
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOCALLY SUBSPACE-INFORMED NEURAL OPERATORS
FOR EFFICIENT MULTISCALE PDE SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose GMsFEM-NO, a novel hybrid framework that combines the robustness
of the Generalized Multiscale Finite Element Method (GMsFEM) with the compu-
tational speed of neural operators (NOs) to create an efficient method for solving
heterogeneous partial differential equations (PDEs). GMsFEM builds localized
spectral basis functions on coarse grids, allowing it to capture important multiscale
features and solve PDEs accurately with less computational effort. However, com-
puting these basis functions is costly. While NOs offer a fast alternative by learning
the solution operator directly from data, they can lack robustness. Our approach
trains a NO to instantly predict the GMsFEM basis by using a novel subspace-
informed loss that learns the entire relevant subspace, not just individual functions.
This strategy significantly accelerates the costly offline stage of GMsFEM while
retaining its foundation in rigorous numerical analysis, resulting in a solution that
is both fast and reliable. On standard multiscale benchmarks—including a linear
elliptic diffusion problem and the nonlinear, steady-state Richards equation—our
GMsFEM-NO method achieves a reduction in solution error compared to stan-
dalone NOs and other hybrid methods. The framework demonstrates effective
performance for both 2D and 3D problems. A key advantage is its discretization
flexibility: the NO can be trained on a small computational grid and evaluated on a
larger one with minimal loss of accuracy, ensuring easy scalability. Furthermore,
the resulting solver remains independent of forcing terms, preserving the gener-
alization capabilities of the original GMsFEM approach. Our results prove that
combining NO with GMsFEM creates a powerful new type of solver that is both
fast and accurate.

1 INTRODUCTION

Many practical multiscale problems involve highly heterogeneous properties with high-contrast
variations across multiple scales, posing significant challenges for the numerical solution of partial
differential equations (PDEs). A well-established approach for such problems is the Generalized
Multiscale Finite Element Method (GMsFEM) Efendiev et al. (2011; 2013); Chung et al. (2016),
which constructs localized spectral basis functions on coarse grids. By solving local eigenproblems,
GMsFEM captures fine-scale information, enabling accurate coarse-scale solutions. However, this
accuracy comes at a high computational cost due to the expense of solving these local eigenproblems.

Recently, data-driven solvers, particularly neural operators (NOs) like Fourier Neural Operators
(FNOs) Li et al. (2020); Kovachki et al. (2023); Fanaskov & Oseledets (2023); Tran et al. (2021)
and DeepONets Lu et al. (2021); Wang et al. (2021), have emerged as a powerful alternative for
accelerating PDE simulations Azizzadenesheli et al. (2024); Karniadakis et al. (2021). While
effective for problems with smooth coefficients, standard NOs often struggle to efficiently capture
the localized features of high-contrast heterogeneities, typically requiring extensive data and large
network architectures.

In this work, we introduce GMsFEM-NO, a hybrid framework that combines the robustness of
GMsFEM with the speed of neural operators. Our key innovation is a subspace-informed NO that
learns to map a heterogeneous coefficient field directly to the low-dimensional subspace spanned by
the GMsFEM basis functions. Instead of learning individual basis functions—which can be sensitive
to small perturbations—we design a novel subspace-aware loss function that enforces physical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

consistency at the subspace level. This approach offers several advantages: it is more data-efficient
than learning the full PDE solution, as the basis functions are smoother and of lower dimension;
and it is more robust than a pure NO, as the final solution is obtained through a GMsFEM, ensuring
legitimacy even with imperfect basis predictions.

Our approach is distinct from existing hybrid methods Bhattacharya et al. (2024); Vasilyeva et al.
(2020); Wang et al. (2020); Liu et al. (2023); Kröpfl et al. (2022; 2025) that combine machine learning
with numerical homogenization/upscaling/macroscopic-modeling. Those methods typically assume a
known macroscopic equation form and learn effective coefficients, which is infeasible for problems
without scale separation and with high contrast. In contrast, GMsFEM-NO learns the macroscopic
solution space itself, in the form of multiscale basis functions, making it suitable for these more
challenging settings. A related approach Spiridonov et al. (2025) used a fully connected neural
network to predict an additional basis function for the steady-state Richards equation Richards (1931);
Farthing & Ogden (2017), supplementing an existing set of precomputed basis functions. While this
approach enhanced prediction accuracy, it failed to deliver computational efficiency gains because
traditional methods still generated most basis functions. Furthermore, the simplicity of the fully
connected architecture limited its ability to account for spatial variations, potentially compromising
prediction accuracy for high-contrast data. Another category of related work aims to reduce the
computational cost of PDE solving via reduced-order modeling (POD Volkwein (2013), DeepPOD
Franco et al., and PCANet Bhattacharya et al. (2021)). DeepPOD and PCANet also leverage neural
networks to learn compact solution representations, providing a relevant baseline for comparing the
efficiency of our method.

We validate GMsFEM-NO on two challenging benchmarks with high-contrast coefficients: a linear
elliptic diffusion problem and the nonlinear steady-state Richards equation. Results showed that our
approach is better than NO in terms of solution accuracy and requires less training data to achieve
similar accuracy. Additionally, it reduces basis-construction time by more than 60 times compared to
traditional GMsFEM.

Our main contributions are:

1. We introduce a novel hybrid approach (GMsFEM-NO) that combines the strengths of NOs
with GMsFEM (see Fig. 1).

2. A new subspace-informed loss function for learning stable and generalizable solution
subspaces.

3. The approach is evaluated on high-contrast PDEs and shown to deliver the same results as
GMsFEM at a fraction of the computational cost.

4. Demonstration of resolution invariance of GMsFEM-NO: effective training on low-
resolution data for application to high-resolution problems.

5. Superior in-distribution and out-of-distribution performance compared to standard NOs,
without requiring domain adaptation.

2 LOCALLY SUBSPACE-INFORMED NEURAL OPERATORS

2.1 DIFFUSION EQUATION

We consider the diffusion equation with heterogeneous coefficient

−∇ ·
(
κ(x)∇u(x)

)
= f(x), x ∈ Ω ≡ (0, 1)D, u(x)

∣∣
x∈∂Ω

= 0, (1)

where ∂Ω is a boundary of the unit hypercube Ω, and κ(x) is a heterogeneous field with high contrast.
In particular, we assume that κ(x) ⩾ ε > 0, while κ(x) can have very large variations. For example,
in this work we use κ(x) with values in range [1, 9600].

