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Abstract

Logical reasoning is a fundamental capability
for advanced artificial intelligence systems. As
Large Language Models(LLMs) continue to
improve, many studies have been conducted to
provide an accurate evaluation of LLM’s log-
ical reasoning capabilities. However, current
benchmarks suffer from issues including inter-
ference from commensense-knowledge, short
reasoning paths and low scalability. In this
work, we propose an automated, cost-efficient
method for generating dataset and FLoRE, a
novel benchmark utilizing formal languages,
a purely symbolic reasoning system, to eval-
uate the logical reasoning abilities of LLMs.
Experimental results indicate that current large
models generally perform poorly on logical rea-
soning tasks and are sensitive to the symbolic
meanings involved in the reasoning process.
This benchmark aims to leverage the charac-
teristics of symbolic systems to avoid interfer-
ence from commonsense knowledge, simulta-
neously maintaining the difficulty of reasoning
tasks and reducing the complexity of data con-
struction methods. All data and code will be
available online.

1 Introduction

Logical reasoning is a cornerstone of artificial
intelligence, enabling machines to simulate hu-
man thought processes and solve complex prob-
lems (Liu et al., 2025). Evaluating the logical
reasoning capabilities of large language models
(LLMs) is essential to ensure their reliability and
trustworthiness in real-world applications (Deng
et al., 2024). As LLMs are increasingly used in
tasks that require complex decision-making, such
as legal analysis, scientific research, and automated
problem-solving (Gray et al., 2024; Nejjar et al.,
2025; Aghakhani et al., 2025), it becomes criti-
cal to assess whether they can reason consistently,
avoid contradictions, and draw valid conclusions
from given premises.

Current methods for constructing evaluation
datasets to assess the logical reasoning capabili-
ties of LLMs primarily follow two paradigms: (1)
manually designing rule-based templates and in-
stantiating them with relevant content (Saparov
et al., 2023; Yang et al., 2022; Han et al., 2022).
(2) extracting logical reasoning patterns directly
from source data. (Talmor et al., 2020; Zhong
et al., 2021; Liu et al., 2023). However, existing
datasets generally suffer from the following issues.
First, current methods inevitably introduce com-
monsense knowledge (Bhargava and Ng, 2022),
which interferes with the evaluation of the logical
reasoning ability itself(e.g. north and south) (Evans
et al., 1983; Chen et al., 2025; Parmar et al., 2024).
To accurately assess logical reasoning, tests should
focus on abstract or unfamiliar scenarios where
answers must be derived through logical inference
rather than retrieved from memory (Hua et al.,
2024). Secondly, current logic reasoning bench-
marks commonly feature short reasoning paths,
which leads to insufficient reasoning difficulty (Pa-
tel et al., 2024). As deep-reasoning LL.Ms(such as
Openai-ol and Deepseek-rl) continue to improve,
there is a growing trend of these benchmarks being
gradually outperformed or surpassed. Moreover,
many current benchmarks rely on manually crafted
inference rules or a limited set of logical theorems
for dataset construction, and the data collection
process is challenging (Zhu et al., 2025), leading
to limited scalability. Table 1 provides a com-
parison of our proposed dataset to datasets from
previous studies.

To mitigate the influence of commonsense
knowledge on reasoning and to explore a simple
yet effective approach for dataset construction, we
adopt formal language (Harrison, 1978) as the eval-
uation tool. In this paper, we examine whether
pre-trained LLMs can perform satisfactory logical
reasoning on formal languages. Based on a finite
set of symbols, we design and generate four types
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Figure 1: Examples of FLoRE. Based on formal language grammar, we design two logical reasoning tasks. In
Formal Language Recognition task, we require the LLM to determine whether the String can be derived through
inference based on the Rules. In grammar induction task, we provide several Strings as input, and require the LLM
to output a Possible Grammar that can generate the input strings through derivation.

of seed grammars, and automatically construct a
formal language grammar-string dataset. To our
knowledge, it is the first logical reasoning bench-
mark utilizing the symbolic properties of formal
language grammar reasoning to avoid interference
from commensense knowledge. Using this dataset,
we evaluate LLMs on both deductive and induc-
tive reasoning tasks. We find that: (1) Current
LLMs generally perform poorly on logical reason-
ing tasks based on Formal Language grammars.
(2) LLMs are sensitive to the commonsense defini-
tions of symbols; altering the definitions of these
symbols can lead to significant performance degra-
dation. (3) Guiding LLMs to explicitly articulate
their reasoning processes can help improve their
performance on reasoning tasks. Our contributions
are as follows.

(1). We propose FLoRE, a novel benchmark
designed to evaluate LLMs’ logical reasoning abil-
ities through formal language tasks. An example
is shown in Figure 1.

(2). We develop a series of tools for the auto-
matic analysis of results in formal grammar rea-
soning tasks and conduct a detailed analysis of the
models’ reasoning behavior.

(3). We evaluate the performances of several
mainstream LLMs and find that current main-
stream LLMs exhibit limited performance on tasks
involving formal languages.

