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Abstract

Large Vision-Language Models (LVLMs) pro-
cess multimodal inputs consisting of text to-
kens and vision tokens extracted from images
or videos. Due to the rich visual information, a
single image can generate thousands of vision
tokens, leading to high computational costs dur-
ing the prefilling stage and significant memory
overhead during decoding. Existing methods at-
tempt to prune redundant vision tokens, reveal-
ing substantial redundancy in visual representa-
tions. However, these methods often struggle
in shallow layers due to the lack of sufficient
contextual information. We argue that many
visual tokens are inherently redundant even in
shallow layers and can be safely and effectively
pruned with appropriate contextual signals. In
this work, we propose CoViPAL, a layer-wise
contextualized visual token pruning method
that employs a Plug-and-Play Pruning Module
(PPM) to predict and remove redundant vision
tokens before they are processed by the LVLM.
The PPM is lightweight, model-agnostic, and
operates independently of the LVLM architec-
ture, ensuring seamless integration with vari-
ous models. Extensive experiments on mul-
tiple benchmarks demonstrate that CoViPAL
outperforms training-free pruning methods un-
der equal token budgets and surpasses training-
based methods with comparable supervision.
CoViPAL offers a scalable and efficient solu-
tion to improve inference efficiency in LVLMs
without compromising accuracy.

1 Introduction

Large Vision-Language Models (LVLMs, Chiang
et al., 2023; Anil et al., 2023; Bai et al., 2023; Liu
et al., 2023) have recently demonstrated remark-
able capabilities in understanding and generating
content grounded in visual inputs, including both
images and videos. To effectively capture the rich
spatial and semantic details inherent in visual sig-
nals, these models often rely on generating hun-
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Figure 1: Ilustration for CoViPAL at inference stage.

dreds or even thousands of visual tokens per image
or video. For instance, LLaVA-OneVision (Li et al.,
2024a) explicitly allocates up to 7,290 visual tokens
per image, leveraging a large corpus of high-quality
images to maximize visual comprehension.

Although dense visual token representations en-
hance the model’s capacity to understand fine-
grained visual content, they come at the cost
of substantial computational and memory over-
head (Zhang et al., 2025). This leads to reduced
inference efficiency and makes it difficult to apply
LVLMs in scenarios where resources are limited or
real-time performance is required.

To address this issue, prior work has explored re-
ducing the number of visual tokens or compressing
their corresponding key-value (KV) cache (Bolya
et al., 2022; Shang et al., 2024), highlighting the
substantial redundancy present in visual represen-
tations. Token eviction methods discard less infor-
mative tokens based on importance scores (Chen
et al., 2024b; Lin et al., 2025), while token merging
approaches group similar tokens and consolidate
them to reduce token number (Chen et al., 2024a;
Shi et al., 2023). Empirical observations suggest
that pruning visual tokens in shallow layers can sig-
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Figure 2: Prune tokens in different layers and based on different attention weights.

nificantly hurt performance and every visual token
matters in these layers (Xing et al., 2024). Despite
their effectiveness to some extent, these methods
largely fail to prune tokens in the shallow layers.

Visual token reduction is less effective in shallow
layers, primarily because tokens in these layers in-
teract with fewer transformer decoder layers, result-
ing in limited contextual information. This makes
it challenging to identify unimportant tokens, lead-
ing to significant performance degradation when
attempting to prune visual tokens at these stages.
However, we observe that some visual tokens are
inherently redundant and can be effectively and
safely pruned when guided by appropriate contex-
tual information. Based on this insight, we propose
CoViPAL, a contextualized visual token pruning
method that operates across all layers. CoViPAL
implements the PPM module using small classi-
fier trained on limited data to identify and remove
less important tokens before they are passed to the
base model of LVLM, thereby reducing the number
of visual tokens while maintaining model perfor-
mance.

We conducted experiments on two models:
LLaVA-OneVision and LLaVA-Video. For LLaVA-
OneVision, we trained the classifier using only
0.46% of the pretraining dataset, while for LLaVA-
Video, we extended its capabilities to handle video
inputs using just 7.4% of the video instruction-
following dataset. Additionally, we performed

extensive experiments on a variety of image and
video benchmarks. The results demonstrate that
our method reduces the prefilling time by up to 60%
compared to the original model, with only minimal
performance degradation when pruning 75% of the
visual tokens. Furthermore, our approach outper-
forms both training-free methods, FastV and Spar-
seVLM, and the training-based method Pramid-
Drop, when maintaining the same percentage vi-
sual tokens.