2.2 STEADY-STATE RICHARDS’ EQUATION

The steady-state version of Richards’ equation, which describes water movement in unsaturated
porous media, takes the following form:

−∇ ·
(
κ
(
x, u(x)

)
∇u(x)

)
= f(x), x ∈ Ω ≡ (0, 1)D, u(x)

∣∣
x∈∂Ω

= 0, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Spectral problem

NO

κωi

κωi

(a)

(b)

Input dataset, κ
{
ψωi
j

}Nbf

j=1

{
ψ̃ωi
j

}Nbf

j=1

L

NO {
ψ̃ωi
j

}Nbf

j=1

R̃

Solve the coarse-scale system: A0u0 = f0, A0 = R̃AR̃⊤, f0 = R̃⊤b

Figure 1: Illustration of training (a) and inference (b) stages of the proposed GMsFEM-NO method.
NO is trained on heterogeneous fields κωi that defined on subdomain ωi to predict subspace of basis
functions {ψωi

j }Nbf
j=1, where Nbf is the number of basis functions. During training the subspace-

informed loss L is applied to align predicted subspace {ψ̃ωi
j }Nbf

j=1 with {ψωi
j }Nbf

j=1. During inference
stage (b), the predicted subspace forms the matrix R̃ that projects matrix A and vectors to the coarse
space.

where κ
(
x, u(x)

)
is unsaturated hydraulic conductivity, u(x) is the water pressure and f(x) is a

source or sink term.

We consider the Haverkamp model Haverkamp et al. (1977) to define κ
(
x, u(x)

)
:

κ
(
x, u(x)

)
= Ks(x)Kr(u(x)) = κ(x)

1

1 + |u|
,

where κ(x) is a heterogeneous field with high contrast that denotes the permeability of soils, Kr(u)
represents the relative hydraulic conductivity, Ks(x) stands for the saturated hydraulic conductivity.

All the multiscale heterogeneity is incorporated in κ(x) without regard to u, and
1

1 + |u|
includes all

the non-linearity.

2.3 GENERALIZED MULTISCALE FINITE ELEMENT METHOD

2.3.1 MULTISCALE SPACE APPROXIMATION

Multiscale methods Efendiev & Hou (2009) form a broad class of numerical techniques. They are
based on constructing multiscale basis functions in local domains to capture fine-scale behavior.

Let TH be a coarse mesh of the domain Ω ⊂ RD (with D = 2 or 3), such that TH =
⋃Nc

i=1Ki, where
each Ki is a coarse cell and Nc is the number of coarse cells. Let Th be a fine grid obtained by a
refinement of TH , with h≪ H . We denote by {xi}Nv

i=1 the nodes of the coarse mesh TH , where Nv

is the number of nodes of the coarse mesh. Let ωi be the subdomain defined as the collection of
coarse cells containing the coarse grid node xi (see Fig. 2 in Appendix A):

ωi =
⋃
j

{
Kj ∈ TH : xi ∈ Kj

}
.

To ensure accurate approximations on the coarse mesh TH , we construct spectral multiscale basis
functions following the GMsFEM. GMsFEM contains two stages:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Offline stage:

1. Coarse and Local Domain Definition: Define the coarse grid TH and generate the associ-
ated local domains ωi for i = 1, . . . , Nv .

2. Local Spectral Problem Solving: In each local domain ωi, solve a local spectral problem
to obtain a set of eigenvectors

{
ϕωi
j

}N
j=1

, where N is the number of coarse eigenvectors.

3. Multiscale Basis Function Construction: Select the first Nbf eigenvectors from each ωi

and multiply them by a partition of unity function χi Babuska & Lipton (2011); Babuška
et al. (2008); Strouboulis et al. (2000) to create the final multiscale basis functions

{
ψωi
j

}Nbf

j=1
,

where Nbf ⩽ N .

4. Global System Assembly: Map the local degrees of freedom to global and form a restriction
matrix R.

Online stage:

1. Projection: Use R to project the fine-scale system onto the coarse space.

2. Solution: Compute the solution within the coarse multiscale space.

3. Reconstruction: Obtain the fine-scale approximation by applying the prolongation operator
R⊤ to the coarse-scale solution.

2.3.2 SPECTRAL PROBLEM

We denote by V h(Ω) the usual finite element discretization of piecewise linear continuous functions
with respect to the fine grid Th. For each local domain ωi, we define the Neumann matrix Aωi

h by

v⊤h A
ωi

h wh =

∫
ωi

κ(x)∇vh · ∇wh dx, ∀vh, wh ∈ V h(ωi)

and the Mass matrix Sωi

h by

v⊤h S
ωi

h wh =

∫
ωi

κ(x)vhwh dx, ∀vh, wh ∈ V h(ωi).

We consider the finite dimensional symmetric eigenvalue problem

Aωi

h ϕ = λSωi

h ϕ

and denote its eigenvalues and eigenvectors by
{
λωi
j

}N
j=1

and
{
ϕωi
j

}N
j=1

, respectively. Note that
λωi
1 = 0 corresponds to the constant eigenvector ϕωi

1 = const. We order eigenvalues as

λωi
1 ⩽ λωi

2 ⩽ . . . ⩽ λωi
j ⩽

The eigenvectors
{
ϕωi
j

}N
j=1

form an Sωi

h -orthonormal basis of V h(ωi).

