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Abstract001

Large Vision-Language Models (LVLMs) pro-002
cess multimodal inputs consisting of text to-003
kens and vision tokens extracted from images004
or videos. Due to the rich visual information, a005
single image can generate thousands of vision006
tokens, leading to high computational costs dur-007
ing the prefilling stage and significant memory008
overhead during decoding. Existing methods at-009
tempt to prune redundant vision tokens, reveal-010
ing substantial redundancy in visual representa-011
tions. However, these methods often struggle012
in shallow layers due to the lack of sufficient013
contextual information. We argue that many014
visual tokens are inherently redundant even in015
shallow layers and can be safely and effectively016
pruned with appropriate contextual signals. In017
this work, we propose CoViPAL, a layer-wise018
contextualized visual token pruning method019
that employs a Plug-and-Play Pruning Module020
(PPM) to predict and remove redundant vision021
tokens before they are processed by the LVLM.022
The PPM is lightweight, model-agnostic, and023
operates independently of the LVLM architec-024
ture, ensuring seamless integration with vari-025
ous models. Extensive experiments on mul-026
tiple benchmarks demonstrate that CoViPAL027
outperforms training-free pruning methods un-028
der equal token budgets and surpasses training-029
based methods with comparable supervision.030
CoViPAL offers a scalable and efficient solu-031
tion to improve inference efficiency in LVLMs032
without compromising accuracy.033

1 Introduction034

Large Vision-Language Models (LVLMs, Chiang035

et al., 2023; Anil et al., 2023; Bai et al., 2023; Liu036

et al., 2023) have recently demonstrated remark-037

able capabilities in understanding and generating038

content grounded in visual inputs, including both039

images and videos. To effectively capture the rich040

spatial and semantic details inherent in visual sig-041

nals, these models often rely on generating hun-042
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Figure 1: Illustration for CoViPAL at inference stage.

dreds or even thousands of visual tokens per image 043

or video. For instance, LLaVA-OneVision (Li et al., 044

2024a) explicitly allocates up to 7,290 visual tokens 045

per image, leveraging a large corpus of high-quality 046

images to maximize visual comprehension. 047

Although dense visual token representations en- 048

hance the model’s capacity to understand fine- 049

grained visual content, they come at the cost 050

of substantial computational and memory over- 051

head (Zhang et al., 2025). This leads to reduced 052

inference efficiency and makes it difficult to apply 053

LVLMs in scenarios where resources are limited or 054

real-time performance is required. 055

To address this issue, prior work has explored re- 056

ducing the number of visual tokens or compressing 057

their corresponding key-value (KV) cache (Bolya 058

et al., 2022; Shang et al., 2024), highlighting the 059

substantial redundancy present in visual represen- 060

tations. Token eviction methods discard less infor- 061

mative tokens based on importance scores (Chen 062

et al., 2024b; Lin et al., 2025), while token merging 063

approaches group similar tokens and consolidate 064

them to reduce token number (Chen et al., 2024a; 065

Shi et al., 2023). Empirical observations suggest 066

that pruning visual tokens in shallow layers can sig- 067
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(a) Pruning based on attention of layer 16.
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(b) Pruning guided by different attention weight.

Figure 2: Prune tokens in different layers and based on different attention weights.

nificantly hurt performance and every visual token068

matters in these layers (Xing et al., 2024). Despite069

their effectiveness to some extent, these methods070

largely fail to prune tokens in the shallow layers.071

Visual token reduction is less effective in shallow072

layers, primarily because tokens in these layers in-073

teract with fewer transformer decoder layers, result-074

ing in limited contextual information. This makes075

it challenging to identify unimportant tokens, lead-076

ing to significant performance degradation when077

attempting to prune visual tokens at these stages.078

However, we observe that some visual tokens are079

inherently redundant and can be effectively and080

safely pruned when guided by appropriate contex-081

tual information. Based on this insight, we propose082

CoViPAL, a contextualized visual token pruning083

method that operates across all layers. CoViPAL084

implements the PPM module using small classi-085

fier trained on limited data to identify and remove086

less important tokens before they are passed to the087

base model of LVLM, thereby reducing the number088

of visual tokens while maintaining model perfor-089

mance.090

We conducted experiments on two models:091

LLaVA-OneVision and LLaVA-Video. For LLaVA-092

OneVision, we trained the classifier using only093

0.46% of the pretraining dataset, while for LLaVA-094

Video, we extended its capabilities to handle video095

inputs using just 7.4% of the video instruction-096

following dataset. Additionally, we performed097

extensive experiments on a variety of image and 098

video benchmarks. The results demonstrate that 099

our method reduces the prefilling time by up to 60% 100

compared to the original model, with only minimal 101

performance degradation when pruning 75% of the 102

visual tokens. Furthermore, our approach outper- 103

forms both training-free methods, FastV and Spar- 104

seVLM, and the training-based method Pramid- 105

Drop, when maintaining the same percentage vi- 106

sual tokens. 107

2 Related Works 108

2.1 Token Pruning 109

Token pruning methods aim to remove tokens with 110

low attention or feature similarity after early or 111

intermediate layers (Chen et al., 2024b; Lin et al., 112

2025; Xing et al., 2024), or optimize pruning sched- 113

ules using small inference batches to meet FLOPs 114

budgets (Ye et al., 2025). These methods generally 115

prioritize the preservation of early tokens to avoid 116

information loss. 117

2.2 Token Merging 118

Alternatively, similarity-based merging techniques 119

fuse redundant tokens either spatially or cross- 120

modally to reduce token count while maintaining 121

semantic integrity and accuracy (Chen et al., 2024a; 122

Shi et al., 2023). These methods achieve com- 123

pression without compromising downstream perfor- 124

mance. They typically leave the tokens in shallow 125
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layers unmerged to maintain overall performance.126