2 Related Work

2.1 Logic Reasoning Evaluation Benchmarks

Developing models capable of logical reasoning
has been an important goal in the field of NLP
since its inception (Cooper et al., 1996). There-
fore, a number of studies have been conducted to
measure the logical reasoning ability of LLMs (Xu
et al., 2025). In current benchmarks, there are two
common ways to build evaluation datasets. The
first approach involves manually designing logi-
cal rules based on formal logic and then collecting
data from various information sources to fill in
the rule templates. PRONTOQA-OOD (Saparov
et al., 2023) follows the deduction rules of natu-
ral deduction (Pfenning, 2004), and generates a
proof that applies each rule. DEER (Yang et al.,
2022) focuses on four common types of first-order
logic (FOL) rules and constructs rule-fact pairs by
collecting relevant facts via commercial search en-
gines. FOLIO (Han et al., 2022) proposes a hybrid
annotation method based on syllogisms, integrat-
ing machine-generated and expert-annotated data
to construct datasets that conform to FOL. The
other approach extracts content related to logical
reasoning from existing texts or data resources and
organizes it into datasets. LOT (Talmor et al., 2020)
automatically generate data by sampling (subject,
predicate, object) triples that are known to be ei-
ther true or false from existing knowledge sources.
AR-LSAT (Zhong et al., 2021) collects data from
LSAT exams and selects questions from the analyti-
cal reasoning part to construct the dataset. LogiQA



Dataset Commonsense | Long reason- | Automatic Low-cost ex- | Automatic
Knowledge ing path generation pansion evaluation

LogiQA v X X X v

ProofWriter | v/ v v X v

FOLIO v X X X X

PRONTOQA v X v v v

LogicBench v X v X v

Ours X v v v v

Table 1: Comparison of existing logical reasoning datasets to our proposed benchmark. Previous work generally
suffers from issues such as interference from commonsense interference, insufficient reasoning difficulty, and the
complexity of data generation methods, which hinder the automatic and adaptive scaling of difficulty and problem

quantity.

2.0 (Liu et al., 2023) extracts the premise and hy-
potheses from the concatenation of text, question,
and options of cyber-downloaded machine reading
comprehension instances to form natural language
inference data.

However, existing evaluation benchmarks gen-
erally suffer from three main issues: interference
from commonsense knowledge in logical reason-
ing (Evans et al., 1983), overly short reasoning
paths (Patel et al., 2024), and high data construc-
tion costs that hinder scalability (Zhu et al., 2025).
With FLoRE, we effectively address these chal-
lenges and conduct a thorough evaluation and anal-
ysis of the logical reasoning capabilities of LLMs.

3 Dataset Design and Construction

3.1 Notation

Formal language grammar (Jiang et al., 2009) is a
system of rules used to generate and describe the
structure of strings in a language. It plays a foun-
dational role in both theoretical computer science
and natural language processing (Harrison, 1978),
enabling the analysis and generation of syntacti-
cally valid sequences. Here, we define a formal
language grammar as a quadruple (Hopcroft et al.,
2001):

G=(V,X,R,9) (D

In this definition, V represents the set of nonter-
minal symbols, which are used to denote syntac-
tic categories or structures that can be further ex-
panded through production rules. The second com-
ponent, 3, is the set of terminal symbols, which
correspond to the actual symbols of the language
and appear in the strings generated by the grammar.
The third component, R, is the set of production
rules, which describe how non-terminal symbols
can be replaced by a combination of non-terminal

and terminal symbols. Finally, S represents the
start symbol, which is a specific non-terminal sym-
bol from V that serves as the starting point for the
derivation process. The common formats of formal
language grammar are shown in Table 3.

Common tasks on formal language include For-
mal Language Recognition (Pecht, 1983) and
Grammar Induction (De la Higuera, 2010). For-
mal Language Recognition relies primarily on de-
ductive reasoning and pattern matching to de-
termine string membership based on predefined
rules (Fodor and Pylyshyn, 1988; Alfred et al.,
2007), as the model must observe and apply pos-
sible grammatical rules step by step to determine
whether a given string belongs to the language. To
perform a Formal Language Recognition task, the
process typically involves the following steps:

1). Observe the structure of the string and the
grammar rules, and select the most likely rule at
each step. 2). Apply the chosen rule to make
substitutions and compare the current string with
the target string to assess the difference. 3). If no
suitable rule can be found, backtrack to a previous
state and try a different path.

Grammar Induction requires inductive reason-
ing and hypothesis testing, as it requires the model
to infer general grammatical rules from a limited
set of example strings. Rather than applying prede-
fined rules, the model must identify recurring pat-
terns and structural regularities across the data, and
generalize them into a coherent grammar (Gold,
1967; Ebner, 2021). To perform a Grammar Induc-
tion task, the process typically involves the follow-
ing steps:

1). Observe the strings to identify commonal-
ities and differences. 2). Break down the strings
into substructures to extract underlying patterns.
3). Based on these patterns, define a set of symbols



and prototype production rules to form the initial
grammar. 4). Test and refine the initial grammar,
with details added to improve accuracy and com-
pleteness.

Formal languages can be categorized into differ-
ent levels of complexity, most commonly described
by the Chomsky hierarchy (Hunter, 2021). At the
top of the hierarchy are recursively enumerable
languages, which are the most expressive and not
all are decidable (Sumitha and Geddam, 2011).

3.2 Task Definition

We design two logical reasoning tasks inspired
by standard problems in formal language theory.
One is Formal Language Recognition(FLR), it
requires the LLM to determine whether a given
string can be derived from a specific formal lan-
guage grammar. The task is formulated as a classi-
fication problem:

Let X be an alphabet, L C 3 be a formal lan-
guage defined over it. The problem of formal lan-
guage recognition is to determine, for any given
string w € 3, whether w belongs to the language
L.

