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Abstract001

Logical reasoning is a fundamental capability002
for advanced artificial intelligence systems. As003
Large Language Models(LLMs) continue to004
improve, many studies have been conducted to005
provide an accurate evaluation of LLM’s log-006
ical reasoning capabilities. However, current007
benchmarks suffer from issues including inter-008
ference from commensense-knowledge, short009
reasoning paths and low scalability. In this010
work, we propose an automated, cost-efficient011
method for generating dataset and FLoRE, a012
novel benchmark utilizing formal languages,013
a purely symbolic reasoning system, to eval-014
uate the logical reasoning abilities of LLMs.015
Experimental results indicate that current large016
models generally perform poorly on logical rea-017
soning tasks and are sensitive to the symbolic018
meanings involved in the reasoning process.019
This benchmark aims to leverage the charac-020
teristics of symbolic systems to avoid interfer-021
ence from commonsense knowledge, simulta-022
neously maintaining the difficulty of reasoning023
tasks and reducing the complexity of data con-024
struction methods. All data and code will be025
available online.026

1 Introduction027

Logical reasoning is a cornerstone of artificial028

intelligence, enabling machines to simulate hu-029

man thought processes and solve complex prob-030

lems (Liu et al., 2025). Evaluating the logical031

reasoning capabilities of large language models032

(LLMs) is essential to ensure their reliability and033

trustworthiness in real-world applications (Deng034

et al., 2024). As LLMs are increasingly used in035

tasks that require complex decision-making, such036

as legal analysis, scientific research, and automated037

problem-solving (Gray et al., 2024; Nejjar et al.,038

2025; Aghakhani et al., 2025), it becomes criti-039

cal to assess whether they can reason consistently,040

avoid contradictions, and draw valid conclusions041

from given premises.042

Current methods for constructing evaluation 043

datasets to assess the logical reasoning capabili- 044

ties of LLMs primarily follow two paradigms: (1) 045

manually designing rule-based templates and in- 046

stantiating them with relevant content (Saparov 047

et al., 2023; Yang et al., 2022; Han et al., 2022). 048

(2) extracting logical reasoning patterns directly 049

from source data. (Talmor et al., 2020; Zhong 050

et al., 2021; Liu et al., 2023). However, existing 051

datasets generally suffer from the following issues. 052

First, current methods inevitably introduce com- 053

monsense knowledge (Bhargava and Ng, 2022), 054

which interferes with the evaluation of the logical 055

reasoning ability itself(e.g. north and south) (Evans 056

et al., 1983; Chen et al., 2025; Parmar et al., 2024). 057

To accurately assess logical reasoning, tests should 058

focus on abstract or unfamiliar scenarios where 059

answers must be derived through logical inference 060

rather than retrieved from memory (Hua et al., 061

2024). Secondly, current logic reasoning bench- 062

marks commonly feature short reasoning paths, 063

which leads to insufficient reasoning difficulty (Pa- 064

tel et al., 2024). As deep-reasoning LLMs(such as 065

Openai-o1 and Deepseek-r1) continue to improve, 066

there is a growing trend of these benchmarks being 067

gradually outperformed or surpassed. Moreover, 068

many current benchmarks rely on manually crafted 069

inference rules or a limited set of logical theorems 070

for dataset construction, and the data collection 071

process is challenging (Zhu et al., 2025), leading 072

to limited scalability. Table 1 provides a com- 073

parison of our proposed dataset to datasets from 074

previous studies. 075

To mitigate the influence of commonsense 076

knowledge on reasoning and to explore a simple 077

yet effective approach for dataset construction, we 078

adopt formal language (Harrison, 1978) as the eval- 079

uation tool. In this paper, we examine whether 080

pre-trained LLMs can perform satisfactory logical 081

reasoning on formal languages. Based on a finite 082

set of symbols, we design and generate four types 083

1



Production Rules

S → EBS | Ca | Es

B → Dd | ada | ε

E → CC | eBc | ε | EE

C → ε

String

s

Label

true

COT

former: S, latter: Es, rule: S → Es

former: Es, latter: EEs, rule: E → EE

former: EEs, latter: ECCs, rule: E → CC

former: ECCs, latter: CCCCs, rule: E → CC

former: CCCCs, latter: s, rule: C → ε

A Possible Grammar

S → BS | a

B → bB | bcd
Input String

bcda

bbcda

a

bbcdbcda

Formal Language Recgnition Grammar Induction

Input: Rules & String               Output: Label Input: Strings    Output: A Grammar

Test String

bcdbcda

bbcdbcdbcda

Figure 1: Examples of FLoRE. Based on formal language grammar, we design two logical reasoning tasks. In
Formal Language Recognition task, we require the LLM to determine whether the String can be derived through
inference based on the Rules. In grammar induction task, we provide several Strings as input, and require the LLM
to output a Possible Grammar that can generate the input strings through derivation.