2 Related Works

2.1 Token Pruning

Token pruning methods aim to remove tokens with
low attention or feature similarity after early or
intermediate layers (Chen et al., 2024b; Lin et al.,
2025; Xing et al., 2024), or optimize pruning sched-
ules using small inference batches to meet FLOPs
budgets (Ye et al., 2025). These methods generally
prioritize the preservation of early tokens to avoid
information loss.

2.2 Token Merging

Alternatively, similarity-based merging techniques
fuse redundant tokens either spatially or cross-
modally to reduce token count while maintaining
semantic integrity and accuracy (Chen et al., 2024a;
Shi et al., 2023). These methods achieve com-
pression without compromising downstream perfor-
mance. They typically leave the tokens in shallow



layers unmerged to maintain overall performance.

2.3 Hybrid Methods

Recent methods combine pruning and merging
by ranking tokens based on attention, pruning
low-importance tokens, and merging redundant
ones to recycle information (Zhong et al., 2024;
Shang et al., 2024; Zhang et al., 2025). For in-
stance, LOOK-M (Wan et al., 2024) addresses long-
context inference by compressing the KV cache
through text-guided merging of similar key-value
pairs, thereby reducing memory usage and improv-
ing decoding speed.

These approaches generally retain visual to-
kens in shallow layers to minimize significant per-
formance degradation. In contrast, our method
demonstrates that visual token redundancy exists
across all layers and can be safely pruned using
a lightweight classifier trained on a small dataset.
This approach facilitates earlier and more efficient
pruning without sacrificing critical information.

3 Preliminary

3.1 Notations

In LVLMs, a vision encoder is typically employed
to extract visual features, while a projector is used
to map these features into the word embedding
space. We denote the vision encoder and projec-
tor as g(-), so the visual tokens are represented
as H, = ¢g(X,), where X, is the visual input.
The textual input is represented by the text tokens
H, which are concatenated with the visual tokens,
forming the input to the LLM as f(+).

For token pruning, we assign an importance
score S to each visual token. This score serves
as the guiding criterion for the pruning process,
directly determining the relevance of each token.
Based on this score, we select the most important
tokens to retain, while pruning those deemed less
relevant, thereby reducing the overall number of
visual tokens in the input.

3.2 Preliminary Experiment

We conduct a preliminary study using LLaVA-
OneVision-7b-chat (Li et al.,, 2024a) on the
MVBench dataset (Li et al., 2024¢), where token
pruning is applied at decoder layer L, guided by
attention weights from an earlier layer L.

As shown in Figure 2, the choice of guidance
layer L4 has a stronger impact on pruning effective-
ness than the pruning layer L, itself. This under-

scores the importance of selecting a semantically
rich guidance layer. In particular, the 16th layer in
LLaVA-OneVision proves to be a strong candidate
for generating token importance scores.

Prior work often assumes L, = L, attributing
pruning performance to the pruning layer rather
than the quality of the guidance (Zhong et al., 2024;
Zhang et al., 2025; Lin et al., 2025). Our results
challenge this assumption, showing that such cou-
pling may lead to suboptimal pruning.

We observe that many visual tokens are inher-
ently redundant and can be pruned with minimal
performance loss when guided effectively. How-
ever, using deeper layers for guidance (L, > L)
introduces a trade-off: the model must prefill up to
L, to compute attention scores A, then reprocess
from L, after pruning. This two-step procedure
adds significant inference overhead.

4 Method

4.1 Inference

Our observations indicate that some visual tokens
are inherently redundant across layers, while the
attention weights in shallow layers are not suffi-
ciently effective at guiding the pruning. To address
this, we employ a plug-and-play pruning classifier
(referred to as the classifier) to capture the inherent
redundancy of the visual features for pruning.

We denote the classifier as pyg(-). It is positioned
just before the LLM f(-). During inference, we
compute the importance score for each visual token
with the classifier as follows:

S = pe(Hy, Hy), 6]

where S represents the importance scores. Based
on these scores, we perform pruning with a given
reserve ratio r. The indices of the visual tokens to
be retained are determined by:

I = TopK(S,r x ny), (2)

where n,, is the total number of visual tokens.