Formally, the LLM acts as a recognizer for L
that implements a function:

Recognize; : ¥* — {0,1}

such that:

1, ifwel

Recognize; (w) = {0 fwd L

The other is Grammar Induction(GI); it re-
quires the LLM to infer a formal language gram-
mar from a given set of strings:

Let X be an alphabet, and let L. C X* be an
unknown formal language. Consider two finite and
disjoint subsets of strings:

1)The input set S, C X*, consisting of strings
known to belong to the language L.

2)The test set St C 2%, consisting of strings
used to evaluate the generalization ability of the
induced grammar.

The grammar induction problem is to infer a
formal grammar G such that:

1). All strings in the input set are derivable from
G: Sin C L(G)

2). The grammar G maximizes coverage over
the test set, i.e., the number of strings in S_test
that are derivable from G is as large as possible:
max | Stest N L(G)|

Seed Grammar Type Examples
Root S — BCD
Context-Free C — Ab
Context-Sensitive bSB — a
Recursive D— DD
Epsilon A—¢

Table 2: Examples of seeds we generated. Root refers
to those whose derivations uniformly begin with a des-
ignated root symbol on the left-hand side; Context-Free
has a non-recursive rule with a single non-terminal on
the left-hand side; Context-Sensitive allows context-
dependent rules where the output may be shorter than
the input; Recursive includes a self-referential rule en-
abling unbounded derivation; Epsilon consists of pro-
ductions that derive the empty string.

Previous studies have shown that if only positive
examples are provided, most types of formal lan-
guage grammar cannot be uniquely defined from
these examples alone (Gold, 1967). Therefore, we
define this task as an open-ended generation task
with no single correct answer. The task is consid-
ered successfully completed as long as the LLM
outputs a grammar that can generate all the given
strings through valid derivations.

3.3 Data Construction

We propose a simple-yet-effective method for gen-
erating evaluation data, consisting of four main
stages: Seed Generation, Group Mixing, Reliable
Inference, and Random Perturbation. The com-
plete process of dataset construction is illustrated
in Figure 2. Currently, FLoRE consists of approxi-
mately 30.5k instances. Thanks to our generation
methodology, the dataset can be easily scaled to
a significantly larger size without compromising
quality or consistency.

Seed Generation. We first generate a set of seed
rules based on a predefined set of symbols, as the
foundation for dataset construction.

Considering the performance of existing com-
mercial LLMs on grammar-based reasoning
tasks(shown in Appendix B), as well as the struc-
tural characteristics and hierarchical classification
of formal language, we construct four types of
seed grammar rules: Root, Context-Free, Context-
Sensitive, Recursive, and Epsilon. Examples of
each type of seed are shown in Table 2.

Group Mixing. Next, we conduct a mix-up on
generated seed grammar, thus forming a number
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Figure 2: The data generation pipeline for FLoRE. Beginning with a limited symbol set, we progressively construct
seed rules and rule groups, from which we derive both positive and negative sample data through reasoning.

Type Initial Null Terminals

Nonterminals

Grammar Example  String Example

Normal S € Lowercase letters

Uppercase letters

S — SAE | ab
E — CbICCIEE
bA — a

C—oe

aab

Swapped € P Uppercase letters

Lowercase letters

e —cael AB
e —>cBlcclee
Ba— A
c—P

AAB

Table 3: Examples of the two grammar forms, along with the strings they generate. "Normal" refers to the
standard form of formal language grammar, whereas "Swap" denotes the transformed grammar obtained through

the procedure described in Section 3.3.

of rule groups. To ensure the validity of deriva-
tions within each rule group, it is required that
every group contains at least one Root rule. Subse-
quently, a number of rules are randomly sampled
from the Context-Free and Context-Sensitive gram-
mars. Finally, additional Recursive and Epsilon
grammars are randomly selected and added to the

group.

Reliable Inference. We develop a Grammar
Derivation Engine that systematically applies pro-
duction rules to generate multiple positive samples
for each rule group. Each positive sample con-
sists of a grammar rule set, a derived string, and its
associated derivation process. We define a hyperpa-
rameter A as the number of derivation steps, which
is used to regulate the complexity of the generated
data.

Random Perturbation. To obtain negative sam-
ples, we first apply perturbations to the positive
samples by randomly inserting or deleting a num-

ber of characters. We then develop a Grammar
Verifier employing a breadth-first search to test
the perturbed positive samples. This verifier fil-
ters out any samples that, despite perturbation, still
conform to the original grammar and thus remain
valid. However, for some complex grammar types,
the search space required to determine whether
a string can be derived from the grammar is un-
bounded (Hopcroft et al., 2001). To address this
issue, we define a hyperparameter p as the upper
bound of derivation steps.

Building upon the aforementioned data construc-
tion procedure, we subsequently divide the dataset
according to specific task configurations. For for-
mal language recognition, each data item consists
of a grammar rule set, a string, the correct label,
and the corresponding derivation process. If the
label is false, the derivation process is left empty.
For grammar induction, each data item consists of
a set of input strings and a set of test strings, all
of which are generated through multiple deriva-



tions from the same grammar rule set. The data
examples for both tasks are presented in Figure 1.

Data Augmentation. To further disrupt the
model’s prior assumptions based on frequent expo-
sure to standard grammatical conventions, encour-
aging genuine reasoning over memorized patterns,
we additionally construct a batch of data for the
formal language recognition task, and apply the
following substitutions to the meanings of the sym-
bols.