of seed grammars, and automatically construct a084

formal language grammar-string dataset. To our085

knowledge, it is the first logical reasoning bench-086

mark utilizing the symbolic properties of formal087

language grammar reasoning to avoid interference088

from commensense knowledge. Using this dataset,089

we evaluate LLMs on both deductive and induc-090

tive reasoning tasks. We find that: (1) Current091

LLMs generally perform poorly on logical reason-092

ing tasks based on Formal Language grammars.093

(2) LLMs are sensitive to the commonsense defini-094

tions of symbols; altering the definitions of these095

symbols can lead to significant performance degra-096

dation. (3) Guiding LLMs to explicitly articulate097

their reasoning processes can help improve their098

performance on reasoning tasks. Our contributions099

are as follows.100

(1). We propose FLoRE, a novel benchmark101

designed to evaluate LLMs’ logical reasoning abil-102

ities through formal language tasks. An example103

is shown in Figure 1.104

(2). We develop a series of tools for the auto-105

matic analysis of results in formal grammar rea-106

soning tasks and conduct a detailed analysis of the107

models’ reasoning behavior.108

(3). We evaluate the performances of several109

mainstream LLMs and find that current main-110

stream LLMs exhibit limited performance on tasks111

involving formal languages.112

2 Related Work 113

2.1 Logic Reasoning Evaluation Benchmarks 114

Developing models capable of logical reasoning 115

has been an important goal in the field of NLP 116

since its inception (Cooper et al., 1996). There- 117

fore, a number of studies have been conducted to 118

measure the logical reasoning ability of LLMs (Xu 119

et al., 2025). In current benchmarks, there are two 120

common ways to build evaluation datasets. The 121

first approach involves manually designing logi- 122

cal rules based on formal logic and then collecting 123

data from various information sources to fill in 124

the rule templates. PRONTOQA-OOD (Saparov 125

et al., 2023) follows the deduction rules of natu- 126

ral deduction (Pfenning, 2004), and generates a 127

proof that applies each rule. DEER (Yang et al., 128

2022) focuses on four common types of first-order 129

logic (FOL) rules and constructs rule-fact pairs by 130

collecting relevant facts via commercial search en- 131

gines. FOLIO (Han et al., 2022) proposes a hybrid 132

annotation method based on syllogisms, integrat- 133

ing machine-generated and expert-annotated data 134

to construct datasets that conform to FOL. The 135

other approach extracts content related to logical 136

reasoning from existing texts or data resources and 137

organizes it into datasets. LOT (Talmor et al., 2020) 138

automatically generate data by sampling (subject, 139

predicate, object) triples that are known to be ei- 140

ther true or false from existing knowledge sources. 141

AR-LSAT (Zhong et al., 2021) collects data from 142

LSAT exams and selects questions from the analyti- 143

cal reasoning part to construct the dataset. LogiQA 144
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Dataset Commonsense
Knowledge

Long reason-
ing path

Automatic
generation

Low-cost ex-
pansion

Automatic
evaluation

LogiQA ✓ × × × ✓
ProofWriter ✓ ✓ ✓ × ✓
FOLIO ✓ × × × ×
PRONTOQA ✓ × ✓ ✓ ✓
LogicBench ✓ × ✓ × ✓
Ours × ✓ ✓ ✓ ✓

Table 1: Comparison of existing logical reasoning datasets to our proposed benchmark. Previous work generally
suffers from issues such as interference from commonsense interference, insufficient reasoning difficulty, and the
complexity of data generation methods, which hinder the automatic and adaptive scaling of difficulty and problem
quantity.

2.0 (Liu et al., 2023) extracts the premise and hy-145

potheses from the concatenation of text, question,146

and options of cyber-downloaded machine reading147

comprehension instances to form natural language148

inference data.149

However, existing evaluation benchmarks gen-150

erally suffer from three main issues: interference151

from commonsense knowledge in logical reason-152

ing (Evans et al., 1983), overly short reasoning153

paths (Patel et al., 2024), and high data construc-154

tion costs that hinder scalability (Zhu et al., 2025).155

With FLoRE, we effectively address these chal-156

lenges and conduct a thorough evaluation and anal-157

ysis of the logical reasoning capabilities of LLMs.158

3 Dataset Design and Construction159

3.1 Notation160

Formal language grammar (Jiang et al., 2009) is a161

system of rules used to generate and describe the162

structure of strings in a language. It plays a foun-163

dational role in both theoretical computer science164

and natural language processing (Harrison, 1978),165

enabling the analysis and generation of syntacti-166

cally valid sequences. Here, we define a formal167

language grammar as a quadruple (Hopcroft et al.,168

2001):169

G = (V,Σ, R, S) (1)170

In this definition, V represents the set of nonter-171

minal symbols, which are used to denote syntac-172

tic categories or structures that can be further ex-173

panded through production rules. The second com-174

ponent, Σ, is the set of terminal symbols, which175

correspond to the actual symbols of the language176

and appear in the strings generated by the grammar.177

The third component, R, is the set of production178

rules, which describe how non-terminal symbols179

can be replaced by a combination of non-terminal180

and terminal symbols. Finally, S represents the 181

start symbol, which is a specific non-terminal sym- 182

bol from V that serves as the starting point for the 183

derivation process. The common formats of formal 184

language grammar are shown in Table 3. 185

Common tasks on formal language include For- 186

mal Language Recognition (Pecht, 1983) and 187

Grammar Induction (De la Higuera, 2010). For- 188

mal Language Recognition relies primarily on de- 189

ductive reasoning and pattern matching to de- 190

termine string membership based on predefined 191

rules (Fodor and Pylyshyn, 1988; Alfred et al., 192

2007), as the model must observe and apply pos- 193

sible grammatical rules step by step to determine 194

whether a given string belongs to the language. To 195

perform a Formal Language Recognition task, the 196

process typically involves the following steps: 197

1). Observe the structure of the string and the 198

grammar rules, and select the most likely rule at 199

each step. 2). Apply the chosen rule to make 200

substitutions and compare the current string with 201

the target string to assess the difference. 3). If no 202

suitable rule can be found, backtrack to a previous 203

state and try a different path. 204

Grammar Induction requires inductive reason- 205

ing and hypothesis testing, as it requires the model 206

to infer general grammatical rules from a limited 207

set of example strings. Rather than applying prede- 208

fined rules, the model must identify recurring pat- 209

terns and structural regularities across the data, and 210

generalize them into a coherent grammar (Gold, 211

1967; Ebner, 2021). To perform a Grammar Induc- 212

tion task, the process typically involves the follow- 213

ing steps: 214

1). Observe the strings to identify commonal- 215

ities and differences. 2). Break down the strings 216

into substructures to extract underlying patterns. 217

3). Based on these patterns, define a set of symbols 218
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and prototype production rules to form the initial219