Note that S is computed over visual and text to-
kens, but only the scores for visual tokens. This
is because visual token redundancy depends not
only on visual features but also on textual context,
which guides the model in identifying more rele-
vant visual tokens (Sun et al., 2025; Yang et al.,
2025).

A detailed discussion of the model architecture
can be found in Section 5.
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Figure 4: Attention mask at the training stage2.

4.2 Training Stage 1

Our observations indicate that attention weights
in deeper layers of the LLM effectively guide the
pruning process. The attention weights in these
layers contain significant contextual information,
which highlights the tokens that need to be attended
by the attention mechanism. Therefore, we lever-
age the information to train the classifier, as illus-
trated in Figure 3a.

We denote the guiding attention weights as A,
and the specific layer from which these weights
are derived as ;. For training, we use the accu-
mulated attention weights, denoted as A, as the
target labels. The label for the k-th token is com-
puted by accumulating the attention weights over
the relevant layers:

h n
Al,k:Z Z Agiiks €))

i=1 j=n—ny

where h represents the number of attention heads,
n is the number of tokens.

The classifier outputs S represents the predicted
importance scores for the visual tokens. To train the
classifier, we optimize the model using the mean
squared error (MSE) loss function, aiming to mini-
mize the discrepancy between the predicted scores
S and the accumulated attention labels A;. The
MSE loss is computed as follows:

['mse = ni zu: <§k - Al,k)2 ) (4)
Y k=1

where Sk and A;j, are the predicted and true im-
portance scores, respectively, for the k-th visual
token.

The objective is to train the classifier to output
scores that align with the accumulated attention
weights, which will then guide the pruning opera-
tion effectively.

This training is efficient, as only the small clas-
sifier pg(-) is optimized. The LLM parameters be-
fore layer [, remain fixed, avoiding gradient com-
putation, while those after layer [, are dropped
during training, greatly reducing both computation
and memory overhead.

4.3 Training Stage 2

To further improve the model’s capacity to capture
contextual information and accurately identify im-
portant visual tokens, we introduce an end-to-end
training phase, as illustrated in Figure 3b, which
incorporates a differentiable approximation of the
pruning operation.

Direct pruning of less-relevant visual tokens dur-
ing training using hard indexing (e.g., H,[I]) is
non-differentiable and thus breaks the backpropa-



gation process. To address this, we simulate the
pruning effect by modifying the attention mecha-
nism through a soft attention mask.

We apply a sigmoid activation to the classifier
outputs S to normalize the predicted importance
scores into the range [0, 1]:

P = o(S). (5)

Here, IP; can be interpreted as the retention proba-
bility for the ¢-th visual token. To simulate pruning,
we convert the normalized importance scores into
attention biases using a logarithmic transformation:

B = log(P). (6)

This transformation ensures that tokens with low
importance scores receive large negative biases,
thus masking them during attention computation.

We then construct the final attention mask 4 by
adding the attention bias B; to the standard causal
attention mask:

M;j = M3 + B, fori>j,  (7)

where M2 is the standard causal mask.

The model outputs predictions ¢, and the ground
truth labels are denoted as . We define the training
objective as a combination of the cross-entropy loss
and a regularization term:

Liotal = [rce(yv ?3) +k x ﬁreg(P); (8)

where Ly.q(IP) enforces the model to retain a pre-
defined ratio r of visual tokens and encourages the
model to approximate the token pruning patterns
during inference. The parameter k£ controls the
weight of L., () in the overall loss function.

A naive regularization (Nawrot et al., 2024) such
as:Lyeg = L1(r, mean(I?)) enforces a global reten-
tion rate r, but tends to collapse all probabilities PP;
to values near r, harming discriminative capacity.

To promote a clearer distinction between impor-
tant and unimportant visual tokens, we introduce
a contrastive style regularization objective that ex-
plicitly separates their predicted importance scores.

