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ABSTRACT

We propose GMsFEM-NO, a novel hybrid framework that combines the robustness
of the Generalized Multiscale Finite Element Method (GMsFEM) with the compu-
tational speed of neural operators (NOs) to create an efficient method for solving
heterogeneous partial differential equations (PDEs). GMsFEM builds localized
spectral basis functions on coarse grids, allowing it to capture important multiscale
features and solve PDEs accurately with less computational effort. However, com-
puting these basis functions is costly. While NOs offer a fast alternative by learning
the solution operator directly from data, they can lack robustness. Our approach
trains a NO to instantly predict the GMsFEM basis by using a novel subspace-
informed loss that learns the entire relevant subspace, not just individual functions.
This strategy significantly accelerates the costly offline stage of GMsFEM while
retaining its foundation in rigorous numerical analysis, resulting in a solution that
is both fast and reliable. On standard multiscale benchmarks—including a linear
elliptic diffusion problem and the nonlinear, steady-state Richards equation—our
GMsFEM-NO method achieves a reduction in solution error compared to stan-
dalone NOs and other hybrid methods. The framework demonstrates effective
performance for both 2D and 3D problems. A key advantage is its discretization
flexibility: the NO can be trained on a small computational grid and evaluated on a
larger one with minimal loss of accuracy, ensuring easy scalability. Furthermore,
the resulting solver remains independent of forcing terms, preserving the gener-
alization capabilities of the original GMsFEM approach. Our results prove that
combining NO with GMsFEM creates a powerful new type of solver that is both
fast and accurate.

1 INTRODUCTION

Many practical multiscale problems involve highly heterogeneous properties with high-contrast
variations across multiple scales, posing significant challenges for the numerical solution of partial
differential equations (PDEs). A well-established approach for such problems is the Generalized
Multiscale Finite Element Method (GMsFEM) Efendiev et al. (2011; 2013); Chung et al. (2016),
which constructs localized spectral basis functions on coarse grids. By solving local eigenproblems,
GMsFEM captures fine-scale information, enabling accurate coarse-scale solutions. However, this
accuracy comes at a high computational cost due to the expense of solving these local eigenproblems.

Recently, data-driven solvers, particularly neural operators (NOs) like Fourier Neural Operators
(FNOs) Li et al. (2020); Kovachki et al. (2023); Fanaskov & Oseledets (2023); Tran et al. (2021)
and DeepONets Lu et al. (2021); Wang et al. (2021), have emerged as a powerful alternative for
accelerating PDE simulations Azizzadenesheli et al. (2024); Karniadakis et al. (2021). While
effective for problems with smooth coefficients, standard NOs often struggle to efficiently capture
the localized features of high-contrast heterogeneities, typically requiring extensive data and large
network architectures.

In this work, we introduce GMsFEM-NO, a hybrid framework that combines the robustness of
GMsFEM with the speed of neural operators. Our key innovation is a subspace-informed NO that
learns to map a heterogeneous coefficient field directly to the low-dimensional subspace spanned by
the GMsFEM basis functions. Instead of learning individual basis functions—which can be sensitive
to small perturbations—we design a novel subspace-aware loss function that enforces physical
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consistency at the subspace level. This approach offers several advantages: it is more data-efficient
than learning the full PDE solution, as the basis functions are smoother and of lower dimension;
and it is more robust than a pure NO, as the final solution is obtained through a GMsFEM, ensuring
legitimacy even with imperfect basis predictions.

Our approach is distinct from existing hybrid methods Bhattacharya et al. (2024); Vasilyeva et al.
(2020); Wang et al. (2020); Liu et al. (2023); Kröpfl et al. (2022; 2025) that combine machine learning
with numerical homogenization/upscaling/macroscopic-modeling. Those methods typically assume a
known macroscopic equation form and learn effective coefficients, which is infeasible for problems
without scale separation and with high contrast. In contrast, GMsFEM-NO learns the macroscopic
solution space itself, in the form of multiscale basis functions, making it suitable for these more
challenging settings. A related approach Spiridonov et al. (2025) used a fully connected neural
network to predict an additional basis function for the steady-state Richards equation Richards (1931);
Farthing & Ogden (2017), supplementing an existing set of precomputed basis functions. While this
approach enhanced prediction accuracy, it failed to deliver computational efficiency gains because
traditional methods still generated most basis functions. Furthermore, the simplicity of the fully
connected architecture limited its ability to account for spatial variations, potentially compromising
prediction accuracy for high-contrast data. Another category of related work aims to reduce the
computational cost of PDE solving via reduced-order modeling (POD Volkwein (2013), DeepPOD
Franco et al., and PCANet Bhattacharya et al. (2021)). DeepPOD and PCANet also leverage neural
networks to learn compact solution representations, providing a relevant baseline for comparing the
efficiency of our method.

We validate GMsFEM-NO on two challenging benchmarks with high-contrast coefficients: a linear
elliptic diffusion problem and the nonlinear steady-state Richards equation. Results showed that our
approach is better than NO in terms of solution accuracy and requires less training data to achieve
similar accuracy. Additionally, it reduces basis-construction time by more than 60 times compared to
traditional GMsFEM.

Our main contributions are:

1. We introduce a novel hybrid approach (GMsFEM-NO) that combines the strengths of NOs
with GMsFEM (see Fig. 1).

2. A new subspace-informed loss function for learning stable and generalizable solution
subspaces.

3. The approach is evaluated on high-contrast PDEs and shown to deliver the same results as
GMsFEM at a fraction of the computational cost.