grammar. 4). Test and refine the initial grammar,220

with details added to improve accuracy and com-221

pleteness.222

Formal languages can be categorized into differ-223

ent levels of complexity, most commonly described224

by the Chomsky hierarchy (Hunter, 2021). At the225

top of the hierarchy are recursively enumerable226

languages, which are the most expressive and not227

all are decidable (Sumitha and Geddam, 2011).228

3.2 Task Definition229

We design two logical reasoning tasks inspired230

by standard problems in formal language theory.231

One is Formal Language Recognition(FLR), it232

requires the LLM to determine whether a given233

string can be derived from a specific formal lan-234

guage grammar. The task is formulated as a classi-235

fication problem:236

Let Σ be an alphabet, L ⊆ Σ be a formal lan-237

guage defined over it. The problem of formal lan-238

guage recognition is to determine, for any given239

string w ∈ Σ, whether w belongs to the language240

L.241

Formally, the LLM acts as a recognizer for L242

that implements a function:243

RecognizeL : Σ∗ → {0, 1}

such that:244

RecognizeL(w) =

{
1, if w ∈ L

0, if w /∈ L

The other is Grammar Induction(GI); it re-245

quires the LLM to infer a formal language gram-246

mar from a given set of strings:247

Let Σ be an alphabet, and let L ⊆ Σ∗ be an248

unknown formal language. Consider two finite and249

disjoint subsets of strings:250

1)The input set Sin ⊆ Σ∗, consisting of strings251

known to belong to the language L.252

2)The test set Stest ⊆ Σ∗, consisting of strings253

used to evaluate the generalization ability of the254

induced grammar.255

The grammar induction problem is to infer a256

formal grammar G such that:257

1). All strings in the input set are derivable from258

G: Sin ⊆ L(G)259

2). The grammar G maximizes coverage over260

the test set, i.e., the number of strings in S_test261

that are derivable from G is as large as possible:262

max |Stest ∩ L(G)|263

Seed Grammar Type Examples
Root S → BCD
Context-Free C → Ab
Context-Sensitive bSB → a
Recursive D → DD
Epsilon A → ε

Table 2: Examples of seeds we generated. Root refers
to those whose derivations uniformly begin with a des-
ignated root symbol on the left-hand side; Context-Free
has a non-recursive rule with a single non-terminal on
the left-hand side; Context-Sensitive allows context-
dependent rules where the output may be shorter than
the input; Recursive includes a self-referential rule en-
abling unbounded derivation; Epsilon consists of pro-
ductions that derive the empty string.

Previous studies have shown that if only positive 264

examples are provided, most types of formal lan- 265

guage grammar cannot be uniquely defined from 266

these examples alone (Gold, 1967). Therefore, we 267

define this task as an open-ended generation task 268

with no single correct answer. The task is consid- 269

ered successfully completed as long as the LLM 270

outputs a grammar that can generate all the given 271

strings through valid derivations. 272

3.3 Data Construction 273

We propose a simple-yet-effective method for gen- 274

erating evaluation data, consisting of four main 275

stages: Seed Generation, Group Mixing, Reliable 276

Inference, and Random Perturbation. The com- 277

plete process of dataset construction is illustrated 278

in Figure 2. Currently, FLoRE consists of approxi- 279

mately 30.5k instances. Thanks to our generation 280

methodology, the dataset can be easily scaled to 281

a significantly larger size without compromising 282

quality or consistency. 283

Seed Generation. We first generate a set of seed 284

rules based on a predefined set of symbols, as the 285

foundation for dataset construction. 286

Considering the performance of existing com- 287

mercial LLMs on grammar-based reasoning 288

tasks(shown in Appendix B), as well as the struc- 289

tural characteristics and hierarchical classification 290

of formal language, we construct four types of 291

seed grammar rules: Root, Context-Free, Context- 292

Sensitive, Recursive, and Epsilon. Examples of 293

each type of seed are shown in Table 2. 294

Group Mixing. Next, we conduct a mix-up on 295

generated seed grammar, thus forming a number 296
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S → BCD

C → Ab

bSB → a

D → DD

A → ε

Seed Rules

Limited Symbol Set

Constrained 
Sampling

Grouping

Rule Groups

S → BCD

C → Ab

D → DD

B → d

A → ε

D → c

Derivation Engine 

 Grammar Verifier 

Counterintuitive 
Symbol Set

Positive Instances
String: dbcc

S → BCD 

BCD → dCD

dCD →  dCDD

dCDD →  dAbDD

dAbDD → dbDD

dbDD →  dbcc

Modified Instance2

String: dcc

Modified Instance1

String: dbccc

Insert “c” Delete “b”

CheckResult: Positive
String: dbccc

Negative Instances
String: dcc

Positive Instances
String: DBCC

ε → bcd 

bcd → Dcd

Dcd →  Dcdd

Dcdd →  DaBdd

DaBdd → DBdd

DBdd →  DBCC

Negative Instances
String: DCC

1. Seed Generation 2. Group Mixing 3. Reliable Inference

4. Random 
Perturbation

5. Data 
Augmentation

Figure 2: The data generation pipeline for FLoRE. Beginning with a limited symbol set, we progressively construct
seed rules and rule groups, from which we derive both positive and negative sample data through reasoning.

Type Initial Null Terminals Nonterminals Grammar Example String Example

Normal S ε Lowercase letters Uppercase letters

S → SAE | ab

aab
E → Cb | CC | EE
bA → a
C → ε

Swapped ε P Uppercase letters Lowercase letters

ε → ε ae | AB

AAB
e → cB | cc | ee
Ba → A
c → P

Table 3: Examples of the two grammar forms, along with the strings they generate. "Normal" refers to the
standard form of formal language grammar, whereas "Swap" denotes the transformed grammar obtained through
the procedure described in Section 3.3.