We first compute the indices of the top and bot-
tom tokens based on the classifier’s normalized
outputs P € [0, 1]"v, where n, is the number of
visual tokens:

Ihigh = TopK(P, |7 - ny ),
Phigh = P[Ihign),

Liow = DTopK(P, [ (1 — 1) - no]),
Piow = P[Ljow]-

(©))

Then we define the regularization loss as:

Lreg = Ll (17 mean(]phigh — P]ow)) . (10)

This objective aims to maximize the average mar-
gin between the most and least important tokens.
Specifically: TopK(-) returns the indices of the top
7 - n, visual tokens with the highest importance
scores, DTopK(-) returns the indices of the bottom
(1 —r) - n, tokens, £1(1,-) penalizes deviation
from the target margin of 1 between high and low
importance scores.

This regularization guides the classifier to as-
sign high retention scores to top-ranked tokens
and low scores to less relevant ones, aligning with
the inference-time selection and enabling pruning-
aware learning in a fully differentiable way.

S Experiments

5.1 Experimental Setup

Baselines We evaluate our methods with three
baseline approaches: FastV (Chen et al., 2024b),
SparseVLM (Zhang et al., 2025), and Pyramid-
Drop (Xing et al., 2024), all of which performing
token pruning. FastV prunes visual tokens in a
specific layer using self-attention scores of that
layer. PyramidDrop prunes tokens in predefined
layers based on attention weights. SparseVLM
also prunes tokens in predefined layers but merges
part of the pruned tokens and reserve them. FastV
and SparseVLM are plug-and-play methods, while
PyramidDrop offers both training-free and training-
based strategies.

Base Models We conduct experiments on two
state-of-the-art LVLMs: LLaVA-OneVision-7b-
Chat (Xiong et al., 2024) and LLaVA-Video-
7b (Zhang et al., 2024). LLaVA-OneVision-7b-chat
is trained on a combination 4.8M dataset of image
and video. LLaVA-Video-7b is fine-tuned from
LLaVA-OneVision using a joint dataset, including
LLaVA-Video-178K. For evaluating image tasks,
we use LLaVA-OneVision-7b-Chat, while LLaVA-
Video-7b is used for video task evaluations.

Classifier Model We design a compact classifier
with two projection layers and 8 encoder layers.
The first projection maps LVLM embeddings to
the classifier input, and the second outputs a scalar
score S = 1. The encoder comprises 8 layers, each
with a hidden size of 768, intermediate size of 3072,
16 attention heads, and 4 key-value heads, resulting
in a total of 71.20M parameters.



Models GQA MME SEED MMStar AI2D OCRVQA TextVQA InfoVQA ‘ Avg(%)
LLaVA-OV-7b 61.70 160541 76.59 61.67 82.77 59.83 75.02 65.52 \ 100.00%
reserve ratio = 0.5
FastV 60.89 1586.18 74.95 57.20  80.70 58.56 71.69 49.58 94.34%
SparseVLM 59.35 1560.75 74.40 54.67 78.69 45.96 69.49 42.06 88.49%
PDrop 61.02 1590.56 75.75 59.00 80.83 57.19 74.71 60.90 97.29%
PDrop* 5997 1532.82 75.89 58.00 80.24 59.90 70.64 46.83 93.56%
CoViPAL 61.31 1613.37 75.48 59.07 82.12 57.85 74.08 59.66 97.48 %
reserve ratio = 0.25
FastV 56.12 1523.37 65.88 47.23 73.25 46.29 57.29 35.18 80.54%
SparseVLM 52.85 1415.58 67.42 4540  70.30 32.09 43.61 28.03 71.88%
PDrop 58.02 1470.22 67.50 49.80  73.06 48.83 68.32 41.90 84.93%
PDrop* 57.77 1531.10 70.47 49.80 7431 49.22 64.95 34.47 84.12%
CoViPAL 59.93 1559.29 73.22 5433 7947 48.92 65.99 47.28 89.48%
Table 1: Results of image benchmark.