First, we replace the commonly used start sym-
bol “S” with ”¢”. Next, we replace the symbol
representing the empty string, “e”, with the letter
“P”. Furthermore, we reverse the standard conven-
tion by using uppercase letters to represent termi-
nal symbols and lowercase letters for non-terminal
symbols, deviating from the typical notation. Ex-
amples of the two grammatical forms are shown in
Table 3.

3.4 Evaluation Metrics

For different tasks, we have designed several eval-
uation metrics accordingly.

Formal Language Recognition For FLR, we
use the discrimination accuracy (Acc) as the eval-
uation metric. Let D = (w;, yz)f\i 1 be a labeled
dataset of strings, where each w; € X is an input
string and y; € 0,1 is the ground-truth label indi-
cating membership in the language L: y; = 1 if
w; € L, y; = 0if w; %L.

Let y; denote the predicted label output by the
recognizer for w;:

N L,
Yi = 0,

Then, the accuracy(Acc) is defined as the frac-
tion of correctly classified strings:

if recognizer accepts w;

otherwise

| X
Ace = Zl (9 = yi)
1=
where 1(-) is the indicator function, equal to 1
if the condition is true and O otherwise.

Grammar Induction For GI, we use the Pass
and Generalization as the evaluation metric for this
task. Let G be the induced grammar, and let Sj, =
wi,ws, . .., wy,, be the input set of strings, Siest =
V1,02, ..., UN,, D€ the test set of strings. Define
the derivability indicator function for a string x:

Do(z) 1, ifzx € L(G)
€Tr) =
“ 0, otherwise

where L(G) is the language generated by gram-
mar G. We define the proportion of input strings
derivable by G as Pass. This metric quantifies how
well G covers the input data, which is formulated
as:

Pass =

We define the proportion of test strings derivable
by G as Generalization. This metric measures the
ability of G to generalize beyond the input set to
unseen data, which is formulated as:

Generalization =

Process Assessment To comprehensively and ac-
curately evaluate the reasoning process of LLMs,
we introduce Logical Consistency Rate (LCR) as
the evaluation metric, which is defined as the pro-
portion of logically consistent inference processes:
LetP = P, P»,..., Py be aset of N reasoning
processes. Each reasoning process P; consists of
a sequence of reasoning steps that aim to derive a
target string ¢; € >.* from a given starting point, us-
ing the given formal language grammar G. Define
the binary predicate:

if P; correctly applies

Consistent(F;) = rules in G and derives ¢;

0, otherwise

Then the Logical Consistency Rate (LCR) is de-
fined as:

N
1 .
LCR = N g Consistent(F;)

=1
4 Experiments

4.1 Experimental Setups

We conduct a series of experiments on current
mainstream LLMs using the constructed dataset.
Our evaluation focuses on two primary objectives:
(1) to assess whether the models can perform pre-
cise and rigorous deductive reasoning by correctly
determining the membership relation between a
given grammar and string; and (2) to examine their
ability to carry out effective inductive reasoning by
identifying underlying patterns and common rules
from a set of example strings.



Acc /LLMs Qwen2.5 Qwen2.5 LlaMa3 Deepseek-R1 Qwen GPT Deepseek
Type Metric 7B 14B 8B Distilled-Qwen-7B  plus 40 R1 Qwen3
Normal ACC+ 0.559 0.568 0.439 0.583 0.798 0.509 0.806 0.482
ACC- 0.532 0.634 0.454 0.351 0.482 0.757 0.843 0.639
Swapped ACC+ 0.168 0.212 0.132 0.211 0.635 0.262 0.586 0.152
ACC- 0.830 0.845 0.846 0.383 0.638 0.882 0.863 0.936

Table 4: Test result of FLR task. We evaluate the recognition accuracy of positive and negative samples on two

different types of grammars.

Metric Qwen LlaMa GPT Deepseek
2.5-7B  3-8B 40 R1

Acc 0.626  0.796  0.595 0.729

LCR 0.214  0.053 0.929 1.000

Table 5: Test results for prompting the model to output
both the classification result and reasoning path. Acc
refers to the classification accuracy. LCR refers to the
proportion of logically consistent inference processes
on correct samples.

Our evaluation includes three types of LLMs: (1)
open-source models without deep-reasoning capa-
bilities, including Qwen2.5-7B-Instruct, Qwen2.5-
14B-Instruct and LlaMa-3-8B; (2) open-source
models designed for deep-reasoning, includ-
ing Deepseek-r1 , Qwen3-8B and Deepseek-rl-
distilled-Qwen?2.5-7B-Instruct; (3) closed-source
models without specialized reasoning training, in-
cluding GPT-40 and Qwen-plus.

Additional implementation details, including the
test-time prompts and model-specific evaluation
settings, can be found in the Appendix C.

4.2 Main Results

Formal Language Recognition We first evalu-
ate the performance of commonly used large lan-
guage models on the formal language recognition
task, with the results shown in Table 4. These
LLM:s are tested on two different grammar forms
mentioned in Section 3.3, evaluating their accuracy
in classifying both positive and negative sample
datasets. Our findings are as follows.

1). Deep thinking models, such as Deepseek-R1,
tend to perform better than non-inferential models
on this task, which demonstrates their higher poten-
tial in complex abductive and deductive reasoning.

2). The logical reasoning capabilities of closed-
source models in symbolic systems are not neces-
sarily superior to those of small-scale open-source
models.