2.3.3 SOLVING OF THE COARSE-SCALE SYSTEM

For each local domain ωi, we select eigenvectors corresponding to the Nbf ⩽ N smallest eigenvalues
and define a multiscale subspace

span
{
ψωi
j = χiϕ

ωi
j

∣∣ j = 1, . . . , Nbf, i = 1, . . . , Nv

}
(3)

and define the restriction matrix R⊤ =
[
ψω1
1 , . . . , ψω1

Nbf
, . . . , ψ

ωNv
1 , . . . , ψ

ωNv

Nbf

]
. Coarse-grid solution

is the finite element projection of the fine-scale solution into the space (3). More precisely, multiscale
solution u0 is given by

A0u0 = f0,

where A0 = RAR⊤ is the projected system matrix, f0 = R⊤b is projected right-hand side. The
reconstructed fine-scale solution is u = R⊤u0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.4 NEURAL OPERATOR

Here we consider one type of NO that employs Fourier modes, but there are no restrictions on using
other types of NOs. Fourier neural operators (FNOs) are a class of NOs motivated by Fourier spectral
methods. Originally, Li et al. (2020) formulate each operator layer as

Lℓ
(
z(ℓ)
)
= σ

[
W (ℓ)z(ℓ) + b(ℓ) +K(ℓ)

(
z(ℓ)
)]
, (4)

where W (ℓ)z(ℓ) + b(ℓ) is an affine point-wise map,

K(ℓ)
(
z(ℓ)
)
= IFFT

(
R(ℓ) · FFT(z)

)
is a kernel integral operator. The Fourier domain weight matrices

{
R(ℓ)

}L
ℓ=1

require O(LH2MD)
parameters, where H is the hidden size, M is the number of the top Fourier modes that are kept, and
D is the dimension of the problem.

In Factorised FNO (F-FNO) Tran et al. (2021), the operator layer in (4) is changed

Lℓ
(
z(ℓ)
)
= z(ℓ) + σ

[
W

(ℓ)
2 σ

(
W

(ℓ)
1 K(ℓ)

(
z(ℓ)
)
+ b

(ℓ)
1

)
+ b

(ℓ)
2

]
,

where K(ℓ)
(
z(ℓ)
)
=
∑

d∈D

[
IFFT

(
R(ℓ)

d · FFTd

(
z(ℓ)
))]

. In this case, the number of parameters

is O(LH2MD). Therefore, the FFNO reduces model complexity and scales efficiently to deeper
networks.

2.5 PROPOSED METHOD

2.5.1 GMSFEM-NO ALGORITHM

We propose an efficient hybrid method for generating basis functions in the GMsFEM using NOs,
significantly accelerating the offline stage.

Local domains vary in shape and orientation (see Appendix A), where orientation refers to the relative
placement of the coarse node xi shared by all cells in the local domain. We address this variability
by categorizing the local domains based on their geometry: into full, half, and corner types in
2D, and into full, half, quarter, and corner types in 3D (see Appendix A). Before training, we
normalize the orientation of each local domain by rotating both the input data and the target basis
functions, ensuring a standardized coarse node xi position within each group. This preprocessing
step guarantees consistency in the input structure for the NO.

We train separate NOs, each specialized for one domain group (see Appendix B). Each NO predicts
Nbf basis functions for local domains within its assigned category. This group-specific approach
improves prediction accuracy by accounting for geometric variations across local domain types.

For test data, we first decompose the computational domain into local domains. The corresponding
NO then generates the required basis functions. The predicted basis functions are extended to the
domain Ω (with zeros padded outside their respective local domains) and vectorized to construct the
restriction matrix R. Finally, the online stage of GMsFEM is executed to compute the multiscale
solution.

This approach substantially reduces offline computational costs while maintaining the accuracy and
flexibility of GMsFEM, making it particularly suitable for problems with heterogeneous or highly
varying coefficients.

2.5.2 SUBSPACE-INFORMED LOSS FUNCTIONS

The selection of an appropriate loss function is critical when training NOs. We propose a Subspace
Alignment Loss (SAL) that directly optimizes the geometric consistency of the learned subspaces.
Let Ri =

[
ψi
1, . . . , ψ

i
Nbf

]⊤
represent the target subspace basis and R̃i denote the predicted subspace.

The SAL measures alignment between subspaces using their orthonormalized bases QRi and QR̃i :

LSAL = Ei

[
Nbf −

∥∥Q⊤
RiQR̃i

∥∥2
F

]
, (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the Frobenius norm term ∥Q⊤
RiQR̃i∥2F quantifies the subspace overlap, achieving its maximum

value Nbf when subspaces are perfectly aligned (see Appendix C).

While SAL ensures subspace coherence, it may overlook finer discrepancies in how functions
are projected onto the subspaces. To enforce consistency in projection behavior, we introduce a
Projection Regularization term. This term evaluates the discrepancy between projections of a
randomized test vector vi onto the target and predicted subspaces, governed by their projection
matrices PRi and PR̃i :

LSAL-PR = LSAL + λ · Ei,c

∥∥ (PRi − PR̃i

)
vi
∥∥2
2
, c ∼ N (0, I), (6)

where vi =
∑Nbf

k=1 ckψ
i
k, PRi = QRiQ⊤

Ri , PR̃i = QR̃iQ
⊤
R̃i

, and λ is a hyperparameter.

We compare proposed loss functions (5), (6) with conventional one which is L2 loss. Since basis
functions are defined only up to their sign (see Appendix D), the conventional L2 loss is adapted to
account for this invariance, resulting in the Relative Basis Function L2 Loss (RBFL2):

LRBFL2
= Ei,j

[
min

(
∥ψi

j − ψ̃i
j∥22

∥ψi
j∥22

,
∥ψi

j + ψ̃i
j∥22

∥ψi
j∥22

)]
, (7)

where ψi
j and ψ̃i

j denote the j-th target and predicted basis functions for the i-th local domain ωi.
The minimization over ±ψ̃i

j ensures invariance to sign permutations.

3 RESULTS

We use datasets of 2D coefficients at resolutions of 1002 and 2502, and 3D coefficients at 503 (see
example in Appendix E). The domain is partitioned into Nv subdomains corresponding to coarse
grids (e.g., Nv = 36 for 5× 5, 121 for 10× 10, 216 for 5× 5× 5). The complete dataset contains
1000 samples, divided into training Dtrain (800 samples) and testing Dtest (200 samples) datasets. The
different local domain types occur with varying frequencies within a single sample (see Appendix B).
For training NOs, we utilize the first 8 basis functions (Nbf) per subdomain as training targets.

To evaluate method robustness, we consider two right-hand side configurations:

• Uniform unit forcing term
f(x) = 1. (8)

• Spatially variable forcing (see Appendix E) defined by

f(x) ∼ γ · N
(
α ·
(
I −∆

)−β
)
. (9)

To measure quality of the obtained solutions on fine grid, we use the following metrics:

L2 = En


√√√√∫Ω ∣∣unh − ũnh

∣∣2dx∫
Ω

∣∣unh∣∣2dx
 , H1 = En


√√√√∫Ω ∣∣∇unh −∇ũnh

∣∣2dx∫
Ω

∣∣∇unh∣∣2dx
 .