4. Demonstration of resolution invariance of GMsFEM-NO: effective training on low-
resolution data for application to high-resolution problems.

5. Superior in-distribution and out-of-distribution performance compared to standard NOs,
without requiring domain adaptation.

2 LOCALLY SUBSPACE-INFORMED NEURAL OPERATORS

2.1 DIFFUSION EQUATION

We consider the diffusion equation with heterogeneous coefficient

−∇ ·
(
κ(x)∇u(x)

)
= f(x), x ∈ Ω ≡ (0, 1)D, u(x)

∣∣
x∈∂Ω

= 0, (1)

where ∂Ω is a boundary of the unit hypercube Ω, and κ(x) is a heterogeneous field with high contrast.
In particular, we assume that κ(x) ⩾ ε > 0, while κ(x) can have very large variations. For example,
in this work we use κ(x) with values in range [1, 9600].

2.2 STEADY-STATE RICHARDS’ EQUATION

The steady-state version of Richards’ equation, which describes water movement in unsaturated
porous media, takes the following form:

−∇ ·
(
κ
(
x, u(x)

)
∇u(x)

)
= f(x), x ∈ Ω ≡ (0, 1)D, u(x)

∣∣
x∈∂Ω

= 0, (2)
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Spectral problem

NO

κωi

κωi

(a)

(b)

Input dataset, κ
{
ψωi
j

}Nbf

j=1

{
ψ̃ωi
j

}Nbf

j=1

L

NO {
ψ̃ωi
j

}Nbf

j=1

R̃

Solve the coarse-scale system: A0u0 = f0, A0 = R̃AR̃⊤, f0 = R̃⊤b

Figure 1: Illustration of training (a) and inference (b) stages of the proposed GMsFEM-NO method.
NO is trained on heterogeneous fields κωi that defined on subdomain ωi to predict subspace of basis
functions {ψωi

j }Nbf
j=1, where Nbf is the number of basis functions. During training the subspace-

informed loss L is applied to align predicted subspace {ψ̃ωi
j }Nbf

j=1 with {ψωi
j }Nbf

j=1. During inference
stage (b), the predicted subspace forms the matrix R̃ that projects matrix A and vectors to the coarse
space.

where κ
(
x, u(x)

)
is unsaturated hydraulic conductivity, u(x) is the water pressure and f(x) is a

source or sink term.

We consider the Haverkamp model Haverkamp et al. (1977) to define κ
(
x, u(x)

)
:

κ
(
x, u(x)

)
= Ks(x)Kr(u(x)) = κ(x)

1

1 + |u|
,

where κ(x) is a heterogeneous field with high contrast that denotes the permeability of soils, Kr(u)
represents the relative hydraulic conductivity, Ks(x) stands for the saturated hydraulic conductivity.

All the multiscale heterogeneity is incorporated in κ(x) without regard to u, and
1

1 + |u|
includes all

the non-linearity.

2.3 GENERALIZED MULTISCALE FINITE ELEMENT METHOD

2.3.1 MULTISCALE SPACE APPROXIMATION

Multiscale methods Efendiev & Hou (2009) form a broad class of numerical techniques. They are
based on constructing multiscale basis functions in local domains to capture fine-scale behavior.

Let TH be a coarse mesh of the domain Ω ⊂ RD (with D = 2 or 3), such that TH =
⋃Nc

i=1Ki, where
each Ki is a coarse cell and Nc is the number of coarse cells. Let Th be a fine grid obtained by a
refinement of TH , with h≪ H . We denote by {xi}Nv

i=1 the nodes of the coarse mesh TH , where Nv

is the number of nodes of the coarse mesh. Let ωi be the subdomain defined as the collection of
coarse cells containing the coarse grid node xi (see Fig. 2 in Appendix A):

ωi =
⋃
j

{
Kj ∈ TH : xi ∈ Kj

}
.

To ensure accurate approximations on the coarse mesh TH , we construct spectral multiscale basis
functions following the GMsFEM. GMsFEM contains two stages:

3
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Offline stage:

1. Coarse and Local Domain Definition: Define the coarse grid TH and generate the associ-
ated local domains ωi for i = 1, . . . , Nv .

2. Local Spectral Problem Solving: In each local domain ωi, solve a local spectral problem
to obtain a set of eigenvectors

{
ϕωi
j

}N
j=1

, where N is the number of coarse eigenvectors.

3. Multiscale Basis Function Construction: Select the first Nbf eigenvectors from each ωi

and multiply them by a partition of unity function χi Babuska & Lipton (2011); Babuška
et al. (2008); Strouboulis et al. (2000) to create the final multiscale basis functions

{
ψωi
j

}Nbf

j=1
,

where Nbf ⩽ N .

4. Global System Assembly: Map the local degrees of freedom to global and form a restriction
matrix R.

Online stage:

1. Projection: Use R to project the fine-scale system onto the coarse space.

2. Solution: Compute the solution within the coarse multiscale space.

3. Reconstruction: Obtain the fine-scale approximation by applying the prolongation operator
R⊤ to the coarse-scale solution.

2.3.2 SPECTRAL PROBLEM

We denote by V h(Ω) the usual finite element discretization of piecewise linear continuous functions
with respect to the fine grid Th. For each local domain ωi, we define the Neumann matrix Aωi

h by

v⊤h A
ωi

h wh =

∫
ωi

κ(x)∇vh · ∇wh dx, ∀vh, wh ∈ V h(ωi)

and the Mass matrix Sωi

h by

v⊤h S
ωi

h wh =

∫
ωi

κ(x)vhwh dx, ∀vh, wh ∈ V h(ωi).