of rule groups. To ensure the validity of deriva-297

tions within each rule group, it is required that298

every group contains at least one Root rule. Subse-299

quently, a number of rules are randomly sampled300

from the Context-Free and Context-Sensitive gram-301

mars. Finally, additional Recursive and Epsilon302

grammars are randomly selected and added to the303

group.304

Reliable Inference. We develop a Grammar305

Derivation Engine that systematically applies pro-306

duction rules to generate multiple positive samples307

for each rule group. Each positive sample con-308

sists of a grammar rule set, a derived string, and its309

associated derivation process. We define a hyperpa-310

rameter λ as the number of derivation steps, which311

is used to regulate the complexity of the generated312

data.313

Random Perturbation. To obtain negative sam-314

ples, we first apply perturbations to the positive315

samples by randomly inserting or deleting a num-316

ber of characters. We then develop a Grammar 317

Verifier employing a breadth-first search to test 318

the perturbed positive samples. This verifier fil- 319

ters out any samples that, despite perturbation, still 320

conform to the original grammar and thus remain 321

valid. However, for some complex grammar types, 322

the search space required to determine whether 323

a string can be derived from the grammar is un- 324

bounded (Hopcroft et al., 2001). To address this 325

issue, we define a hyperparameter µ as the upper 326

bound of derivation steps. 327

Building upon the aforementioned data construc- 328

tion procedure, we subsequently divide the dataset 329

according to specific task configurations. For for- 330

mal language recognition, each data item consists 331

of a grammar rule set, a string, the correct label, 332

and the corresponding derivation process. If the 333

label is false, the derivation process is left empty. 334

For grammar induction, each data item consists of 335

a set of input strings and a set of test strings, all 336

of which are generated through multiple deriva- 337
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tions from the same grammar rule set. The data338

examples for both tasks are presented in Figure 1.339

Data Augmentation. To further disrupt the340

model’s prior assumptions based on frequent expo-341

sure to standard grammatical conventions, encour-342

aging genuine reasoning over memorized patterns,343

we additionally construct a batch of data for the344

formal language recognition task, and apply the345

following substitutions to the meanings of the sym-346

bols.347

First, we replace the commonly used start sym-348

bol “S” with ”ϵ”. Next, we replace the symbol349

representing the empty string, “ϵ”, with the letter350

“P”. Furthermore, we reverse the standard conven-351

tion by using uppercase letters to represent termi-352

nal symbols and lowercase letters for non-terminal353

symbols, deviating from the typical notation. Ex-354

amples of the two grammatical forms are shown in355

Table 3.356

3.4 Evaluation Metrics357

For different tasks, we have designed several eval-358

uation metrics accordingly.359

Formal Language Recognition For FLR, we360

use the discrimination accuracy (Acc) as the eval-361

uation metric. Let D = (wi, yi)
N
i=1 be a labeled362

dataset of strings, where each wi ∈ Σ is an input363

string and yi ∈ 0, 1 is the ground-truth label indi-364

cating membership in the language L: yi = 1 if365

wi ∈ L, yi = 0 if wi /∈ L.366

Let ŷi denote the predicted label output by the
recognizer for wi:

ŷi =

{
1, if recognizer accepts wi

0, otherwise

Then, the accuracy(Acc) is defined as the frac-367

tion of correctly classified strings:368

Acc =
1

N

N∑
i=1

1(ŷi = yi)

where 1(·) is the indicator function, equal to 1369

if the condition is true and 0 otherwise.370

Grammar Induction For GI, we use the Pass
and Generalization as the evaluation metric for this
task. Let G be the induced grammar, and let Sin =
w1, w2, . . . , wNin be the input set of strings, Stest =
v1, v2, . . . , vNtest be the test set of strings. Define
the derivability indicator function for a string x:

DG(x) =

{
1, if x ∈ L(G)

0, otherwise

where L(G) is the language generated by gram- 371

mar G. We define the proportion of input strings 372

derivable by G as Pass. This metric quantifies how 373

well G covers the input data, which is formulated 374

as: 375

Pass =
1

Nin

Nin∑
i=1

DG(wi)

We define the proportion of test strings derivable 376

by G as Generalization. This metric measures the 377

ability of G to generalize beyond the input set to 378

unseen data, which is formulated as: 379

Generalization =
1

Ntest

Ntest∑
j=1

DG(vj)

Process Assessment To comprehensively and ac-
curately evaluate the reasoning process of LLMs,
we introduce Logical Consistency Rate (LCR) as
the evaluation metric, which is defined as the pro-
portion of logically consistent inference processes:
Let P = P1, P2, . . . , PN be a set of N reasoning
processes. Each reasoning process Pi consists of
a sequence of reasoning steps that aim to derive a
target string ti ∈ Σ∗ from a given starting point, us-
ing the given formal language grammar G. Define
the binary predicate:

Consistent(Pi) =

1,
if Pi correctly applies

rules in G and derives ti
0, otherwise

Then the Logical Consistency Rate (LCR) is de-
fined as:

LCR =
1

N

N∑
i=1

Consistent(Pi)

4 Experiments 380

4.1 Experimental Setups 381

We conduct a series of experiments on current 382

mainstream LLMs using the constructed dataset. 383

Our evaluation focuses on two primary objectives: 384

(1) to assess whether the models can perform pre- 385

cise and rigorous deductive reasoning by correctly 386

determining the membership relation between a 387

given grammar and string; and (2) to examine their 388

ability to carry out effective inductive reasoning by 389

identifying underlying patterns and common rules 390

from a set of example strings. 391
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Acc / LLMs Qwen2.5
7B

Qwen2.5
14B

LlaMa3
8B

Deepseek-R1
Distilled-Qwen-7B

Qwen
plus

GPT
4o

Deepseek
R1

Qwen3
Type Metric

Normal
ACC+ 0.559 0.568 0.439 0.583 0.798 0.509 0.806 0.482
ACC- 0.532 0.634 0.454 0.351 0.482 0.757 0.843 0.639

Swapped
ACC+ 0.168 0.212 0.132 0.211 0.635 0.262 0.586 0.152
ACC- 0.830 0.845 0.846 0.383 0.638 0.882 0.863 0.936

Table 4: Test result of FLR task. We evaluate the recognition accuracy of positive and negative samples on two
different types of grammars.

Metric Qwen
2.5-7B

LlaMa
3-8B

GPT
4o

Deepseek
R1

Acc 0.626 0.796 0.595 0.729
LCR 0.214 0.053 0.929 1.000

Table 5: Test results for prompting the model to output
both the classification result and reasoning path. Acc
refers to the classification accuracy. LCR refers to the
proportion of logically consistent inference processes
on correct samples.