2.3 Hybrid Methods127

Recent methods combine pruning and merging128

by ranking tokens based on attention, pruning129

low-importance tokens, and merging redundant130

ones to recycle information (Zhong et al., 2024;131

Shang et al., 2024; Zhang et al., 2025). For in-132

stance, LOOK-M (Wan et al., 2024) addresses long-133

context inference by compressing the KV cache134

through text-guided merging of similar key-value135

pairs, thereby reducing memory usage and improv-136

ing decoding speed.137

These approaches generally retain visual to-138

kens in shallow layers to minimize significant per-139

formance degradation. In contrast, our method140

demonstrates that visual token redundancy exists141

across all layers and can be safely pruned using142

a lightweight classifier trained on a small dataset.143

This approach facilitates earlier and more efficient144

pruning without sacrificing critical information.145

3 Preliminary146

3.1 Notations147

In LVLMs, a vision encoder is typically employed148

to extract visual features, while a projector is used149

to map these features into the word embedding150

space. We denote the vision encoder and projec-151

tor as g(·), so the visual tokens are represented152

as Hv = g(Xv), where Xv is the visual input.153

The textual input is represented by the text tokens154

Ht, which are concatenated with the visual tokens,155

forming the input to the LLM as f(·).156

For token pruning, we assign an importance157

score S to each visual token. This score serves158

as the guiding criterion for the pruning process,159

directly determining the relevance of each token.160

Based on this score, we select the most important161

tokens to retain, while pruning those deemed less162

relevant, thereby reducing the overall number of163

visual tokens in the input.164

3.2 Preliminary Experiment165

We conduct a preliminary study using LLaVA-166

OneVision-7b-chat (Li et al., 2024a) on the167

MVBench dataset (Li et al., 2024c), where token168

pruning is applied at decoder layer Lp, guided by169

attention weights from an earlier layer Lg.170

As shown in Figure 2, the choice of guidance171

layer Lg has a stronger impact on pruning effective-172

ness than the pruning layer Lp itself. This under-173

scores the importance of selecting a semantically 174

rich guidance layer. In particular, the 16th layer in 175

LLaVA-OneVision proves to be a strong candidate 176

for generating token importance scores. 177

Prior work often assumes Lp = Lg, attributing 178

pruning performance to the pruning layer rather 179

than the quality of the guidance (Zhong et al., 2024; 180

Zhang et al., 2025; Lin et al., 2025). Our results 181

challenge this assumption, showing that such cou- 182

pling may lead to suboptimal pruning. 183

We observe that many visual tokens are inher- 184

ently redundant and can be pruned with minimal 185

performance loss when guided effectively. How- 186

ever, using deeper layers for guidance (Lg > Lp) 187

introduces a trade-off: the model must prefill up to 188

Lg to compute attention scores Ag, then reprocess 189

from Lp after pruning. This two-step procedure 190

adds significant inference overhead. 191

4 Method 192

4.1 Inference 193

Our observations indicate that some visual tokens 194

are inherently redundant across layers, while the 195

attention weights in shallow layers are not suffi- 196

ciently effective at guiding the pruning. To address 197

this, we employ a plug-and-play pruning classifier 198

(referred to as the classifier) to capture the inherent 199

redundancy of the visual features for pruning. 200

We denote the classifier as pθ(·). It is positioned 201

just before the LLM f(·). During inference, we 202

compute the importance score for each visual token 203

with the classifier as follows: 204

S = pθ(Hv,Ht), (1) 205

where S represents the importance scores. Based 206

on these scores, we perform pruning with a given 207

reserve ratio r. The indices of the visual tokens to 208

be retained are determined by: 209

I = TopK(S, r × nv), (2) 210

where nv is the total number of visual tokens. 211

Note that S is computed over visual and text to- 212

kens, but only the scores for visual tokens. This 213

is because visual token redundancy depends not 214

only on visual features but also on textual context, 215

which guides the model in identifying more rele- 216

vant visual tokens (Sun et al., 2025; Yang et al., 217

2025). 218

A detailed discussion of the model architecture 219

can be found in Section 5. 220
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Figure 3: Two stage training strategy.
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Figure 4: Attention mask at the training stage2.