We consider the finite dimensional symmetric eigenvalue problem

Aωi

h ϕ = λSωi

h ϕ

and denote its eigenvalues and eigenvectors by
{
λωi
j

}N
j=1

and
{
ϕωi
j

}N
j=1

, respectively. Note that
λωi
1 = 0 corresponds to the constant eigenvector ϕωi

1 = const. We order eigenvalues as

λωi
1 ⩽ λωi

2 ⩽ . . . ⩽ λωi
j ⩽ . . . .

The eigenvectors
{
ϕωi
j

}N
j=1

form an Sωi

h -orthonormal basis of V h(ωi).

2.3.3 SOLVING OF THE COARSE-SCALE SYSTEM

For each local domain ωi, we select eigenvectors corresponding to the Nbf ⩽ N smallest eigenvalues
and define a multiscale subspace

span
{
ψωi
j = χiϕ

ωi
j

∣∣ j = 1, . . . , Nbf, i = 1, . . . , Nv

}
(3)

and define the restriction matrix R⊤ =
[
ψω1
1 , . . . , ψω1

Nbf
, . . . , ψ

ωNv
1 , . . . , ψ

ωNv

Nbf

]
. Coarse-grid solution

is the finite element projection of the fine-scale solution into the space (3). More precisely, multiscale
solution u0 is given by

A0u0 = f0,

where A0 = RAR⊤ is the projected system matrix, f0 = R⊤b is projected right-hand side. The
reconstructed fine-scale solution is u = R⊤u0.

4
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2.4 NEURAL OPERATOR

Here we consider one type of NO that employs Fourier modes, but there are no restrictions on using
other types of NOs. Fourier neural operators (FNOs) are a class of NOs motivated by Fourier spectral
methods. Originally, Li et al. (2020) formulate each operator layer as

Lℓ
(
z(ℓ)
)
= σ

[
W (ℓ)z(ℓ) + b(ℓ) +K(ℓ)

(
z(ℓ)
)]
, (4)

where W (ℓ)z(ℓ) + b(ℓ) is an affine point-wise map,

K(ℓ)
(
z(ℓ)
)
= IFFT

(
R(ℓ) · FFT(z)

)
is a kernel integral operator. The Fourier domain weight matrices

{
R(ℓ)

}L
ℓ=1

require O(LH2MD)
parameters, where H is the hidden size, M is the number of the top Fourier modes that are kept, and
D is the dimension of the problem.

In Factorised FNO (F-FNO) Tran et al. (2021), the operator layer in (4) is changed

Lℓ
(
z(ℓ)
)
= z(ℓ) + σ

[
W

(ℓ)
2 σ

(
W

(ℓ)
1 K(ℓ)

(
z(ℓ)
)
+ b

(ℓ)
1

)
+ b

(ℓ)
2

]
,

where K(ℓ)
(
z(ℓ)
)
=
∑

d∈D

[
IFFT

(
R(ℓ)

d · FFTd

(
z(ℓ)
))]

. In this case, the number of parameters

is O(LH2MD). Therefore, the FFNO reduces model complexity and scales efficiently to deeper
networks.

2.5 PROPOSED METHOD

2.5.1 GMSFEM-NO ALGORITHM

We propose an efficient hybrid method for generating basis functions in the GMsFEM using NOs,
significantly accelerating the offline stage.

Local domains vary in shape and orientation (see Appendix A), where orientation refers to the relative
placement of the coarse node xi shared by all cells in the local domain. We address this variability
by categorizing the local domains based on their geometry: into full, half, and corner types in
2D, and into full, half, quarter, and corner types in 3D (see Appendix A). Before training, we
normalize the orientation of each local domain by rotating both the input data and the target basis
functions, ensuring a standardized coarse node xi position within each group. This preprocessing
step guarantees consistency in the input structure for the NO.

We train separate NOs, each specialized for one domain group (see Appendix B). Each NO predicts
Nbf basis functions for local domains within its assigned category. This group-specific approach
improves prediction accuracy by accounting for geometric variations across local domain types.

For test data, we first decompose the computational domain into local domains. The corresponding
NO then generates the required basis functions. The predicted basis functions are extended to the
domain Ω (with zeros padded outside their respective local domains) and vectorized to construct the
restriction matrix R. Finally, the online stage of GMsFEM is executed to compute the multiscale
solution.

This approach substantially reduces offline computational costs while maintaining the accuracy and
flexibility of GMsFEM, making it particularly suitable for problems with heterogeneous or highly
varying coefficients.

2.5.2 SUBSPACE-INFORMED LOSS FUNCTIONS

The selection of an appropriate loss function is critical when training NOs. We propose a Subspace
Alignment Loss (SAL) that directly optimizes the geometric consistency of the learned subspaces.
Let Ri =

[
ψi
1, . . . , ψ

i
Nbf

]⊤
represent the target subspace basis and R̃i denote the predicted subspace.

The SAL measures alignment between subspaces using their orthonormalized bases QRi and QR̃i :

LSAL = Ei

[
Nbf −

∥∥Q⊤
RiQR̃i

∥∥2
F

]
, (5)

5
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where the Frobenius norm term ∥Q⊤
RiQR̃i∥2F quantifies the subspace overlap, achieving its maximum

value Nbf when subspaces are perfectly aligned (see Appendix C).