Our evaluation includes three types of LLMs: (1)392

open-source models without deep-reasoning capa-393

bilities, including Qwen2.5-7B-Instruct, Qwen2.5-394

14B-Instruct and LlaMa-3-8B; (2) open-source395

models designed for deep-reasoning, includ-396

ing Deepseek-r1 , Qwen3-8B and Deepseek-r1-397

distilled-Qwen2.5-7B-Instruct; (3) closed-source398

models without specialized reasoning training, in-399

cluding GPT-4o and Qwen-plus.400

Additional implementation details, including the401

test-time prompts and model-specific evaluation402

settings, can be found in the Appendix C.403

4.2 Main Results404

Formal Language Recognition We first evalu-405

ate the performance of commonly used large lan-406

guage models on the formal language recognition407

task, with the results shown in Table 4. These408

LLMs are tested on two different grammar forms409

mentioned in Section 3.3, evaluating their accuracy410

in classifying both positive and negative sample411

datasets. Our findings are as follows.412

1). Deep thinking models, such as Deepseek-R1,413

tend to perform better than non-inferential models414

on this task, which demonstrates their higher poten-415

tial in complex abductive and deductive reasoning.416

2). The logical reasoning capabilities of closed-417

source models in symbolic systems are not neces-418

sarily superior to those of small-scale open-source419

models.420

3). The most intriguing finding is that, when421

the grammatical form deviates from the com-422

mon forms, on one hand, all the tested models 423

exhibit a significant performance decrease on posi- 424

tive samples, even when such changes in form are 425

limited to symbol transformations. On the other 426

hand, when the characters of the grammar change 427

to an unfamiliar form, all the large models tend to 428

classify the strings as non-inferable. 429

However, it remains unclear whether this perfor- 430

mance discrepancy stems purely from limitations 431

in reasoning ability, or from the model’s inability 432

to retain newly introduced character rules through- 433

out the reasoning process. It is particularly difficult 434

to determine because changing the character set 435

requires the addition of explanatory text to define 436

the function of the new characters(As is shown in 437

Appendix C.2). This may need further research. 438

4). The local deep-thinking models appear to 439

lack awareness of when to terminate their reason- 440

ing. Even though we have set a large output win- 441

dow, they often engage in excessive reasoning on 442

negative samples, which results in incomplete clas- 443

sification outputs. 444

Grammar Induction We then evaluate the 445

LLM’s ability to identify general patterns from 446

input strings and to induce plausible grammatical 447

rules, the results are shown in Table 6. For each 448

LLM, we input a set of strings derived from the 449

same grammar, and require it to output a grammar 450

capable of generating the input strings. Then, we 451

apply the automated Grammar Verifier to evaluate 452

the grammars produced by the models, calculat- 453

ing the pass rate of input strings and test strings 454

for each test. Our results indicate that although 455

there are still considerable performance differences 456

among the reasoning-oriented models, these LLMs 457

significantly outperform non-reasoning ones; how- 458

ever, even the best-performing reasoning models 459

still fail to achieve strong generalization in their 460

inductive results. 461
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Performace Qwen2.5
7B

Qwen2.5
14B

LlaMa3
8B

Deepseek-R1
Distilled-Qwen-7B

Deepseek
R1

Qwen
plus

GPT
4o

Qwen3

Pass 0.158 0.122 0.123 0.327 0.621 0.172 0.262 0.859
Generalization 0.037 0.032 0.020 0.189 0.144 0.028 0.036 0.462

Table 6: Test result of GI task. For each test case, we calculate the proportion of the input string that can be derived
from the grammar summarized by the model as Pass, and that of test string is referred to as Generalization.The
average value across all test cases is taken as the final performance of each model.

4.3 Evaluation of the Reasoning Process462

In Section 4.2, we evaluate the model’s perfor-463

mance on a classification task that requires log-464

ical reasoning. However, an important question465

is, under what conditions will the model produce466

a ’correct’ judgment: is it genuinely reasoning467

through a valid path, or simply guessing based on468

the distribution of terminal character patterns?469

To explore this question, we introduce additional470

constraints during inference to compel the model to471

explicitly generate its reasoning path. We perform472

a series of experiments, with the results shown in473

Table 5. Requiring the models to explicitly gen-474

erate a reasoning path during its prediction pro-475

cess helps to improve their classification accuracy.476

This indicates that the revised prompts guide the477

model toward a more structured reasoning process,478

thereby promoting consistency in its reasoning.479

We manually examine the reasoning paths ex-480

tracted from the samples correctly classified by481

the models and find significant differences across482

model scales: Smaller models often struggle to483

produce coherent reasoning paths, even when their484

classification performance does not appear to be485

mere guessing. This may be due to the limited486

capacity of small models, which prevents them487

from backtracking and constructing a complete488

reasoning tree. Alternatively, they might simply be489

guessing answers based on the distribution of sym-490

bol sets and approximate pattern matching. The491

exact cause may require further investigation. In492

contrast, larger models tend to provide correct rea-493

soning paths, despite occasional errors in notation494

or symbol confusion.495

This indicates that model scale has a significant496

impact on the quality of reasoning, even when mod-497

els with substantially different sizes may achieve498

similar performance in classification tasks. Case499

study examples for these attempts are provided in500

Appendix B.501

Acc Qwen
2.5-7B

LlaMa
3-8B

GPT
4o

Deepseek
R1

Original 0.559 0.439 0.509 0.806
J & P 0.626 0.796 0.595 0.729
Guided 0.592 0.726 0.590 0.791

Table 7: Test results for prompting the model to follow
human problem-solving steps. Original refers to the
original prompt formulation, and Guided refers to the
human-steps-following prompt formulation. J & P
refers to the prompting format that elicits both the final
judgment and the reasoning path.