Models | MVBench  MMBVideo MLVU™ MLVUY LongVB WorldSense | Avg(%)
LLaVA-Video-7b \ 58.32 1.71 62.40 4.16 52.50 38.20 \ 100.00%
reserve ratio = 0.5
FastV 56.87 1.67 60.60 4.89 52.60 37.60 101.41%
SparseVLM 55.29 1.63 59.20 4.51 50.10 37.30 97.74%
Pdrop 55.21 1.63 56.80 4.96 52.10 34.80 98.43%
Pdrop* 55.74 1.60 61.50 473 49.60 38.90 99.62%
CoViPAL 56.66 1.66 61.40 4.97 51.80 38.10 101.75%
reserve ratio = 0.25
FastV 52.74 1.55 55.90 4.68 48.20 36.50 95.08%
SparseVLM 50.00 1.52 54.50 4.33 47.00 36.30 91.77%
Pdrop 50.50 1.55 53.30 4.70 48.90 33.50 92.74%
Pdrop* 53.03 1.58 59.20 4.72 48.30 37.70 97.06%
CoViPAL 55.42 1.61 55.80 4.85 51.30 37.20 98.38 %

Table 2: Results of video benchmark.

Training Implementation In training stage 1,
we use 3% of LLaVA-NeXT-Data (which is 0.46%
of the training data of LLaVA-OneVision-7b-Chat),
totaling 22.2K samples, to train the classifier with
base model LLaVA-OneVision-7b-Chat. After
stage 1, we proceed to Stage 2, initializing the clas-
sifier from Stage 1. During the training stage 2, we
trained two classifiers. One is trained on the same
data as training stage 1 with the base model LLaVA-
OneVision-7b-chat, this classifier is used for image
benchmark evaluation. And another on 20% of the
0_30_s_academic_v0_1 (13.2K samples) dataset
with LLaVA-Video-7b for video benchmark eval-
uation. For PyramidDrop, we fine-tune two mod-
els using LoRA (Hu et al., 2022): one on 10%
of LLaVA-NeXT-Data with LLaVA-OneVision-7b-
Chat for image evaluation, and the other on 60%
of 0_30_s_academic_v0_1 with LLaVA-Video-7b
for video evaluation. The larger dataset for Pyra-

midDrop ensures consistent training time, as Stage
2 is incompatible with Flash Attention (Dao et al.,
2022), which doesn’t support this type of custom
attention mask currently.

Training Hyperparameters Each run is trained
for one epoch using Bfloat16 precision. The learn-
ing rate is set to le-5, except in Stage 2 where it
is reduced to 0.5e-5 to preserve parameters from
Stage 1. We set £ = 0.01 in Eq. 8, and apply
a cosine scheduler. For PyramidDrop, we use a
LoRA rank of 32 (97.72M trainable params). The
input length is capped at 3000 tokens. For image
input, we use the anyres-max-2 setting, producing
up to 2189 visual tokens-leaving room for text to
avoid truncation. For video input, we allow up to 8
frames (max 1568 visual tokens). The reserve ratio
during training is fixed at 0.25, as we believe that a
training-based method should be robust enough to
accommodate differences in reserve ratio between
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Figure 5: Efficiency Results of CoViPAL on LLaVA-OneVision-7b-Chat.

training and inference settings.

Evaluation Benchmarks We evaluate our meth-
ods on eight image and five video benchmarks span-
ning visual reasoning, multimodal comprehension,
temporal understanding and so on. This diverse set
ensures a comprehensive assessment across visual
inputs. Details are provided in the Appendix B. All
evaluations use VLMEvalKit (Duan et al., 2024).

5.2 Evaluation Results

Image Benchmarks We evaluate CoViPAL on
eight widely used image benchmarks, with the
results reported in Table 1. Our results indicate
that CoViPAL effectively preserves the model’s
image comprehension capabilities on tasks of real-
world scenarios. CoViPAL consistently surpasses
the three baseline methods when retaining 50% or
only 25% of the image tokens. Particularly, when
the reserve ratio is set to 25%, which significantly
challenges the model’s token selection capability,
CoViPAL demonstrates superior performance by
accurately identifying and preserving the most cru-
cial visual tokens. Additionally, results confirm the
robustness of CoViPAL, as performance remains
stable even when the inference reserve ratio (50%)
differs from the training reserve ratio (25%).

Video Benchmarks We further evaluate
CoViPAL on five widely recognized video
benchmarks, with the results summarized in Table
2. The experimental results demonstrate that
CoViPAL effectively eliminates redundant or less

relevant visual tokens, leading to performance
improvements under various conditions. CoViPAL
consistently outperforms the three comparative
baselines, exhibiting only a minor performance
degradation of 1.62% when pruning 75% of the
visual tokens. Moreover, the results suggest that
videos are more information-sparse compared
to images, containing a higher proportion of
redundant visual tokens, thereby making video
tasks inherently more robust to token pruning.