While SAL ensures subspace coherence, it may overlook finer discrepancies in how functions
are projected onto the subspaces. To enforce consistency in projection behavior, we introduce a
Projection Regularization term. This term evaluates the discrepancy between projections of a
randomized test vector vi onto the target and predicted subspaces, governed by their projection
matrices PRi and PR̃i :

LSAL-PR = LSAL + λ · Ei,c

∥∥ (PRi − PR̃i

)
vi
∥∥2
2
, c ∼ N (0, I), (6)

where vi =
∑Nbf

k=1 ckψ
i
k, PRi = QRiQ⊤

Ri , PR̃i = QR̃iQ
⊤
R̃i

, and λ is a hyperparameter.

We compare proposed loss functions (5), (6) with conventional one which is L2 loss. Since basis
functions are defined only up to their sign (see Appendix D), the conventional L2 loss is adapted to
account for this invariance, resulting in the Relative Basis Function L2 Loss (RBFL2):

LRBFL2
= Ei,j

[
min

(
∥ψi

j − ψ̃i
j∥22

∥ψi
j∥22

,
∥ψi

j + ψ̃i
j∥22

∥ψi
j∥22

)]
, (7)

where ψi
j and ψ̃i

j denote the j-th target and predicted basis functions for the i-th local domain ωi.
The minimization over ±ψ̃i

j ensures invariance to sign permutations.

3 RESULTS

We use datasets of 2D coefficients at resolutions of 1002 and 2502, and 3D coefficients at 503 (see
example in Appendix E). The domain is partitioned into Nv subdomains corresponding to coarse
grids (e.g., Nv = 36 for 5× 5, 121 for 10× 10, 216 for 5× 5× 5). The complete dataset contains
1000 samples, divided into training Dtrain (800 samples) and testing Dtest (200 samples) datasets. The
different local domain types occur with varying frequencies within a single sample (see Appendix B).
For training NOs, we utilize the first 8 basis functions (Nbf) per subdomain as training targets.

To evaluate method robustness, we consider two right-hand side configurations:

• Uniform unit forcing term
f(x) = 1. (8)

• Spatially variable forcing (see Appendix E) defined by

f(x) ∼ γ · N
(
α ·
(
I −∆

)−β
)
. (9)

To measure quality of the obtained solutions on fine grid, we use the following metrics:

L2 = En


√√√√∫Ω ∣∣unh − ũnh

∣∣2dx∫
Ω

∣∣unh∣∣2dx
 , H1 = En


√√√√∫Ω ∣∣∇unh −∇ũnh

∣∣2dx∫
Ω

∣∣∇unh∣∣2dx
 .

All experiments were performed on a single Nvidia Tesla H100 80Gb HBM3. The comparison of our
approach with baseline methods is presented in Appendix F.

3.1 LRBFL2 VS. LSAL , LSAL-PR

To determine the optimal training configuration for the NOs predicting basis function subspaces, we
performed a grid search over architectural parameters and training hyperparameters. Full specifica-
tions (except loss function type) are in Appendix G. Loss function results for Nbf = 8 are shown in
Table 1. For Nbf = 4, results are in Appendix I.

As shown in Table 1, LRBFL2
underperforms compared to our proposed subspace alignment losses

(LSAL, LSAL-PR). For the Richards equation with simple right-hand side (8) andNbf = 8, our proposed
loss improves the relative L2 metric by a factor of 1.8. Notably, the projection regularization term

6
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in LSAL-PR yielded nearly identical results to LSAL. While projection regularization had a minimal
impact on smaller grids—likely because the subspace alignment term alone suffices—its effect
became significant for larger problems. For the 2502 grid using Richards’ equation with right-hand
side (8), it reduced the L2 error from 1.82% to 1.72% (see Table 3).

Table 1: Performance comparison of loss functions for NO training (100× 100 grid, Nv = 36).

LRBFL2 LSAL LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8

Diffusion, 8 1.75% 14.83% 1.06% 11.57% 1.06% 11.65%

Diffusion, 9 3.53% 21.77% 2.82% 19.07% 2.81% 19.03%

Richards, 8 3.46% 15.04% 1.88% 11.10% 1.87% 11.25%

Richards, 9 3.77% 22.38% 2.99% 19.61% 2.99% 19.60%

3.2 GMSFEM VS. GMSFEM-NO

In this section, we compare the performance of the original GMsFEM and our proposed GMsFEM-
NO methods in terms of solution accuracy (quantified by L2 and H1 metrics) and computational
efficiency for basis functions generation.

As shown in Tables 2, 3, and 4, GMsFEM-NO achieves nearly identical L2 andH1 errors to GMsFEM
across all datasets and grid sizes (2D: 100×100, 250×250; 3D: 50×50×50). While GMsFEM-NO
shows slightly better results for some configurations, this is likely due to statistical variation.

Table 5 compares the time required to generate 8 basis functions using the GMsFEM offline stage
and GMsFEM-NO for different grid sizes and Nv values. GMsFEM-NO employs several NOs, one
for each local domain type. The proposed method achieves more than 60× speedup, demonstrating
its computational superiority. Basis calculation speedup grows with grid size and dimensionality.

Table 2: Performance comparison of GMsFEM and GMsFEM-NO for 2D (100× 100, Nv = 36).