4.4 Guided Prompting 502

When we prompt LLM to explicitly output their 503

reasoning paths, their accuracy on judgment tasks 504

improves to some extent. This raises an intriguing 505

question: if we guide the model, through prompts, 506

to solve problems by following the same step- 507

by-step approach as humans, would its decision- 508

making performance further improve? We conduct 509

another experiment, with results shown in Table 7. 510

For non-deep-reasoning models, prompting large 511

models to engage in deeper reasoning can improve 512

their performance on deductive reasoning tasks; 513

however, for deep-reasoning models, such prompts 514

may have the opposite effect. 515

5 Conclusions 516

Through careful experimentation, we find that ex- 517

isting mainstream large models fail to achieve sat- 518

isfactory performance on logical reasoning tasks 519

that are based on formal language grammars. Re- 520

gardless of model type, performance on reasoning 521

tasks consistently declines when the definitions of 522

symbols in the rules diverge from their common- 523

sense interpretations. Prompting can guide non- 524

reflective models to generate reasoning processes 525

resembling reflective thinking, thereby improving 526

their performance.All of these findings provide a 527

foundation for further improvements in the capa- 528

bilities of LLMs. 529
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Limitations530

In this paper, we leverage formal language gram-531

mars to effectively address issues found in tradi-532

tional logic reasoning evaluations, such as inter-533

ference of commonsense knowledge. However,534

several limitations remain:535

1). Insufficient evaluation of reasoning pro-536

cesses in formal language recognition. The most537

reasonable evaluation of logical reasoning should538

include both process evaluation and outcome eval-539

uation. However, since process evaluation requires540

models to follow complex formatting instructions,541

it is currently difficult to automate and can only be542

performed through manual sampling and inspec-543

tion. Therefore, we currently use classification544

accuracy as the evaluation metric. This limitation545

highlights the need for more systematic and scal-546

able process-level evaluation methods in future547

work.548

2). Limitations in the design of generalization549

testing for formal language induction. Although550

generating strings from the same grammar pro-551

vides a relatively fair evaluation framework, ex-552

pecting models to infer universal rules from a small553

number of examples is inherently difficult. This554

reflects a broader challenge shared across all in-555

ductive tasks — the inherent tension between data556

sparsity and generalization. Future work should ex-557

plore more principled approaches to designing gen-558

eralization benchmarks that better capture mean-559

ingful inductive reasoning.560
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A NLI vs Logical Reasoning 700

Natural language inference (NLI) and logical rea- 701

soning tasks differ fundamentally in the nature of 702

the knowledge they require. NLI tasks involve de- 703

termining the relationship between a premise and 704

a hypothesis—typically labeled as entailment, con- 705

tradiction, or neutrality—based on both linguistic 706

cues and extensive background or commonsense 707

knowledge. For instance, correctly inferring that 708

“The man is running” entails “The man is moving” 709

often relies on an implicit understanding of physi- 710

cal actions and their typical consequences, rooted 711

in human experience. 712

In contrast, logical reasoning tasks aim to ab- 713

stract away from such language-specific or world 714

knowledge, focusing instead on the formal struc- 715

ture of reasoning. These tasks are often designed 716

to minimize reliance on lexical or contextual cues 717

and instead emphasize the manipulation of well- 718

defined logical relations, such as conjunction, dis- 719

junction, and implication. As a result, logical rea- 720

soning tasks require models to exhibit systematic, 721

rule-based inference capabilities rather than draw- 722

ing on broad linguistic commonsense. Therefore, 723

to ensure validity and interpretability, logical rea- 724

soning tasks must reduce the dependence on nat- 725

ural language knowledge and focus on explicit, 726

domain-contained rules and symbols. 727

However, existing evaluation methods for logi- 728

cal reasoning unavoidably introduce some degree 729

of commonsense knowledge during data construc- 730

tion. For example, we illustrate this with a sample 731

from the LogiQA dataset. Among the four options 732

below, Option 2 and Option 4 are clearly incon- 733

sistent with commonsense knowledge. Therefore, 734

LLM can eliminate these two choices based on its 735

stored knowledge rather than reasoning ability. On 736
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the other hand, if a LLM already knows from com-737

mon knowledge that “Cantonese are southerners”,738

it might accept the argument as obviously valid739

without consciously identifying the logical struc-740

ture. This makes it hard to tell whether it is using741

deductive reasoning or just relying on background742

knowledge.743

context:
Some Cantonese don’t like chili, so
some southerners don’t like chili.

744

query:
Which of the following can guarantee
the above argument?

745

options:
1.Some Cantonese love chili.
2.Some people who like peppers are
southerners.
3.All Cantonese are southerners.
4.Some Cantonese like neither peppers
nor sweets.

746

B Case Study Results747

It remains challenging to obtain accurate analysis748

results through automatic parsing models’ reason-749

ing path. As a formatted reasoning path imposes750

relatively complex constraints, and any single error751

can cause the entire reasoning process to fail.752

Our observations suggest that the instruction-753

following capabilities of non-deep-thinking LLMs’754

are often insufficient to reliably accomplish such755

tasks. Consequently, when applying rules based756

on a strict symbolic system for matching, the out-757

put paths of these models are often prone to error.758

Therefore, we conduct a series of case studies as759

mentioned in the context. We sample and manually760

check two kinds of results:761

1. Asking the LLMs to parse only the reasoning762

path. 2.Asking the LLMs to both judge the attribu-763

tion and parse the reasoning path simultaneously.764

Examples and conclusions are as follows.765

B.1 Parse only the reasoning parse766

Our first attempt is to prompt the large language767

model to only parse the reasoning path from the768

input string and grammar; However, when we ask769

the LLMs to do so, many LLMs often resorted to770

heuristic shortcuts—fabricating rules or generating771

superficially plausible reasoning paths, even for772

negative samples they would have otherwise classi-773

fied correctly. As is shown below, the Qwen2.5-7B774

model fabricated the rule of A → ada.775

rules:
S→EBS|aD,
E→C|Aes|eBc,
B→bcd|ada|ϵ|BB,
dSA→E,
D→ϵ,
A→ϵ,

776

string:
esadaa

777

path:
1. S
2. EBS (S → EBS)
3. AesB (E → Aes)
4. adaB (A → ada)
5. adabc (B → bcd)
6. esadaa (D → ϵ, B → ϵ)