3). The most intriguing finding is that, when
the grammatical form deviates from the com-

mon forms, on one hand, all the tested models
exhibit a significant performance decrease on posi-
tive samples, even when such changes in form are
limited to symbol transformations. On the other
hand, when the characters of the grammar change
to an unfamiliar form, all the large models tend to
classify the strings as non-inferable.

However, it remains unclear whether this perfor-
mance discrepancy stems purely from limitations
in reasoning ability, or from the model’s inability
to retain newly introduced character rules through-
out the reasoning process. It is particularly difficult
to determine because changing the character set
requires the addition of explanatory text to define
the function of the new characters(As is shown in
Appendix C.2). This may need further research.

4). The local deep-thinking models appear to
lack awareness of when to terminate their reason-
ing. Even though we have set a large output win-
dow, they often engage in excessive reasoning on
negative samples, which results in incomplete clas-
sification outputs.

Grammar Induction We then evaluate the
LLM’s ability to identify general patterns from
input strings and to induce plausible grammatical
rules, the results are shown in Table 6. For each
LLM, we input a set of strings derived from the
same grammar, and require it to output a grammar
capable of generating the input strings. Then, we
apply the automated Grammar Verifier to evaluate
the grammars produced by the models, calculat-
ing the pass rate of input strings and test strings
for each test. Our results indicate that although
there are still considerable performance differences
among the reasoning-oriented models, these LLMs
significantly outperform non-reasoning ones; how-
ever, even the best-performing reasoning models
still fail to achieve strong generalization in their
inductive results.



Performace Qwen2.5 Qwen2.5 LlaMa3 Deepseek-R1 Deepseek Qwen GPT Qwen3
7B 14B 8B Distilled-Qwen-7B R1 plus 40

Pass 0.158 0.122 0.123 0.327 0.621 0.172 0.262  0.859

Generalization 0.037 0.032 0.020 0.189 0.144 0.028 0.036 0.462

Table 6: Test result of GI task. For each test case, we calculate the proportion of the input string that can be derived
from the grammar summarized by the model as Pass, and that of test string is referred to as Generalization.The
average value across all test cases is taken as the final performance of each model.

4.3 Evaluation of the Reasoning Process

In Section 4.2, we evaluate the model’s perfor-
mance on a classification task that requires log-
ical reasoning. However, an important question
is, under what conditions will the model produce
a ’correct’ judgment: is it genuinely reasoning
through a valid path, or simply guessing based on
the distribution of terminal character patterns?

To explore this question, we introduce additional
constraints during inference to compel the model to
explicitly generate its reasoning path. We perform
a series of experiments, with the results shown in
Table 5. Requiring the models to explicitly gen-
erate a reasoning path during its prediction pro-
cess helps to improve their classification accuracy.
This indicates that the revised prompts guide the
model toward a more structured reasoning process,
thereby promoting consistency in its reasoning.

We manually examine the reasoning paths ex-
tracted from the samples correctly classified by
the models and find significant differences across
model scales: Smaller models often struggle to
produce coherent reasoning paths, even when their
classification performance does not appear to be
mere guessing. This may be due to the limited
capacity of small models, which prevents them
from backtracking and constructing a complete
reasoning tree. Alternatively, they might simply be
guessing answers based on the distribution of sym-
bol sets and approximate pattern matching. The
exact cause may require further investigation. In
contrast, larger models tend to provide correct rea-
soning paths, despite occasional errors in notation
or symbol confusion.

This indicates that model scale has a significant
impact on the quality of reasoning, even when mod-
els with substantially different sizes may achieve
similar performance in classification tasks. Case
study examples for these attempts are provided in
Appendix B.

Acc Qwen LlaMa GPT Deepseek
2.5-7B  3-8B 40 R1
Original 0.559 0.439 0.509 0.806
J&P 0.626 0.796 0.595 0.729
Guided 0.592 0.726 0.590 0.791

Table 7: Test results for prompting the model to follow
human problem-solving steps. Original refers to the
original prompt formulation, and Guided refers to the
human-steps-following prompt formulation. J & P
refers to the prompting format that elicits both the final
judgment and the reasoning path.

4.4 Guided Prompting

When we prompt LLM to explicitly output their
reasoning paths, their accuracy on judgment tasks
improves to some extent. This raises an intriguing
question: if we guide the model, through prompts,
to solve problems by following the same step-
by-step approach as humans, would its decision-
making performance further improve? We conduct
another experiment, with results shown in Table 7.
For non-deep-reasoning models, prompting large
models to engage in deeper reasoning can improve
their performance on deductive reasoning tasks;
however, for deep-reasoning models, such prompts
may have the opposite effect.

5 Conclusions

Through careful experimentation, we find that ex-
isting mainstream large models fail to achieve sat-
isfactory performance on logical reasoning tasks
that are based on formal language grammars. Re-
gardless of model type, performance on reasoning
tasks consistently declines when the definitions of
symbols in the rules diverge from their common-
sense interpretations. Prompting can guide non-
reflective models to generate reasoning processes
resembling reflective thinking, thereby improving
their performance.All of these findings provide a
foundation for further improvements in the capa-
bilities of LLMs.



Limitations

In this paper, we leverage formal language gram-
mars to effectively address issues found in tradi-
tional logic reasoning evaluations, such as inter-
ference of commonsense knowledge. However,
several limitations remain:

1). Insufficient evaluation of reasoning pro-
cesses in formal language recognition. The most
reasonable evaluation of logical reasoning should
include both process evaluation and outcome eval-
uation. However, since process evaluation requires
models to follow complex formatting instructions,
it is currently difficult to automate and can only be
performed through manual sampling and inspec-
tion. Therefore, we currently use classification
accuracy as the evaluation metric. This limitation
highlights the need for more systematic and scal-
able process-level evaluation methods in future
work.