GMsFEM GMsFEM-NO

Nbf Dataset L2 H1 L2 H1

8

Diffusion, 8 1.15% 11.68% 1.06% 11.57%

Diffusion, 9 2.82% 19.07% 2.81% 19.03%

Richards, 8 2.03% 11.68% 1.87% 11.25%

Richards, 9 3.09% 20.20% 2.99% 19.60%

Table 3: Performance comparison of GMsFEM and GMsFEM-NO for 2D (250× 250, Nv = 121).

GMsFEM GMsFEM-NO, LSAL GMsFEM-NO, LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8

Diffusion, 8 1.12% 14.01% 1.13% 13.92% 1.05% 14.07%

Diffusion, 9 1.60% 21.49% 1.62% 22.50% 1.60% 22.03%

Richards, 8 1.79% 14.57% 1.82% 14.27% 1.72% 14.53%

Richards, 9 1.62% 21.76% 1.62% 22.62% 1.60% 22.13%

3.3 F-FNO VS. GMSFEM-NO

In this section, we compare the performance of the proposed GMsFEM-NO framework against a
standalone F-FNO trained to directly predict PDE solutions. While the standalone F-FNO offers

7
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Table 4: Performance comparison of GMsFEM and GMsFEM-NO for 3D (50× 50× 50, Nv = 216).

GMsFEM GMsFEM-NO, LSAL GMsFEM-NO, LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8

Diffusion, 8 3.07% 20.72% 3.10% 20.39% 3.10% 20.39%

Diffusion, 9 5.08% 25.26% 5.01% 24.92% 5.00% 24.86%

Richards, 8 4.04% 15.43% 4.12% 15.37% 4.14% 15.39%

Richards, 9 5.02% 24.89% 5.02% 24.92% 5.00% 24.89%

Table 5: Basis generation time: GMsFEM-NO vs. standard GMsFEM offline stage.

Grid Nv GMsFEM, sec. GMsFEM-NO, sec.

100× 100 36 16.87 0.28
250× 250 121 210.5 0.31

50× 50× 50 216 935.4 0.84

faster inference and might achieve comparable accuracy, its performance deteriorates significantly for
high-contrast datasets. We validate this through empirical testing (full training details are provided in
the Appendix H).

As shown in Table 6, GMsFEM-NO achieves lower relative L2 errors compared to the standalone
NO across all datasets. When applied to Richards’ equation with the complex right-hand side (9),
GMsFEM-NO achieves a 1.7× reduction in relative L2 error versus a standalone NO on the 100×100
grid, improving to a 12.8× reduction on the 250× 250 grid.

A critical advantage of GMsFEM-NO over the standalone NO lies in its independence from the
right-hand side terms of the PDE. The standalone NO exhibits catastrophic failure when tested on
out-of-distribution forcing terms, as evidenced in Table 11 in Appendix J.

Since each coefficient contains multiple local domains of each type, GMsFEM-NO requires fewer
samples than F-FNO for training. As shown in Table 7, when Ntrain is reduced below 800, the error
for F-FNO begins to increase significantly. In contrast, GMsFEM-NO’s accuracy remains stable
across the range of 800 to 400 samples. Even with only 200 samples, the performance degradation
for GMsFEM-NO remains small; for example, on Richards’ equation with the simple right-hand side
(8), the error increases only modestly from 1.85% to 2.07%.

Table 6: Performance comparison of NO and GMsFEM-NO (2D datasets)

100× 100 250× 250

Nbf Dataset F-FNO GMsFEM-NO F-FNO GMsFEM-NO

8

Diffusion, 8 1.37% 1.06% 1.02% 1.05%

Diffusion, 9 3.55% 2.81% 4.51% 1.60%
Richards, 8 2.98% 1.72% 2.44% 1.72%
Richards, 9 4.09% 2.99% 4.45% 1.60%

3.4 GMSFEM-NO FOR DIFFERENT GRIDS

Table 8 demonstrates the resolution invariance of GMsFEM-NO by training the model on a coarse
grid and testing it on a finer grid (500× 500), with results compared against the standard GMsFEM
solution computed directly on the fine grid. We used a 10× 10 coarse grid (121 subdomains) for all
experiments. The results demonstrate the stability of the proposed method. GMsFEM-NO performs
effectively when evaluated on a grid resolution higher than its training resolution, a key advantage
enabled by the neural operator’s ability to generalize to different discretizations.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Comparison of F-FNO and GMsFEM-NO performance across different training dataset sizes
for 250× 250.

Dtrain Diffusion, 8 Diffusion, 9 Richards, 8 Richards, 9

200
GMsFEM-NO 1.33% 1.77% 2.07% 1.77%

F-FNO 2.85% 11.56% 6.52% 11.49%

400
GMsFEM-NO 1.15% 1.63% 1.85% 1.62%

F-FNO 1.60% 8.16% 4.17% 8.41%

600
GMsFEM-NO 1.12% 1.61% 1.78% 1.61%

F-FNO 1.21% 4.92% 3.27% 5.43%

800
GMsFEM-NO 1.13% 1.62% 1.82% 1.62%

F-FNO 1.02% 4.51% 2.44% 4.45%

Table 8: Evaluation of GMsFEM-NO trained on coarse grid and tested on finer grid, with comparison
to standard GMsFEM.

Diffusion, 8 Diffusion, 9 Richards, 8 Richards, 9

Train grid Test grid GMsFEM-NO

100 500 2.42% 2.97% 4.70% 3.49%

250 500 1.45% 1.79% 2.25% 1.97%

GMsFEM

500 1.17% 1.46% 1.93% 1.66%

4 CONCLUSION

In this work, we propose GMsFEM-NO, a novel method for solving multiscale PDEs that employs
NOs to predict the multiscale basis function subspaces in the GMsFEM offline stage, replacing the
conventional solution of local eigenvalue problems. We validated the method on standard 2D and
3D benchmarks: a linear elliptic diffusion problem and the nonlinear steady-state Richards equation.
GMsFEM-NO achieves more than 60× speedup in basis generation compared to standard GMsFEM.