Efficiency Results We evaluate the efficiency
of CoViPAL on LLaVA-OneVision-7b-Chat with
video input on a single RTX 3090 GPU. The sam-
ple frame size ranges from 16 to 64, resulting in
input tokens ranging from 3k to 13k. With a reserve
ratio of 0.25, we measure prefilling time, decoding
speed for generating 1k tokens, and the classifier’s
overhead during prefilling. Results are shown in
Figure 5.

CoViPAL significantly reduces prefilling time
and accelerates decoding. For 48-frame input, it
cuts prefilling time by over 60% and enables 64-
frame inference on a 24G GPU, where the original
model fails due to memory limits.

5.3 Ablation Study
5.4 Similarity Based Token Replacement

Model Structure for Contextual Information
Capture We compare two classifier models: a
multi-layer encoder with 71.2M parameters (pg)
and a single-layer encoder with 165.18M parame-



Models GQA MME SEED MMStar AI2D OCRVQA TextVQA InfoVQA
LLaVA-OV-7b 61.70 1605.41 76.59 61.67  82.77 59.83 75.02 65.52
reserve ratio = 0.5
pé 60.85 1547.10 74.85 5820  81.22 52.77 68.35 52.12
Do 61.31 1613.37 7548 59.07 82.12 57.85 74.08 59.66
reserve ratio = 0.25
pé 57.21 1446.89 70.67 5120 7691 37.43 48.21 35.55
Do 59.93 1559.29 73.22 5433 7947 48.92 65.99 47.28
Table 3: Ablation Study on model structure.
Models r=>50% r=25%
‘ l LLaVA-OV-7b 61.70
=0.1 61.19 59.31
k =0.01 61.31 59.94
k = 0.0001 61.11 58.73
Table 4: Ablation study on £.
in Table 4, &k = 0.01 yields the best performance.
Effectiveness of the Training Strategy Training
. . Stage 2 from a randomly initialized model led to a
- 0 1

(b) P of classifier after
training stage 2.

(a) S of classifier after
training stage 1.

Figure 6: The distribution of classifier outputs after two
training stages.

ters (p},), in which the letter use the same settings as
LLaVA-OneVision-7b-Chat decoder architecture.
Trained with the same two-stage strategy on
3% of LLaVA-NeXT-Data, pz consistently outper-
forms pé on image tasks, as shown in Table 3. De-
spite its smaller size, the deeper model captures
redundant token patterns more effectively, high-
lighting the advantage of deeper attention layers in
modeling contextual information for pruning.

k for Two-Stage Training The hyperparameter k
in Eq. 8 is crucial in Stage 2. A large k causes early
sharp separation of retain probabilities P which
hindering the subsequent training, while a small &
keeps P continuous, misaligned with the discrete se-
lection required during inference. The distribution
of classifier outputs are showed in Appendix C.
We train with £ values from 0.0001 to 0.1 us-
ing LLaVA-OneVision-7b-Chat and evaluate on
GQA (Hudson and Manning, 2019). For k =
0.0001, we warm up with £ = 0.01 to avoid con-
tinuous distribution throughout training. As shown

collapse of retain probabilities P to 0 throughout
training, even with £ = 0.1, as shown in Figure
7c. In contrast, initializing from the Stage 1 model
Figure 6a allowed PP to stabilize and discretize
effectively Figure 6b.

These results underscore the value of the two-
stage strategy: Stage 1 captures contextual atten-
tion patterns, providing a strong initialization for
Stage 2 to identify redundant tokens and simulate
pruning under smaller &.

6 Conclusion

We propose CoViPAL, a novel contextualized
visual token pruning method that efficiently re-
duces the computational and memory overhead
of Large Vision-Language Models by leveraging
a lightweight and plug-and-play pruning module.
CoViPAL identifies and removes redundant visual
tokens across all layers with minimal supervision,
achieving up to 50% reduction in pre-filling time
and pruning 75% of visual tokens while maintain-
ing competitive performance. Our method out-
performs both training-free and training-based ap-
proaches, offering a scalable and adaptable so-
lution for efficient multimodal inference. This
work provides new insights into visual token re-
dundancy and paves the way for deploying LVLMs
in resource-constrained settings.