778

B.2 Recognition and Parse 779

Meanwhile, when we ask the LLMs to both con- 780

duct recognition and parse the reasoning path si- 781

multaneously, smaller LLMs struggle to output 782

reasonable reasoning paths, even when their judg- 783

ments are correct. There are several common types 784

of mistake. 785

(1) The first type is symbol confusion. As shown 786

below, the model fail to distinguish between ter- 787

minal symbols and non-terminal symbols during 788

output. If we disregard such confounding factors 789

and attempt to apply the correct rules to interpret 790

the reasoning path of large models, we find that 791

when inferring the string bcdeBCd, it considered 792

the result to be correct, but the actual target string 793

is bcdebcd. 794

rules:
S→BEd,
B→bcd|ada,
E→b|CB|Aes|eBc|ϵ|EE,
bA→A,
A→ϵ

795

path:
1.(s, s→bed, 0) BEd
2.(bed, b→bcd, 0) bcdEd
3.(bcdd, e→ebc, 1) bcdeBcd

796

(2)The second type is rule fabrication, where 797

the model randomly invents non-existent rules and 798

applies them to a certain step of the substitution 799

process. As is shown below, the LLM fabricates 800

the rule c -> ϵ and bsb -> ada, and symbol confu- 801

sion exists meanwhile. 802
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rules:
S→EBS|Ca|aD
E→C|CB|Aes|bE
bSb→Ada"
D→ϵ
D→ϵ
B→ϵ|BB
A→ϵ"

803

path:
(cbs, e → c, 1)
(cs, b → ϵ, 2)
(s, c → ϵ, 1)
(ebs, s → ebs, 0)
(aes, e → aes, 1)
(es, a → ϵ, 1)
(sebe, e → be, 1)
(es, bsb → ada, 0)

804

(3) The third type is rule application errors,805

where the large model applies correct rules to in-806

correct symbols during substitution. As is shown807

below, in step 5, LlaMa3-8B applies the rule "d808

-> ϵ" to position 0, while the correct application809

should be at position 2.810

rules:
1. (s, s → bed, 0)
2. (bed, e → ϵ, 1)
3. (bd, b → ada, 0)
4. (adad, d → ϵ, 1)
5. (aad, d → ϵ, 0)
6. (ad, d → ϵ, 0)

811

For larger LLM, the proportion of correctly gen-812

erated reasoning paths is significantly higher than813

that of smaller models, suggesting that they are in-814

deed capable of performing step-by-step reasoning815

based on rule-like systems to a certain extent. As816

shown below, despite occasional slips (such as writ-817

ing "acsSSE" as "acSSE"), Deepseek-R1 demon-818

strates strong consistency in reasoning on samples819

that are classified correctly. Moreover, this sym-820

bolic error occurs only once and is immediately821

corrected in the following step, suggesting that it822

resembles a slip of the pen by a human student—a823

minor writing mistake that does not compromise824

the overall reasoning process.825

path:
(’S’, ’S->SAE’, 0)
(’SAE’, ’S->Cac’, 0)
(’CacAE’, ’C->ϵ’, 0)
(’acAE’, ’A->sS’, 2)
(’acsSE’, ’S->SS’, 3)
(’acSSE’, ’S->Cac’, 3)
(’acsCacSE’, ’C->ϵ’, 3)
(’acsacSE’, ’S->Cac’, 5)
(’acsacCacE’, ’C->ϵ’, 5)
(’acsacacE’, ’E->b’, 7)

826

B.3 Preliminary testing on commercial LLMs 827

To investigate the types of grammar-related log- 828

ical reasoning tasks where current large models 829

are prone to errors, we manually collected several 830

formal-language-related problems and conducted 831

sampling tests on some commercial large models. 832

The specific details are provided in the appendix. 833

We find that, currently, commercial LLMs 834

can correctly handle certain tasks involving sim- 835

ple, short-path reasoning on context-free gram- 836

mars(CFG)(Cremers and Ginsburg, 1975). Com- 837

mon errors are concentrated in two types of gram- 838

mars: (1) Left-recursive grammars, where a non- 839

terminal symbol can derive an expression that 840

contains itself through a specific production rule, 841

leading to infinite recursion during parsing. (2) 842

Context-sensitive grammars, which often involve 843

production rules with character reduction steps. 844

C Detailed Experimental Setups 845

Due to limited resources, we conduct data sam- 846

pling for experiments across different tasks and 847

model types, taking into account factors such as 848

inference speed, GPU memory capacity, and cost. 849

To ensure the reliability of the reasoning pro- 850

cess, all locally deployed models were executed 851

via the Transformers library, with the maximum 852

new token length set to 8192 tokens, which should 853

be considered adequate for the expected inference 854

depth. All results are the average values of the 855

model’s performance on the test set. 856

C.1 Hyperparameters 857

1. In data-construction, to balance task complexity 858

and computational feasibility, we constrain λ for 859

each data instance to the range of 8 to 10. This 860

range is chosen to ensure that the reasoning pro- 861

cess is non-trivial—requiring more than simple 862

pattern matching—while still remaining within the 863
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manageable token limits of current large language864

models. Derivations of this length are sufficiently865

deep to reveal recursive or context-dependent struc-866

tures, enabling meaningful evaluation of deductive867

reasoning capabilities. At the same time, the length868

is moderate enough to avoid unnecessary compu-869

tational overhead and to ensure that all derivation870

traces can be fully processed during both genera-871

tion and verification. Additionally, longer deriva-872

tion paths yield more structurally diverse samples,873

which enhances the quality of both positive and per-874

turbed negative instances, allowing for a more ro-875

bust assessment of the models’ generalization and876

discrimination abilities. 2. Accordingly, we set ϵ to877

10. This operation transforms the context-related878

grammar search space into a finite one, thereby879

enabling the identification task to be decided by a880

rule-based parser.881

C.2 Prompts882

We design a set of task-specific prompts for our ex-883

periments. Here we provide a detailed presentation884

of these prompts. For each example, we present a885

comparison between Chinese and English, with all886

experiments conducted using the Chinese version.887

All experiments are done with a zero-shot setting.888

Normal type FLR(ZH)

rules: rules string: string task: 从S出发，
根据规则，能否推理出目标字符串？返
回“Yes”或“No”

889

Normal type FLR(EN)

rules: rules string: string task: Starting
from S, can the target string be derived ac-
cording to the rules? Return "Yes" or "No".