A key contribution is a novel subspace alignment loss function, which enables direct learning of the
basis function subspace and improves the L2 accuracy over conventional LRBFL2

loss. The GMsFEM-
NO framework remains independent of the PDE’s right-hand side, allowing it to maintain consistent
performance across varying forcing terms. This contrasts with standalone NOs, which exhibit errors
exceeding 100% on out-of-distribution data. Furthermore, GMsFEM-NO demonstrates greater data
efficiency, requiring half the training samples of a comparable NO. A significant advantage is the
method’s discretization invariance: GMsFEM-NO performs effectively when evaluated on grid
resolutions higher than those used for training, demonstrating strong generalization across different
computational meshes. By preserving the mathematical structure of multiscale methods while
leveraging NO speed, this work establishes a practical paradigm for heterogeneous PDE simulation.

The primary limitation of our method is its current restriction to structured grids due to the chosen
NO architecture. Additionally, our experiments focused on relatively small grid sizes, which may not
fully represent large-scale applications. The study was also limited to two time-independent equation
types with Dirichlet boundary conditions.

Future work should address more complex PDE types, including time-dependent formulations of
applied interest. More research is needed on finer grid resolutions and the influence of coarse grid
sizing. Furthermore, future work should involve developing grid-agnostic architectures, such as
graph neural operators, to efficiently handle irregular domains and complex geometries inherent to
real-world applications.
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A COARSE GRID

The notation ωi refers to the i-th local domain, where the index corresponds to the numbering of
points on the coarse grid. Fig. 2 shows examples of local domains ω0, ω20, and ω34, representing the
full, half, and corner types in 2D. In 3D, there are four types: full (8 cells), half (4 cells), quarter (2
cells), and corner (1 cell), where the cell is a cube. Each local domain is discretized with a fine grid.

T H (Coarse Grid)

ω0

ω20

ω34

Figure 2: Illustration of a 5× 5 coarse grid TH showing local domains of different types: the corner
type ω0 (1 cell), half type ω34 (2 cells), and full type ω20 (4 cells), where the cell is a square.

B TRAINING GMSFEM-NO

We train separate specialized NOs for each geometric domain type: three for 2D problems (full,
half, corner) and four for 3D problems (full, half, quarter, corner), as illustrated for the 2D case in
Fig. 3 (a-c). Each NO predicts the Nbf basis functions for all local domains of its assigned type.
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The number of local domains for each geometric type can be calculated based on the coarse grid
dimensions. For a 2D grid with 36 domains (5× 5 cells), the counts are: 16 full, 16 half, and 4 corner
domains. For a finer 2D grid with 121 domains (10× 10 cells), the counts are: 81 full, 36 half, and 4
corner domains. In 3D, for a grid with 216 domains (5× 5× 5 cells), the distribution is: 64 full, 96
half, 48 quarter, and 8 corner domains.

Input dataset, κωi

NO1

NO2

NO3

(a)

(b)

(c)

Multiscale basis functions, ψωi
j

Figure 3: Multiscale basis generation algorithm for three subdomain types ωi: (a) full, (b) half, (c)
corner - using dedicated NOs per type with further extension to Ω.

C SUBSPACE ALIGNMENT LOSS (SAL)

To understand the relationship between the proposed LSAL (5) and classical Grassmannian geometry
Bendokat et al. (2024); Mandolesi (2023), we begin with the orthogonal projection matrices. For a
subspace R spanned by a set of basis vectors, we compute an orthonormal basis QR via the thin QR
decomposition. The orthogonal projection matrix onto R is then given by PR = QRQ

⊤
R.

The Grassmannian distance between two k-dimensional subspaces R and R̃ is defined using these
projection matrices. The distance derivation proceeds as follows:∥∥PR − PR̃

∥∥2
F
= tr

(
PR

)
− 2tr

(
PRPR̃

)
+ tr

(
PR̃

)
= dim(R) + dim(R̃)− 2tr

(
PRPR̃

)
= 2
(
k − tr

(
QRQ

⊤
RQR̃Q

⊤
R̃

))
.

The matrix Q⊤
RQR̃ contains the cosines of the principal angles between the subspaces. Therefore,

∥∥PR − PR̃

∥∥2
F
= 2
(
k −

∥∥Q⊤
RQR̃

∥∥2
F

)
.

Consequently, the Grassmannian distance simplifies to:

d(R, R̃) =
1√
2

∥∥PR − PR̃

∥∥
F
=

√
k −

∥∥Q⊤
RQR̃

∥∥2
F
.

This derivation confirms that minimizing LSAL is equivalent to minimizing the expected Grassmannian
distance between the true and predicted subspaces.

D THE SIGN INVARIANCE OF BASIS FUNCTIONS

Multiscale basis functions ψωi
j are derived from local eigenvectors ϕωi

j via ψωi
j = χiϕ

ωi
j , where χi is

a partition of unity function and ϕωi
j solve the symmetric generalized eigenvalue problem:

Aωi

h ϕ = λSωi

h ϕ,
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where Aωi

h and Sωi

h are symmetric matrices. These eigenvectors satisfy the orthogonality relations:

ϕ⊤j A
ωi

h ϕk = λjδjk, ϕ⊤j S
ωi

h ϕk = δjk.