4.2 Training Stage 1221

Our observations indicate that attention weights222

in deeper layers of the LLM effectively guide the223

pruning process. The attention weights in these224

layers contain significant contextual information,225

which highlights the tokens that need to be attended226

by the attention mechanism. Therefore, we lever-227

age the information to train the classifier, as illus-228

trated in Figure 3a.229

We denote the guiding attention weights as Ag,230

and the specific layer from which these weights231

are derived as lg. For training, we use the accu-232

mulated attention weights, denoted as Al, as the233

target labels. The label for the k-th token is com-234

puted by accumulating the attention weights over235

the relevant layers:236

Al,k =
h∑

i=1

n∑
j=n−nv

Ag,i,j,k, (3)237

where h represents the number of attention heads,238

n is the number of tokens.239

The classifier outputs Ŝ represents the predicted 240

importance scores for the visual tokens. To train the 241

classifier, we optimize the model using the mean 242

squared error (MSE) loss function, aiming to mini- 243

mize the discrepancy between the predicted scores 244

Ŝ and the accumulated attention labels Al. The 245

MSE loss is computed as follows: 246

Lmse =
1

nv

nv∑
k=1

(
Ŝk −Al,k

)2
, (4) 247

where Ŝk and Al,k are the predicted and true im- 248

portance scores, respectively, for the k-th visual 249

token. 250

The objective is to train the classifier to output 251

scores that align with the accumulated attention 252

weights, which will then guide the pruning opera- 253

tion effectively. 254

This training is efficient, as only the small clas- 255

sifier pθ(·) is optimized. The LLM parameters be- 256

fore layer lg remain fixed, avoiding gradient com- 257

putation, while those after layer lg are dropped 258

during training, greatly reducing both computation 259

and memory overhead. 260

4.3 Training Stage 2 261

To further improve the model’s capacity to capture 262

contextual information and accurately identify im- 263

portant visual tokens, we introduce an end-to-end 264

training phase, as illustrated in Figure 3b, which 265

incorporates a differentiable approximation of the 266

pruning operation. 267

Direct pruning of less-relevant visual tokens dur- 268

ing training using hard indexing (e.g., Hv[I]) is 269

non-differentiable and thus breaks the backpropa- 270
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gation process. To address this, we simulate the271

pruning effect by modifying the attention mecha-272

nism through a soft attention mask.273

We apply a sigmoid activation to the classifier274

outputs Ŝ to normalize the predicted importance275

scores into the range [0, 1]:276

P = σ(Ŝ). (5)277

Here, Pi can be interpreted as the retention proba-278

bility for the i-th visual token. To simulate pruning,279

we convert the normalized importance scores into280

attention biases using a logarithmic transformation:281

B = log(P). (6)282

This transformation ensures that tokens with low283

importance scores receive large negative biases,284

thus masking them during attention computation.285

We then construct the final attention mask 4 by286

adding the attention bias Bj to the standard causal287

attention mask:288

Mi,j = M causal
i,j +Bj , for i > j, (7)289

where M causal is the standard causal mask.290

The model outputs predictions ŷ, and the ground291

truth labels are denoted as y. We define the training292

objective as a combination of the cross-entropy loss293

and a regularization term:294

Ltotal = Lce(y, ŷ) + k × Lreg(P), (8)295

where Lreg(P) enforces the model to retain a pre-296

defined ratio r of visual tokens and encourages the297

model to approximate the token pruning patterns298

during inference. The parameter k controls the299

weight of Lreg(P) in the overall loss function.300

A naive regularization (Nawrot et al., 2024) such301

as:Lreg = L1(r,mean(P)) enforces a global reten-302

tion rate r, but tends to collapse all probabilities Pi303

to values near r, harming discriminative capacity.304

To promote a clearer distinction between impor-305

tant and unimportant visual tokens, we introduce306

a contrastive style regularization objective that ex-307

plicitly separates their predicted importance scores.308

We first compute the indices of the top and bot-309

tom tokens based on the classifier’s normalized310

outputs P ∈ [0, 1]nv , where nv is the number of311

visual tokens:312

Ihigh = TopK(P, ⌊r · nv⌋),
Phigh = P[Ihigh],

Ilow = DTopK(P, ⌊(1− r) · nv⌋),
Plow = P[Ilow].

(9)313

Then we define the regularization loss as: 314

Lreg = L1

(
1,mean(Phigh − Plow)

)
. (10) 315

This objective aims to maximize the average mar- 316

gin between the most and least important tokens. 317

Specifically: TopK(·) returns the indices of the top 318

r · nv visual tokens with the highest importance 319

scores, DTopK(·) returns the indices of the bottom 320

(1 − r) · nv tokens, L1(1, ·) penalizes deviation 321

from the target margin of 1 between high and low 322

importance scores. 323

This regularization guides the classifier to as- 324

sign high retention scores to top-ranked tokens 325

and low scores to less relevant ones, aligning with 326

the inference-time selection and enabling pruning- 327

aware learning in a fully differentiable way. 328

5 Experiments 329

5.1 Experimental Setup 330

Baselines We evaluate our methods with three 331

baseline approaches: FastV (Chen et al., 2024b), 332

SparseVLM (Zhang et al., 2025), and Pyramid- 333

Drop (Xing et al., 2024), all of which performing 334

token pruning. FastV prunes visual tokens in a 335

specific layer using self-attention scores of that 336

layer. PyramidDrop prunes tokens in predefined 337

layers based on attention weights. SparseVLM 338

also prunes tokens in predefined layers but merges 339

part of the pruned tokens and reserve them. FastV 340

and SparseVLM are plug-and-play methods, while 341

PyramidDrop offers both training-free and training- 342

based strategies. 343

Base Models We conduct experiments on two 344

state-of-the-art LVLMs: LLaVA-OneVision-7b- 345

Chat (Xiong et al., 2024) and LLaVA-Video- 346

7b (Zhang et al., 2024). LLaVA-OneVision-7b-chat 347

is trained on a combination 4.8M dataset of image 348

and video. LLaVA-Video-7b is fine-tuned from 349

LLaVA-OneVision using a joint dataset, including 350

LLaVA-Video-178K. For evaluating image tasks, 351

we use LLaVA-OneVision-7b-Chat, while LLaVA- 352

Video-7b is used for video task evaluations. 353

Classifier Model We design a compact classifier 354

with two projection layers and 8 encoder layers. 355

The first projection maps LVLM embeddings to 356

the classifier input, and the second outputs a scalar 357

score S = 1. The encoder comprises 8 layers, each 358

with a hidden size of 768, intermediate size of 3072, 359

16 attention heads, and 4 key-value heads, resulting 360

in a total of 71.20M parameters. 361
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Models GQA MME SEED MMStar AI2D OCRVQA TextVQA InfoVQA Avg(%)