All experiments were performed on a single Nvidia Tesla H100 80Gb HBM3. The comparison of our
approach with baseline methods is presented in Appendix F.

3.1 LRBFL2 VS. LSAL , LSAL-PR

To determine the optimal training configuration for the NOs predicting basis function subspaces, we
performed a grid search over architectural parameters and training hyperparameters. Full specifica-
tions (except loss function type) are in Appendix G. Loss function results for Nbf = 8 are shown in
Table 1. For Nbf = 4, results are in Appendix I.

As shown in Table 1, LRBFL2
underperforms compared to our proposed subspace alignment losses

(LSAL, LSAL-PR). For the Richards equation with simple right-hand side (8) andNbf = 8, our proposed
loss improves the relative L2 metric by a factor of 1.8. Notably, the projection regularization term

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

in LSAL-PR yielded nearly identical results to LSAL. While projection regularization had a minimal
impact on smaller grids—likely because the subspace alignment term alone suffices—its effect
became significant for larger problems. For the 2502 grid using Richards’ equation with right-hand
side (8), it reduced the L2 error from 1.82% to 1.72% (see Table 3).

Table 1: Performance comparison of loss functions for NO training (100× 100 grid, Nv = 36).

LRBFL2 LSAL LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8

Diffusion, 8 1.75% 14.83% 1.06% 11.57% 1.06% 11.65%

Diffusion, 9 3.53% 21.77% 2.82% 19.07% 2.81% 19.03%

Richards, 8 3.46% 15.04% 1.88% 11.10% 1.87% 11.25%

Richards, 9 3.77% 22.38% 2.99% 19.61% 2.99% 19.60%

3.2 GMSFEM VS. GMSFEM-NO

In this section, we compare the performance of the original GMsFEM and our proposed GMsFEM-
NO methods in terms of solution accuracy (quantified by L2 and H1 metrics) and computational
efficiency for basis functions generation.

As shown in Tables 2, 3, and 4, GMsFEM-NO achieves nearly identical L2 andH1 errors to GMsFEM
across all datasets and grid sizes (2D: 100×100, 250×250; 3D: 50×50×50). While GMsFEM-NO
shows slightly better results for some configurations, this is likely due to statistical variation.

Table 5 compares the time required to generate 8 basis functions using the GMsFEM offline stage
and GMsFEM-NO for different grid sizes and Nv values. GMsFEM-NO employs several NOs, one
for each local domain type. The proposed method achieves more than 60× speedup, demonstrating
its computational superiority. Basis calculation speedup grows with grid size and dimensionality.

Table 2: Performance comparison of GMsFEM and GMsFEM-NO for 2D (100× 100, Nv = 36).

GMsFEM GMsFEM-NO

Nbf Dataset L2 H1 L2 H1

8

Diffusion, 8 1.15% 11.68% 1.06% 11.57%

Diffusion, 9 2.82% 19.07% 2.81% 19.03%

Richards, 8 2.03% 11.68% 1.87% 11.25%

Richards, 9 3.09% 20.20% 2.99% 19.60%

Table 3: Performance comparison of GMsFEM and GMsFEM-NO for 2D (250× 250, Nv = 121).

GMsFEM GMsFEM-NO, LSAL GMsFEM-NO, LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8

Diffusion, 8 1.12% 14.01% 1.13% 13.92% 1.05% 14.07%

Diffusion, 9 1.60% 21.49% 1.62% 22.50% 1.60% 22.03%

Richards, 8 1.79% 14.57% 1.82% 14.27% 1.72% 14.53%

Richards, 9 1.62% 21.76% 1.62% 22.62% 1.60% 22.13%

3.3 F-FNO VS. GMSFEM-NO

In this section, we compare the performance of the proposed GMsFEM-NO framework against a
standalone F-FNO trained to directly predict PDE solutions. While the standalone F-FNO offers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison of GMsFEM and GMsFEM-NO for 3D (50× 50× 50, Nv = 216).

GMsFEM GMsFEM-NO, LSAL GMsFEM-NO, LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

8

Diffusion, 8 3.07% 20.72% 3.10% 20.39% 3.10% 20.39%

Diffusion, 9 5.08% 25.26% 5.01% 24.92% 5.00% 24.86%

Richards, 8 4.04% 15.43% 4.12% 15.37% 4.14% 15.39%

Richards, 9 5.02% 24.89% 5.02% 24.92% 5.00% 24.89%

Table 5: Basis generation time: GMsFEM-NO vs. standard GMsFEM offline stage.

Grid Nv GMsFEM, sec. GMsFEM-NO, sec.

100× 100 36 16.87 0.28
250× 250 121 210.5 0.31

50× 50× 50 216 935.4 0.84

faster inference and might achieve comparable accuracy, its performance deteriorates significantly for
high-contrast datasets. We validate this through empirical testing (full training details are provided in
the Appendix H).

As shown in Table 6, GMsFEM-NO achieves lower relative L2 errors compared to the standalone
NO across all datasets. When applied to Richards’ equation with the complex right-hand side (9),
GMsFEM-NO achieves a 1.7× reduction in relative L2 error versus a standalone NO on the 100×100
grid, improving to a 12.8× reduction on the 250× 250 grid.

A critical advantage of GMsFEM-NO over the standalone NO lies in its independence from the
right-hand side terms of the PDE. The standalone NO exhibits catastrophic failure when tested on
out-of-distribution forcing terms, as evidenced in Table 11 in Appendix J.

Since each coefficient contains multiple local domains of each type, GMsFEM-NO requires fewer
samples than F-FNO for training. As shown in Table 7, when Ntrain is reduced below 800, the error
for F-FNO begins to increase significantly. In contrast, GMsFEM-NO’s accuracy remains stable
across the range of 800 to 400 samples. Even with only 200 samples, the performance degradation
for GMsFEM-NO remains small; for example, on Richards’ equation with the simple right-hand side
(8), the error increases only modestly from 1.85% to 2.07%.