2). Limitations in the design of generalization
testing for formal language induction. Although
generating strings from the same grammar pro-
vides a relatively fair evaluation framework, ex-
pecting models to infer universal rules from a small
number of examples is inherently difficult. This
reflects a broader challenge shared across all in-
ductive tasks — the inherent tension between data
sparsity and generalization. Future work should ex-
plore more principled approaches to designing gen-
eralization benchmarks that better capture mean-
ingful inductive reasoning.
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A NLI vs Logical Reasoning

Natural language inference (NLI) and logical rea-
soning tasks differ fundamentally in the nature of
the knowledge they require. NLI tasks involve de-
termining the relationship between a premise and
a hypothesis—typically labeled as entailment, con-
tradiction, or neutrality—based on both linguistic
cues and extensive background or commonsense
knowledge. For instance, correctly inferring that
“The man is running” entails “The man is moving”
often relies on an implicit understanding of physi-
cal actions and their typical consequences, rooted
in human experience.

In contrast, logical reasoning tasks aim to ab-
stract away from such language-specific or world
knowledge, focusing instead on the formal struc-
ture of reasoning. These tasks are often designed
to minimize reliance on lexical or contextual cues
and instead emphasize the manipulation of well-
defined logical relations, such as conjunction, dis-
junction, and implication. As a result, logical rea-
soning tasks require models to exhibit systematic,
rule-based inference capabilities rather than draw-
ing on broad linguistic commonsense. Therefore,
to ensure validity and interpretability, logical rea-
soning tasks must reduce the dependence on nat-
ural language knowledge and focus on explicit,
domain-contained rules and symbols.

However, existing evaluation methods for logi-
cal reasoning unavoidably introduce some degree
of commonsense knowledge during data construc-
tion. For example, we illustrate this with a sample
from the LogiQA dataset. Among the four options
below, Option 2 and Option 4 are clearly incon-
sistent with commonsense knowledge. Therefore,
LLM can eliminate these two choices based on its
stored knowledge rather than reasoning ability. On



the other hand, if a LLM already knows from com-
mon knowledge that “Cantonese are southerners”,
it might accept the argument as obviously valid
without consciously identifying the logical struc-
ture. This makes it hard to tell whether it is using
deductive reasoning or just relying on background
knowledge.
context:
Some Cantonese don’t like chili, so
some southerners don’t like chili.
query:
Which of the following can guarantee
the above argument?
options:
1.Some Cantonese love chili.
2.Some people who like peppers are
southerners.
3.All Cantonese are southerners.
4.Some Cantonese like neither peppers
nor sweets.

B Case Study Results

It remains challenging to obtain accurate analysis
results through automatic parsing models’ reason-
ing path. As a formatted reasoning path imposes
relatively complex constraints, and any single error
can cause the entire reasoning process to fail.

Our observations suggest that the instruction-
following capabilities of non-deep-thinking LLMs’
are often insufficient to reliably accomplish such
tasks. Consequently, when applying rules based
on a strict symbolic system for matching, the out-
put paths of these models are often prone to error.
Therefore, we conduct a series of case studies as
mentioned in the context. We sample and manually
check two kinds of results:

1. Asking the LLMs to parse only the reasoning
path. 2.Asking the LLMs to both judge the attribu-
tion and parse the reasoning path simultaneously.
Examples and conclusions are as follows.

B.1 Parse only the reasoning parse

Our first attempt is to prompt the large language
model to only parse the reasoning path from the
input string and grammar; However, when we ask
the LLMs to do so, many LLMs often resorted to
heuristic shortcuts—fabricating rules or generating
superficially plausible reasoning paths, even for
negative samples they would have otherwise classi-
fied correctly. As is shown below, the Qwen2.5-7B
model fabricated the rule of A — ada.
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rules:
S—EBSlaD,
E—ClAesleBc,
B —bcdladale| BB,
dSA —E,
D —e,
A=,

string:
esadaa

path:
1.5
2. EBS (S — EBS)
3. AesB (E — Aes)
4. adaB (A = ada)
5. adabc (B — bcd)
6. esadaa (D — ¢, B — ¢€)

B.2 Recognition and Parse

Meanwhile, when we ask the LLMs to both con-
duct recognition and parse the reasoning path si-
multaneously, smaller LLMs struggle to output
reasonable reasoning paths, even when their judg-
ments are correct. There are several common types
of mistake.