LLaVA-OV-7b 61.70 1605.41 76.59 61.67 82.77 59.83 75.02 65.52 100.00%

reserve ratio = 0.5

FastV 60.89 1586.18 74.95 57.20 80.70 58.56 71.69 49.58 94.34%
SparseVLM 59.35 1560.75 74.40 54.67 78.69 45.96 69.49 42.06 88.49%
PDrop 61.02 1590.56 75.75 59.00 80.83 57.19 74.71 60.90 97.29%
PDrop* 59.97 1532.82 75.89 58.00 80.24 59.90 70.64 46.83 93.56%
CoViPAL 61.31 1613.37 75.48 59.07 82.12 57.85 74.08 59.66 97.48%

reserve ratio = 0.25

FastV 56.12 1523.37 65.88 47.23 73.25 46.29 57.29 35.18 80.54%
SparseVLM 52.85 1415.58 67.42 45.40 70.30 32.09 43.61 28.03 71.88%
PDrop 58.02 1470.22 67.50 49.80 73.06 48.83 68.32 41.90 84.93%
PDrop* 57.77 1531.10 70.47 49.80 74.31 49.22 64.95 34.47 84.12%
CoViPAL 59.93 1559.29 73.22 54.33 79.47 48.92 65.99 47.28 89.48%

Table 1: Results of image benchmark.

Models MVBench MMBVideo MLVUm MLVUg LongVB WorldSense Avg(%)

LLaVA-Video-7b 58.32 1.71 62.40 4.16 52.50 38.20 100.00%

reserve ratio = 0.5

FastV 56.87 1.67 60.60 4.89 52.60 37.60 101.41%
SparseVLM 55.29 1.63 59.20 4.51 50.10 37.30 97.74%
Pdrop 55.21 1.63 56.80 4.96 52.10 34.80 98.43%
Pdrop* 55.74 1.60 61.50 4.73 49.60 38.90 99.62%
CoViPAL 56.66 1.66 61.40 4.97 51.80 38.10 101.75%

reserve ratio = 0.25

FastV 52.74 1.55 55.90 4.68 48.20 36.50 95.08%
SparseVLM 50.00 1.52 54.50 4.33 47.00 36.30 91.77%
Pdrop 50.50 1.55 53.30 4.70 48.90 33.50 92.74%
Pdrop* 53.03 1.58 59.20 4.72 48.30 37.70 97.06%
CoViPAL 55.42 1.61 55.80 4.85 51.30 37.20 98.38%

Table 2: Results of video benchmark.

Training Implementation In training stage 1,362

we use 3% of LLaVA-NeXT-Data (which is 0.46%363

of the training data of LLaVA-OneVision-7b-Chat),364

totaling 22.2K samples, to train the classifier with365

base model LLaVA-OneVision-7b-Chat. After366

stage 1, we proceed to Stage 2, initializing the clas-367

sifier from Stage 1. During the training stage 2, we368

trained two classifiers. One is trained on the same369

data as training stage 1 with the base model LLaVA-370

OneVision-7b-chat, this classifier is used for image371

benchmark evaluation. And another on 20% of the372

0_30_s_academic_v0_1 (13.2K samples) dataset373

with LLaVA-Video-7b for video benchmark eval-374

uation. For PyramidDrop, we fine-tune two mod-375

els using LoRA (Hu et al., 2022): one on 10%376

of LLaVA-NeXT-Data with LLaVA-OneVision-7b-377

Chat for image evaluation, and the other on 60%378

of 0_30_s_academic_v0_1 with LLaVA-Video-7b379

for video evaluation. The larger dataset for Pyra-380

midDrop ensures consistent training time, as Stage 381

2 is incompatible with Flash Attention (Dao et al., 382

2022), which doesn’t support this type of custom 383

attention mask currently. 384

Training Hyperparameters Each run is trained 385

for one epoch using Bfloat16 precision. The learn- 386

ing rate is set to 1e-5, except in Stage 2 where it 387

is reduced to 0.5e-5 to preserve parameters from 388

Stage 1. We set k = 0.01 in Eq. 8, and apply 389

a cosine scheduler. For PyramidDrop, we use a 390

LoRA rank of 32 (97.72M trainable params). The 391

input length is capped at 3000 tokens. For image 392

input, we use the anyres-max-2 setting, producing 393

up to 2189 visual tokens-leaving room for text to 394

avoid truncation. For video input, we allow up to 8 395

frames (max 1568 visual tokens). The reserve ratio 396

during training is fixed at 0.25, as we believe that a 397

training-based method should be robust enough to 398

accommodate differences in reserve ratio between 399
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Figure 5: Efficiency Results of CoViPAL on LLaVA-OneVision-7b-Chat.