Table 6: Performance comparison of NO and GMsFEM-NO (2D datasets)

100× 100 250× 250

Nbf Dataset F-FNO GMsFEM-NO F-FNO GMsFEM-NO

8

Diffusion, 8 1.37% 1.06% 1.02% 1.05%

Diffusion, 9 3.55% 2.81% 4.51% 1.60%
Richards, 8 2.98% 1.72% 2.44% 1.72%
Richards, 9 4.09% 2.99% 4.45% 1.60%

3.4 GMSFEM-NO FOR DIFFERENT GRIDS

Table 8 demonstrates the resolution invariance of GMsFEM-NO by training the model on a coarse
grid and testing it on a finer grid (500× 500), with results compared against the standard GMsFEM
solution computed directly on the fine grid. We used a 10× 10 coarse grid (121 subdomains) for all
experiments. The results demonstrate the stability of the proposed method. GMsFEM-NO performs
effectively when evaluated on a grid resolution higher than its training resolution, a key advantage
enabled by the neural operator’s ability to generalize to different discretizations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Comparison of F-FNO and GMsFEM-NO performance across different training dataset sizes
for 250× 250.

Dtrain Diffusion, 8 Diffusion, 9 Richards, 8 Richards, 9

200
GMsFEM-NO 1.33% 1.77% 2.07% 1.77%

F-FNO 2.85% 11.56% 6.52% 11.49%

400
GMsFEM-NO 1.15% 1.63% 1.85% 1.62%

F-FNO 1.60% 8.16% 4.17% 8.41%

600
GMsFEM-NO 1.12% 1.61% 1.78% 1.61%

F-FNO 1.21% 4.92% 3.27% 5.43%

800
GMsFEM-NO 1.13% 1.62% 1.82% 1.62%

F-FNO 1.02% 4.51% 2.44% 4.45%

Table 8: Evaluation of GMsFEM-NO trained on coarse grid and tested on finer grid, with comparison
to standard GMsFEM.

Diffusion, 8 Diffusion, 9 Richards, 8 Richards, 9

Train grid Test grid GMsFEM-NO

100 500 2.42% 2.97% 4.70% 3.49%

250 500 1.45% 1.79% 2.25% 1.97%

GMsFEM

500 1.17% 1.46% 1.93% 1.66%

4 CONCLUSION

In this work, we propose GMsFEM-NO, a novel method for solving multiscale PDEs that employs
NOs to predict the multiscale basis function subspaces in the GMsFEM offline stage, replacing the
conventional solution of local eigenvalue problems. We validated the method on standard 2D and
3D benchmarks: a linear elliptic diffusion problem and the nonlinear steady-state Richards equation.
GMsFEM-NO achieves more than 60× speedup in basis generation compared to standard GMsFEM.

A key contribution is a novel subspace alignment loss function, which enables direct learning of the
basis function subspace and improves the L2 accuracy over conventional LRBFL2

loss. The GMsFEM-
NO framework remains independent of the PDE’s right-hand side, allowing it to maintain consistent
performance across varying forcing terms. This contrasts with standalone NOs, which exhibit errors
exceeding 100% on out-of-distribution data. Furthermore, GMsFEM-NO demonstrates greater data
efficiency, requiring half the training samples of a comparable NO. A significant advantage is the
method’s discretization invariance: GMsFEM-NO performs effectively when evaluated on grid
resolutions higher than those used for training, demonstrating strong generalization across different
computational meshes. By preserving the mathematical structure of multiscale methods while
leveraging NO speed, this work establishes a practical paradigm for heterogeneous PDE simulation.

The primary limitation of our method is its current restriction to structured grids due to the chosen
NO architecture. Additionally, our experiments focused on relatively small grid sizes, which may not
fully represent large-scale applications. The study was also limited to two time-independent equation
types with Dirichlet boundary conditions.

Future work should address more complex PDE types, including time-dependent formulations of
applied interest. More research is needed on finer grid resolutions and the influence of coarse grid
sizing. Furthermore, future work should involve developing grid-agnostic architectures, such as
graph neural operators, to efficiently handle irregular domains and complex geometries inherent to
real-world applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jørg E Aarnes and Yalchin Efendiev. Mixed multiscale finite element methods for stochastic porous
media flows. SIAM Journal on Scientific Computing, 30(5):2319–2339, 2008.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, 6(5):320–328, 2024.

Ivo Babuska and Robert Lipton. Optimal local approximation spaces for generalized finite element
methods with application to multiscale problems. Multiscale Modeling & Simulation, 9(1):373–406,
2011.

Ivo Babuška, Victor Nistor, and Nicolae Tarfulea. Generalized finite element method for second-order
elliptic operators with dirichlet boundary conditions. Journal of Computational and Applied
Mathematics, 218(1):175–183, 2008.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competitive
for operator learning. Journal of Computational Physics, 496:112549, 2024.

Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A grassmann manifold handbook: Basic
geometry and computational aspects. Advances in Computational Mathematics, 50(1):6, 2024.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction
and neural networks for parametric pdes. The SMAI journal of computational mathematics, 7:
121–157, 2021.

Kaushik Bhattacharya, Nikola B Kovachki, Aakila Rajan, Andrew M Stuart, and Margaret Trautner.
Learning homogenization for elliptic operators. SIAM Journal on Numerical Analysis, 62(4):
1844–1873, 2024.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36:49205–49233, 2023.

Eric T Chung, Yalchin Efendiev, Guanglian Li, and Maria Vasilyeva. Generalized multiscale finite
element methods for problems in perforated heterogeneous domains. Applicable Analysis, 95(10):
2254–2279, 2016.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

Yalchin Efendiev and Thomas Y Hou. Multiscale finite element methods: theory and applications,
volume 4. Springer Science & Business Media, 2009.

Yalchin Efendiev, Juan Galvis, and Xiao-Hui Wu. Multiscale finite element methods for high-contrast
problems using local spectral basis functions. Journal of Computational Physics, 230(4):937–955,
2011.

Yalchin Efendiev, Juan Galvis, and Thomas Y Hou. Generalized multiscale finite element methods
(gmsfem). Journal of computational physics, 251:116–135, 2013.

Vladimir Sergeevich Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady
Mathematics, volume 108, pp. S226–S232. Springer, 2023.

Matthew W Farthing and Fred L Ogden. Numerical solution of richards’ equation: A review of
advances and challenges. Soil Science Society of America Journal, 81(6):1257–1269, 2017.

10

http://github.com/google-deepmind

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicola Rares Franco, Andrea Manzoni, Paolo Zunino, and Jan S Hesthaven. Deep orthogonal
decomposition: a continuously adaptive neural network approach to model order reduction of
parametrized partial differential equations.

