.13% 29.42%

For the Richards equation with complex right-hand side @ and Np¢ = 4 basis functions, our
proposed loss improves the relative Lo metric by a factor of 1.6.

We did not conduct further experiments with GMsFEM-NO using Ny = 4 because its
performance was insufficient and it underperformed compared to the standalone neural
operator.

J  Out-of-distribution results

Unlike standalone NOs, which suffer from catastrophic failure when applied to out-of-
distribution forcing terms (Table , GMSFEM-NO is fundamentally independent of the
right-hand side, ensuring robust performance. Retraining the NO for new right-hand side
terms requires computationally expensive recalculation of solutions, highlighting a key
limitation of standalone NO learning.

Table 13: Out-of-distribution results for the NO: training and testing on PDEs with different
right-hand sides.

Train, Diain Test, Diegt 100 x 100 250 x 250

Diffusion, 8|  Diffusion, [9 218% 174%
Diffusion, [9|  Diffusion, [S|  1392% 1632%
Richards, [§]  Richards, [9) 196% 113%

Richards, 9]  Richards, 6503% 6554%
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K Heat equation for 2D

We consider the heat equation with heterogeneous coefficient
0
55—V (5(@)Vu(@)) = f(@), @ €Qx (0, Tnul,
U:O, z € 0f) X (07 Tmax]a
“‘t:o =0, ze€q,
where time parameters: At = 2.5-107%, Ty.x = 5-107%. We consider two right-hand side
configurations:

o Uniform unit forcing term
flz) =1 (11)
o Spatially variable forcing defined by

f(x) = sin(7x) cos(my). (12)

Table 14: Performance comparison of GMsFEM and GMsFEM-NO for Heat equation for
2D (250 x 250, N, = 121).

GMsFEM GMSFEM-NO, Lgar,
Ny Dataset Lo H, Lo H,
Heat, [11] 0.72% 10.81% 0.78% 13.06%
Heat,[12] 1.13% 19.92% 1.17% 21.57%

8

The results, presented in the Table show that our proposed GMsFEM-NO method with
Lsar, maintains high accuracy for this time-dependent problem, with relative Lo errors below
1.2%. This demonstrates the successful application of our framework to time-dependent
problems.

L Diffusion equation with Mixed Boundary Conditions

We consider the diffusion equation with heterogeneous coefficient
—V - (k(z)Vu(z)) = f(z), ze€Q=(0, 1)%
u=0, x€lp,

du

H(x)an =a- (u — uconst), x € I'g,

where the boundary is partitioned into a Dirichlet part I'p = {x € 0N | Y= 0} and a Robin
part I'r = {x € 0N | Yy = 1} with parameters: Robin coefficient o = 1, teonst = 1.

Table 15: Performance comparison of GMsFEM and GMsFEM-NO for equation with mixed
boundary conditions for 2D (250 x 250, N, = 121).

GMsFEM GMsFEM-NO, Lgar,
Ny Dataset Lo Hy Lo H,
Diffusion, 1.11%  7.98% 1.22% 12.10%
Diffusion, |§| 1.09% 7.72% 1.23% 12.31%

8

Our framework demonstrates robust performance when extended to problems with mixed
boundary conditions, maintaining high accuracy even in these more complex scenarios. As
shown in Table the GMsSFEM-NO method with Lgap, achieves relative Lo errors of
approximately 1.2% for diffusion problems with Robin boundary conditions. This represents
a significant extension beyond the homogeneous Dirichlet conditions typically considered in
multiscale methods
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M Time

The core objective of GMsFEM-NO is to reduce the cost of the traditional GMsFEM offline
stage over many subsequent simulations. To provide full transparency, we have performed a
detailed analysis that compares two practical scenarios: training models sequentially (one
after another on one GPU) and in parallel. The breakeven point x is the number of inference
samples where the total time of GMSFEM-NO (including training data generation and
training) equals that of using standard GMSFEM for all samples:

Taata + Tivain + Ting - © = TGMsFEM - T,

where Tyata is the wall-clock time for generating training data via traditional GMsFEM,
Tirain is the total wall-clock time for training NO (which varies by scenario), TaumsrrMm i the
wall-clock time for a single offline GMsFEM basis generation, and Ti,¢ is the wall-clock time
for a single GMsFEM-NO inference. The results are in the Table

Even with sequential training, the method pays off for multi-query scenarios. The benefit
is larger for large-scale 3D problems, where the breakeven point remains low (159 samples)
due to the high cost of the traditional GMsFEM solver.

Table 16: Performance comparison of sequential and parallel implementations

Problem Performance Metrics

Configuration  Tamsrem  Linf  Samples  Implementation  Tipain T
100 x 100 16.87 0.28 800 Sequential 37800 —3270
16.87 0.28 800 Parallel 12600 —1570
250 x 250 210.5 0.31 800 Sequential 43200 —1040
210.5 0.31 800 Parallel 14400 —870
50 x 50 x 50 935.4 0.84 800 Sequential 86400  —1090
935.4 0.84 800 Parallel 21600  —820
100 x 100 x 100 10547.2  1.33 150 Sequential 100800  —159
10547.2  1.33 150 Parallel 25200  —152
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