training and inference settings.400

Evaluation Benchmarks We evaluate our meth-401

ods on eight image and five video benchmarks span-402

ning visual reasoning, multimodal comprehension,403

temporal understanding and so on. This diverse set404

ensures a comprehensive assessment across visual405

inputs. Details are provided in the Appendix B. All406

evaluations use VLMEvalKit (Duan et al., 2024).407

5.2 Evaluation Results408

Image Benchmarks We evaluate CoViPAL on409

eight widely used image benchmarks, with the410

results reported in Table 1. Our results indicate411

that CoViPAL effectively preserves the model’s412

image comprehension capabilities on tasks of real-413

world scenarios. CoViPAL consistently surpasses414

the three baseline methods when retaining 50% or415

only 25% of the image tokens. Particularly, when416

the reserve ratio is set to 25%, which significantly417

challenges the model’s token selection capability,418

CoViPAL demonstrates superior performance by419

accurately identifying and preserving the most cru-420

cial visual tokens. Additionally, results confirm the421

robustness of CoViPAL, as performance remains422

stable even when the inference reserve ratio (50%)423

differs from the training reserve ratio (25%).424

Video Benchmarks We further evaluate425

CoViPAL on five widely recognized video426

benchmarks, with the results summarized in Table427

2. The experimental results demonstrate that428

CoViPAL effectively eliminates redundant or less429

relevant visual tokens, leading to performance 430

improvements under various conditions. CoViPAL 431

consistently outperforms the three comparative 432

baselines, exhibiting only a minor performance 433

degradation of 1.62% when pruning 75% of the 434

visual tokens. Moreover, the results suggest that 435

videos are more information-sparse compared 436

to images, containing a higher proportion of 437

redundant visual tokens, thereby making video 438

tasks inherently more robust to token pruning. 439

Efficiency Results We evaluate the efficiency 440

of CoViPAL on LLaVA-OneVision-7b-Chat with 441

video input on a single RTX 3090 GPU. The sam- 442

ple frame size ranges from 16 to 64, resulting in 443

input tokens ranging from 3k to 13k. With a reserve 444

ratio of 0.25, we measure prefilling time, decoding 445

speed for generating 1k tokens, and the classifier’s 446

overhead during prefilling. Results are shown in 447

Figure 5. 448

CoViPAL significantly reduces prefilling time 449

and accelerates decoding. For 48-frame input, it 450

cuts prefilling time by over 60% and enables 64- 451

frame inference on a 24G GPU, where the original 452

model fails due to memory limits. 453

5.3 Ablation Study 454

5.4 Similarity Based Token Replacement 455

Model Structure for Contextual Information 456

Capture We compare two classifier models: a 457

multi-layer encoder with 71.2M parameters (p8θ) 458

and a single-layer encoder with 165.18M parame- 459
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Models GQA MME SEED MMStar AI2D OCRVQA TextVQA InfoVQA
LLaVA-OV-7b 61.70 1605.41 76.59 61.67 82.77 59.83 75.02 65.52

reserve ratio = 0.5

p1θ 60.85 1547.10 74.85 58.20 81.22 52.77 68.35 52.12
p8θ 61.31 1613.37 75.48 59.07 82.12 57.85 74.08 59.66

reserve ratio = 0.25

p1θ 57.21 1446.89 70.67 51.20 76.91 37.43 48.21 35.55
p8θ 59.93 1559.29 73.22 54.33 79.47 48.92 65.99 47.28

Table 3: Ablation Study on model structure.

-2 8

(a) S of classifier after
training stage 1.

0 1

(b) P of classifier after
training stage 2.

Figure 6: The distribution of classifier outputs after two
training stages.

ters (p1θ), in which the letter use the same settings as460

LLaVA-OneVision-7b-Chat decoder architecture.461

Trained with the same two-stage strategy on462

3% of LLaVA-NeXT-Data, p8θ consistently outper-463

forms p1θ on image tasks, as shown in Table 3. De-464

spite its smaller size, the deeper model captures465

redundant token patterns more effectively, high-466

lighting the advantage of deeper attention layers in467

modeling contextual information for pruning.468

k for Two-Stage Training The hyperparameter k469

in Eq. 8 is crucial in Stage 2. A large k causes early470

sharp separation of retain probabilities P which471

hindering the subsequent training, while a small k472

keeps P continuous, misaligned with the discrete se-473

lection required during inference. The distribution474

of classifier outputs are showed in Appendix C.475

We train with k values from 0.0001 to 0.1 us-476

ing LLaVA-OneVision-7b-Chat and evaluate on477

GQA (Hudson and Manning, 2019). For k =478

0.0001, we warm up with k = 0.01 to avoid con-479

tinuous distribution throughout training. As shown480

Models r = 50% r = 25%

LLaVA-OV-7b 61.70

k = 0.1 61.19 59.31
k = 0.01 61.31 59.94
k = 0.0001 61.11 58.73

Table 4: Ablation study on k .