Roland Haverkamp, Michel Vauclin, Jaoudat Touma, PJ Wierenga, and Georges Vachaud. A
comparison of numerical simulation models for one-dimensional infiltration. Soil Science Society
of America Journal, 41(2):285–294, 1977.

Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of nonlinear problems
using neural networks. Journal of Computational Physics, 363:55–78, 2018.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Fabian Kröpfl, Roland Maier, and Daniel Peterseim. Operator compression with deep neural networks.
Advances in Continuous and Discrete Models, 2022(1):29, 2022.

Fabian Kröpfl, Daniel Peterseim, and Elisabeth Ullmann. Neural network localized orthogonal
decomposition for numerical homogenization of diffusion operators with random coefficients.
arXiv preprint arXiv:2509.12896, 2025.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Burigede Liu, Eric Ocegueda, Margaret Trautner, Andrew M Stuart, and Kaushik Bhattacharya.
Learning macroscopic internal variables and history dependence from microscopic models. Journal
of the Mechanics and Physics of Solids, 178:105329, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

André LG Mandolesi. Asymmetric geometry of total grassmannians. arXiv preprint
arXiv:2310.17865, 2023.

Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning custom-made basis functions for
partial differential equations. arXiv preprint arXiv:2111.05307, 2021.

Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning-based spectral methods for partial
differential equations. Scientific Reports, 13(1):1739, 2023.

Lorenzo Adolph Richards. Capillary conduction of liquids through porous mediums. physics, 1(5):
318–333, 1931.

Denis Spiridonov, Sergei Stepanov, and Tina Mai. Prediction of discretization of online gmsfem
using deep learning for richards equation. Journal of Computational and Applied Mathematics,
454:116167, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Theofanis Strouboulis, Ivo Babuška, and Kevin Copps. The design and analysis of the generalized
finite element method. Computer methods in applied mechanics and engineering, 181(1-3):43–69,
2000.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Maria Vasilyeva, Wing T Leung, Eric T Chung, Yalchin Efendiev, and Mary Wheeler. Learning
macroscopic parameters in nonlinear multiscale simulations using nonlocal multicontinua upscaling
techniques. Journal of Computational Physics, 412:109323, 2020.

Maria Vasilyeva, Aleksei Tyrylgin, Donald L Brown, and Anirban Mondal. Preconditioning markov
chain monte carlo method for geomechanical subsidence using multiscale method and machine
learning technique. Journal of Computational and Applied Mathematics, 392:113420, 2021.

Stefan Volkwein. Proper orthogonal decomposition: Theory and reduced-order modelling. Lecture
Notes, University of Konstanz, 4(4):1–29, 2013.

Min Wang, Siu Wun Cheung, Wing Tat Leung, Eric T Chung, Yalchin Efendiev, and Mary Wheeler.
Reduced-order deep learning for flow dynamics. the interplay between deep learning and model
reduction. Journal of Computational Physics, 401:108939, 2020.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021.

Eugene Wong. Stochastic processes in information and dynamical systems. (No Title), 1971.

A COARSE GRID

The notation ωi refers to the i-th local domain, where the index corresponds to the numbering of
points on the coarse grid. Fig. 2 shows examples of local domains ω0, ω20, and ω34, representing the
full, half, and corner types in 2D. In 3D, there are four types: full (8 cells), half (4 cells), quarter (2
cells), and corner (1 cell), where the cell is a cube. Each local domain is discretized with a fine grid.

T H (Coarse Grid)

ω0

ω20

ω34

Figure 2: Illustration of a 5× 5 coarse grid TH showing local domains of different types: the corner
type ω0 (1 cell), half type ω34 (2 cells), and full type ω20 (4 cells), where the cell is a square.

B TRAINING GMSFEM-NO

We train separate specialized NOs for each geometric domain type: three for 2D problems (full,
half, corner) and four for 3D problems (full, half, quarter, corner), as illustrated for the 2D case in
Fig. 3 (a-c). Each NO predicts the Nbf basis functions for all local domains of its assigned type.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The number of local domains for each geometric type can be calculated based on the coarse grid
dimensions. For a 2D grid with 36 domains (5× 5 cells), the counts are: 16 full, 16 half, and 4 corner
domains. For a finer 2D grid with 121 domains (10× 10 cells), the counts are: 81 full, 36 half, and 4
corner domains. In 3D, for a grid with 216 domains (5× 5× 5 cells), the distribution is: 64 full, 96
half, 48 quarter, and 8 corner domains.

Input dataset, κωi

NO1

NO2

NO3

(a)

(b)

(c)

Multiscale basis functions, ψωi
j

Figure 3: Multiscale basis generation algorithm for three subdomain types ωi: (a) full, (b) half, (c)
corner - using dedicated NOs per type with further extension to Ω.

C SUBSPACE ALIGNMENT LOSS (SAL)

To understand the relationship between the proposed LSAL (5) and classical Grassmannian geometry
Bendokat et al. (2024); Mandolesi (2023), we begin with the orthogonal projection matrices. For a
subspace R spanned by a set of basis vectors, we compute an orthonormal basis QR via the thin QR
decomposition. The orthogonal projection matrix onto R is then given by PR = QRQ

⊤
R.

The Grassmannian distance between two k-dimensional subspaces R and R̃ is defined using these
projection matrices. The distance derivation proceeds as follows:∥∥PR − PR̃

∥∥2
F
= tr

(
PR

)
− 2tr

(
PRPR̃

)
+ tr

(
PR̃

)
= dim(R) + dim(R̃)− 2tr

(
PRPR̃

)
= 2
(
k − tr

(
QRQ

⊤
RQR̃Q

⊤
R̃

))
.

The matrix Q⊤
RQR̃ contains the cosines of the principal angles between the subspaces. Therefore,

∥∥PR − PR̃

∥∥2
F
= 2
(
k −

∥∥Q⊤
RQR̃

∥∥2
F

)
.

Consequently, the Grassmannian distance simplifies to:

d(R, R̃) =
1√
2

∥∥PR − PR̃

∥∥
F
=

√
k −

∥∥Q⊤
RQR̃

∥∥2
F
.

This derivation confirms that minimizing LSAL is equivalent to minimizing the expected Grassmannian
distance between the true and predicted subspaces.