890

Swapped type FLR(ZH)

给定一组语言文法规则如下： rules 目
标字符串为：string 符号说明：ε表示
推导的起点 P表示空字符（即一个替代
符号，用来表示空）。 请回答，是否
可以由该文法推导出来目标字符串。
请分析推导过程，必要时列出每一步，
并在最后给出你的结论：yes（如果可
以推导出）结论：no（如果不能推导
出）

891

Swapped type FLR(EN)

Given a set of grammar rules as follows:
rules The target string is: string Notation:
ε denotes the starting symbol of the deriva-
tion. P represents the empty string (i.e., a
placeholder symbol indicating emptiness).
Please determine whether the target string
can be derived from the grammar. Analyze
the derivation process, listing each step if
necessary, and provide your final conclu-
sion: Conclusion: yes (if the target string
can be derived) Conclusion: no (if the target
string cannot be derived)

892

Parse Only the Reasoning Path(ZH)

你将得到一个形式语言文法和一个目标
字符串。请推导该字符串是如何由该文
法生成的，展示清晰的推导步骤。每一
步请注明使用了哪一条产生式规则（例
如：S → aSb）。
文法： rules
字符串： string
只输出推导过程，包括每一步使用的产
生式规则。
格式如下： 1. S（初始符号）

893

Parse Only the Reasoning Path(EN)

You will be given a formal grammar and a
target string. Please derive how the string
can be generated from the grammar, and
show the derivation steps clearly. For each
step, indicate the production rule used (e.g.,
S → aSb).
Grammar: rules
String: string
Only output the derivation process, includ-
ing the production rule used in each step.
Format:
1. S (start symbol)

894
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Normal type GI(ZH)

请根据以下输入的字符串集合，推导并
生成一个符合形式语言规范的上下文无
关文法。请严格按照以下要求执行： 1.
文法推导方法： -分析字符串的最小公
共模式 -识别递归结构和重复模式 -提
取终结符和非终结符 -合并相似的产生
式规则
2. 输出格式要求： -每行一个产生式规
则 -使用->符号连接左右部 -非终结符
用大写字母表示 -终结符用引号包裹或
小写字母表示 -避免任何额外解释文本
输入字符串： input strings
请严格按照上述格式要求，只返回推导
出的文法规则，每个规则独立一行，不
使用编号和多余符号。

895

Normal type GI(EN)

Please derive and generate a context-free
grammar (CFG) that conforms to formal
language conventions based on the follow-
ing set of input strings. Follow the instruc-
tions below strictly:
1. Grammar Derivation Method:
Analyze the minimal common patterns
among the strings
Identify recursive structures and repeating
patterns
Extract terminals and non-terminals
Merge similar production rules
2. Output Format Requirements:
One production rule per line
Use -> to connect the left-hand side and the
right-hand side
Represent non-terminals with uppercase let-
ters
Represent terminals using quotes or lower-
case letters
Avoid any additional explanatory text
Input strings: input strings
Please strictly follow the format above
and return only the derived grammar rules.
Each rule should appear on a separate line,
with no numbering or extra symbols.
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Normal type FLR With Path (ZH)

给定一组形式语言文法规则和一个目标
字符串，判断目标字符串是否可以从起
始符号 start symbol 推导得到。如果可
以，返回 ’yes’ 并给出从start symbol开
始的推导步骤，每次替换的格式如下：

(当前串,使用的规则,替换位置)
其中，“当前串”指的是此次替换前的字
符状态，使用的规则”指此次替换使用
的文法规则，“替换位置”指的是该规
则应用于当前串中的第几个符号位置
（从0开始）；

如果不能推导出该串，返回 "no"。

文法规则如下（每行一条）：
grammar

目标字符串：string
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Normal type FLR With Path (EN)

Given a set of formal grammar rules and a
target string, determine whether the target
string can be derived from the start symbol
start symbol.
If it can be derived, return "yes" and pro-
vide the derivation steps starting from the
start symbol. Each replacement step should
follow the format:
(current string, applied rule, replacement
position) Where:
"current string" refers to the state of the
string before the replacement,
"applied rule" refers to the grammar rule
used in this step,
"replacement position" refers to the index
(starting from 0) of the symbol in the cur-
rent string where the rule is applied.
If the target string cannot be derived, return
"no".
Grammar rules (one per line): grammar
Target string: string
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Normal type FLR With Guided Prompt-
ing(ZH)

给定一个形式文法和一个目标字符串，
请按照以下步骤判断该字符串是否可以
由该文法生成：
列出文法的产生式规则，明确起始符
号。
分析文法结构，判断是否递归、包含空
产生式、是否对称等。
观察目标字符串的长度和结构，尝试寻
找与文法规则的匹配模式。 选择推导
方向：
使用 自顶向下推导（从起始符号出
发）逐步替换非终结符，尝试构造目
标字符串；
或 自底向上归约（从目标字符串出
发）寻找文法右部，逐步归约回起始
符号。
记录推导过程（或构建推导树），确保
每一步都合法。
得出结论：
如果成功推导出完整的目标字符串，
则说明该字符串属于文法的语言,返
回“Yes”。
如果无法推导或中途卡住，则不属于，
返回“No”。
文法：rules目标字符串：string"
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Normal type FLR With Guided Prompt-
ing(EN)

Given a formal grammar and a target string,
please determine whether the string can
be generated by the grammar by following
these steps:
1. List the production rules of the grammar
and identify the start symbol.
2. Analyze the structure of the grammar:
determine whether it is recursive, includes
empty productions, or exhibits symmetry.
3. Examine the length and structure of the
target string, and try to identify patterns that
match the grammar rules.
4. Choose a derivation strategy:
Use top-down derivation: start from the
start symbol and iteratively replace non-
terminals to construct the target string; Or
use bottom-up reduction: start from the tar-
get string, find right-hand sides of the gram-
mar, and iteratively reduce to the start sym-
bol.
5. Record the derivation steps (or construct
a derivation tree), ensuring that each step is
valid according to the grammar.
6. Draw a conclusion:
If the target string can be completely de-
rived, it belongs to the language defined
by the grammar — return "Yes". If deriva-
tion fails or gets stuck, the string does not
belong to the language — return "No".
Grammar: rules
Target string: string
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