in Table 4, k = 0.01 yields the best performance. 481

Effectiveness of the Training Strategy Training 482

Stage 2 from a randomly initialized model led to a 483

collapse of retain probabilities P to 0 throughout 484

training, even with k = 0.1, as shown in Figure 485

7c. In contrast, initializing from the Stage 1 model 486

Figure 6a allowed P to stabilize and discretize 487

effectively Figure 6b. 488

These results underscore the value of the two- 489

stage strategy: Stage 1 captures contextual atten- 490

tion patterns, providing a strong initialization for 491

Stage 2 to identify redundant tokens and simulate 492

pruning under smaller k . 493

6 Conclusion 494

We propose CoViPAL, a novel contextualized 495

visual token pruning method that efficiently re- 496

duces the computational and memory overhead 497

of Large Vision-Language Models by leveraging 498

a lightweight and plug-and-play pruning module. 499

CoViPAL identifies and removes redundant visual 500

tokens across all layers with minimal supervision, 501

achieving up to 50% reduction in pre-filling time 502

and pruning 75% of visual tokens while maintain- 503

ing competitive performance. Our method out- 504

performs both training-free and training-based ap- 505

proaches, offering a scalable and adaptable so- 506

lution for efficient multimodal inference. This 507

work provides new insights into visual token re- 508

dundancy and paves the way for deploying LVLMs 509

in resource-constrained settings. 510
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Limitations511

While our approach has been validated on represen-512

tative LVLMs, the diversity of model backbones513

explored so far remains limited. In future work,514

we plan to extend our method to a broader range515

of architectures, including base models from the516

LLaMA and Mistral families, to assess its applica-517

bility across different LVLM paradigms and better518

understand its architectural generality.519

In addition, the current experiments are con-520

ducted on models of moderate scale. Scaling up521

to larger model sizes will allow us to further in-522

vestigate the generalization and effectiveness of523

our pruning framework in high-capacity settings.524

These extensions will provide deeper insights into525

the scalability and robustness of our approach.526

References527

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-528
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan529
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-530
lican, David Silver, Slav Petrov, Melvin Johnson,531
Ioannis Antonoglou, Julian Schrittwieser, Amelia532
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lillicrap,533
and 33 others. 2023. Gemini: A family of highly534
capable multimodal models. CoRR, abs/2312.11805.535

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,536
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,537
and Jingren Zhou. 2023. Qwen-vl: A frontier large538
vision-language model with versatile abilities. CoRR,539
abs/2308.12966.540

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao541
Zhang, Christoph Feichtenhofer, and Judy Hoffman.542
2022. Token merging: Your vit but faster. arXiv543
preprint arXiv:2210.09461.544

Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang,545
Daniel Khashabi, and Alan Yuille. 2024a. Efficient546
large multi-modal models via visual context com-547
pression. In The Thirty-eighth Annual Conference on548
Neural Information Processing Systems.549

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Jun-550
yang Lin, Chang Zhou, and Baobao Chang. 2024b.551
An image is worth 1/2 tokens after layer 2: Plug-and-552
play inference acceleration for large vision-language553
models. In Computer Vision - ECCV 2024 - 18th554
European Conference, Milan, Italy, September 29-555
October 4, 2024, Proceedings, Part LXXXI, volume556
15139 of Lecture Notes in Computer Science, pages557
19–35. Springer.558

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang559
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,560
Yu Qiao, Dahua Lin, and 1 others. 2024c. Are we561
on the right way for evaluating large vision-language562
models? arXiv preprint arXiv:2403.20330.563

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 564
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 565
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 566
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 567
source chatbot impressing gpt-4 with 90%* chatgpt 568
quality. 569

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 570
Christopher Ré. 2022. Flashattention: Fast and 571
memory-efficient exact attention with io-awareness. 572
Advances in neural information processing systems, 573
35:16344–16359. 574

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu 575
Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang 576
Zang, Pan Zhang, Jiaqi Wang, and 1 others. 2024. 577
Vlmevalkit: An open-source toolkit for evaluating 578
large multi-modality models. In Proceedings of the 579
32nd ACM international conference on multimedia, 580
pages 11198–11201. 581

Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu 582
Zhao, Yining Li, Dahua Lin, and Kai Chen. 2024. 583
Mmbench-video: A long-form multi-shot benchmark 584
for holistic video understanding. Advances in Neural 585
Information Processing Systems, 37:89098–89124. 586

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, 587
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, 588
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. 589
2024. Mme: A comprehensive evaluation benchmark 590
for multimodal large language models. Preprint, 591
arXiv:2306.13394. 592

Jack Hong, Shilin Yan, Jiayin Cai, Xiaolong Jiang, Yao 593
Hu, and Weidi Xie. 2025. Worldsense: Evaluating 594
real-world omnimodal understanding for multimodal 595
llms. arXiv preprint arXiv:2502.04326. 596

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 597
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 598
Weizhu Chen, and 1 others. 2022. Lora: Low-rank 599
adaptation of large language models. ICLR, 1(2):3. 600

Drew A Hudson and Christopher D Manning. 2019. 601
Gqa: A new dataset for real-world visual reasoning 602
and compositional question answering. In Proceed- 603
ings of the IEEE/CVF conference on computer vision 604
and pattern recognition, pages 6700–6709. 605

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng 606
Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei 607
Liu, and Chunyuan Li. 2024a. Llava-onevision: Easy 608
visual task transfer. CoRR, abs/2408.03326. 609

Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao 610
Zhang, and Ying Shan. 2024b. Seed-bench-2-plus: 611
Benchmarking multimodal large language models 612
with text-rich visual comprehension. arXiv preprint 613
arXiv:2404.16790. 614

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 615
2023. Blip-2: Bootstrapping language-image pre- 616
training with frozen image encoders and large lan- 617
guage models. In International conference on ma- 618
chine learning, pages 19730–19742. PMLR. 619