(1) The first type is symbol confusion. As shown
below, the model fail to distinguish between ter-
minal symbols and non-terminal symbols during
output. If we disregard such confounding factors
and attempt to apply the correct rules to interpret
the reasoning path of large models, we find that
when inferring the string bedeBCd, it considered
the result to be correct, but the actual target string
is bedebed.

rules:

S—BEd,

B—bcdlada,
E—bICBlAesleBclelEE,
bA—A,

A —e

path:
1.(s, s—bed, 0) BEd
2.(bed, b—bcd, 0) bedEd
3.(bcdd, e—ebc, 1) bedeBed

(2)The second type is rule fabrication, where
the model randomly invents non-existent rules and
applies them to a certain step of the substitution
process. As is shown below, the LL.M fabricates
the rule ¢ -> € and bsb -> ada, and symbol confu-
sion exists meanwhile.



rules:
S—EBSICalaD
E—CICBlAes|bE
bSb—Ada"
D—e
D —e
B—¢|BB
A—¢"

path:
(cbs,e = ¢, 1)
(cs, b =€ 2)
(s,c=¢1)
(ebs, s — ebs, 0)
(aes, e — aes, 1)
(es,a =€ 1)
(sebe, ¢ — be, 1)
(es, bsb = ada, 0)

(3) The third type is rule application errors,
where the large model applies correct rules to in-
correct symbols during substitution. As is shown
below, in step 5, LlaMa3-8B applies the rule "d
-> €" to position 0, while the correct application
should be at position 2.

rules:
1. (s, s = bed, 0)
2. (bed, e —¢ 1)
3. (bd, b = ada, 0)
4. (adad, d — ¢, 1)
5. (aad, d — ¢, 0)
6. (ad, d = ¢, 0)

For larger LLM, the proportion of correctly gen-
erated reasoning paths is significantly higher than
that of smaller models, suggesting that they are in-
deed capable of performing step-by-step reasoning
based on rule-like systems to a certain extent. As
shown below, despite occasional slips (such as writ-
ing "acsSSE" as ""acSSE"), Deepseek-R1 demon-
strates strong consistency in reasoning on samples
that are classified correctly. Moreover, this sym-
bolic error occurs only once and is immediately
corrected in the following step, suggesting that it
resembles a slip of the pen by a human student—a
minor writing mistake that does not compromise
the overall reasoning process.
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path:
(’S’, ’S->SAE’, 0)
(’SAE’, ’S->Cac’, 0)
(’CacAE’, 'C->¢€’, 0)
(’acAE’, 'A->sS’, 2)
(CacsSE’, ’S->8S8’, 3)
(CacSSE’, ’S->Cac’, 3)
("acsCacSE’, "C->€’, 3)
(CacsacSE’, ’S->Cac’, 5)
(CacsacCacE’, C->¢€’, 5)
(’acsacacE’, ’E->b’, 7)

B.3 Preliminary testing on commercial LLMs

To investigate the types of grammar-related log-
ical reasoning tasks where current large models
are prone to errors, we manually collected several
formal-language-related problems and conducted
sampling tests on some commercial large models.
The specific details are provided in the appendix.
We find that, currently, commercial LLMs
can correctly handle certain tasks involving sim-
ple, short-path reasoning on context-free gram-
mars(CFG)(Cremers and Ginsburg, 1975). Com-
mon errors are concentrated in two types of gram-
mars: (1) Left-recursive grammars, where a non-
terminal symbol can derive an expression that
contains itself through a specific production rule,
leading to infinite recursion during parsing. (2)
Context-sensitive grammars, which often involve
production rules with character reduction steps.

C Detailed Experimental Setups

Due to limited resources, we conduct data sam-
pling for experiments across different tasks and
model types, taking into account factors such as
inference speed, GPU memory capacity, and cost.

To ensure the reliability of the reasoning pro-
cess, all locally deployed models were executed
via the Transformers library, with the maximum
new token length set to 8192 tokens, which should
be considered adequate for the expected inference
depth. All results are the average values of the
model’s performance on the test set.

C.1 Hyperparameters

1. In data-construction, to balance task complexity
and computational feasibility, we constrain A for
each data instance to the range of 8 to 10. This
range is chosen to ensure that the reasoning pro-
cess is non-trivial—requiring more than simple
pattern matching—while still remaining within the



manageable token limits of current large language
models. Derivations of this length are sufficiently
deep to reveal recursive or context-dependent struc-
tures, enabling meaningful evaluation of deductive
reasoning capabilities. At the same time, the length
is moderate enough to avoid unnecessary compu-
tational overhead and to ensure that all derivation
traces can be fully processed during both genera-
tion and verification. Additionally, longer deriva-
tion paths yield more structurally diverse samples,
which enhances the quality of both positive and per-
turbed negative instances, allowing for a more ro-
bust assessment of the models’ generalization and
discrimination abilities. 2. Accordingly, we set € to
10. This operation transforms the context-related
grammar search space into a finite one, thereby
enabling the identification task to be decided by a
rule-based parser.

C.2 Prompts

We design a set of task-specific prompts for our ex-
periments. Here we provide a detailed presentation
of these prompts. For each example, we present a
comparison between Chinese and English, with all
experiments conducted using the Chinese version.
All experiments are done with a zero-shot setting.

Normal type FLR(ZH)

rules: rules string: string task: MSH %,
MRIERN, eI HVRFAFER? 1R
]EI“YCS”EZ“NO”

Normal type FLR(EN)

rules: rules string: string task: Starting
from S, can the target string be derived ac-
cording to the rules? Return "Yes" or "No".