Limitations

While our approach has been validated on represen-
tative LVLMs, the diversity of model backbones
explored so far remains limited. In future work,
we plan to extend our method to a broader range
of architectures, including base models from the
LLaMA and Mistral families, to assess its applica-
bility across different LVLLM paradigms and better
understand its architectural generality.

In addition, the current experiments are con-
ducted on models of moderate scale. Scaling up
to larger model sizes will allow us to further in-
vestigate the generalization and effectiveness of
our pruning framework in high-capacity settings.
These extensions will provide deeper insights into
the scalability and robustness of our approach.
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A Related Work

A.1 Large Vision-Language Models

Large vision-language models (LVLMs) combine
vision encoders with large language models to
jointly process image and text inputs. This mul-
timodal architecture has achieved strong perfor-
mance on tasks like visual question answering
and captioning, with representative models in-
cluding BLIP-2(Li et al., 2023), Qwen-VL (Bai
et al., 2023), and the LLaVA series (Liu et al.,
2024). LLaVA-OneVision (Li et al., 2024a) ex-
tends LVLMs to handle single-image, multi-image,
and video inputs in a unified framework, while
LLaVA-Video (Zhang et al., 2024) adapts to the
video domain via instruction tuning. However, rich
visual inputs often produce thousands of tokens,
leading to high computational and memory costs.
This bottleneck limits inference efficiency and prac-
tical deployment, highlighting the need for token
compression to make LVLMs more scalable and
efficient.

B Benchmark Detail

We evaluate our method on a diverse collection
of vision-language benchmarks, covering both im-
age and video modalities. As summarized in Ta-
ble Table 5, the image-based benchmarks include
GQA (Hudson and Manning, 2019), MME (Fu
et al., 2024), SEED-Bench (Li et al., 2024b), MM-
Star (Chen et al., 2024¢), AI2D (Seo et al., 2014),
OCR-VQA (Mishra et al., 2019), TextVQA (Singh
et al., 2019), and InfographicVQA (Mathew et al.,

2022).
For video-based evaluation, we adopt
MVBench (Li et al.,, 2024c), MMBench-

Video (Fang et al., 2024), MLVU (Zhou et al.,
2025), LongVideoBench (Wu et al., 2024),
and WorldSense (Hong et al.,, 2025). These
benchmarks collectively provide a comprehensive
testbed for assessing both the effectiveness and
generalizability of our proposed method.

C C(lassifier Output Distribution

We provide the distribution of the classifier model
outputs after training stage 2, which highlights the
influence of different settings for the hyperparame-
ter k during this stage. The hyperparameter k plays
a crucial role in the second stage of training. When
k is set to 0.1, the retain probabilities P become
sharply separated at the beginning of stage 2, as
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shown in Figure 7a, which can hinder subsequent
training. On the other hand, when £ is set to 0.0001,
a large portion of the P values remain continuous,
as seen in Figure 7c, which prevents the values
from approximating the discrete selection patterns
needed during inference. When k£ = 0.1, the distri-
bution of the classifier’s output in Figure 7b aligns
with the pruning operation during the inference
stage, allowing the model to gradually identify re-
dundant tokens and simulate pruning under smaller
values of k.



Modality Benchmark Short Name Task Feature
GQA GQA Visual attribute reasoning
MME MME Multimodal evaluation across modalities
SEED-Bench SEED Generative multimodal comprehension
Imace MMStar MMStar Vision tasks with minimal data leakage
£ AI2D AI2D Diagram understanding
OCR-VQA OCRVQA Text-based image reasoning
TextVQA TextVQA Scene text understanding
InfographicVQA InfoVQA Multimodal infographic reasoning
MVBench MVBench Temporal understanding in videos
MMBench-Video MMBenchV  Long-form video reasoning
Video MLVU MLVU Multi-task video understanding
LongVideoBench LongVB Interleaved video-language reasoning
WorldSense WorldSense ~ Omni-modal (visual/audio/text) understanding
Table 5: Detailed Evaluation Benchmarks
0 1 0 1 0 1

(a) P of classifier after training stage 2

when £ = 0.1.

(b) P of classifier after training stage 2 (c) P of classifier after training stage

when £ = 0.01.

2,k = 0.0001.

Figure 7: The distribution of classifier outputs after training stages 2 when setting different %.
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