9

https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2308.12966
https://doi.org/10.48550/ARXIV.2308.12966
https://doi.org/10.48550/ARXIV.2308.12966
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
https://doi.org/10.1007/978-3-031-73004-7_2
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://doi.org/10.48550/ARXIV.2408.03326
https://doi.org/10.48550/ARXIV.2408.03326
https://doi.org/10.48550/ARXIV.2408.03326


Kunchang Li, Yali Wang, Yinan He, Yizhuo Li,620
Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,621
Ping Luo, and 1 others. 2024c. Mvbench: A com-622
prehensive multi-modal video understanding bench-623
mark. In Proceedings of the IEEE/CVF Conference624
on Computer Vision and Pattern Recognition, pages625
22195–22206.626

Zhihang Lin, Mingbao Lin, Luxi Lin, and Rongrong Ji.627
2025. Boosting multimodal large language models628
with visual tokens withdrawal for rapid inference.629
In Proceedings of the AAAI Conference on Artificial630
Intelligence, volume 39, pages 5334–5342.631

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan632
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-633
next: Improved reasoning, ocr, and world knowledge.634

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae635
Lee. 2023. Visual instruction tuning. Preprint,636
arXiv:2304.08485.637

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthe-638
nis Karatzas, Ernest Valveny, and CV Jawahar. 2022.639
Infographicvqa. In Proceedings of the IEEE/CVF640
Winter Conference on Applications of Computer Vi-641
sion, pages 1697–1706.642

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,643
and Anirban Chakraborty. 2019. Ocr-vqa: Visual644
question answering by reading text in images. In645
2019 international conference on document analysis646
and recognition (ICDAR), pages 947–952. IEEE.647

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski,648
David Tarjan, and Edoardo M. Ponti. 2024. Dynamic649
memory compression: Retrofitting llms for accel-650
erated inference. In Forty-first International Con-651
ference on Machine Learning, ICML 2024, Vienna,652
Austria, July 21-27, 2024. OpenReview.net.653

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and654
Oren Etzioni. 2014. Diagram understanding in ge-655
ometry questions. In Proceedings of the AAAI Con-656
ference on Artificial Intelligence, volume 28.657

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee,658
and Yan Yan. 2024. Llava-prumerge: Adaptive to-659
ken reduction for efficient large multimodal models.660
arXiv preprint arXiv:2403.15388.661

Dachuan Shi, Chaofan Tao, Anyi Rao, Zhendong662
Yang, Chun Yuan, and Jiaqi Wang. 2023. Cross-663
get: Cross-guided ensemble of tokens for acceler-664
ating vision-language transformers. arXiv preprint665
arXiv:2305.17455.666

Amanpreet Singh, Vivek Natarajan, Meet Shah,667
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,668
and Marcus Rohrbach. 2019. Towards vqa models669
that can read. In Proceedings of the IEEE/CVF con-670
ference on computer vision and pattern recognition,671
pages 8317–8326.672

Yizheng Sun, Yanze Xin, Hao Li, Jingyuan Sun, 673
Chenghua Lin, and Riza Batista-Navarro. 2025. 674
Lvpruning: An effective yet simple language-guided 675
vision token pruning approach for multi-modal large 676
language models. arXiv preprint arXiv:2501.13652. 677

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhi- 678
hong Zhu, Peng Jin, Longyue Wang, and Li Yuan. 679
2024. Look-m: Look-once optimization in kv 680
cache for efficient multimodal long-context inference. 681
arXiv preprint arXiv:2406.18139. 682

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. 683
2024. Longvideobench: A benchmark for long- 684
context interleaved video-language understanding. 685
Advances in Neural Information Processing Systems, 686
37:28828–28857. 687

Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan 688
Zhang, Yuhang Zang, Yuhang Cao, Conghui He, Ji- 689
aqi Wang, Feng Wu, and Dahua Lin. 2024. Pyramid- 690
drop: Accelerating your large vision-language mod- 691
els via pyramid visual redundancy reduction. CoRR, 692
abs/2410.17247. 693

Tianyi Xiong, Bo Li, Dong Guo, Huizhuo Yuan, Quan- 694
quan Gu, and Chunyuan Li. 2024. Llava-onevision- 695
chat: Improving chat with preference learning. 696

Dingchen Yang, Bowen Cao, Anran Zhang, Weibo 697
Gu, Winston Hu, and Guang Chen. 2025. Beyond 698
intermediate states: Explaining visual redundancy 699
through language. arXiv preprint arXiv:2503.20540. 700

Weihao Ye, Qiong Wu, Wenhao Lin, and Yiyi Zhou. 701
2025. Fit and prune: Fast and training-free visual 702
token pruning for multi-modal large language models. 703
In Proceedings of the AAAI Conference on Artificial 704
Intelligence, volume 39, pages 22128–22136. 705

Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao 706
Zheng, Tao Huang, Kuan Cheng, Denis Gudovskiy, 707
Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, and 1 708
others. 2025. Sparsevlm: Visual token sparsification 709
for efficient vision-language model inference. In 710
International Conference on Machine Learning. 711

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, 712
Ziwei Liu, and Chunyuan Li. 2024. Video instruction 713
tuning with synthetic data. CoRR, abs/2410.02713. 714