Since eigenvectors are defined only up to a scalar multiple, if ϕj is an eigenvector corresponding to
eigenvalue λj , then −ϕj is also a valid eigenvector for the same eigenvalue. Both choices satisfy
the orthogonality and normalization conditions above, meaning the sign of each basis function is
arbitrary and does not affect its mathematical properties.

To address this sign ambiguity, we define the RBFL2 loss as:

LRBFL2
= Ei,j

[
min

(
∥ψi

j − ψ̃i
j∥22

∥ψi
j∥22

,
∥ψi

j + ψ̃i
j∥22

∥ψi
j∥22

)]
,

where ψi
j are the final multiscale basis functions (typically obtained by multiplying eigenvectors by

partition of unity functions). This loss compares the prediction ψ̃i
j against both ψi

j and −ψi
j , selecting

the smaller error to account for the sign invariance.

E INPUT DATA

We use the Karhunen-Loève expansion (KLE) Wong (1971); Aarnes & Efendiev (2008); Vasilyeva
et al. (2021) to generate stochastic permeability fields. This method decomposes a random field into
deterministic spatial functions and random coefficients.

1. Covariance Function. We assume the covariance function has an exponential form:

R(x, y) = σ2
R exp(−∆2),

with

∆2 =
|x1 − x2|2

l2x
+

|y1 − y2|2

l2y
,

for 2D case and

∆2 =
|x1 − x2|2

l2x
+

|y1 − y2|2

l2y
+

|z1 − z2|2

l2z
,

for 3D case with correlation lengths lx, ly, lz and variance σ2
R:

• For the 2D case: lx = 0.02, ly = 0.6, σ2
R = 2;

• For the 3D case: lx = 0.02, ly = 0.6, lz = 0.2, σ2
R = 2.

2. Eigenvalue Problem. The eigenfunctions ϕk and eigenvalues λk are obtained by solving the
homogeneous Fredholm integral equation:∫

Ω

R(x, y)ϕk(y)dy = λkϕk(x), k = 1, 2, . . . ,

3. Random Field Construction. The random field is represented as:

YL(x, ω) =

L∑
k=1

√
λkθk(ω)ϕk(x),

where θk(ω) are scalar random variables, and L is chosen to capture most of the field’s energy by
retaining the largest eigenvalues.

4. Permeability Field Generation. Each stochastic permeability field is defined as:

κ(x, ω) = exp(ak · ϕ(x, ω)),

where ϕ(x, ω) represents the heterogeneous porosity field derived from YL(x, ω), and ak > 0 is a
scaling parameter that controls the contrast.
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This KLE framework provides a systematic approach for generating realistic permeability fields with
prescribed spatial correlation structures. An example of a 2D input coefficient field κ(x) is shown in
Fig. 4a.

The spatially variable forcing term is defined by

f(x) ∼ γ · N
(
α ·
(
I −∆

)−β
)
,

where N denotes a Gaussian random field. The parameters are set as follows:

• For the 2D case: γ = 2000, α = 1, and β = 0.5;
• For the 3D case: γ = 2000, α = 2, and β = 1.

An example of a 2D right-hand side f(x) is shown in Fig. 4b.

(a) Input coefficient, κ(x) with values in range [1, 9600] (b) Right-hand side, f(x)

Figure 4: Example of input coefficient and right-hand side.

F BASELINES VS. GMSFEM-NO

We compare GMsFEM-NO with several baselines:

1. POD Volkwein (2013). Classical global intrusive POD.
2. Intrusive POD with DeepONet/FFNO or POD basis Meuris et al. (2021), Meuris et al.

(2023). First selected neural network is trained on standard regression problem. After that
one extract basis from trained network and uses similar to intrusive POD to form reduced
model. For FFNO Tran et al. (2021) basis is extracted from the last hidden layer, for
DeepONet Lu et al. (2019) basis is extracted from trunk net.

3. PCA-Net Hesthaven & Ubbiali (2018), Bhattacharya et al. (2021). POD is used to compress
features and targets, MLP is used as processor.

4. Kernel Batlle et al. (2024). Vector RKHS method is used to map sampled input functions to
sampled output functions.

5. DeepPOD Franco et al.. A DL-based techniques used to directly learn optimal basis with
projector-based loss.

We use dataset with spatially variable forcing term (9) covered in more details in Appendix E. Neural
networks was trained and evaluated on grid 100× 100.

For each selected baseline we perform sweep over hyperparameters:

1. Intrusive POD with FFNO basis. Architecture is defined by the number of features in the
hidden layer, number of modes used by spectral convolution, and number of layers. Number
of features in the hidden layer was fixed to 64, number of modes was selected from the set
[10, 14, 16], number of layers – from the set [3, 4, 5]. Optimisation was performed with Lion
optimiser Chen et al. (2023) with exponential decay 0.5 with number of transition steps
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selected from [100, 200], and learning rate selected from [5 · 10−5, 10−4]. We optimise for
1000 epoch with batch size 10. In all architectures we used GELU activation function.

2. Intrusive POD with DeepONet basis. Architecture is defined by trunk and branch nets. As
trunk net we used convolution architecture with spatial downsampling by a factor of 2 along
each dimension after each layer, simultaneously, the number of channels was multiplied by
2 after each layer, as branch net we used standard MLP. We apply optimisation similar to the
one of FFNO, but select learning rate from [10−3, 10−4]. Number of trunk network layers
was fixed to 4, trunk encoder transformed 2 input features to either 4 or 5 features, kernel
size of convolution in trunk was selected among [3, 7]. In the branch net we vary number of
layers [3, 4] and the number of basis vectors [100, 200] in the last layer.