D THE SIGN INVARIANCE OF BASIS FUNCTIONS

Multiscale basis functions ψωi
j are derived from local eigenvectors ϕωi

j via ψωi
j = χiϕ

ωi
j , where χi is

a partition of unity function and ϕωi
j solve the symmetric generalized eigenvalue problem:

Aωi

h ϕ = λSωi

h ϕ,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where Aωi

h and Sωi

h are symmetric matrices. These eigenvectors satisfy the orthogonality relations:

ϕ⊤j A
ωi

h ϕk = λjδjk, ϕ⊤j S
ωi

h ϕk = δjk.

Since eigenvectors are defined only up to a scalar multiple, if ϕj is an eigenvector corresponding to
eigenvalue λj , then −ϕj is also a valid eigenvector for the same eigenvalue. Both choices satisfy
the orthogonality and normalization conditions above, meaning the sign of each basis function is
arbitrary and does not affect its mathematical properties.

To address this sign ambiguity, we define the RBFL2 loss as:

LRBFL2
= Ei,j

[
min

(
∥ψi

j − ψ̃i
j∥22

∥ψi
j∥22

,
∥ψi

j + ψ̃i
j∥22

∥ψi
j∥22

)]
,

where ψi
j are the final multiscale basis functions (typically obtained by multiplying eigenvectors by

partition of unity functions). This loss compares the prediction ψ̃i
j against both ψi

j and −ψi
j , selecting

the smaller error to account for the sign invariance.

E INPUT DATA

We use the Karhunen-Loève expansion (KLE) Wong (1971); Aarnes & Efendiev (2008); Vasilyeva
et al. (2021) to generate stochastic permeability fields. This method decomposes a random field into
deterministic spatial functions and random coefficients.

1. Covariance Function. We assume the covariance function has an exponential form:

R(x, y) = σ2
R exp(−∆2),

with

∆2 =
|x1 − x2|2

l2x
+

|y1 − y2|2

l2y
,

for 2D case and

∆2 =
|x1 − x2|2

l2x
+

|y1 − y2|2

l2y
+

|z1 − z2|2

l2z
,

for 3D case with correlation lengths lx, ly, lz and variance σ2
R:

• For the 2D case: lx = 0.02, ly = 0.6, σ2
R = 2;

• For the 3D case: lx = 0.02, ly = 0.6, lz = 0.2, σ2
R = 2.

2. Eigenvalue Problem. The eigenfunctions ϕk and eigenvalues λk are obtained by solving the
homogeneous Fredholm integral equation:∫

Ω

R(x, y)ϕk(y)dy = λkϕk(x), k = 1, 2, . . . ,

3. Random Field Construction. The random field is represented as:

YL(x, ω) =

L∑
k=1

√
λkθk(ω)ϕk(x),

where θk(ω) are scalar random variables, and L is chosen to capture most of the field’s energy by
retaining the largest eigenvalues.

4. Permeability Field Generation. Each stochastic permeability field is defined as:

κ(x, ω) = exp(ak · ϕ(x, ω)),

where ϕ(x, ω) represents the heterogeneous porosity field derived from YL(x, ω), and ak > 0 is a
scaling parameter that controls the contrast.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This KLE framework provides a systematic approach for generating realistic permeability fields with
prescribed spatial correlation structures. An example of a 2D input coefficient field κ(x) is shown in
Fig. 4a.

The spatially variable forcing term is defined by

f(x) ∼ γ · N
(
α ·
(
I −∆

)−β
)
,

where N denotes a Gaussian random field. The parameters are set as follows:

• For the 2D case: γ = 2000, α = 1, and β = 0.5;
• For the 3D case: γ = 2000, α = 2, and β = 1.

An example of a 2D right-hand side f(x) is shown in Fig. 4b.

(a) Input coefficient, κ(x) with values in range [1, 9600] (b) Right-hand side, f(x)

Figure 4: Example of input coefficient and right-hand side.

F BASELINES VS. GMSFEM-NO

We compare GMsFEM-NO with several baselines:

1. POD Volkwein (2013). Classical global intrusive POD.
2. Intrusive POD with DeepONet/FFNO or POD basis Meuris et al. (2021), Meuris et al.

(2023). First selected neural network is trained on standard regression problem. After that
one extract basis from trained network and uses similar to intrusive POD to form reduced
model. For FFNO Tran et al. (2021) basis is extracted from the last hidden layer, for
DeepONet Lu et al. (2019) basis is extracted from trunk net.

3. PCA-Net Hesthaven & Ubbiali (2018), Bhattacharya et al. (2021). POD is used to compress
features and targets, MLP is used as processor.

4. Kernel Batlle et al. (2024). Vector RKHS method is used to map sampled input functions to
sampled output functions.

5. DeepPOD Franco et al.. A DL-based techniques used to directly learn optimal basis with
projector-based loss.

We use dataset with spatially variable forcing term (9) covered in more details in Appendix E. Neural
networks was trained and evaluated on grid 100× 100.

For each selected baseline we perform sweep over hyperparameters:

1. Intrusive POD with FFNO basis. Architecture is defined by the number of features in the
hidden layer, number of modes used by spectral convolution, and number of layers. Number
of features in the hidden layer was fixed to 64, number of modes was selected from the set
[10, 14, 16], number of layers – from the set [3, 4, 5]. Optimisation was performed with Lion
optimiser Chen et al. (2023) with exponential decay 0.5 with number of transition steps

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

selected from [100, 200], and learning rate selected from [5 · 10−5, 10−4]. We optimise for
1000 epoch with batch size 10. In all architectures we used GELU activation function.

2. Intrusive POD with DeepONet basis. Architecture is defined by trunk and branch nets. As
trunk net we used convolution architecture with spatial downsampling by a factor of 2 along
each dimension after each layer, simultaneously, the number of channels was multiplied by
2 after each layer, as branch net we used standard MLP. We apply optimisation similar to the
one of FFNO, but select learning rate from [10−3, 10−4]. Number of trunk network layers
was fixed to 4, trunk encoder transformed 2 input features to either 4 or 5 features, kernel
size of convolution in trunk was selected among [3, 7]. In the branch net we vary number of
layers [3, 4] and the number of basis vectors [100, 200] in the last layer.