Yiwu Zhong, Zhuoming Liu, Yin Li, and Liwei Wang. 715
2024. Aim: Adaptive inference of multi-modal 716
llms via token merging and pruning. arXiv preprint 717
arXiv:2412.03248. 718

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Zhengyang 719
Liang, Shitao Xiao, Minghao Qin, Xi Yang, Yong- 720
ping Xiong, Bo Zhang, Tiejun Huang, and Zheng Liu. 721
2025. Mlvu: Benchmarking multi-task long video 722
understanding. Preprint, arXiv:2406.04264. 723

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2304.08485
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://doi.org/10.48550/ARXIV.2410.17247
https://doi.org/10.48550/ARXIV.2410.17247
https://doi.org/10.48550/ARXIV.2410.17247
https://doi.org/10.48550/ARXIV.2410.17247
https://doi.org/10.48550/ARXIV.2410.17247
https://github.com/LLaVA-VL/LLaVA-NeXT/blob/main/docs/LLaVA_OneVision_Chat.md
https://github.com/LLaVA-VL/LLaVA-NeXT/blob/main/docs/LLaVA_OneVision_Chat.md
https://github.com/LLaVA-VL/LLaVA-NeXT/blob/main/docs/LLaVA_OneVision_Chat.md
https://doi.org/10.48550/ARXIV.2410.02713
https://doi.org/10.48550/ARXIV.2410.02713
https://doi.org/10.48550/ARXIV.2410.02713
https://arxiv.org/abs/2406.04264
https://arxiv.org/abs/2406.04264
https://arxiv.org/abs/2406.04264


A Related Work724

A.1 Large Vision-Language Models725

Large vision-language models (LVLMs) combine726

vision encoders with large language models to727

jointly process image and text inputs. This mul-728

timodal architecture has achieved strong perfor-729

mance on tasks like visual question answering730

and captioning, with representative models in-731

cluding BLIP-2(Li et al., 2023), Qwen-VL (Bai732

et al., 2023), and the LLaVA series (Liu et al.,733

2024). LLaVA-OneVision (Li et al., 2024a) ex-734

tends LVLMs to handle single-image, multi-image,735

and video inputs in a unified framework, while736

LLaVA-Video (Zhang et al., 2024) adapts to the737

video domain via instruction tuning. However, rich738

visual inputs often produce thousands of tokens,739

leading to high computational and memory costs.740

This bottleneck limits inference efficiency and prac-741

tical deployment, highlighting the need for token742

compression to make LVLMs more scalable and743

efficient.744

B Benchmark Detail745

We evaluate our method on a diverse collection746

of vision-language benchmarks, covering both im-747

age and video modalities. As summarized in Ta-748

ble Table 5, the image-based benchmarks include749

GQA (Hudson and Manning, 2019), MME (Fu750

et al., 2024), SEED-Bench (Li et al., 2024b), MM-751

Star (Chen et al., 2024c), AI2D (Seo et al., 2014),752

OCR-VQA (Mishra et al., 2019), TextVQA (Singh753

et al., 2019), and InfographicVQA (Mathew et al.,754

2022).755

For video-based evaluation, we adopt756

MVBench (Li et al., 2024c), MMBench-757

Video (Fang et al., 2024), MLVU (Zhou et al.,758

2025), LongVideoBench (Wu et al., 2024),759

and WorldSense (Hong et al., 2025). These760

benchmarks collectively provide a comprehensive761

testbed for assessing both the effectiveness and762

generalizability of our proposed method.763

C Classifier Output Distribution764

We provide the distribution of the classifier model765

outputs after training stage 2, which highlights the766

influence of different settings for the hyperparame-767

ter k during this stage. The hyperparameter k plays768

a crucial role in the second stage of training. When769

k is set to 0.1, the retain probabilities P become770

sharply separated at the beginning of stage 2, as771

shown in Figure 7a, which can hinder subsequent 772

training. On the other hand, when k is set to 0.0001, 773

a large portion of the P values remain continuous, 774

as seen in Figure 7c, which prevents the values 775

from approximating the discrete selection patterns 776

needed during inference. When k = 0.1, the distri- 777

bution of the classifier’s output in Figure 7b aligns 778

with the pruning operation during the inference 779

stage, allowing the model to gradually identify re- 780

dundant tokens and simulate pruning under smaller 781

values of k . 782
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Modality Benchmark Short Name Task Feature

Image

GQA GQA Visual attribute reasoning
MME MME Multimodal evaluation across modalities

SEED-Bench SEED Generative multimodal comprehension
MMStar MMStar Vision tasks with minimal data leakage

AI2D AI2D Diagram understanding
OCR-VQA OCRVQA Text-based image reasoning
TextVQA TextVQA Scene text understanding

InfographicVQA InfoVQA Multimodal infographic reasoning

Video

MVBench MVBench Temporal understanding in videos
MMBench-Video MMBenchV Long-form video reasoning

MLVU MLVU Multi-task video understanding
LongVideoBench LongVB Interleaved video-language reasoning

WorldSense WorldSense Omni-modal (visual/audio/text) understanding

Table 5: Detailed Evaluation Benchmarks

0 1

(a) P of classifier after training stage 2
when k = 0.1.

0 1

(b) P of classifier after training stage 2
when k = 0.01.

0 1

(c) P of classifier after training stage
2,k = 0.0001.

Figure 7: The distribution of classifier outputs after training stages 2 when setting different k .
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