3. DeepPOD Grid search for DeepPOD was exactly the same as for Intrusive POD with FFNO.

4. PCANet. For PCANet the optimisation was similar to Intrusive POD with DeepONet, but
with 3000 epochs. We vary the sizes of POD encoder and decoder among [100, 300, 500]
and [100, 300, 500]. For MLP processor we vary the number of layers [3, 4, 5] and the
number of hidden neurons [100, 300, 500].

5. Kernel. We closely followed code provided by authors. As kernels we used Matern, RBF.
We combined the method with POD and performed a grid search over the number of modes:
[50, 100, 150, 200] for both features and targets.

Table 9: Regression-based methods.

method train error test error

GMsFEM-NO 2.6% 2.8%
PCANet 6% 24%
kernel 7% 100%

Comparison of regression-based approaches with GMsFEM-NO appears in Table 9. We observe
significant overfitting for kernel-based method and PCA-Net.

Intrusive techniques are compared in Figure 5. We see that bases extracted from DeepONet and
FFNO are generally not appealing. FFNO slightly improves over global POD (weak baseline) for
≃ 64 basis functions. DeepONet fails to reach accuracy of global POD. The most competative
approach is DeepPOD. Note however, that DeepPOD becomes comparable to GMsFEM-NO with 8
sparse (localised) basis functions only when it uses 20 dense basis functions. With 30 basis functions
DeepPOD outperforms GMsFEM-NO with 8 basis functions.
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Figure 5: Comparison of accuracy for intrusive techniques. Number of basis functions for GMsFEM
is fexed to 8. DeepONet and FFNO mean Intrusive POD with DeepONet/FFNO basis.
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G GMSFEM-NO TRAINING DETAILS

For F-FNO training to predict basis functions subspace, we used AdamW optimizer Loshchilov &
Hutter (2017) with cosine decay learning rate scheduler. The initial learning rate was 1 · 10−3. We
trained NO for 600 epochs. For the rest of the hyperparameters, we performed a grid search:

1. Batch size [8, 16, 32] .

2. Number of operator layers [4, 5] .
3. Number of modes used in F-FNO kernel:

• For 2D:
– for full domains

[
[16, 16], [18, 18]

]
;

– for half domains
[
[8, 8], [10, 10], [14, 8], [14, 10]

]
;

– for corner domains
[
[6, 6], [8, 8], [10, 10]

]
.

• For 3D:
– for full domains

[
[6, 6, 6], [8, 8, 8]

]
;

– for half domains
[
[8, 8, 4], [6, 6, 3]

]
;

– for quarter domains
[
[8, 4, 4], [6, 3, 3]

]
.

– for corner domains
[
[4, 4, 4], [3, 3, 3]

]
.

4. Number of channels in the FFNO kernel [64, 128] .

The source code containing the optimal parameters will be made publicly available upon acceptance.
We use JAX, Optax DeepMind et al. (2020) and Equinox Kidger & Garcia (2021) in all experiments.

H F-FNO TRAINING DETAILS

For F-FNO Tran et al. (2021), we used the following training protocol. We employed the AdamW
optimizer Loshchilov & Hutter (2017) with a cosine decay learning rate scheduler and trained for
600 epochs. We performed a grid search over the following hyperparameters:

1. Batch size: [8, 16, 32] ;
2. Number of modes in F-FNO kernel: [14, 16] ;
3. Number of operator layers: [4, 5] ;
4. Number of channels in F-FNO kernel: [64, 128] .

The optimal hyperparameters were: batch size 8, 5 operator layers, 16 modes, and 128 channels.

I RESULTS OF GMSFEM-NO FOR NBF = 4

Table 10: Performance comparison of loss functions for NO training (100× 100 grid, Nv = 36).

LRBFL2
LSAL LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

4

Diffusion, 8 2.72% 19.10% 2.39% 18.01% 2.40% 18.01%

Diffusion, 9 6.03% 29.10% 5.76% 28.40% 5.78% 28.43%

Richards, 8 3.87% 16.26% 3.14% 15.01% 3.17% 15.02%

Richards, 9 9.78% 34.39% 6.11% 29.37% 6.13% 29.42%

For the Richards equation with complex right-hand side (9) andNbf = 4 basis functions, our proposed
loss improves the relative L2 metric by a factor of 1.6.

We did not conduct further experiments with GMsFEM-NO using Nbf = 4 because its performance
was insufficient and it underperformed compared to the standalone neural operator.
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J OUT-OF-DISTRIBUTION RESULTS

Unlike standalone NOs, which suffer from catastrophic failure when applied to out-of-distribution
forcing terms (Table 11), GMsFEM-NO is fundamentally independent of the right-hand side, ensuring
robust performance. Retraining the NO for new right-hand side terms requires computationally
expensive recalculation of solutions, highlighting a key limitation of standalone NO learning.

Table 11: Out-of-distribution results for the NO: training and testing on PDEs with different right-hand
sides.

Train, Dtrain Test, Dtest 100× 100 250× 250

Diffusion, 8 Diffusion, 9 218% 174%
Diffusion, 9 Diffusion, 8 1392% 1632%
Richards, 8 Richards, 9 196% 113%
Richards, 9 Richards, 8 6503% 6554%
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