3. DeepPOD Grid search for DeepPOD was exactly the same as for Intrusive POD with FFNO.

4. PCANet. For PCANet the optimisation was similar to Intrusive POD with DeepONet, but
with 3000 epochs. We vary the sizes of POD encoder and decoder among [100, 300, 500]
and [100, 300, 500]. For MLP processor we vary the number of layers [3, 4, 5] and the
number of hidden neurons [100, 300, 500].

5. Kernel. We closely followed code provided by authors. As kernels we used Matern, RBF.
We combined the method with POD and performed a grid search over the number of modes:
[50, 100, 150, 200] for both features and targets.

Table 9: Regression-based methods.

method train error test error

GMsFEM-NO 2.6% 2.8%
PCANet 6% 24%
kernel 7% 100%

Comparison of regression-based approaches with GMsFEM-NO appears in Table 9. We observe
significant overfitting for kernel-based method and PCA-Net.

Intrusive techniques are compared in Figure 5. We see that bases extracted from DeepONet and
FFNO are generally not appealing. FFNO slightly improves over global POD (weak baseline) for
≃ 64 basis functions. DeepONet fails to reach accuracy of global POD. The most competative
approach is DeepPOD. Note however, that DeepPOD becomes comparable to GMsFEM-NO with 8
sparse (localised) basis functions only when it uses 20 dense basis functions. With 30 basis functions
DeepPOD outperforms GMsFEM-NO with 8 basis functions.

10 50 100 150 200
Nbasis

2.2
2.8

6.5
9

23

81

re
la

tiv
e

er
ro

r,
%

POD
DeepONet
FFNO
DeepPOD
GMsFEM(8)

Figure 5: Comparison of accuracy for intrusive techniques. Number of basis functions for GMsFEM
is fexed to 8. DeepONet and FFNO mean Intrusive POD with DeepONet/FFNO basis.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G GMSFEM-NO TRAINING DETAILS

For F-FNO training to predict basis functions subspace, we used AdamW optimizer Loshchilov &
Hutter (2017) with cosine decay learning rate scheduler. The initial learning rate was 1 · 10−3. We
trained NO for 600 epochs. For the rest of the hyperparameters, we performed a grid search:

1. Batch size [8, 16, 32] .

2. Number of operator layers [4, 5] .
3. Number of modes used in F-FNO kernel:

• For 2D:
– for full domains

[
[16, 16], [18, 18]

]
;

– for half domains
[
[8, 8], [10, 10], [14, 8], [14, 10]

]
;

– for corner domains
[
[6, 6], [8, 8], [10, 10]

]
.

• For 3D:
– for full domains

[
[6, 6, 6], [8, 8, 8]

]
;

– for half domains
[
[8, 8, 4], [6, 6, 3]

]
;

– for quarter domains
[
[8, 4, 4], [6, 3, 3]

]
.

– for corner domains
[
[4, 4, 4], [3, 3, 3]

]
.

4. Number of channels in the FFNO kernel [64, 128] .

The source code containing the optimal parameters will be made publicly available upon acceptance.
We use JAX, Optax DeepMind et al. (2020) and Equinox Kidger & Garcia (2021) in all experiments.

H F-FNO TRAINING DETAILS

For F-FNO Tran et al. (2021), we used the following training protocol. We employed the AdamW
optimizer Loshchilov & Hutter (2017) with a cosine decay learning rate scheduler and trained for
600 epochs. We performed a grid search over the following hyperparameters:

1. Batch size: [8, 16, 32] ;
2. Number of modes in F-FNO kernel: [14, 16] ;
3. Number of operator layers: [4, 5] ;
4. Number of channels in F-FNO kernel: [64, 128] .

The optimal hyperparameters were: batch size 8, 5 operator layers, 16 modes, and 128 channels.

I RESULTS OF GMSFEM-NO FOR NBF = 4

Table 10: Performance comparison of loss functions for NO training (100× 100 grid, Nv = 36).

LRBFL2
LSAL LSAL-PR

Nbf Dataset L2 H1 L2 H1 L2 H1

4

Diffusion, 8 2.72% 19.10% 2.39% 18.01% 2.40% 18.01%

Diffusion, 9 6.03% 29.10% 5.76% 28.40% 5.78% 28.43%

Richards, 8 3.87% 16.26% 3.14% 15.01% 3.17% 15.02%

Richards, 9 9.78% 34.39% 6.11% 29.37% 6.13% 29.42%

For the Richards equation with complex right-hand side (9) andNbf = 4 basis functions, our proposed
loss improves the relative L2 metric by a factor of 1.6.

We did not conduct further experiments with GMsFEM-NO using Nbf = 4 because its performance
was insufficient and it underperformed compared to the standalone neural operator.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

J OUT-OF-DISTRIBUTION RESULTS

Unlike standalone NOs, which suffer from catastrophic failure when applied to out-of-distribution
forcing terms (Table 11), GMsFEM-NO is fundamentally independent of the right-hand side, ensuring
robust performance. Retraining the NO for new right-hand side terms requires computationally
expensive recalculation of solutions, highlighting a key limitation of standalone NO learning.

Table 11: Out-of-distribution results for the NO: training and testing on PDEs with different right-hand
sides.

Train, Dtrain Test, Dtest 100× 100 250× 250

Diffusion, 8 Diffusion, 9 218% 174%
Diffusion, 9 Diffusion, 8 1392% 1632%
Richards, 8 Richards, 9 196% 113%
Richards, 9 Richards, 8 6503% 6554%

18

	Introduction
	Locally Subspace-Informed Neural Operators
	Diffusion equation
	Steady-State Richards’ equation
	Generalized Multiscale Finite Element Method
	Multiscale space approximation
	Spectral problem
	Solving of the coarse-scale system

	Neural Operator
	Proposed method
	GMsFEM-NO algorithm
	Subspace-informed loss functions

	Results
	LRBFL2 vs. LSAL, LSAL-PR
	GMsFEM vs. GMsFEM-NO
	F-FNO vs. GMsFEM-NO
	GMsFEM-NO for different grids

	Conclusion
	Coarse grid
	Training GMsFEM-NO
	Subspace Alignment Loss (SAL)
	The Sign Invariance of Basis Functions
	Input data
	Baselines vs. GMsFEM-NO
	GMsFEM-NO Training Details
	F-FNO Training Details
	Results of GMsFEM-NO for Nbf=4
	Out-of-distribution results