Swapped type FLR(ZH)

%G —HES UEMNI T rules H
WRFERFER RN sting FFS5UEAA: & R
ESHEL PRRZEFH RI—MER
5, FRERZ) - HERE, &8
A DVHZ OO S R HRF AT & -
HOTESERE, LENYIHEG 5,
HERGH MR R yes (R
Uxi’ﬁ—arﬁ) 518 no (WRMNEEMHES
H

Swapped type FLR(EN)

Given a set of grammar rules as follows:
rules The target string is: string Notation:
€ denotes the starting symbol of the deriva-
tion. P represents the empty string (i.e., a
placeholder symbol indicating emptiness).
Please determine whether the target string
can be derived from the grammar. Analyze
the derivation process, listing each step if
necessary, and provide your final conclu-
sion: Conclusion: yes (if the target string
can be derived) Conclusion: no (if the target
string cannot be derived)

Parse Only the Reasoning Path(ZH)

B — M RE T E—1 B
AR o IEHESIZTFAT R AT 1%L
HAERR, BREWNES SR, 8—
B TR — 4 A HN (61
f: S — aSb) -

£ rules

FRFE:  string

At S a s, a/ag—P AN
A A -

BRWTF: 1.S (WIRFFS)

Parse Only the Reasoning Path(EN)

You will be given a formal grammar and a
target string. Please derive how the string
can be generated from the grammar, and
show the derivation steps clearly. For each
step, indicate the production rule used (e.g.,
S — aSb).

Grammar: rules

String: string

Only output the derivation process, includ-
ing the production rule used in each step.
Format:

1. S (start symbol)
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ERTELL TRAR T RES, S
ER— A EEGE S VLR LRI
KIE - HTRBEBUTERNT: 1
MERS T - TR ENRDA
S - RBIB TS FIES R - 1’
VA LEFFRIAEA S5 - & AR R 4
Eaw W

2. WA RER: - BT
W - EFH->AF S ER AR - IFARLEFRT
RAREFER - BEMFHT| 5 EEN
NEFEEROR - AT RS MR SO
BINFFFH:  input strings
TEAR TR IR B ISR, R E S
HASGERN], AL —17, A
RS E RS

Normal type GI(EN)

Please derive and generate a context-free
grammar (CFG) that conforms to formal
language conventions based on the follow-
ing set of input strings. Follow the instruc-
tions below strictly:

1. Grammar Derivation Method:

Analyze the minimal common patterns
among the strings

Identify recursive structures and repeating
patterns

Extract terminals and non-terminals
Merge similar production rules

2. Output Format Requirements:

One production rule per line

Use -> to connect the left-hand side and the
right-hand side

Represent non-terminals with uppercase let-
ters

Represent terminals using quotes or lower-
case letters

Avoid any additional explanatory text
Input strings: input strings

Please strictly follow the format above
and return only the derived grammar rules.
Each rule should appear on a separate line,
with no numbering or extra symbols.

Normal type FLR With Path (ZH)

25 —HIL0E S SUERNAI— B A5
FAFER, I HARRE B AT LU
U575 start symbol #EF5E] . WHFR AT
PL, 1R[E] *yes® 45 H Mstart symbolFF
RHES IR, BB T:

CH AR, R AL, B hE)

Hrp, < F7 B FE R R R

FRIRES, 5 A AL F8 b v e 1

A STIEAIN, < #5048 B 2 1% 0

MR ATEEERREILNFSMNE
(AOFFIR) ;

WRAREHES HIZ R, KA "no" -
SCEAENTS (BT —%) -

grammar

BIRFRF & string

Normal type FLR With Path (EN)

Given a set of formal grammar rules and a
target string, determine whether the target
string can be derived from the start symbol
start symbol.

If it can be derived, return "yes" and pro-
vide the derivation steps starting from the
start symbol. Each replacement step should
follow the format:

(current string, applied rule, replacement
position) Where:

"current string" refers to the state of the
string before the replacement,

"applied rule" refers to the grammar rule
used in this step,

"replacement position" refers to the index
(starting from 0) of the symbol in the cur-
rent string where the rule is applied.

If the target string cannot be derived, return
"no".

Grammar rules (one per line): grammar
Target string: string
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Normal type FLR With Guided Prompt-
ing(ZH)

4 — MR HSEM— 1 BinF 1 &,
TETRIR LT D RRAIWIZ T4 R AT L
SR A A

I H SRR = U, B 1A 1
o
IITSIREE, FIRTR SR
FEER S BERTRE

WS BIRFAT B B EANGE, Zl T
5 ICEAN B IEEERE - RS

T3 1]

fEH BIm T#HS (ANERMFSH
&) BESEHRAEARER, FHilMEE
PR RF B

5 BEEm LT (N B R F5F &
&) FRIELEE, FFANERLR
5

RS SRE (EEESN) | R
BB

B

MRS BB B IR A7 8,
U B 1% 7 AF B B T DU 50K
[E]“Yes™ o
MRLERSHTERE, WAET,
IR [E]“No” «

30¥%: rules BVRFAFA#: string”
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Normal type FLR With Guided Prompt-
ing(EN)

Given a formal grammar and a target string,
please determine whether the string can
be generated by the grammar by following
these steps:

1. List the production rules of the grammar
and identify the start symbol.

2. Analyze the structure of the grammar:
determine whether it is recursive, includes
empty productions, or exhibits symmetry.
3. Examine the length and structure of the
target string, and try to identify patterns that
match the grammar rules.

4. Choose a derivation strategy:

Use top-down derivation: start from the
start symbol and iteratively replace non-
terminals to construct the target string; Or
use bottom-up reduction: start from the tar-
get string, find right-hand sides of the gram-
mar, and iteratively reduce to the start sym-
bol.

5. Record the derivation steps (or construct
a derivation tree), ensuring that each step is
valid according to the grammar.

6. Draw a conclusion:

If the target string can be completely de-
rived, it belongs to the language defined
by the grammar — return "Yes". If deriva-
tion fails or gets stuck, the string does not
belong to the language — return "No".
Grammar: rules

Target string: string
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